WorldWideScience

Sample records for space images global

  1. European Space Imaging & Skybox Imaging

    International Nuclear Information System (INIS)

    Clark, J.; Schichor, P.

    2015-01-01

    Skybox and European Space Imaging have partnered to bring timely, Very High-Resolution imagery to customers in Europe and North Africa. Leveraging Silicon Valley ingenuity and world-class aerospace expertise, Skybox designs, builds, and operates a fleet of imaging satellites. With two satellites currently on-orbit, Skybox is quickly advancing towards a planned constellation of 24+ satellites with the potential for daily or sub-daily imaging at 70-90 cm resolution. With consistent, high-resolution imagery and video, European customers can monitor the dynamic units of human activity - cars, trucks, shipping containers, ships, aircraft, etc. - and derive valuable insights about the global economy. With multiple imaging opportunities per day, the Skybox constellation provides unprecedented access to imagery and information about critical targets that require rapid analysis. Skybox's unique capability to deliver high-definition video from space enables European customers to monitor a network of globally distributed assets with full-motion snapshots, without the need to deploy an aircraft or field team. The movement captured in these 30-90 second video windows yield unique insights that improve operational decisions. Skybox and EUSI are excited to offer a unique data source that can drive a better understanding of our world through supply chain monitoring, natural resource management, infrastructure monitoring, and crisis response. (author)

  2. High speed global shutter image sensors for professional applications

    Science.gov (United States)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  3. Landsat: A global land-imaging mission

    Science.gov (United States)

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  4. Tensor voting for image correction by global and local intensity alignment.

    Science.gov (United States)

    Jia, Jiaya; Tang, Chi-Keung

    2005-01-01

    This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

  5. Global Lunar Topography from the Deep Space Gateway for Science and Exploration

    Science.gov (United States)

    Archinal, B.; Gaddis, L.; Kirk, R.; Edmundson, K.; Stone, T.; Portree, D.; Keszthelyi, L.

    2018-02-01

    The Deep Space Gateway, in low lunar orbit, could be used to achieve a long standing goal of lunar science, collecting stereo images in two months to make a complete, uniform, high resolution, known accuracy, global topographic model of the Moon.

  6. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  7. Space Radar Image of Manaus, Brazil

    Science.gov (United States)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  8. Global Trends in Space Access and Utilization

    Science.gov (United States)

    Rahman, Shamim A.; Keim, Nicholas S.; Zeender, Peter E.

    2010-01-01

    In the not-so-distant past, space access and air/space technology superiority were within the purview of the U.S. and former Soviet Union's respective space agencies, both vying for global leadership in space exploitation. In more recent years, with the emergence of the European Space Agency (ESA) member countries and Asian countries joining the family of space-faring nations, it is truer now more than ever that space access and utilization has become a truly global enterprise. In fact, according to the Space Report 2007, this enterprise is a $251-billion economy. It is possible to gauge the vitality of worldwide efforts from open sources in today's transparent, media-based society. In particular, print and web broadcasters regularly report and catalog global space activities for defense and civil purposes. For the purposes of this paper, a representative catalog of missions is used to illustrate the nature of the emerging "globalization." This paper highlights global trends in terms of not only the providers of space access, but also the end-users for the various recently accomplished missions. With well over 50 launches per year, in recent years, the launch-log reveals a surprising percentage of "cooperative or co-dependent missions" where different agencies, countries, and/or commercial entities are so engaged presumably to the benefit of all who participate. Statistics are cited and used to show that recently over d0% of the 50-plus missions involved multiple nations working collectively to deliver payloads to orbit. Observers, space policy professionals, and space agency leaders have eloquently proposed that it might require the combined resources and talents of multiple nations to advance human exploration goals beyond low earth orbit. This paper does not intend to offer new information with respect to whether international collaboration is necessary but to observe that, in continuing to monitor global trends, the results seem to support the thesis that a

  9. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  10. Continuous imaging space in three-dimensional integral imaging

    International Nuclear Information System (INIS)

    Zhang Lei; Yang Yong; Wang Jin-Gang; Zhao Xing; Fang Zhi-Liang; Yuan Xiao-Cong

    2013-01-01

    We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  12. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  13. Space activities and global popular music culture

    Science.gov (United States)

    Wessels, Allison Rae; Collins, Patrick

    During the "space age" era, space activities appear increasingly as a theme in Western popular music, as they do in popular culture generally. In combination with the electronics and tele-communications revolution, "pop/rock" music has grown explosively during the space age to become an effectively global culture. From this base a number of trends are emerging in the pattern of influences that space activities have on pop music. The paper looks at the use of themes and imagery in pop music; the role of space technology in the modern "globalization" of pop music; and current and future links between space activities and pop music culture, including how public space programmes are affected by its influence on popular attitudes.

  14. Adaptive removal of background and white space from document images using seam categorization

    Science.gov (United States)

    Fillion, Claude; Fan, Zhigang; Monga, Vishal

    2011-03-01

    Document images are obtained regularly by rasterization of document content and as scans of printed documents. Resizing via background and white space removal is often desired for better consumption of these images, whether on displays or in print. While white space and background are easy to identify in images, existing methods such as naïve removal and content aware resizing (seam carving) each have limitations that can lead to undesirable artifacts, such as uneven spacing between lines of text or poor arrangement of content. An adaptive method based on image content is hence needed. In this paper we propose an adaptive method to intelligently remove white space and background content from document images. Document images are different from pictorial images in structure. They typically contain objects (text letters, pictures and graphics) separated by uniform background, which include both white paper space and other uniform color background. Pixels in uniform background regions are excellent candidates for deletion if resizing is required, as they introduce less change in document content and style, compared with deletion of object pixels. We propose a background deletion method that exploits both local and global context. The method aims to retain the document structural information and image quality.

  15. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the

  16. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  17. Mid-space-independent deformable image registration.

    Science.gov (United States)

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-05-15

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  19. Space Observations for Global Change

    Science.gov (United States)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  20. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  1. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  2. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  3. Space Images for NASA/JPL

    Science.gov (United States)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  4. Generalized probabilistic scale space for image restoration.

    Science.gov (United States)

    Wong, Alexander; Mishra, Akshaya K

    2010-10-01

    A novel generalized sampling-based probabilistic scale space theory is proposed for image restoration. We explore extending the definition of scale space to better account for both noise and observation models, which is important for producing accurately restored images. A new class of scale-space realizations based on sampling and probability theory is introduced to realize this extended definition in the context of image restoration. Experimental results using 2-D images show that generalized sampling-based probabilistic scale-space theory can be used to produce more accurate restored images when compared with state-of-the-art scale-space formulations, particularly under situations characterized by low signal-to-noise ratios and image degradation.

  5. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  6. Precision 3d Surface Reconstruction from Lro Nac Images Using Semi-Global Matching with Coupled Epipolar Rectification

    Science.gov (United States)

    Hu, H.; Wu, B.

    2017-07-01

    The Narrow-Angle Camera (NAC) on board the Lunar Reconnaissance Orbiter (LRO) comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM) is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four) of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to generate a disparity

  7. PRECISION 3D SURFACE RECONSTRUCTION FROM LRO NAC IMAGES USING SEMI-GLOBAL MATCHING WITH COUPLED EPIPOLAR RECTIFICATION

    Directory of Open Access Journals (Sweden)

    H. Hu

    2017-07-01

    Full Text Available The Narrow-Angle Camera (NAC on board the Lunar Reconnaissance Orbiter (LRO comprises of a pair of closely attached high-resolution push-broom sensors, in order to improve the swath coverage. However, the two image sensors do not share the same lenses and cannot be modelled geometrically using a single physical model. Thus, previous works on dense matching of stereo pairs of NAC images would generally create two to four stereo models, each with an irregular and overlapping region of varying size. Semi-Global Matching (SGM is a well-known dense matching method and has been widely used for image-based 3D surface reconstruction. SGM is a global matching algorithm relying on global inference in a larger context rather than individual pixels to establish stable correspondences. The stereo configuration of LRO NAC images causes severe problem for image matching methods such as SGM, which emphasizes global matching strategy. Aiming at using SGM for image matching of LRO NAC stereo pairs for precision 3D surface reconstruction, this paper presents a coupled epipolar rectification methods for LRO NAC stereo images, which merges the image pair in the disparity space and in this way, only one stereo model will be estimated. For a stereo pair (four of NAC images, the method starts with the boresight calibration by finding correspondence in the small overlapping stripe between each pair of NAC images and bundle adjustment of the stereo pair, in order to clean the vertical disparities. Then, the dominate direction of the images are estimated by project the center of the coverage area to the reference image and back-projected to the bounding box plane determined by the image orientation parameters iteratively. The dominate direction will determine an affine model, by which the pair of NAC images are warped onto the object space with a given ground resolution and in the meantime, a mask is produced indicating the owner of each pixel. SGM is then used to

  8. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  9. Estimating perception of scene layout properties from global image features.

    Science.gov (United States)

    Ross, Michael G; Oliva, Aude

    2010-01-08

    The relationship between image features and scene structure is central to the study of human visual perception and computer vision, but many of the specifics of real-world layout perception remain unknown. We do not know which image features are relevant to perceiving layout properties, or whether those features provide the same information for every type of image. Furthermore, we do not know the spatial resolutions required for perceiving different properties. This paper describes an experiment and a computational model that provides new insights on these issues. Humans perceive the global spatial layout properties such as dominant depth, openness, and perspective, from a single image. This work describes an algorithm that reliably predicts human layout judgments. This model's predictions are general, not specific to the observers it trained on. Analysis reveals that the optimal spatial resolutions for determining layout vary with the content of the space and the property being estimated. Openness is best estimated at high resolution, depth is best estimated at medium resolution, and perspective is best estimated at low resolution. Given the reliability and simplicity of estimating the global layout of real-world environments, this model could help resolve perceptual ambiguities encountered by more detailed scene reconstruction schemas.

  10. Imaging the Surfaces of Stars from Space

    Science.gov (United States)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  11. Some Einstein spaces and their global properties

    International Nuclear Information System (INIS)

    Siklos, S.T.C.

    1981-01-01

    The global structure of a class of Einstein spaces is investigated. These spaces have algebraically special Weyl tensors and contain homogeneous hypersurfaces. It is found that they display simple examples of a variety of interesting configuration involving horizons and singularities. (author)

  12. Global error minimization in image mosaicing using graph connectivity and its applications in microscopy

    Directory of Open Access Journals (Sweden)

    Parmeshwar Khurd

    2011-01-01

    Full Text Available Several applications such as multiprojector displays and microscopy require the mosaicing of images (tiles acquired by a camera as it traverses an unknown trajectory in 3D space. A homography relates the image coordinates of a point in each tile to those of a reference tile provided the 3D scene is planar. Our approach in such applications is to first perform pairwise alignment of the tiles that have imaged common regions in order to recover a homography relating the tile pair. We then find the global set of homographies relating each individual tile to a reference tile such that the homographies relating all tile pairs are kept as consistent as possible. Using these global homographies, one can generate a mosaic of the entire scene. We derive a general analytical solution for the global homographies by representing the pair-wise homographies on a connectivity graph. Our solution can accommodate imprecise prior information regarding the global homographies whenever such information is available. We also derive equations for the special case of translation estimation of an X-Y microscopy stage used in histology imaging and present examples of stitched microscopy slices of specimens obtained after radical prostatectomy or prostate biopsy. In addition, we demonstrate the superiority of our approach over tree-structured approaches for global error minimization.

  13. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  14. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  15. Space Radar Image of Flevoland, Netherlands

    Science.gov (United States)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by

  16. Properties of Brownian Image Models in Scale-Space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup

    2003-01-01

    Brownian images) will be discussed in relation to linear scale-space theory, and it will be shown empirically that the second order statistics of natural images mapped into jet space may, within some scale interval, be modeled by the Brownian image model. This is consistent with the 1/f 2 power spectrum...... law that apparently governs natural images. Furthermore, the distribution of Brownian images mapped into jet space is Gaussian and an analytical expression can be derived for the covariance matrix of Brownian images in jet space. This matrix is also a good approximation of the covariance matrix......In this paper it is argued that the Brownian image model is the least committed, scale invariant, statistical image model which describes the second order statistics of natural images. Various properties of three different types of Gaussian image models (white noise, Brownian and fractional...

  17. Space commerce in a global economy - Comparison of international approaches to commercial space

    Science.gov (United States)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  18. Ghost Imaging of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Ghost imaging is an optical imaging technique that utilizes the correlations between optical fields in two channels. One of the channels contains the object, however...

  19. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  20. Observing the Global Water Cycle from Space

    Science.gov (United States)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  1. Overview of global space activities in 2007/2008

    Science.gov (United States)

    Peter, Nicolas; Delmotte, Raphaëlle

    2009-08-01

    The period ranging from July 2007 to June 2008 has been marked by significant trends and issues in the space sector, particularly under the impulsion of space-faring countries. The internationalisation and globalisation of the space sector which started a few years ago have been gaining momentum as well. As a consequence, the size of the space sector has been growing, as well as the global competition for market shares.

  2. Projection x-space magnetic particle imaging.

    Science.gov (United States)

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  3. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  4. A Learning State-Space Model for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lee Greg C

    2007-01-01

    Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.

  5. Extracting 3D layout from a single image using global image structures.

    Science.gov (United States)

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.

  6. METHOD OF IMAGE QUALITY ENHANCEMENT FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    D. S. Korshunov

    2014-07-01

    Full Text Available The paper deals with an approach for image quality improvement of the space objects in the visible range of electromagnetic wave spectrum. The proposed method is based on the joint taking into account of both the motion velocity of the space supervisory apparatus and a space object observed in the near-earth space when the time of photo-detector exposure is chosen. The timing of exposure is carried out by light-signal characteristics, which determines the optimal value of the charge package formed in the charge-coupled device being irradiated. Thus, the parameters of onboard observation equipment can be selected, which provides space images suitable for interpretation. The linear resolving capacity is used as quality indicator for space images, giving a complete picture for the image contrast and geometric properties of the object on the photo. Observation scenario modeling of the space object, done by sputnik-inspector, has shown the possibility of increasing the linear resolution up to10% - 20% or up to 40% - 50% depending on the non-complanarity angle at the movement along orbits. The proposed approach to the increase of photographs quality provides getting sharp and highcontrast images of space objects by the optical-electronic equipment of the space-based remote sensing. The usage of these images makes it possible to detect in time the space technology failures, which are the result of its exploitation in the nearearth space. The proposed method can be also applied at the stage of space systems design for optical-electronic surveillance in computer models used for facilities assessment of the shooting equipment information tract.

  7. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  8. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  9. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  11. Global astrometry with the space interferometry mission

    Science.gov (United States)

    Boden, A.; Unwin, S.; Shao, M.

    1997-01-01

    The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.

  12. Binary-space-partitioned images for resolving image-based visibility.

    Science.gov (United States)

    Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J

    2004-01-01

    We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

  13. Imaging of the perivertebral space.

    Science.gov (United States)

    Mills, Megan K; Shah, Lubdha M

    2015-01-01

    The perivertebral space extends from the skull base to the mediastinum and is delineated by the deep layer of the deep cervical fascia. The different tissue types, including muscles, bones, nerves, and vascular structures, give rise to the various disorders that can be seen in this space. This article defines the anatomy of the perivertebral space, guides lesion localization, discusses different disease processes arising within this space, and reviews the best imaging approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Diffusion magnetic resonance imaging in transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)

    2009-03-15

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  16. Diffusion magnetic resonance imaging in transient global amnesia

    International Nuclear Information System (INIS)

    Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de

    2009-01-01

    Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)

  17. Keyframes Global Map Establishing Method for Robot Localization through Content-Based Image Matching

    Directory of Open Access Journals (Sweden)

    Tianyang Cao

    2017-01-01

    Full Text Available Self-localization and mapping are important for indoor mobile robot. We report a robust algorithm for map building and subsequent localization especially suited for indoor floor-cleaning robots. Common methods, for example, SLAM, can easily be kidnapped by colliding or disturbed by similar objects. Therefore, keyframes global map establishing method for robot localization in multiple rooms and corridors is needed. Content-based image matching is the core of this method. It is designed for the situation, by establishing keyframes containing both floor and distorted wall images. Image distortion, caused by robot view angle and movement, is analyzed and deduced. And an image matching solution is presented, consisting of extraction of overlap regions of keyframes extraction and overlap region rebuild through subblocks matching. For improving accuracy, ceiling points detecting and mismatching subblocks checking methods are incorporated. This matching method can process environment video effectively. In experiments, less than 5% frames are extracted as keyframes to build global map, which have large space distance and overlap each other. Through this method, robot can localize itself by matching its real-time vision frames with our keyframes map. Even with many similar objects/background in the environment or kidnapping robot, robot localization is achieved with position RMSE <0.5 m.

  18. INFRARED GLOBAL GEOSTATIONARY COMPOSITE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Center for Environmental Prediction/Aviation Weather Center Infrared Global Geostationary Composite data set contains global composite images from the...

  19. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  20. Space Radar Image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  1. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    Science.gov (United States)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  2. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  3. Port – FEZ bundles as spaces of global articulation: the case of Tianjin, China

    OpenAIRE

    James J Wang; Daniel Olivier

    2006-01-01

    The authors examine possible ways to enhance interdisciplinary dialogue between transport geography and economic geography, its parent discipline. In the context of emerging paradigms of global production seeking to capture the outsourcing process with developing countries, the port – free-trade zone bundle is suggested as a valid intersect between spaces of production and spaces of circulation. Such zones act as interfaces between local and global spaces: they are spaces of global articulati...

  4. Image Enhancement In HSI Space Using Wavelet Transform

    Science.gov (United States)

    Bansal, Sonia; Malhotra, Deepti

    2010-11-01

    Image processing modifies images to improve them (enhancement, restoration), extract information (analysis, recognition), and change their structure (composition, image editing). Image Enhancement is simple and most appealing area among all the digital image processing techniques. The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image [1]. The color restoration functions of some real color image enhancement algorithms are greatly at random and not proved , and the real color images enhanced which are based on illumination-reflectance model have the loss of details and the `halos', we proposed a new algorithm to overcome these disadvantages. Firstly, we transform the real color image from RGB space to HSI space which is approximately orthonormal system. Secondly, the illumination and the reflectance of value are separated by homomorphic filtering based on illumination-reflectance model. We have discovered that the high dynamic range of image including high bright lights is mainly caused by the reflectance. Thirdly, the details of reflectance are preserved by wavelet transform. Fourthly, the dynamic range of reflectance is compressed by Butterworth filtering. Lastly, the energy of the saturation of real color image in HSI space is attenuated according to the spectral sensitivity of most human vision.

  5. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  6. Space Applications and Global Information Infrastructure: a Global Approach against Epidemics

    Science.gov (United States)

    Bastos, C. R.

    2002-01-01

    Brazilian space expenditures correspond to a low-middle rank among the space-faring nations. In this regard, international partnerships have opened doors for the country to take part in a wider range of projects than it would be possible if carried out on its own. Within the above framework, this paper will address a concept in which countries join efforts in pursuit of common objectives and needs in the field of health, countries whose similarities tend to make them face the same types of health problems. Exactly for this reason, such countries can get together and share the costs, risks and ultimately the benefits of their joint efforts. Infectious diseases are mankind's leading causes of death. And their agents travel around the world by the action of their vectors: insects, birds, winds, infected individuals, and others. The ways how Global Information Infrastructure and Space applications can be very helpful in the detection, identification, tracking and fighting migratory diseases will then be discussed. A concept for an international cooperative initiative is presented, addressing its composition, its implementation, the international coordination requirements, the financial and funding issues related to its implementation and sustainability, and the roles to be played by such an organization. The funding issue deserves a closer attention, since many good ideas are killed by financial problems in their early implementation stages. Finally, a conclusion drives the audience's attention towards the potential advantages of space-based assets in covering large portions of the Earth, and consequently being suitable for global initiatives for the benefit of mankind.

  7. Use of discrete chromatic space to tune the image tone in a color image mosaic

    Science.gov (United States)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Zheng, Li

    2003-09-01

    Color image process is a very important problem. However, the main approach presently of them is to transfer RGB colour space into another colour space, such as HIS (Hue, Intensity and Saturation). YIQ, LUV and so on. Virutally, it may not be a valid way to process colour airborne image just in one colour space. Because the electromagnetic wave is physically altered in every wave band, while the color image is perceived based on psychology vision. Therefore, it's necessary to propose an approach accord with physical transformation and psychological perception. Then, an analysis on how to use relative colour spaces to process colour airborne photo is discussed and an application on how to tune the image tone in colour airborne image mosaic is introduced. As a practice, a complete approach to perform the mosaic on color airborne images via taking full advantage of relative color spaces is discussed in the application.

  8. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    Science.gov (United States)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative

  9. DETERMINING PLANE-SWEEP SAMPLING POINTS IN IMAGE SPACE USING THE CROSS-RATIO FOR IMAGE-BASED DEPTH ESTIMATION

    Directory of Open Access Journals (Sweden)

    B. Ruf

    2017-08-01

    Full Text Available With the emergence of small consumer Unmanned Aerial Vehicles (UAVs, the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM optimization which is parallelized for general purpose computation on a GPU (GPGPU, reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that

  10. The limit space of a Cauchy sequence of globally hyperbolic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Noldus, Johan [Universiteit Gent, Vakgroep Wiskundige analyse, Galglaan 2, 9000 Gent (Belgium)

    2004-02-21

    In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.

  11. The limit space of a Cauchy sequence of globally hyperbolic spacetimes

    International Nuclear Information System (INIS)

    Noldus, Johan

    2004-01-01

    In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one

  12. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  13. Space Radar Image of Bebedauro, Brazil, seasonal

    Science.gov (United States)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR

  14. Scientific Achievements of Global ENA Imaging and Future Outlook

    Science.gov (United States)

    Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.

    2017-12-01

    Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their

  15. Imaging analyses of odontogenic infection involving the maxillofacial fascial spaces, with special emphasis on the parapharyngeal space

    Energy Technology Data Exchange (ETDEWEB)

    Ariji, Yoshiko; Gotoh, Masakazu; Izumi, Masahiro; Naitoh, Munetaka; Kurita, Kenichi; Natsume, Nagato; Ariji, Eiichiro [Aichi-Gakuin Univ., Nisshin (Japan). School of Dentistry

    2002-01-01

    The purpose of this study was to investigate odontogenic infection pathways into the maxillofacial fascial spaces, especially into the parapharyngeal space, in relation to causal tooth and clinical symptoms. CT and MR images were retrospectively investigated in 47 patients with spread of odontogenic infection into the maxillofacial spaces. The involvement of spaces was evaluated based on lateral asymmetry of their shapes and density on CT images or intensity on MR images. Involvement on images was observed in 70%, 49%, and 30% of the submandibular, the masticator, and the parapharyngeal spaces, respectively. Patients with submandibular space involvement often had spontaneous pain. Of 14 patients with parapharyngeal space involvement, 8 patients showed dysphagia and/or fever, and 13 patients showed involvement of the mandibular molar as a cause of infection. All of these 14 patients also had submandibular space involvement, while only 7 patients (50%) showed changes in the medial pterygoid muscle. The fat layer between the medial pterygoid muscle and parapharyngeal space was maintained in 11 of 14 (79%) patients with parapharyngeal involvement. CT and MR images clearly demonstrated the spread of odontogenic infection into the maxillofacial spaces. Involvement of the parapharyngeal space was mostly caused by infection originating in the mandibular molar, and was considered to be secondary spread from the submandibular space and/or medial pterygoid muscle. (author)

  16. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  17. Image reconstruction in k-space from MR data encoded with ambiguous gradient fields.

    Science.gov (United States)

    Schultz, Gerrit; Gallichan, Daniel; Weber, Hans; Witschey, Walter R T; Honal, Matthias; Hennig, Jürgen; Zaitsev, Maxim

    2015-02-01

    In this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. The image space analogy between parallel imaging and imaging with non-bijective encoding fields is partially broken in k-space. As a consequence, it is hypothesized and proven that ambiguities can only be resolved partially in k-space, and not completely as is the case in image space. Image-space and k-space based reconstruction algorithms for multi-channel radiofrequency data acquisitions are programmed and tested using numerical simulations as well as in vivo measurement data. The hypothesis is verified based on an analysis of reconstructed images. It is found that non-bijective gradient fields have the effect that densely sampled autocalibration data, used for k-space reconstruction, provide less information than a separate scan of the receiver coil sensitivity maps, used for image space reconstruction. Consequently, in k-space only the undersampling artifact can be unfolded, whereas in image space, it is also possible to resolve aliasing that is caused by the non-bijectivity of the gradient fields. For standard imaging, reconstruction in image space and in k-space is nearly equivalent, whereas there is a fundamental difference with practical consequences for the selection of image reconstruction algorithms when non-bijective encoding fields are involved. © 2014 Wiley Periodicals, Inc.

  18. MR imaging of masticator space infection

    International Nuclear Information System (INIS)

    Seong, Chang Kyu; Han, Moon Hee; Kim, Hong Dae; Park, Byung Kwan; Lee, In Hee; Chang, Kee Hyun; Kim, Sam Soo

    1998-01-01

    To identify the characteristic appearances of masticator space infection, as seen on magnetic resonance(MR) imaging. We retrospectively reviewed the MR images of 23 patients with clinically and bacteriologically proven masticator space infection, with attention to the involved structures, spread pattern, abscess formation, mandibular involvement, and etiology. The masseter muscle was involved in 21 of 23 cases, while the cases, medial pterygoid, lateral pterygoid, and temporalis muscles were involved in 14, 12 , and 13 cases, respectively. All muscles in the masticator space were involved in eight cases and only a single muscle in five. In all but one case, extension through the muscle plane was noted, and in 10 cases, transfascial extension was seen. Abscess formation was noted in seven cases. Mandibular involvement was seen in 16 cases, half of which showed focal cortical disruption. The source of infection was odontogenous in 15 cases, with frequent involvement of the mandible and masseter. Masticator space infection frequently originated from an odontogenous source. the characteristic MR appearances of this infection included extension through the muscle plane and frequent transfascial spread to adjacent deep cervical spaces, as well as common mandibular involvement with or without cortical disruption of focal pattern.=20

  19. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  20. Youth Voices on Global Citizenship: Deliberating across Canada in an Online Invited Space

    Science.gov (United States)

    Shultz, Lynette; Pashby, Karen; Godwaldt, Terry

    2017-01-01

    This article examines the processes of youth engagement in an "invited space" for Canadian secondary school students. The organizers created a participatory citizenship education space in which Canadian students discussed their views and visions and developed their policy position on global citizenship and global citizenship education.…

  1. Global Imaging referral guidelines

    International Nuclear Information System (INIS)

    Kawooya, M.; Perez, M.; Lau, L.; Reeed, M.

    2010-01-01

    The medical imaging specialists called for global referral guidelines which would be made available to referring doctors. These referral guidelines should be:- Applicable in different health care settings, including resource-poor settings; Inclusive in terms of the range of clinical conditions; User-friendly and accessible (format/media); Acceptable to stakeholders, in particular to the referrers as the main target audience. To conceive evidence-based medicine as an integration of best research evidence with clinical expertise and patient values. The Direct recipients of the Referral Guidelines would be:- Referrers: general practitioners / family doctors; paediatricians; emergency department doctors; other specialists and health workers. Providers (medical imaging practitioners): radiologists; nuclear medicine physicians; radiographers; other appropriately qualified practitioners providing diagnostic imaging services. For the Referral Guidelines to be effective there need to be: Credibility evidence-based Practicality end user involvement Context local resources, disease profiles Endorsement, opinion leaders Implementation- policy, education, CPOE - Monitoring of the use clinical audit, report feedback. The aim of the Referral Guidelines Project was to: Produce global referral guidelines that are evidence-based, cost effective and appropriate for the local setting, and include consideration of available equipment and expertise (RGWG; SIGs); Include supporting information about radiation doses, potential risks, protection of children and pregnant women (introductory chapter); Facilitate the implementation of the guidelines through guidance and tools (e.g. implementation guides, checklists, capacity building tools, guides on stakeholders engagement, audit support criteria); Conduct pilot testing in different clinical settings from each of the six WHO regions; Promote the inclusion of the referral guidelines in the curricula of medical schools; Develop and implement

  2. A global conformal extension theorem for perfect fluid Bianchi space-times

    International Nuclear Information System (INIS)

    Luebbe, Christian; Tod, Paul

    2008-01-01

    A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed

  3. Attenuation of multiples in image space

    Science.gov (United States)

    Alvarez, Gabriel F.

    In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new

  4. Efficient Mosaicking of Spitzer Space Telescope Images

    Science.gov (United States)

    Jacob, Joseph; Makovoz, David; Eisenhardt, Peter

    2007-01-01

    A parallel version of the MOPEX software, which generates mosaics of infrared astronomical images acquired by the Spitzer Space Telescope, extends the capabilities of the prior serial version. In the parallel version, both the input image space and the output mosaic space are divided among the available parallel processors. This is the only software that performs the point-source detection and the rejection of spurious imaging effects of cosmic rays required by Spitzer scientists. This software includes components that implement outlier-detection algorithms that can be fine-tuned for a particular set of image data by use of a number of adjustable parameters. This software has been used to construct a mosaic of the Spitzer Infrared Array Camera Shallow Survey, which comprises more than 17,000 exposures in four wavelength bands from 3.6 to 8 m and spans a solid angle of about 9 square degrees. When this software was executed on 32 nodes of the 1,024-processor Cosmos cluster computer at NASA s Jet Propulsion Laboratory, a speedup of 8.3 was achieved over the serial version of MOPEX. The performance is expected to improve dramatically once a true parallel file system is installed on Cosmos.

  5. Globally Imaging the Magnetosphere

    Science.gov (United States)

    Sibeck, D. G.

    2017-12-01

    Over the past two decades, a host of missions have provided the multipoint in situ measurementsneeded to understand the meso- and micro-scale physics governing the solar wind-magnetosphereinteraction. Observations by the ISTP missions, Cluster, THEMIS, Double Star, and most recentlyMMS, have enabled us to identify the occurrence of some of the many proposed models for magneticreconnection and particle acceleration in a wide range of accessible magnetospheric contexts. However, todetermine which of these processes are most important to the overall interaction, we need globalobservations, from both ground-based instrumentation and imaging spacecraft. This talk outlinessome of the the global puzzles that remain to be solved and some of the very novel means that are availableto address them, including soft X-ray, energetic neutral atom, far and extreme ultraviolet imaging andenhanced arrays of ground observatories.

  6. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  7. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Science.gov (United States)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  8. IMAGE QUALITY FORECASTING FOR SPACE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2013-05-01

    Full Text Available The article deals with an approach to quality predicting of the space objects images, which can be used to plan optoelectronic systems of remote sensing satellites work programs. The proposed approach is based on evaluation of the optoelectronic equipment transfer properties and calculation of indexes images quality considering the influence of the orbital shooting conditions.

  9. MANAGING THE IMAGE OF CITIES IN THE “GLOBAL VILLAGE:” City Branding As An Opportunity Against Globalization

    Directory of Open Access Journals (Sweden)

    Gözdem Çelikkanat Aysu

    2013-07-01

    Full Text Available In this article the strong effect of forming a corporate identity in city branding is  studied. It is emphasized that by strong identity and image acquisition cities distinguish by their unique branding elements rather than global city imposition  hat is carried out by globalization pressure. According to the opinions that perceive globalization as an absolute fact, cities like Istanbul have to articulate  to this new system. In this way of thinking, it is inevitable to suffer in McLuhan’s  “global village”. However creating strategies for powerful image and branding of a city can be a leading factor against global city imposition. Keeping up with the same method of creating a “corporate” identity, the image of the cities has to be managed by the symmetric communication with all the actors. By this way  globalization can be used as an opportunity instead of threat.

  10. Imaging of the meninges and the extra-axial spaces.

    Science.gov (United States)

    Kirmi, Olga; Sheerin, Fintan; Patel, Neel

    2009-12-01

    The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.

  11. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  12. Toward a Global Bundle Adjustment of SPOT 5 - HRS Images

    Science.gov (United States)

    Massera, S.; Favé, P.; Gachet, R.; Orsoni, A.

    2012-07-01

    The HRS (High Resolution Stereoscopic) instrument carried on SPOT 5 enables quasi-simultaneous acquisition of stereoscopic images on wide segments - 120 km wide - with two forward and backward-looking telescopes observing the Earth with an angle of 20° ahead and behind the vertical. For 8 years IGN (Institut Géographique National) has been developing techniques to achieve spatiotriangulation of these images. During this time the capacities of bundle adjustment of SPOT 5 - HRS spatial images have largely improved. Today a global single block composed of about 20,000 images can be computed in reasonable calculation time. The progression was achieved step by step: first computed blocks were only composed of 40 images, then bigger blocks were computed. Finally only one global block is now computed. In the same time calculation tools have improved: for example the adjustment of 2,000 images of North Africa takes about 2 minutes whereas 8 hours were needed two years ago. To reach such a result a new independent software was developed to compute fast and efficient bundle adjustments. In the same time equipment - GCPs (Ground Control Points) and tie points - and techniques have also evolved over the last 10 years. Studies were made to get recommendations about the equipment in order to make an accurate single block. Tie points can now be quickly and automatically computed with SURF (Speeded Up Robust Features) techniques. Today the updated equipment is composed of about 500 GCPs and studies show that the ideal configuration is around 100 tie points by square degree. With such an equipment, the location of the global HRS block becomes a few meters accurate whereas non adjusted images are only 15 m accurate. This paper will describe the methods used in IGN Espace to compute a global single block composed of almost 20,000 HRS images, 500 GCPs and several million of tie points in reasonable calculation time. Many advantages can be found to use such a block. Because the

  13. Linked Data Evolving the Web into a Global Data Space

    CERN Document Server

    Heath, Tom

    2011-01-01

    The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical i

  14. Quantitative in vivo HR-pQCT imaging of 3D wrist and metacarpophalangeal joint space width in rheumatoid arthritis.

    Science.gov (United States)

    Burghardt, Andrew J; Lee, Chan Hee; Kuo, Daniel; Majumdar, Sharmila; Imboden, John B; Link, Thomas M; Li, Xiaojuan

    2013-12-01

    In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82 μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N = 16, age: 52.6 ± 12.8) and healthy controls (CTRL, N = 7, age: 50.1 ± 15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD)-a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater vs. CTRL (p 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases.

  15. Image Segmentation and Processing for Efficient Parking Space Analysis

    OpenAIRE

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  16. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  17. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    Science.gov (United States)

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  18. Improved space bandwidth product in image upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2012-01-01

    We present a technique increasing the space bandwidth product of a nonlinear image upconversion process used for spectral imaging. The technique exploits the strong dependency of the phase-matching condition in sum frequency generation (SFG) on the angle of propagation of the interacting fields...

  19. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  20. Space Radar Image of Harvard Forest

    Science.gov (United States)

    1999-01-01

    This is a radar image of the area surrounding the Harvard Forest in north-central Massachusetts that has been operated as a ecological research facility by Harvard University since 1907. At the center of the image is the Quabbin Reservoir, and the Connecticut River is at the lower left of the image. The Harvard Forest itself is just above the reservoir. Researchers are comparing the naturally occurring physical disturbances in the forest and the recent and projected chemical disturbances and their effects on the forest ecosystem. Agricultural land appears dark blue/purple, along with low shrub vegetation and some wetlands. Urban development is bright pink; the yellow to green tints are conifer-dominated vegetation with the pitch pine sand plain at the middle left edge of the image appearing very distinctive. The green tint may indicate pure pine plantation stands, and deciduous broadleaf trees appear gray/pink with perhaps wetter sites being pinker. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 42.50 degrees North latitude and 72.33 degrees West longitude and covers an area of 53 kilometers 63 by kilometers (33 miles by 39 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted and horizontally received; green is L-band horizontally transmitted and vertically received; and blue is C-band horizontally transmitted and horizontally received.

  1. Imaging findings and significance of deep neck space infection

    International Nuclear Information System (INIS)

    Zhuang Qixin; Gu Yifeng; Du Lianjun; Zhu Lili; Pan Yuping; Li Minghua; Yang Shixun; Shang Kezhong; Yin Shankai

    2004-01-01

    Objective: To study the imaging appearance of deep neck space cellulitis and abscess and to evaluate the diagnostic criteria of deep neck space infection. Methods: CT and MRI findings of 28 cases with deep neck space infection proved by clinical manifestation and pathology were analyzed, including 11 cases of retropharyngeal space, 5 cases of parapharyngeal space infection, 4 cases of masticator space infection, and 8 cases of multi-space infection. Results: CT and MRI could display the swelling of the soft tissues and displacement, reduction, or disappearance of lipoid space in the cellulitis. In inflammatory tissues, MRI imaging demonstrated hypointense or isointense signal on T 1 WI, and hyperintense signal changes on T 2 WI. In abscess, CT could display hypodensity in the center and boundary enhancement of the abscess. MRI could display obvious hyperintense signal on T 2 WI and boundary enhancement. Conclusion: CT and MRI could provide useful information for deep neck space cellulitis and abscess

  2. Building resilience of the Global Positioning System to space weather

    Science.gov (United States)

    Fisher, Genene; Kunches, Joseph

    2011-12-01

    Almost every aspect of the global economy now depends on GPS. Worldwide, nations are working to create a robust Global Navigation Satellite System (GNSS), which will provide global positioning, navigation, and timing (PNT) services for applications such as aviation, electric power distribution, financial exchange, maritime navigation, and emergency management. The U.S. government is examining the vulnerabilities of GPS, and it is well known that space weather events, such as geomagnetic storms, contribute to errors in single-frequency GPS and are a significant factor for differential GPS. The GPS industry has lately begun to recognize that total electron content (TEC) signal delays, ionospheric scintillation, and solar radio bursts can also interfere with daily operations and that these threats grow with the approach of the next solar maximum, expected to occur in 2013. The key challenges raised by these circumstances are, first, to better understand the vulnerability of GPS technologies and services to space weather and, second, to develop policies that will build resilience and mitigate risk.

  3. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  4. Countries of the Baltic Region in the Global Culinary Space

    Directory of Open Access Journals (Sweden)

    Rakhmanov A. B.

    2017-06-01

    Full Text Available Globalisation is creating a global culinary space where culinary traditions of different countries interact and compete. The author sets out to explore characteristic features of the culinary space of nine Baltic States as part of the global culinary space. The author uses empirical data on the number of restaurants serving different national cuisines in the main cities of the region. The Baltic culinary space incorporates the world’s leading cuisines (Italian, Japanese, Chinese, etc. as well as the local cuisines of the BSR countries. The world’s leading cuisines prove to be more influential in the region than the local ones. Some countries of the Baltic Sea region (Russia, Poland, Sweden, Latvia, and Denmark have culinary sovereignty, since their residents prefer national cuisines. In some other countries of the region (Finland, Estonia, and Lithuania, the public favours the world’s leading cuisines — Italian, Japanese and American — over the local ones. The non-capital Baltic cities of Poland and Germany, as well as St. Petersburg, display a greater sense of culinary patriotism than Warsaw, Berlin, and Moscow respectively. This article attempts to explore the features of the Baltic culinary space. The author considers the environmental and socio- historical factors key determinants of the countries’ cuisines.

  5. Ghost Imaging of Space Objects

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Erkmen, Baris I; Yu Nan

    2013-01-01

    The term 'ghost imaging' was coined in 1995 when an optical correlation measurement in combination with an entangled photon-pair source was used to image a mask placed in one optical channel by raster-scanning a detector in the other, empty, optical channel. Later, it was shown that the entangled photon source could be replaced with thermal sources of light, which are abundantly available as natural illumination sources. It was also shown that the bucket detector could be replaced with a remote point-like detector, opening the possibility to remote-sensing imaging applications. In this paper, we discuss the application of ghost-imaging-like techniques to astronomy, with the objective of detecting intensity-correlation signatures resulting from space objects of interest, such as exo-planets, gas clouds, and gravitational lenses. An important aspect of being able to utilize ghost imaging in astronomy, is the recognition that in interstellar imaging geometries the object of interest can act as an effective beam splitter, yielding detectable variations in the intensity-correlation signature.

  6. Field theories on conformally related space-times: Some global considerations

    International Nuclear Information System (INIS)

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  7. Electrostatic images for underwater anisotropic conductive half spaces

    International Nuclear Information System (INIS)

    Flykt, M.; Lindell, I.; Eloranta, E.

    1998-01-01

    A static image principle makes it possible to derive analytical solutions to some basic geometries for DC fields. The underwater environment is especially difficult both from the theoretical and practical point of view. However, there are increasing demands that also the underwater geological formations should be studied in detail. The traditional image of a point source lies at the mirror point of the original. When anisotropic media is involved, however, the image location can change and the image source may be a continues, sector-like distribution. In this paper some theoretical considerations are carried out in the case where the lower half space can have a very general anisotropy in terms of electrical conductivity, while the upper half space is assumed isotropic. The reflection potential field is calculated for different values of electrical conductivity. (orig.)

  8. Source-space ICA for MEG source imaging.

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  9. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  10. Global adjustment for creating extended panoramic images in video-dermoscopy

    Science.gov (United States)

    Faraz, Khuram; Blondel, Walter; Daul, Christian

    2017-07-01

    This contribution presents a fast global adjustment scheme exploiting SURF descriptor locations for constructing large skin mosaics. Precision in pairwise image registration is well-preserved while significantly reducing the global mosaicing error.

  11. Spaces of Global Security: Beyond Methodological Nationalism

    OpenAIRE

    Adamson , Fiona B.

    2016-01-01

    The changing political and social meanings of space under conditions of advanced globalization point to the need to analyze security – or the deployment and management of violence -- as a socio-spatial practice. This article draws attention to the “methodological nationalist” bias that has traditionally characterized mainstream security studies, and discusses its effect on how security issues are studied and conceptualized. Building on insights from political geography and sociology, the arti...

  12. X-space MPI: magnetic nanoparticles for safe medical imaging.

    Science.gov (United States)

    Goodwill, Patrick William; Saritas, Emine Ulku; Croft, Laura Rose; Kim, Tyson N; Krishnan, Kannan M; Schaffer, David V; Conolly, Steven M

    2012-07-24

    One quarter of all iodinated contrast X-ray clinical imaging studies are now performed on Chronic Kidney Disease (CKD) patients. Unfortunately, the iodine contrast agent used in X-ray is often toxic to CKD patients' weak kidneys, leading to significant morbidity and mortality. Hence, we are pioneering a new medical imaging method, called Magnetic Particle Imaging (MPI), to replace X-ray and CT iodinated angiography, especially for CKD patients. MPI uses magnetic nanoparticle contrast agents that are much safer than iodine for CKD patients. MPI already offers superb contrast and extraordinary sensitivity. The iron oxide nanoparticle tracers required for MPI are also used in MRI, and some are already approved for human use, but the contrast agents are far more effective at illuminating blood vessels when used in the MPI modality. We have recently developed a systems theoretic framework for MPI called x-space MPI, which has already dramatically improved the speed and robustness of MPI image reconstruction. X-space MPI has allowed us to optimize the hardware for fi ve MPI scanners. Moreover, x-space MPI provides a powerful framework for optimizing the size and magnetic properties of the iron oxide nanoparticle tracers used in MPI. Currently MPI nanoparticles have diameters in the 10-20 nanometer range, enabling millimeter-scale resolution in small animals. X-space MPI theory predicts that larger nanoparticles could enable up to 250 micrometer resolution imaging, which would represent a major breakthrough in safe imaging for CKD patients.

  13. GLOBAL AND INSULAR DIMENSIONS: SPACE IN SARDINIA BLUES

    Directory of Open Access Journals (Sweden)

    Ana Maria Chiarini

    2010-11-01

    Full Text Available The aim of this work is to focus attention on the dimension of space in Sardinia Blues (Publisher Bompiani, 2008, by Flavio Soriga. This is justified by the centrality of space throughout the novel and by the title itself. The island of Sardinia is not just a mere setting, but it is most importantly the articulating and conducting thread for all the themes related to the characters’ self-identity and existential issues. The regional Sardinian space, perceived as stereotyped and folkloristic, and the global space, seen as a source of both desire and fear, are problematized by the three young self-proclaimed “pirates of the island” in their long hours of idleness. It is our intention to highlight the conflicts of this marginal insular condition, heavily contaminated by an inevitable process of change, in Soriga’s simultaneously innovative and nostalgic fragmented text, filled with songs’ extracts and languages hybrids.

  14. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  15. "Languaging the Worker: Globalized Governmentalities in/of Language in Peripheral Spaces"

    Science.gov (United States)

    Dlaske, Kati; Barakos, Elisabeth; Motobayashi, Kyoko; McLaughlin, Mireille

    2016-01-01

    In the introduction to the special issue "Languaging the worker: globalized governmentalities in/of language in peripheral spaces", we take up the notion of governmentality as a means to interrogate the complex relationship between language, labor, power, and subjectivity in peripheral multilingual spaces. Our aim here is to argue for…

  16. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  17. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  18. The chinese space program as the image instrument of the great China

    Directory of Open Access Journals (Sweden)

    Daniel Lemus Delgado

    2012-10-01

    Full Text Available This article analyzes the Chinese space program and how the bureaucratic elite acts to convert China as a leading nation in international arena. This article assumes that, beyond the scientific advances that space exploration has in multiple fields of knowledge, the support to the space program depicts a way to project a positive image of China. This image is a China rising in the international community. The author discusses how space missions and the discourse around the space program strengthen national pride. Thus, China’s space program projects the image of a Greater China. The article concludes that the space program shows that China is modernizing rapidly and is able to be a world power.

  19. Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.

    Science.gov (United States)

    Lukavský, Jiří; Děchtěrenko, Filip

    2017-10-01

    Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.

  20. Space Radar Image of Sydney, Australia

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image is dominated by the metropolitan area of Australia's largest city, Sydney. Sydney Harbour, with numerous coves and inlets, is seen in the upper center of the image, and the roughly circular Botany Bay is shown in the lower right. The downtown business district of Sydney appears as a bright white area just above the center of the image. The Sydney Harbour Bridge is a white line adjacent to the downtown district. The well-known Sydney Opera House is the small, white dot to the right of the bridge. Urban areas appear yellow, blue and brown. The purple areas are undeveloped areas and park lands. Manly, the famous surfing beach, is shown in yellow at the top center of the image. Runways from the Sydney Airport are the dark features that extend into Botany Bay in the lower right. Botany Bay is the site where Captain James Cook first landed his ship, Endeavour, in 1770. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 20, 1994, onboard the space shuttle Endeavour. The area shown is 33 kilometers by 38kilometers (20 miles by 23 miles) and is centered at 33.9 degrees south latitude, 151.2 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequenciesand polarizations as follows: red is L-band, vertically transmittedand horizontally received; green is C-band, vertically transmitted and horizontally received; and blue is C-band, vertically transmittedand received. SIR-C/X-SAR, a joint mission of the German, Italianand United States space agencies, is part of NASA's Mission to Planet Earth. #####

  1. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  2. Color Image Evaluation for Small Space Based on FA and GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2014-01-01

    Full Text Available Aiming at the problem that color image is difficult to quantify, this paper proposes an evaluation method of color image for small space based on factor analysis (FA and gene expression programming (GEP and constructs a correlation model between color image factors and comprehensive color image. The basic color samples of small space and color images are evaluated by semantic differential method (SD method, color image factors are selected via dimension reduction in FA, factor score function is established, and by combining the entropy weight method to determine each factor weights then the comprehensive color image score is calculated finally. The best fitting function between color image factors and comprehensive color image is obtained by GEP algorithm, which can predict the users’ color image values. A color image evaluation system for small space is developed based on this model. The color evaluation of a control room on AC frequency conversion rig is taken as an example, verifying the effectiveness of the proposed method. It also can assist the designers in other color designs and provide a fast evaluation tool for testing users’ color image.

  3. Topological properties and global structure of space-time

    International Nuclear Information System (INIS)

    Bergmann, P.G.; De Sabbata, V.

    1986-01-01

    This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole

  4. Research-grade CMOS image sensors for demanding space applications

    Science.gov (United States)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  5. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  6. GLOBAL CLASSIFICATION OF DERMATITIS DISEASE WITH K-MEANS CLUSTERING IMAGE SEGMENTATION METHODS

    OpenAIRE

    Prafulla N. Aerkewar1 & Dr. G. H. Agrawal2

    2018-01-01

    The objective of this paper to presents a global technique for classification of different dermatitis disease lesions using the process of k-Means clustering image segmentation method. The word global is used such that the all dermatitis disease having skin lesion on body are classified in to four category using k-means image segmentation and nntool of Matlab. Through the image segmentation technique and nntool can be analyze and study the segmentation properties of skin lesions occurs in...

  7. SENTINEL-2 GLOBAL REFERENCE IMAGE VALIDATION AND APPLICATION TO MULTITEMPORAL PERFORMANCES AND HIGH LATITUDE DIGITAL SURFACE MODEL

    Directory of Open Access Journals (Sweden)

    A. Gaudel

    2017-05-01

    Full Text Available In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA, the French space agency (CNES is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN and the Sentinel-2 Mission performance Centre (MPC for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry. This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  8. SENTINEL-2 Global Reference Image Validation and Application to Multitemporal Performances and High Latitude Digital Surface Model

    Science.gov (United States)

    Gaudel, A.; Languille, F.; Delvit, J. M.; Michel, J.; Cournet, M.; Poulain, V.; Youssefi, D.

    2017-05-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry). This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  9. Bioethics of Universal Knowledge: How Space Science is Transforming Global Culture

    Science.gov (United States)

    Perkins, Kala

    A new universal culture is championing the human race; never before has immersion in the cosmological environment been so clearly presented nor invited as revolutionary a sense of participatory identity to the human race. We are delving into the awareness of a complex relatedness with the expanse of spatial architectures and life that astrophysics and cosmology are revealing. History is marked by waves of interest and inquiry into the possibilities of the existence of other worlds. Since the Renaissance, building of telescopes has been pursued in their quest; now Kepler and other space missions are leading us into direct apprehension of these worlds, scattered across the cosmological landscape. This affords a unique repertoire of dimensionalities in which to re-construe our global cultural evolution and identity. Spatial education, with related social science and humanities, are facilitating the actualization of a universal culture, redefining the collective global heritage, with infinity as our home. The potential significance of space sciences to the human cognitive environment is yet to be fully ascertained. We now understand that the entire history of the universe informs each and every particle and spin of the fabric of existence. The implications of this knowledge have the power to facilitate our overcoming many social diseases such as racism, nationalism and the ideological delusions that tolerate such activities as warfare. Space sciences may help to purge the human cognitive atmosphere of those ills and ignorance that sap global resources, challenging global sustainability, from the economic to the psychosocial. Were the full implications of our united origins and destiny as a cosmic organism to be applied to how we live as a species on the Earth, there would be adequate funds for all manner of science and education such as to transform the global human and ecological landscape in ways as yet only dreamt or fictionalized. The bioethics of universal

  10. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    International Nuclear Information System (INIS)

    Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting

    2015-01-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)

  11. T2-weighted MR imaging of the liver: Qualitative and quantitative comparison of SPACE MR imaging with turbo spin-echo MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); UMR INSERM 965, Hôpital Lariboisière, 2 Rue Amboise Paré, 75010 Paris (France); Gavini, Jean-Philippe, E-mail: jpgavini@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Placé, Vinciane, E-mail: vinciane.place@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Sebbag, Delphine, E-mail: delphinesebbag@gmail.com [Department of Body and Interventional Imaging, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise Paré, 75475 Paris Cedex 10 (France); Université Paris-Diderot, Sorbonne Paris Cité, 10 Rue de Verdun, 75010 Paris (France); Vignaud, Alexandre, E-mail: alexandre.vignaud@cea.fr [LRMN, Neurospin, CEA-SACLAY, Bâtiment 145, 91 191 Gif-sur-Yvette Cedex (France); and others

    2013-11-01

    Objective: To qualitatively and quantitatively compare T2-weighted MR imaging of the liver using volumetric spin-echo with sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) with conventional turbo spin-echo (TSE) sequence for fat-suppressed T2-weighted MR imaging of the liver. Materials and methods: Thirty-three patients with suspected focal liver lesions had SPACE MR imaging and conventional fat-suppressed TSE MR imaging. Images were analyzed quantitatively by measuring the lesion-to-liver contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) of main focal hepatic lesions, hepatic and splenic parenchyma and qualitatively by evaluating the presence of vascular, respiratory motion and cardiac artifacts. Wilcoxon signed rank test was used to search for differences between the two sequences. Results: SPACE MR imaging showed significantly greater CNR for focal liver lesions (median = 22.82) than TSE MR imaging (median = 14.15) (P < .001). No differences were found for SNR of hepatic parenchyma (P = .097), main focal hepatic lesions (P = .35), and splenic parenchyma (P = .25). SPACE sequence showed less artifacts than TSE sequence (vascular, P < .001; respiratory motion, P < .001; cardiac, P < .001) but needed a longer acquisition time (228.4 vs. 162.1 s; P < .001). Conclusion: SPACE MR imaging provides a significantly increased CNR for focal liver lesions and less artifacts by comparison with the conventional TSE sequence. These results should stimulate further clinical studies with a surgical standard of reference to compare the two techniques in terms of sensitivity for malignant lesions.

  12. Transnational Urban Spaces and Urban Environmental Reforms : Analyzing Beijing's Environmental Restructuring in the Light of Globalization.

    NARCIS (Netherlands)

    Melchert Saguas Presas, L.

    2004-01-01

    In this era of globalization, `transnational spaces¿ are being created within urban settings, providing a direct connection between the `local¿ and the `global¿. Corporate headquarters, hotels, shopping malls, and airports are typical examples of such spaces, which while located within an urban

  13. Space Radar Image of Wenatchee, Washington

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows a segment of the Columbia River as it passes through the area of Wenatchee, Washington, about 220 kilometers (136 miles) east of Seattle. The Wenatchee Mountains, part of the Cascade Range, are shown in green at the lower left of the image. The Cascades create a 'rain shadow' for the region, limiting rainfall east of the range to less than 26 centimeters (10 inches) per year. The radar's ability to see different types of vegetation is highlighted in the contrast between the pine forests, that appear in green and the dry valley plain that shows up as dark purple. The cities of Wenatchee and East Wenatchee are the grid-like areas straddling the Columbia River in the left center of the image. With a population of about 60,000, the region produces about half of Washington state's lucrative apple crop. Several orchard areas appear as green rectangular patches to the right of the river in the lower right center. Radar images such as these can be used to monitor land use patterns in areas such as Wenatchee, that have diverse and rapidly changing urban, agricultural and wild land pressures. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 10, 1994. The image is 38 kilometers by 45 kilometers (24 miles by 30 miles) and is centered at 47.3 degrees North latitude, 120.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  14. Particle Control in Phase Space by Global K-Means Clustering

    DEFF Research Database (Denmark)

    Frederiksen, Jacob Trier; Lapenta, G.; Pessah, M. E.

    2015-01-01

    We devise and explore an iterative optimization procedure for controlling particle populations in particle-in-cell (PIC) codes via merging and splitting of computational macro-particles. Our approach, is to compute an optimal representation of the global particle phase space structure while decre...

  15. Global correlation imaging of magnetic total field gradients

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  16. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Science.gov (United States)

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  17. Global embedding of the Kerr black hole event horizon into hyperbolic 3-space

    International Nuclear Information System (INIS)

    Gibbons, G. W.; Herdeiro, C. A. R.; Rebelo, C.

    2009-01-01

    An explicit global and unique isometric embedding into hyperbolic 3-space, H 3 , of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H 3 of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H 3 , for arbitrary values of the angular momentum. For this example, considering a quotient of H 3 by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding that cannot be made global.

  18. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Science.gov (United States)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  19. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  20. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  1. Future role and significance of space activities in reflection of global social, technological and economic trends

    Science.gov (United States)

    Diekmann, Andreas; Richarz, Hans.-Peter

    The paper describes the interrelation of space activities and global socio-economic trends like "globalisation of markets" and "renaissance of fine arts". The interrelation reveals the economic strategic, technological and scientific dimension of space activities and their benefits to mankind. Then, the significance and perspectives of space activities in these dimensions are examined in more detail. The paper calls (1) for a more visible initiative to employ space activities to tackle urgent questions of global change and development, and (2) for a stronger impetus to secure European economic position in space sector as a key industry of the 21st century.

  2. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  3. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  4. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  5. How severe space weather can disrupt global supply chains

    Science.gov (United States)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  6. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  7. Y spaces and global smooth solution of fractional Navier-Stokes equations with initial value in the critical oscillation spaces

    Science.gov (United States)

    Yang, Qixiang; Yang, Haibo

    2018-04-01

    For fractional Navier-Stokes equations and critical initial spaces X, one used to establish the well-posedness in the solution space which is contained in C (R+ , X). In this paper, for heat flow, we apply parameter Meyer wavelets to introduce Y spaces Y m , β where Y m , β is not contained in C (R+, B˙∞ 1 - 2 β , ∞). Consequently, for 1/2 global well-posedness of fractional Navier-Stokes equations with small initial data in all the critical oscillation spaces. The critical oscillation spaces may be any Besov-Morrey spaces (B˙p,q γ1 ,γ2 (Rn)) n or any Triebel-Lizorkin-Morrey spaces (F˙p,q γ1 ,γ2 (Rn)) n where 1 ≤ p , q ≤ ∞ , 0 ≤γ2 ≤ n/p, γ1 -γ2 = 1 - 2 β. These critical spaces include many known spaces. For example, Besov spaces, Sobolev spaces, Bloch spaces, Q-spaces, Morrey spaces and Triebel-Lizorkin spaces etc.

  8. Space Radar Image of Central Sumatra, Indonesia

    Science.gov (United States)

    1994-01-01

    This is a radar image of the central part of the island of Sumatra in Indonesia that shows how the tropical rainforest typical of this country is being impacted by human activity. Native forest appears in green in this image, while prominent pink areas represent places where the native forest has been cleared. The large rectangular areas have been cleared for palm oil plantations. The bright pink zones are areas that have been cleared since 1989, while the dark pink zones are areas that were cleared before 1989. These radar data were processed as part of an effort to assist oil and gas companies working in the area to assess the environmental impact of both their drilling operations and the activities of the local population. Radar images are useful in these areas because heavy cloud cover and the persistent smoke and haze associated with deforestation have prevented usable visible-light imagery from being acquired since 1989. The dark shapes in the upper right (northeast) corner of the image are a chain of lakes in flat coastal marshes. This image was acquired in October 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour. Environmental changes can be easily documented by comparing this image with visible-light data that were acquired in previous years by the Landsat satellite. The image is centered at 0.9 degrees north latitude and 101.3 degrees east longitude. The area shown is 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is L-band vertically transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  9. Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space

    International Nuclear Information System (INIS)

    Athalye, Vivek; Lustig, Michael; Martin Uecker

    2015-01-01

    In magnetic resonance imaging data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a reproducing kernel Hilbert space with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples. (paper)

  10. Space Radar Image of County Kerry, Ireland

    Science.gov (United States)

    1994-01-01

    The Iveragh Peninsula, one of the four peninsulas in southwestern Ireland, is shown in this spaceborne radar image. The lakes of Killarney National Park are the green patches on the left side of the image. The mountains to the right of the lakes include the highest peaks (1,036 meters or 3,400 feet) in Ireland. The patchwork patterns between the mountains are areas of farming and grazing. The delicate patterns in the water are caused by refraction of ocean waves around the peninsula edges and islands, including Skellig Rocks at the right edge of the image. The Skelligs are home to a 15th century monastery and flocks of puffins. The region is part of County Kerry and includes a road called the 'Ring of Kerry' that is one of the most famous tourist routes in Ireland. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 12, 1994. The image is 82 kilometers by 42 kilometers (51 miles by 26 miles) and is centered at 52.0 degrees north latitude, 9.9 degrees west longitude. North is toward the lower left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, vertically transmitted and received; and blue is C-band, vertically transmitted and received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  11. A global space-based stratospheric aerosol climatology: 1979-2016

    Science.gov (United States)

    Thomason, Larry W.; Ernest, Nicholas; Millán, Luis; Rieger, Landon; Bourassa, Adam; Vernier, Jean-Paul; Manney, Gloria; Luo, Beiping; Arfeuille, Florian; Peter, Thomas

    2018-03-01

    We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979-2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991-1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it

  12. Global atmospheric response to emissions from a proposed reusable space launch system

    Science.gov (United States)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  13. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  14. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  15. First Space VLBI Observations and Images Using the VLBA and VSOP

    Science.gov (United States)

    Romney, J. D.; Benson, J. M.; Claussen, M. J.; Desai, K. M.; Flatters, C.; Mioduszewski, A. J.; Ulvestad, J. S.

    1997-12-01

    The National Radio Astronomy Observatory (NRAO) is a participant in the VSOP Space VLBI mission, an international collaboration led by Japan's Institute of Space and Astronautical Science. NRAO has committed up to 30% of scheduled observing time on the Very Long Baseline Array (VLBA), and corresponding correlation resources, to Space VLBI observations. The NRAO Space VLBI Project, funded by NASA, has been working for several years to complete the necessary enhancements to the VLBA correlator and the AIPS image processing system. These developments were completed by the time of the successful launch of the VSOP mission's Halca spacecraft on 1997 February 12. As part of the in-orbit checkout phase, the first Space VLBI fringes from a VLBA observation were detected on 1997 June 12, and the VSOP mission's first images, in both the 1.6- and 5-GHz bands, were obtained shortly thereafter. In-orbit test observations continued through early September, with the first General Observing Time (GOT) scientific observations beginning in July. Through mid-October, a total of 20 Space VLBI observations, comprising 190 hours, had been completed at the VLBA correlator. This paper reviews the unique features of correlation and imaging of Space VLBI observations. These include, for correlation, the ephemeris for an orbiting VLBI ``station'' which is not fixed on the surface of the earth, and the requirement to close the loop on the phase-transfer process from a frequency standard on the ground to the spacecraft. Images from a number of early tests and scientific observations are presented. NRAO's user-support program, providing expert assistance in data analysis to Space VLBI observers, is also described.

  16. A perceptual space of local image statistics.

    Science.gov (United States)

    Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M

    2015-12-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Design of a space-based infrared imaging interferometer

    Science.gov (United States)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  18. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    Science.gov (United States)

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  19. The dimensions of urban public space in user’s mental image

    Directory of Open Access Journals (Sweden)

    Matej Nikšič

    2006-01-01

    Full Text Available The article presents a method for recognising qualitative and quantitative dimensions of open urban space in the user’s perceptual image. It stems from the hypothesis that the open urban space in mental perception isn’t a uniform continuum, which in general applies to its physical phenomenon. It discloses where and how users experience the limits of real open public space that they occupy and what they perceive as the neighbourhood of such a place. Therefore it researches rules applied by the user to mentally structure physically continuous space into smaller units and then reassemble these into a network. Knowledge of such rules enables expansion of open urban public spaces, which user’s experience as positive, into the wider area, thus revitalising those neighbouring spaces that are perceived as negative or are completely absent in the mental image and consequentially unused. The presence of people is in fact the essential component of quality public spaces.

  20. Color Image Segmentation Based on Different Color Space Models Using Automatic GrabCut

    Directory of Open Access Journals (Sweden)

    Dina Khattab

    2014-01-01

    Full Text Available This paper presents a comparative study using different color spaces to evaluate the performance of color image segmentation using the automatic GrabCut technique. GrabCut is considered as one of the semiautomatic image segmentation techniques, since it requires user interaction for the initialization of the segmentation process. The automation of the GrabCut technique is proposed as a modification of the original semiautomatic one in order to eliminate the user interaction. The automatic GrabCut utilizes the unsupervised Orchard and Bouman clustering technique for the initialization phase. Comparisons with the original GrabCut show the efficiency of the proposed automatic technique in terms of segmentation, quality, and accuracy. As no explicit color space is recommended for every segmentation problem, automatic GrabCut is applied with RGB, HSV, CMY, XYZ, and YUV color spaces. The comparative study and experimental results using different color images show that RGB color space is the best color space representation for the set of the images used.

  1. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  2. A local-to-global singularity theorem for quantum field theory on curved space-time

    International Nuclear Information System (INIS)

    Radzikowski, M.J.; York Univ.

    1996-01-01

    We prove that if a reference two-point distribution of positive type on a time orientable curved space-time (CST) satisfies a certain condition on its wave front set (the ''class P M,g condition'') and if any other two-point distribution (i) is of positive type, (ii) has the same antisymmetric part as the reference modulo smooth function and (iii) has the same local singularity structure, then it has the same global singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-differential operator the support of whose symbol is restricted to a certain conic region which depends on the wave front set of the reference state. This local-to-global theorem, together with results published elsewhere, leads to a verification of a conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a globally hyperbolic CST, the local Hadamard condition implies the global Hadamard condition. A counterexample to the local-to-global theorem on a strip in Minkowski space is given when the class P M,g condition is not assumed. (orig.)

  3. The information metric on the moduli space of instantons with global symmetries

    Directory of Open Access Journals (Sweden)

    Emanuel Malek

    2016-02-01

    Full Text Available In this note we revisit Hitchin's prescription [1] of the Fisher metric as a natural measure on the moduli space of instantons that encodes the space–time symmetries of a classical field theory. Motivated by the idea of the moduli space of supersymmetric instantons as an emergent space in the sense of the gauge/gravity duality, we extend the prescription to encode also global symmetries of the underlying theory. We exemplify our construction with the instanton solution of the CPN sigma model on R2.

  4. Space Radar Image of Central African Gorilla Habitat

    Science.gov (United States)

    1999-01-01

    This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. Mt. Nyiragongo is currently erupting (August 1994) and will be a target of observation during the second flight of SIR-C/X-SAR. The large volcano in the center of the image is Mt. Karisimbi (4,500 meters or 14,800 feet). This radar image highlights subtle differences in the vegetation and volcanic flows of the region. The faint lines shown in the purple regions are believed to be the result of agriculture terracing by the people who live in the region. The vegetation types are an important factor in the habitat of the endangered mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce vegetation maps of the area to aid in their study of the remaining 650 gorillas in the region. SIR-C was developed by NASA's Jet

  5. Global risk & global challenges - Space as a game changer for socioeconomic sustainable development

    Science.gov (United States)

    Lehnert, Christopher; Karlsson, Evelina; Giannopapa, Christina

    2017-11-01

    The world's societies at the beginning of the 21st century are better off than ever before. (Gapminder, 2015) At the same time, the world is also threatened by global challenges where space as a tool has and can play a pivotal role in meeting those challenges. The challenges range from climate change, over mass unemployment, to terrorism or migration - to name but a few. Space activities have started to respond to this changing world, not only by providing a deeper understanding of our universe, but by using space as an additional sphere and sector, through which humankind can increase and secure its wealth - it is thus game changing in the way we sustain humanity's existence. This paper is meant to capture this development. In the first part, an overview is given on the risks that humankind is facing. The second part describes the way that space can be used as a tool to prevent and manage these risks. The overview in the first part is based on the examination of the most recent reports and overall strategies of key International Governmental Organisations and Non-Governmental Organisations that are involved in agenda-setting, policy formulation and implementation. The second part includes an overview on current activities of the European Space Agency (ESA) that play a role in responding to these risks. To better understand ESA's activities that contain humanity's risks, a standard classification for risks management is used, which distinguishes between four components: Identification, Assessment, Management and Communication (Renn, 2005). The analysis reveals how space activities already today play a pivotal role in all four types of risk management. Space activities contribute very tangible to the management of risks through its space mission, but also in a more indirect way, as providing the technical backbone for stable and reliable cooperation in the international governance arena, and serve as crucial economic stimulator. The overall results show that space

  6. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  7. Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand

    International Nuclear Information System (INIS)

    Martellozzo, F; Landry, J-S; Plouffe, D; Seufert, V; Ramankutty, N; Rowhani, P

    2014-01-01

    Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km 2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space. (letters)

  8. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    Science.gov (United States)

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  9. Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting

    Science.gov (United States)

    Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.

    2015-12-01

    This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated

  10. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites

    Science.gov (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2018-04-01

    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  11. STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction.

    Science.gov (United States)

    Zhou, Zechen; Wang, Jinnan; Balu, Niranjan; Li, Rui; Yuan, Chun

    2016-02-01

    A new subspace-based iterative reconstruction method, termed Self-supporting Tailored k-space Estimation for Parallel imaging reconstruction (STEP), is presented and evaluated in comparison to the existing autocalibrating method SPIRiT and calibrationless method SAKE. In STEP, two tailored schemes including k-space partition and basis selection are proposed to promote spatially variant signal subspace and incorporated into a self-supporting structured low rank model to enforce properties of locality, sparsity, and rank deficiency, which can be formulated into a constrained optimization problem and solved by an iterative algorithm. Simulated and in vivo datasets were used to investigate the performance of STEP in terms of overall image quality and detail structure preservation. The advantage of STEP on image quality is demonstrated by retrospectively undersampled multichannel Cartesian data with various patterns. Compared with SPIRiT and SAKE, STEP can provide more accurate reconstruction images with less residual aliasing artifacts and reduced noise amplification in simulation and in vivo experiments. In addition, STEP has the capability of combining compressed sensing with arbitrary sampling trajectory. Using k-space partition and basis selection can further improve the performance of parallel imaging reconstruction with or without calibration signals. © 2015 Wiley Periodicals, Inc.

  12. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    Science.gov (United States)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  13. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  14. Total variation regularization in measurement and image space for PET reconstruction

    KAUST Repository

    Burger, M

    2014-09-18

    © 2014 IOP Publishing Ltd. The aim of this paper is to test and analyse a novel technique for image reconstruction in positron emission tomography, which is based on (total variation) regularization on both the image space and the projection space. We formulate our variational problem considering both total variation penalty terms on the image and on an idealized sinogram to be reconstructed from a given Poisson distributed noisy sinogram. We prove existence, uniqueness and stability results for the proposed model and provide some analytical insight into the structures favoured by joint regularization. For the numerical solution of the corresponding discretized problem we employ the split Bregman algorithm and extensively test the approach in comparison to standard total variation regularization on the image. The numerical results show that an additional penalty on the sinogram performs better on reconstructing images with thin structures.

  15. Taiwan Space Programs

    Science.gov (United States)

    Liu, Jann-Yenq

    Taiwan space programs consist of FORMOSAT-1, -2, and -3, sounding rockets, and international cooperation. FORMOSAT-1, a low-earth-orbit (LEO) scientific experimental satellite, was launched on January 26, 1999. It circulates with an altitude of 600 km and 35 degree inclination around the Earth every 97 minutes, transmitting collected data to Taiwan's receiving stations approximately six times a day. The major mission of FORMOSAT-1 includes three scientific experiments for measuring the effects of ionospheric plasma and electrodynamics, taking the ocean color image and conducting Ka-band communication experiment. The FORMOSAT- 1 mission was ended by June 15, 2004. FORMOSAT-2, launched on May 21, 2004 onto the Sun-synchronous orbit located at 891 km above ground. The main mission of FORMOSAT-2 is to conduct remote sensing imaging over Taiwan and on terrestrial and oceanic regions of the entire earth. The images captured by FORMOSAT-2 during daytime can be used for land distribution, natural resources research, environmental protection, disaster prevention and rescue work etc. When the satellite travels to the eclipsed zone, it observes natural phenomena of lighting in the upper atmosphere. FORMOSAT-3 is an international collaboration project between Taiwan and the US to develop advanced technology for the real-time monitoring of the global climate. This project is also named Constellation Observing System for Meteorology, Ionosphere and Climate, or FORMOSAT-3/COSMIC for short. Six micro-satellites were launched on 15 April 2007 and eventually placed into six different orbits at 700 800 kilometer above the earth ground. These satellites orbit around the earth to form a LEO constellation that receives signals transmitted by the 24 US GPS satellites. The satellite observation covers the entire global atmosphere and ionosphere, providing over 2,500 global sounding data per day. These data distribute uniformly over the earth's atmosphere. The global climate information

  16. Environmental safety of the global information space

    Directory of Open Access Journals (Sweden)

    В’ячеслав Степанович Волошин

    2015-03-01

    Databases of full-text publications – journals, articles, monographs- are surely a means of salvation for science. There already exist a large number of such portals. Besides, advantages and disadvantages of electronic subscriptions to periodicals should certainly be considered. The former include the following most evident ones: aggregation of large data arrays, saving money on a subscription, an opportunity to work with relevant publications, thematic collections of materials, availability of records, simultaneous access of an unlimited number of users and others. Nevertheless, there are many disadvantages that make it difficult to work with full-text publications. They are the following: selective representativeness of publication numbers, complexity of keyword search, occasional presence of obsolete text formats, printed versions, possible psychological barrier, physiological incompatibility with computer equipment, fatigue caused by prolonged work on the computer. The Internet was followed by the appearance of global control networks, their aims ranging from control of a human life support to a unified control of humanity. So, the formed global information space promises the man to get access to almost any information source. Meanwhile, environmental safety of the man, his/her objective biological psyche and abilities in harmonious development are at serious risk

  17. Sustaining Air Force Space Systems: A Model for the Global Positioning System

    National Research Council Canada - National Science Library

    Snyder, Don; Mills, Patrick; Comanor, Katherine; Roll, Jr, Charles R

    2007-01-01

    ... and sustainment affect the performance of space systems. In this monograph, we develop a pilot framework for analyzing these and related questions in the ground segment of the Global Positioning System and recommend steps for implementing this framework...

  18. Space imaging infrared optical guidance for autonomous ground vehicle

    Science.gov (United States)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  19. A global space-based stratospheric aerosol climatology: 1979–2016

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2018-03-01

    Full Text Available We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979–2014 and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an "as available" basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991–1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low

  20. Individual Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  1. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2016-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning

  2. Streak detection and analysis pipeline for space-debris optical images

    Science.gov (United States)

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for

  3. Space geodesy validation of the global lithospheric flow

    Science.gov (United States)

    Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.

    2007-02-01

    Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.

  4. Space Images for NASA JPL Android Version

    Science.gov (United States)

    Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice

    2013-01-01

    This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.

  5. Towards a Global Hub and a Network for Collaborative Advancing of Space Weather Predictive Capabilities.

    Science.gov (United States)

    Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.

    2017-12-01

    The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.

  6. Exploration of Stellarator Configuration Space with Global Search Methods

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Ethier, S.

    2001-01-01

    An exploration of stellarator configuration space z for quasi-axisymmetric stellarator (QAS) designs is discussed, using methods which provide a more global view of that space. To this end, we have implemented a ''differential evolution'' (DE) search algorithm in an existing stellarator optimizer, which is much less prone to become trapped in local, suboptimal minima of the cost function chi than the local search methods used previously. This search algorithm is complemented by mapping studies of chi over z aimed at gaining insight into the results of the automated searches. We find that a wide range of the attractive QAS configurations previously found fall into a small number of classes, with each class corresponding to a basin of chi(z). We develop maps on which these earlier stellarators can be placed, the relations among them seen, and understanding gained into the physics differences between them. It is also found that, while still large, the region of z space containing practically realizable QAS configurations is much smaller than earlier supposed

  7. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  8. The Global Muon Detector Network -GMDN and the space situational awareness

    Science.gov (United States)

    Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank

    Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the

  9. CT and MR imaging of the buccal space: Normal anatomy and abnormalities

    International Nuclear Information System (INIS)

    Kim, Hyo Cheol; Han, Moon Hee; Moon, Min Hoan; Kim, Ji Hoon; Kim, In One; Chang, Kee Hyun

    2005-01-01

    The buccal space is an anatomical compartment lying anterior to the masticator space and lateral to the buccinator muscle. Since the major purpose of imaging is to define the likely anatomic origin and also the extent of a given lesion, thorough knowledge of the normal anatomy of the buccal space is essential, and this knowledge can aid the physician in narrowing down the list of possible maladies on the differential diagnosis. We illustrate here in this paper the important anatomic landmarks and typical pathologic conditions of the buccal space such as the developmental lesions and the neoplastic lesions. Knowledge of the expected pathologic conditions is useful for the radiologist when interpreting facial CT and MR images

  10. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  11. Infrared and visible images registration with adaptable local-global feature integration for rail inspection

    Science.gov (United States)

    Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying

    2017-12-01

    Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.

  12. Fundamentals and applications of neutron imaging. Application part 3. Application of neutron imaging in aircraft, space rocket, car and gunpowder industries

    International Nuclear Information System (INIS)

    Ikeda, Yasushi

    2007-01-01

    Neutron imaging is applied to nondestructive test. Four neutron imaging facilities are used in Japan. The application examples of industries are listed in the table: space rocket, aircraft, car, liquid metal, and works of art. Neutron imaging of transportation equipments are illustrated as an application to industry. X-ray radiography testing (XRT) image and neutron radiography testing (NRT) image of turbine blade of aircraft engine, honeycomb structure of aircraft, helicopter rotor blade, trigger tube, separation nut of space rocket, carburetor of car, BMW engine, fireworks and ammunitions are illustrated. (S.Y.)

  13. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.

    2017-12-01

    Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such

  14. Geomorphology from space: A global overview of regional landforms

    Science.gov (United States)

    Short, Nicholas M. (Editor); Blair, Robert W., Jr. (Editor)

    1986-01-01

    This book, Geomorphology from Space: A Global Overview of Regional Landforms, was published by NASA STIF as a successor to the two earlier works on the same subject: Mission to Earth: LANDSAT views the Earth, and ERTS-1: A New Window on Our Planet. The purpose of the book is threefold: first, to serve as a stimulant in rekindling interest in descriptive geomorphology and landforms analysis at the regional scale; second, to introduce the community of geologists, geographers, and others who analyze the Earth's surficial forms to the practical value of space-acquired remotely sensed data in carrying out their research and applications; and third, to foster more scientific collaboration between geomorphologists who are studying the Earth's landforms and astrogeologists who analyze landforms on other planets and moons in the solar system, thereby strengthening the growing field of comparative planetology.

  15. l0 Sparsity for Image Denoising with Local and Global Priors

    Directory of Open Access Journals (Sweden)

    Xiaoni Gao

    2015-01-01

    Full Text Available We propose a l0 sparsity based approach to remove additive white Gaussian noise from a given image. To achieve this goal, we combine the local prior and global prior together to recover the noise-free values of pixels. The local prior depends on the neighborhood relationships of a search window to help maintain edges and smoothness. The global prior is generated from a hierarchical l0 sparse representation to help eliminate the redundant information and preserve the global consistency. In addition, to make the correlations between pixels more meaningful, we adopt Principle Component Analysis to measure the similarities, which can be both propitious to reduce the computational complexity and improve the accuracies. Experiments on the benchmark image set show that the proposed approach can achieve superior performance to the state-of-the-art approaches both in accuracy and perception in removing the zero-mean additive white Gaussian noise.

  16. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Science.gov (United States)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  17. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  18. The international space station: An opportunity for industry-sponsored global education

    Science.gov (United States)

    Shields, Cathleen E.

    1999-01-01

    The International Space Station provides an excellent opportunity for industry sponsorship of international space education. As a highly visible worldwide asset, the space station already commands our interest. It has captured the imagination of the world's researchers and connected the world's governments. Once operational, it can also be used to capture the dreams of the world's children and connect the world's industry through education. The space station's global heritage and ownership; its complex engineering, construction, and operation; its flexible research and technology demonstration capability; and its long duration make it the perfect educational platform. These things also make a space station education program attractive to industry. Such a program will give private industry the opportunity to sponsor space-related activities even though a particular industry may not have a research or technology-driven need for space utilization. Sponsors will benefit through public relations and goodwill, educational promotions and advertising, and the sale and marketing of related products. There is money to be made by supporting, fostering, and enabling education in space through the International Space Station. This paper will explore various ISS education program and sponsorship options and benefits, will examine early industry response to such an opportunity, and will make the case for moving forward with an ISS education program as a private sector initiative.

  19. Global Seismic Imaging Based on Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  20. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  1. An alternative to scale-space representation for extracting local features in image recognition

    DEFF Research Database (Denmark)

    Andersen, Hans Jørgen; Nguyen, Phuong Giang

    2012-01-01

    In image recognition, the common approach for extracting local features using a scale-space representation has usually three main steps; first interest points are extracted at different scales, next from a patch around each interest point the rotation is calculated with corresponding orientation...... and compensation, and finally a descriptor is computed for the derived patch (i.e. feature of the patch). To avoid the memory and computational intensive process of constructing the scale-space, we use a method where no scale-space is required This is done by dividing the given image into a number of triangles...... with sizes dependent on the content of the image, at the location of each triangle. In this paper, we will demonstrate that by rotation of the interest regions at the triangles it is possible in grey scale images to achieve a recognition precision comparable with that of MOPS. The test of the proposed method...

  2. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    Science.gov (United States)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  3. Development of Multi-Sensor Global Cloud and Radiance Composites for DSCOVR EPIC Imager with Subpixel Definition

    Science.gov (United States)

    Khlopenkov, K. V.; Duda, D. P.; Thieman, M. M.; Sun-Mack, S.; Su, W.; Minnis, P.; Bedka, K. M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) is designed to study the daytime Earth radiation budget by means of onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). EPIC imager observes in several shortwave bands (317-780 nm), while NISTAR measures the top-of-atmosphere (TOA) whole-disk radiance in shortwave and total broadband windows. Calculation of albedo and outgoing longwave flux requires a high-resolution scene identification such as the radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers. These properties have to be co-located with EPIC imager pixels to provide scene identification and to select anisotropic directional models, which are then used to adjust the NISTAR-measured radiance and subsequently obtain the global daytime shortwave and longwave fluxes. This work presents an algorithm for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. The highest quality observation is selected by means of an aggregated rating which incorporates several factors such as the nearest time relative to EPIC observation, lowest viewing zenith angle, and others. This process provides a smoother transition and avoids abrupt changes in the merged composite data. Higher spatial accuracy in the composite product is achieved by using the inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into the EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. Within every EPIC footprint, the PSF-weighted average radiances and cloud properties are computed for each cloud phase and then stored within five data subsets (clear-sky, water cloud, ice cloud, total cloud, and no

  4. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  5. Rapid characterization of a nanomaterial structure using X-ray reciprocal-lattice-space imaging

    International Nuclear Information System (INIS)

    Sakata, Osami; Yoshimoto, Mamoru; Miki, Kazushi

    2006-01-01

    The X-ray reciprocal-lattice-space imaging method is able to record the reciprocal-lattice-space of nanostructure by sample-and-detector fixed geometry. This method was developed by the surface structure analysis beam line BL13XU of SPring-8. Outline of the X-ray diffraction method and basic principles of the X-ray reciprocal-lattice-space imaging method, and application examples are stated. The method is able to find out the Bragg conditions of nanostructure of surface in the atmosphere. The reciprocal-lattice of the embedded trace atomic wires was observed. The trace atoms of Bi atomic wires embedded in silicone showed the diffraction signal and image by a short exposure time. This method is useful at rapid non-destructive measurement of nanostructure. (S.Y.)

  6. Color image segmentation using perceptual spaces through applets ...

    African Journals Online (AJOL)

    Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. JL González-Pérez, MC Espino-Gudiño, J Gudiño-Bazaldúa, JL Rojas-Rentería, V Rodríguez-Hernández, VM Castaño ...

  7. Exploring Sustainability Using images from Space

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    , laptops, iPads). As a result, web-based resources are incorporated into student learning on a daily basis. This has created a truly global classroom for students who, via the Internet, can and do access materials from any country in the world. Students work collaboratively using Google Classroom and a suite of Google apps. Teacher-created websites serve as the textbook with text, video, static images, interactive images, and external links designed to stimulate student growth in scientific literacy, language arts, and mathematics. Images of Earth's systems generated from data collected by Earth orbiting spacecraft are essential tools for understanding sustainability concepts at global, national, regional, and local scales. Images and supporting data from NASA (U.S.), ESA (Europe), and JAXA (Japan) are used to explore Earth's atmosphere, hydrosphere, and geosphere. Simulations, time-lapses, and graphical representations of historical and real-time, remote-sensing data stimulate student questions and engage students in learning as they design and test models to explain complex interactions of Earth's systems and feedback loops between natural and human-made environments. As students make meaning of observations and communicate their perceptions and understandings to a variety of audiences, they gain mastery of scientific literacy, language arts skills, and mathematics skills.

  8. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    Science.gov (United States)

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  9. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    Science.gov (United States)

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Rapid and coordinated processing of global motion images by local clusters of retinal ganglion cells.

    Science.gov (United States)

    Matsumoto, Akihiro; Tachibana, Masao

    2017-01-01

    Even when the body is stationary, the whole retinal image is always in motion by fixational eye movements and saccades that move the eye between fixation points. Accumulating evidence indicates that the brain is equipped with specific mechanisms for compensating for the global motion induced by these eye movements. However, it is not yet fully understood how the retina processes global motion images during eye movements. Here we show that global motion images evoke novel coordinated firing in retinal ganglion cells (GCs). We simultaneously recorded the firing of GCs in the goldfish isolated retina using a multi-electrode array, and classified each GC based on the temporal profile of its receptive field (RF). A moving target that accompanied the global motion (simulating a saccade following a period of fixational eye movements) modulated the RF properties and evoked synchronized and correlated firing among local clusters of the specific GCs. Our findings provide a novel concept for retinal information processing during eye movements.

  11. Research on Remote Sensing Image Template Processing Based on Global Subdivision Theory

    OpenAIRE

    Xiong Delan; Du Genyuan

    2013-01-01

    Aiming at the questions of vast data, complex operation, and time consuming processing for remote sensing image, subdivision template was proposed based on global subdivision theory, which can set up high level of abstraction and generalization for remote sensing image. The paper emphatically discussed the model and structure of subdivision template, and put forward some new ideas for remote sensing image template processing, key technology and quickly applied demonstration. The research has ...

  12. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  13. Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach

    DEFF Research Database (Denmark)

    Boldrini, Lorenzo

    In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...

  14. PSF Estimation of Space-Variant Ultra-Wide Field of View Imaging Systems

    Directory of Open Access Journals (Sweden)

    Petr Janout

    2017-02-01

    Full Text Available Ultra-wide-field of view (UWFOV imaging systems are affected by various aberrations, most of which are highly angle-dependent. A description of UWFOV imaging systems, such as microscopy optics, security camera systems and other special space-variant imaging systems, is a difficult task that can be achieved by estimating the Point Spread Function (PSF of the system. This paper proposes a novel method for modeling the space-variant PSF of an imaging system using the Zernike polynomials wavefront description. The PSF estimation algorithm is based on obtaining field-dependent expansion coefficients of the Zernike polynomials by fitting real image data of the analyzed imaging system using an iterative approach in an initial estimate of the fitting parameters to ensure convergence robustness. The method is promising as an alternative to the standard approach based on Shack–Hartmann interferometry, since the estimate of the aberration coefficients is processed directly in the image plane. This approach is tested on simulated and laboratory-acquired image data that generally show good agreement. The resulting data are compared with the results of other modeling methods. The proposed PSF estimation method provides around 5% accuracy of the optical system model.

  15. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    Directory of Open Access Journals (Sweden)

    Qianghui Zhang

    2016-07-01

    Full Text Available Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS, which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD based on Stolt interpolation. Finally, a modified TSP (MTSP is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  16. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali

    2015-01-01

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  17. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  18. Space observations for global and regional studies of the biosphere

    Science.gov (United States)

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.

    1994-01-01

    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  19. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  20. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  1. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  2. Restoration of retinal images with space-variant blur

    Czech Academy of Sciences Publication Activity Database

    Marrugo, A.; Millán, M. S.; Šorel, Michal; Šroubek, Filip

    2014-01-01

    Roč. 19, č. 1 (2014), 016023-1-016023-12 ISSN 1083-3668 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : blind deconvolution * space-variant restoration * retinal image Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.859, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/sorel-0424586.pdf

  3. Local facet approximation for image stitching

    Science.gov (United States)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  4. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  5. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    Directory of Open Access Journals (Sweden)

    Yerai Berenguer

    2015-10-01

    Full Text Available This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  6. NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    Science.gov (United States)

    Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover

    2017-01-01

    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures

  7. Space Radar Image of Maui, Hawaii

    Science.gov (United States)

    1994-01-01

    This spaceborne radar image shows the 'Valley Island' of Maui, Hawaii. The cloud-penetrating capabilities of radar provide a rare view of many parts of the island, since the higher elevations are frequently shrouded in clouds. The light blue and yellow areas in the lowlands near the center are sugar cane fields. The three major population centers, Lahaina on the left at the western tip of island, Wailuku left of center, and Kihei in the lower center appear as small yellow, white or purple mottled areas. West Maui volcano, in the lower left, is 1800 meters high (5900 feet) and is considered extinct. The entire eastern half of the island consists of East Maui volcano, which rises to an elevation of 3200 meters (10,500 feet) and features a spectacular crater called Haleakala at its summit. Haleakala Crater was produced by erosion during previous ice ages rather than by volcanic activity, although relatively recent small eruptions have produced the numerous volcanic cones and lava flows that can be seen on the floor of the crater. The most recent eruption took place near the coast at the southwestern end of East Maui volcano in the late 1700s. Such a time frame indicates that East Maui should be considered a dormant, rather than an extinct volcano. A new eruption is therefore possible in the next few hundred years. The multi-wavelength capability of the SIR-C radar also permits differences in the vegetation cover on the middle flanks of East Maui to be identified. Rain forests appear in yellow, while grassland is shown in dark green, pink and blue. Radar images such as this one are being used by scientists to understand volcanic processes and to assess potential threats that future activity may pose to local populations. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 16, 1994. The image is 73.7 kilometers by 48.7 kilometers (45.7 miles by 30.2 miles) and is centered at 20

  8. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    Science.gov (United States)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  9. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  10. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    Science.gov (United States)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  11. Englishisation at a Global Space: Students and Staff Making Sense of Language Choices

    Science.gov (United States)

    Martin-Rubió, Xavier; Cots, Josep Maria

    2016-01-01

    This study starts from the premise that academic mobility contributes to the development of students' plurilingual identities and that study abroad contexts aiming at becoming global spaces are particularly interesting sites to explore the individuals' discursive work to (re-)construct their plurilingual identities by reconciling their language…

  12. Uniform color space analysis of LACIE image products

    Science.gov (United States)

    Nalepka, R. F. (Principal Investigator); Balon, R. J.; Cicone, R. C.

    1979-01-01

    The author has identified the following significant results. Analysis and comparison of image products generated by different algorithms show that the scaling and biasing of data channels for control of PFC primaries lead to loss of information (in a probability-of misclassification sense) by two major processes. In order of importance they are: neglecting the input of one channel of data in any one image, and failing to provide sufficient color resolution of the data. The scaling and biasing approach tends to distort distance relationships in data space and provides less than desirable resolution when the data variation is typical of a developed, nonhazy agricultural scene.

  13. Remote consultation and diagnosis in medical imaging using a global PACS backbone network

    Science.gov (United States)

    Martinez, Ralph; Sutaria, Bijal N.; Kim, Jinman; Nam, Jiseung

    1993-10-01

    A Global PACS is a national network which interconnects several PACS networks at medical and hospital complexes using a national backbone network. A Global PACS environment enables new and beneficial operations between radiologists and physicians, when they are located in different geographical locations. One operation allows the radiologist to view the same image folder at both Local and Remote sites so that a diagnosis can be performed. The paper describes the user interface, database management, and network communication software which has been developed in the Computer Engineering Research Laboratory and Radiology Research Laboratory. Specifically, a design for a file management system in a distributed environment is presented. In the remote consultation and diagnosis operation, a set of images is requested from the database archive system and sent to the Local and Remote workstation sites on the Global PACS network. Viewing the same images, the radiologists use pointing overlay commands, or frames to point out features on the images. Each workstation transfers these frames, to the other workstation, so that an interactive session for diagnosis takes place. In this phase, we use fixed frames and variable size frames, used to outline an object. The data pockets for these frames traverses the national backbone in real-time. We accomplish this feature by using TCP/IP protocol sockets for communications. The remote consultation and diagnosis operation has been tested in real-time between the University Medical Center and the Bowman Gray School of Medicine at Wake Forest University, over the Internet. In this paper, we show the feasibility of the operation in a Global PACS environment. Future improvements to the system will include real-time voice and interactive compressed video scenarios.

  14. Overview of some projects of SNPS for global space communication

    International Nuclear Information System (INIS)

    Ivanov, E.; Ghitaykin, V.; Ionkin, V.; Dubinin, A.; Pyshko, A.

    2001-01-01

    In this presentation we focused on three variants of prospective concepts of SNPS. They are intended to solve tasks of global space communication (GSC) as nearest future tasks in space. Modern concepts of the application of power technology in space believe in using an onboard source of energy for maintenance of self-transportation of the vehicle into geostationary orbit (GSO). There are three more prospective systems as follows: gas cooled nuclear reactor with hybrid thermal engine and machine power converter; nuclear reactor cooled by liquid metal and with a thermoelectric power generating system; nuclear reactor with Li cooling and a thermionic and thermoelectric power generator on board. The choice of a concept must fit strong requirements such as: space nuclear power unit is aimed to be used in a powerful mission; space power unit must be able to maintain the dual - mode regime of vehicle operation (self - transportation and long life in geosynchronous orbit [GEO]); nuclear rector of unit must be safety and it must be designed in such a way that it will ensure minimum size of the complete system; the elements of the considered technology can be used for the creation of NPPI and with other sources of heat (for example, radioisotope); the degree of technical and technological readiness of units of the thermal and power circuit of installation is estimated to be high and is defined by a number of technological developments in air, space and nuclear branches; nuclear reactor and heat transfer equipment should work in a normal mode, which can be very reliably confirmed for other high-temperature nuclear systems. Considering these concepts we practically consider one of possible strategy of developing of complex system of nuclear power engineering. It is the strategy of step-by-step development of space engineering with real application of them in commercial, scientific and other powerful missions in the nearest and deep space. As starting point of this activity is

  15. Feasibility study of an image slicer for future space application

    Science.gov (United States)

    Calcines, A.; Ichimoto, K.

    2014-08-01

    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm.

  16. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Chlorophyll (CHL) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  17. Subjective assessment of impairment in scale-space-coded images

    NARCIS (Netherlands)

    Ridder, de H.; Majoor, G.M.M.

    1988-01-01

    Direct category scaling and a scaling procedure in accordance with Functional Measurement Theory (Anderson, 1982) have been used to assess impairment in scale-space-coded illlages, displayed on a black-and-white TV monitor. The image of a complex scene was passed through a Gaussian filter of limited

  18. Producing Global Citizens for the Future: Space, Discourse and Curricular Reform

    Science.gov (United States)

    Matus, Claudia; Talburt, Susan

    2015-01-01

    This article inquires into discourses of globalisation as they are put to use to accelerate higher education's seemingly ready acquiescence to the demands of the market. We maintain that globalisation operates as a way to reason about space that produces images and narratives of universities, knowledge and students. We focus our analysis on…

  19. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Science.gov (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  20. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  1. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  2. High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...

  3. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  4. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  5. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  6. Differentiation of posterior pararenal space infection from psoas abscess by gallium imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A.; Mishkin, F.; Delgado, J.

    1983-01-01

    Three of four patients whose cases fit the clinical description of psoas abscess proved on gallium imaging to have infection in the posterior pararenal space sparing the psoas muscle. This space provides a route for spread of infection connecting the spine, the anterior abdominal wall, the scrotum, the anterior thigh, and the gluteal region as demonstrated by the cases presented. Clinical differentiation between posterior pararenal space infection and psoas abscesses is difficult and CT studies may not demonstrate the process when the psoas space is not involved.

  7. Differentiation of posterior pararenal space infection from psoas abscess by gallium imaging

    International Nuclear Information System (INIS)

    Bose, A.; Mishkin, F.; Delgado, J.

    1983-01-01

    Three of four patients whose cases fit the clinical description of psoas abscess proved on gallium imaging to have infection in the posterior pararenal space sparing the psoas muscle. This space provides a route for spread of infection connecting the spine, the anterior abdominal wall, the scrotum, the anterior thigh, and the gluteal region as demonstrated by the cases presented. Clinical differentiation between posterior pararenal space infection and psoas abscesses is difficult and CT studies may not demonstrate the process when the psoas space is not involved

  8. Local search for optimal global map generation using mid-decadal landsat images

    Science.gov (United States)

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  9. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    Science.gov (United States)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity

  10. Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories.

    Science.gov (United States)

    Ye, Xiaojing; Chen, Yunmei; Lin, Wei; Huang, Feng

    2011-03-01

    Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. The proposed method is a combination of variable splitting, the classical penalty technique and the optimal gradient method. Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.

  11. Image processing improvement for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  12. Influences on Adolescent African American Females' Global Self-Esteem: Body Image and Ethnic Identity

    Science.gov (United States)

    Turnage, Barbara F.

    2004-01-01

    This study of 105 senior high school Southern African American adolescent females examined the relationship between global self-esteem, appearance evaluation (body image), and ethnic identity. As predicted, the relationship between global self-esteem, appearance evaluation (r = 0.46, p less than 0.001), and ethnic identity (r = 40, p less than…

  13. Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Duc Khac Do

    2014-07-01

    Full Text Available This paper presents a method to design controllers that force a quadrotor vertical take-off and landing (VTOL aircraft to globally asymptotically track a reference trajectory in three-dimensional space. Motivated by the vehicle's steering practice, the roll and pitch angles are considered as immediate controls plus the total thrust force  provided by the aircraft's four rotors to control the position and yaw angle of the aircraft. The control design is based on the newly introduced one-step ahead backstepping, the standard backstepping and Lyapunov's direct methods. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to obtain global tracking control results. The paper also includes a design of observers that exponentially estimate the aircraft's linear velocity vector and disturbances. Simulations illustrate the results.

  14. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  15. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to detect the...

  16. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  17. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  18. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  19. Two wide-angle imaging neutral-atom spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  20. Two wide-angle imaging neutral-atom spectrometers

    International Nuclear Information System (INIS)

    McComas, D.J.

    1997-01-01

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , ∼ 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ''Sun-Earth Connections'' science theme of the NASA Office of Space Science

  1. Probabilistic atlas-guided eigen-organ method for simultaneous bounding box estimation of multiple organs in volumetric CT images

    International Nuclear Information System (INIS)

    Yao, Cong; Wada, Takashige; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru

    2006-01-01

    We propose an approach for the simultaneous bounding box estimation of multiple organs in volumetric CT images. Local eigen-organ spaces are constructed for different types of training organs, and a global eigen-space, which describes the spatial relationships between the organs, is also constructed. Each volume of interest in the abdominal CT image is projected into the local eigen-organ spaces, and several candidate locations are determined. The final selection of the organ locations is made by projecting the set of candidate locations into the global eigen-space. A probabilistic atlas of organs is used to eliminate locations with low probability and to guide the selection of candidate locations. Evaluation by the leave-one-out method using 10 volumetric abdominal CT images showed that the proposed method provided an average accuracy of 80.38% for 11 different organ types. (author)

  2. A Global Space Control Strategy

    Science.gov (United States)

    2014-12-01

    ASAT testing and development before significant pushback is enacted. Further, a growing body of literature suggests that space-based intelligence...management process must be the foundation of plan- ning space operations and responses. Second, we must realize that in order to conduct effective space...end state where commanders considering multiple courses of action have a sensor architecture and a tasking, collection, processing , exploitation, and

  3. CT and MR imaging of primary tumors of the masticator space

    International Nuclear Information System (INIS)

    Aspestrand, F.; Boysen, M.

    1992-01-01

    A retrospective study of CT and MR examinations in 14 patients with benign and malignant tumors originating in the masticator space is presented. At presentation, 12 patients revealed tumor extension to adjacent regions and spaces. Perineutral tumor spread along trigeminal nerve branches to the cavernous sinus and orbits was combined with facial pain, and/or numbness, ophthalmoplegia, and exophthalmus. Detailed analysis of tumor growth and spread, enhancement and signal features at CT and MR imaging indicated that tumor histology was, with a few exceptions, nonspecific. More extensive growth and bone destruction was noted only among malignant tumors. MR imaging was found superior to CT in delineating tumor extension due to better soft tissue contrast resolution and multiplanar imaging. Posttreatment examinations were available in 11 patients and showed long-standing regional edema of the adjacent temporal lobe and masticator muscles in 4 out of 5 patients without clinical evidence of tumor. In 6 patients, CT and MR features were found almost unchanged with only small size differences after various forms of treatment. (orig.)

  4. Hubble Space Telescope Image of Omega Nebula

    Science.gov (United States)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  5. The image of public space on planned housing based on environmental and behavior cognition mapping (case study: Cemara Asri Estate)

    Science.gov (United States)

    Nirfalini Aulia, Dwira; Zahara, Aina

    2018-03-01

    Public spaces in a planned housing is a place of social interaction for every visitor of public space. The research on public space image uses four public spaces that meet the criteria of public space such as pedestrian sidewalks, public park, water front and worship place. Research on the perception of public space is interesting to investigate because housing development is part of the forming of a society that should design with proper architectural considerations. The purpose of this research is to know the image of public space on the planned housing in Medan City based on the mapping of environmental and behavior cognition and to know the difference between the image that happened to four group respondent. The research method of architecture used in this research is a descriptive qualitative method with case study approach (most similar case). Analysis of data used using mental maps and questionnaires. Then the image of public space is formed based on the elements of public space, wayfinding, route choice, and movement. The image difference that occurs to the housing residents and architecture students, design and planning are outstanding, visitors to the public housing space is good, people who have never visited the public space is inadequate.

  6. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    Science.gov (United States)

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  7. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  8. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  9. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  10. PLANE MATCHING WITH OBJECT-SPACE SEARCHING USING INDEPENDENTLY RECTIFIED IMAGES

    Directory of Open Access Journals (Sweden)

    H. Takeda

    2012-07-01

    Full Text Available In recent years, the social situation in cities has changed significantly such as redevelopment due to the massive earthquake and large-scale urban development. For example, numerical simulations can be used to study this phenomenon. Such simulations require the construction of high-definition three-dimensional city models that accurately reflect the real world. Progress in sensor technology allows us to easily obtain multi-view images. However, the existing multi-image matching techniques are inadequate. In this paper, we propose a new technique for multi-image matching. Since the existing method of feature searching is complicated, we have developed a rectification method that can be processed independently for each image does not depend on the stereo-pair. The object-space searching method that produces mismatches due to the occlusion or distortion of wall textures on images is the focus of our study. Our proposed technique can also match the building wall surface. The proposed technique has several advantages, and its usefulness is clarified through an experiment using actual images.

  11. Ex vivo imaging of early dental caries within the interproximal space

    Science.gov (United States)

    Choo-Smith, Lin-P'ing; Hewko, Mark D.; Dufour, Marc L.; Fulton, Crystal; Qiu, Pingli; Gauthier, Bruno; Padioleau, Christian; Bisaillon, Charles-Etienne; Dong, Cecilia; Cleghorn, Blaine M.; Lamouche, Guy; Sowa, Michael G.

    2009-02-01

    Optical coherence tomography (OCT) is emerging as a technology that can potentially be used for the detection and monitoring of early dental enamel caries since it can provide high-resolution depth imaging of early lesions. To date, most caries detection optical technologies are well suited for examining caries at facial, lingual, incisal and occlusal surfaces. The approximal surfaces between adjacent teeth are difficult to examine due to lack of visual access and limited space for these new caries detection tools. Using a catheter-style probe developed at the NRC-Industrial Materials Institute, the probe was inserted into the interproximal space to examine the approximal surfaces with OCT imaging at 1310 nm. The probe was rotated continuously and translated axially to generate depth images in a spiral fashion. The probe was used in a mock tooth arch model consisting of extracted human teeth mounted with dental rope wax in their anatomically correct positions. With this ex vivo model, the probe provided images of the approximal surfaces revealing morphological structural details, regions of calculus, and especially regions of early dental caries (white spot lesions). Results were compared with those obtained from OCT imaging of individual samples where the approximal surfaces of extracted teeth are accessible on a lab-bench. Issues regarding access, regions of interest, and factors to be considered in an in vivo setting will be discussed. Future studies are aimed at using the probe in vivo with patient volunteers.

  12. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  13. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  14. Multiband CCD Image Compression for Space Camera with Large Field of View

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of its captured images information being very precious and also because it is usually working on the satellite where the resources, such as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression (CCSDS-IDC algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.

  15. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Science.gov (United States)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  16. Edema in the retropharyngeal space associated with head and neck tumors: CT imaging characteristics

    International Nuclear Information System (INIS)

    Kurihara, Noriko; Nakamura, Mamoru; Tsuda, Masashi; Saito, Haruo; Takahashi, Shoki; Higano, Shuichi

    2005-01-01

    To determine computed tomographic (CT) imaging characteristics of retropharygeal edema, we reviewed CT images in 18 patients with head and neck tumors. Retropharyngeal edema spread craniocaudally between soft palate and upper half of thyroid cartilage in all patients. No edema fluid extended above soft palate and below thyroid cartilage. Horizontally, it spread symmetrically in ten and asymmetrically in eight patients. Predominance in asymmetrical retropharyngeal edema was found on the same side as that of unilateral predominance both in lymph nodes enlargement and jugular vein stenosis/occlusion. All patients had edema also in other cervical spaces. Edema of retropharyngeal and other spaces fluctuated synchronously. In 14 patients, as primary lesion and/or cervical lymph nodes regressed, retropharyngeal edema disappeared or decreased. Retropharyngeal edema had some imaging characteristics. With knowledge of that, we could avoid diagnostic confusion when evaluating head and neck CT images. (orig.)

  17. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  18. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  19. The structure and properties of color spaces and the representation of color images

    CERN Document Server

    Dubois, Eric

    2009-01-01

    This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human vie

  20. Global Attractivity Results for Mixed-Monotone Mappings in Partially Ordered Complete Metric Spaces

    Directory of Open Access Journals (Sweden)

    Kalabušić S

    2009-01-01

    Full Text Available We prove fixed point theorems for mixed-monotone mappings in partially ordered complete metric spaces which satisfy a weaker contraction condition than the classical Banach contraction condition for all points that are related by given ordering. We also give a global attractivity result for all solutions of the difference equation , where satisfies mixed-monotone conditions with respect to the given ordering.

  1. The Big Picture: Imaging of the Global Geospace Environment by the TWINS Mission

    Science.gov (United States)

    Goldstein, J.; McComas, D. J.

    2018-03-01

    Encircling our planet at distances of 2.5 to 8 Earth radii is a dynamic plasma population known as the ring current (RC). During geomagnetic storms, the solar wind's interaction with Earth's magnetic field pumps petaJoules of energy into the RC, energizing and transporting particles. To measure the global geospace response, RC imaging is performed by capturing energetic neutral atoms (ENAs) created by charge exchange between geospace ions and the neutral exosphere. The H exosphere is itself imaged via its geocoronal Lyman-α glow. Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a stereoscopic ENA and Lyman-α imaging mission that has recorded the deep minimum of solar cycle (SC) 23 and the moderate maximum of SC 24, observing geospace conditions ranging from utterly quiet to major storms. This review covers TWINS studies of the geospace response published during 2013 to 2017. Stereo ENA imaging has revealed new dimensionality and structure of RC ions. Continuous coverage by two imagers has allowed monitoring storms from start to finish. Deconvolution of the low-altitude signal has extended ENA analysis and revealed causal connections between the trapped and precipitating ion populations. ENA-based temperature and composition analyses have been refined, validated, and applied to an unprecedented sequence of solar activity changes in SC 23 and SC 24. Geocoronal imaging has revealed a surprising amount of time variability and structure in the neutral H exosphere, driven by both Sun and solar wind. Global models have been measurably improved. Routine availability of simultaneous in situ measurements has fostered huge leaps forward in the areas of ENA validation and cross-scale studies.

  2. Complex adaptation-based LDR image rendering for 3D image reconstruction

    Science.gov (United States)

    Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-07-01

    A low-dynamic tone-compression technique is developed for realistic image rendering that can make three-dimensional (3D) images similar to realistic scenes by overcoming brightness dimming in the 3D display mode. The 3D surround provides varying conditions for image quality, illuminant adaptation, contrast, gamma, color, sharpness, and so on. In general, gain/offset adjustment, gamma compensation, and histogram equalization have performed well in contrast compression; however, as a result of signal saturation and clipping effects, image details are removed and information is lost on bright and dark areas. Thus, an enhanced image mapping technique is proposed based on space-varying image compression. The performance of contrast compression is enhanced with complex adaptation in a 3D viewing surround combining global and local adaptation. Evaluating local image rendering in view of tone and color expression, noise reduction, and edge compensation confirms that the proposed 3D image-mapping model can compensate for the loss of image quality in the 3D mode.

  3. Image matching in Bayer raw domain to de-noise low-light still images, optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-03-01

    Temporal accumulation of images is a well-known approach to improve signal to noise ratios of still images taken in a low light conditions. However, the complexity of known algorithms often leads to high hardware resource usage, increased memory bandwidth and computational complexity, making their practical use impossible. In our research we attempt to solve this problem with an implementation of a practical spatial-temporal de-noising algorithm, based on image accumulation. Image matching and spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics, thus allowing using a range of algorithmic optimizations. The proposed algorithm accurately compensates for global and local motion and efficiently removes different kinds of noise in noisy images taken in low light conditions. In our algorithm we were able to perform global and local motion compensation in Bayer RAW data space, while preserving the resolution and effectively improving signal to noise ratios of moving objects as well as non-stationary background. The proposed algorithm is suitable for implementation in commercial grade FPGA's and capable of processing 16MP images at capturing rate (10 frames per second). The main challenge for matching between still images is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. Still images taken in a burst sequence must be aligned to compensate for background motion and foreground objects movements in a scene. High resolution still images coupled with significant time between successive frames can produce large displacements between images, which creates additional difficulty for image matching algorithms. In photo applications it is very important that the noise is efficiently removed in both static, and non-static background as well as in a moving objects, maintaining the resolution of the image. In our proposed

  4. Multi-Label Classification Based on Low Rank Representation for Image Annotation

    Directory of Open Access Journals (Sweden)

    Qiaoyu Tan

    2017-01-01

    Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.

  5. [18F]DPA 714 PET Imaging Reveals Global Neuroinflammation in Zika Virus Infected Mice

    Science.gov (United States)

    2017-09-12

    with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases. Keywords: Zika virus , Animal...18F]DPA-714 PET Imaging Reveals Global Neuroinflammation in Zika Virus - Infected Mice Kyle Kuszpit1†, Bradley S. Hollidge2†, Xiankun Zeng3, Robert...Running Head: PET Imaging of Zika Virus -Induced Neuroinflammation Manuscript Category: Article Affiliations: 1Molecular and Translational

  6. Global and Local Page Replacement Algorithms on Virtual Memory Systems for Image Processing

    OpenAIRE

    WADA, Ben Tsutom

    1985-01-01

    Three virtual memory systems for image processing, different one another in frame allocation algorithms and page replacement algorithms, were examined experimentally upon their page-fault characteristics. The hypothesis, that global page replacement algorithms are susceptible to thrashing, held in the raster scan experiment, while it did not in another non raster-scan experiment. The results of the experiments may be useful also in making parallel image processors more efficient, while they a...

  7. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints

  8. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  9. Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation

    KAUST Repository

    Pan, B.; Wang, Bo; Lubineau, Gilles

    2016-01-01

    Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances

  10. Micro-digital sun sensor: an imaging sensor for space applications

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Büttgen, B.; Hakkesteegt, H.C.; Jasen, H.; Leijtens, J.A.P.

    2010-01-01

    Micro-Digital Sun Sensor is an attitude sensor which senses relative position of micro-satellites to the sun in space. It is composed of a solar cell power supply, a RF communication block and an imaging chip which is called APS+. The APS+ integrates a CMOS Active Pixel Sensor (APS) of 512×512

  11. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    Science.gov (United States)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  12. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  13. A Global Sampling Based Image Matting Using Non-Negative Matrix Factorization

    Directory of Open Access Journals (Sweden)

    NAVEED ALAM

    2017-10-01

    Full Text Available Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization. Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques

  14. A global sampling based image matting using non-negative matrix factorization

    International Nuclear Information System (INIS)

    Alam, N.; Sarim, M.; Shaikh, A.B.

    2017-01-01

    Image matting is a technique in which a foreground is separated from the background of a given image along with the pixel wise opacity. This foreground can then be seamlessly composited in a different background to obtain a novel scene. This paper presents a global non-parametric sampling algorithm over image patches and utilizes a dimension reduction technique known as NMF (Non-Negative Matrix Factorization). Although some existing non-parametric approaches use large nearby foreground and background regions to sample patches but these approaches fail to take the whole image to sample patches. It is because of the high memory and computational requirements. The use of NMF in the proposed algorithm allows the dimension reduction which reduces the computational cost and memory requirement. The use of NMF also allow the proposed approach to use the whole foreground and background region in the image and reduces the patch complexity and help in efficient patch sampling. The use of patches not only allows the incorporation of the pixel colour but also the local image structure. The use of local structures in the image is important to estimate a high-quality alpha matte especially in the images which have regions containing high texture. The proposed algorithm is evaluated on the standard data set and obtained results are comparable to the state-of-the-art matting techniques. (author)

  15. Global height datum unification: a new approach in gravity potential space

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  16. Application of ultrasound processed images in space: assessing diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  17. Combined Global Navigation Satellite Systems in the Space Service Volume

    Science.gov (United States)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  18. Space radar image of Mauna Loa, Hawaii

    Science.gov (United States)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  19. TRENDS IN THE DEVELOPMENT OF MARKETING COMMUNICATIONS IN THE GLOBAL INTERACTIVE SPACE

    Directory of Open Access Journals (Sweden)

    N. Kochkina

    2014-09-01

    Full Text Available The article identifies trends in the development of marketing communications in the global interactive space by analyzing the factors of their functioning and researching motivation of viral audience. It is revealed the prevalence of interactive technologies in today's information space and the growth dynamics of interactive advertising market. It is proved that favorable conditions for marketing communications' functioning forms the basis for the development of viral advertising as an effective communication tool for untraditional impact on potential customers. The popularity of social networks as a major source of viral messages is determined. The motivation of YouTube audience, which provides a resonant video viewing and retransmission, is investigated. Gender and age differences that stipulate communication affect on consumers are identified. Cyclic social consciousness is observed that demands further research of viral audience, including constructing scenarios of viral behavior.

  20. SuperAGILE: The hard X-ray imager for the AGILE space mission

    International Nuclear Information System (INIS)

    Feroci, M.; Costa, E.; Soffitta, P.; Del Monte, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Frutti, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Porrovecchio, G.; Rapisarda, M.; Rubini, A.; Tavani, M.; Argan, A.

    2007-01-01

    SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 sr. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV-50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23rd April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations

  1. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  2. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  3. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing.

    Science.gov (United States)

    Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger

    2017-08-01

    To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Simultaneous observation of auroral substorm onset in Polar satellite global images and ground-based all-sky images

    Science.gov (United States)

    Ieda, Akimasa; Kauristie, Kirsti; Nishimura, Yukitoshi; Miyashita, Yukinaga; Frey, Harald U.; Juusola, Liisa; Whiter, Daniel; Nosé, Masahito; Fillingim, Matthew O.; Honary, Farideh; Rogers, Neil C.; Miyoshi, Yoshizumi; Miura, Tsubasa; Kawashima, Takahiro; Machida, Shinobu

    2018-05-01

    Substorm onset has originally been defined as a longitudinally extended sudden auroral brightening (Akasofu initial brightening: AIB) followed a few minutes later by an auroral poleward expansion in ground-based all-sky images (ASIs). In contrast, such clearly marked two-stage development has not been evident in satellite-based global images (GIs). Instead, substorm onsets have been identified as localized sudden brightenings that expand immediately poleward. To resolve these differences, optical substorm onset signatures in GIs and ASIs are compared in this study for a substorm that occurred on December 7, 1999. For this substorm, the Polar satellite ultraviolet global imager was operated with a fixed-filter (170 nm) mode, enabling a higher time resolution (37 s) than usual to resolve the possible two-stage development. These data were compared with 20-s resolution green-line (557.7 nm) ASIs at Muonio in Finland. The ASIs revealed the AIB at 2124:50 UT and the subsequent poleward expansion at 2127:50 UT, whereas the GIs revealed only an onset brightening that started at 2127:49 UT. Thus, the onset in the GIs was delayed relative to the AIB and in fact agreed with the poleward expansion in the ASIs. The fact that the AIB was not evident in the GIs may be attributed to the limited spatial resolution of GIs for thin auroral arc brightenings. The implications of these results for the definition of substorm onset are discussed herein.[Figure not available: see fulltext.

  5. A robust state-space kinetics-guided framework for dynamic PET image reconstruction

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H ∞ filtering is adopted for robust estimation. H ∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.

  6. Four dimensional magnetic resonance imaging with retrospective k-space reordering: A feasibility study

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Chen, Nan-kuei; Chu, Mei-Lan

    2015-01-01

    Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N KS ) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C p ) and a number of impacting factors: the number of repeated scans (N R ), number of slices (N S ), number of respiratory phase bins (N P ), N KS , F, R, and initial respiratory phase at image acquisition (P 0 ). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C p and N R was found best represented by an exponential function (C P =100(1−e −0.18N R ), when N S

  7. Multiscale characterization of pore spaces using multifractals analysis of scanning electronic microscopy images of carbonates

    Directory of Open Access Journals (Sweden)

    M. S. Jouini

    2011-12-01

    Full Text Available Pore spaces heterogeneity in carbonates rocks has long been identified as an important factor impacting reservoir productivity. In this paper, we study the heterogeneity of carbonate rocks pore spaces based on the image analysis of scanning electron microscopy (SEM data acquired at various magnifications. Sixty images of twelve carbonate samples from a reservoir in the Middle East were analyzed. First, pore spaces were extracted from SEM images using a segmentation technique based on watershed algorithm. Pores geometries revealed a multifractal behavior at various magnifications from 800x to 12 000x. In addition, the singularity spectrum provided quantitative values that describe the degree of heterogeneity in the carbonates samples. Moreover, for the majority of the analyzed samples, we found low variations (around 5% in the multifractal dimensions for magnifications between 1700x and 12 000x. Finally, these results demonstrate that multifractal analysis could be an appropriate tool for characterizing quantitatively the heterogeneity of carbonate pore spaces geometries. However, our findings show that magnification has an impact on multifractal dimensions, revealing the limit of applicability of multifractal descriptions for these natural structures.

  8. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  9. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  10. Cosmoglobalistics: Interrelation of Global and Cosmic Processes

    Directory of Open Access Journals (Sweden)

    Ursul Tatiana

    2014-03-01

    Full Text Available The paper develops the concept antropogeocosmizm, emanating from the fact that the main purpose of space activity in the short term is the historical use of space to solve global problems and in the long term socio-natural transition to the sustainable development of the planet. In this study based on the ideological origins and formation of a new direction and globalization, exploring the relationship of global and cosmic factors, the impact of the latter on the development of global processes and systems, the problem of space on the planet and escalating global processes in space. It is about the relationship of space and planetary processes, the transformation of the global response to space activities (and their interaction, and global development in the cosmic evolution. Taken as the position that global studies examining global processes and systems, and global processes are understood by the natural, social and socio-natural processes unfolding on planet Earth and have evolutionary significance. It is shown that global processes and issues affecting the world at large, is to some extent a manifestation of the global-space character of the contradictions associated with the expansion of spatial boundaries of human activity, including the conquest of space. Special attention is paid to the potential global catastrophes and geospatial software security. Considering the introduction of a substantive field cosmoglobalistiks natural processes, prospects globally exoplanet space research, as well as "global methodology" search for extraterrestrial intelligence. We consider the discovery of dark matter forms that give rise to a very substantial transformation attitude and stimulate the formation of global-cosmological research, which will consider mainly the global characteristics of matter, manifested in three main fragments of the Universe.

  11. Electronic Referrals and Digital Imaging Systems in Ophthalmology: A Global Perspective.

    Science.gov (United States)

    Jeganathan, V Swetha E; Hall, H Nikki; Sanders, Roshini

    2017-01-01

    Ophthalmology departments face intensifying pressure to expedite sight-saving treatments and reduce the global burden of disease. The use of electronic communication systems, digital imaging, and redesigned service care models is imperative for addressing such demands. The recently developed Scottish Eyecare Integration Project involves an electronic referral system from community optometry to the hospital ophthalmology department using National Health Service (NHS) email with digital ophthalmic images attached, via a virtual private network connection. The benefits over the previous system include reduced waiting times, improved triage, e-diagnosis in 20% without the need for hospital attendance, and rapid electronic feedback to referrers. We draw on the experience of the Scottish Eyecare Integration Project and discuss the global applications of this and other advances in teleophthalmology. We focus particularly on the implications for management and screening of chronic disease, such as glaucoma and diabetic eye disease, and ophthalmic disease, such as retinopathy of prematurity where diagnosis is almost entirely and critically dependent on fundus appearance. Currently in Scotland, approximately 75% of all referrals are electronic from community to hospital. The Scottish Eyecare Integration Project is globally the first of its kind and unique in a national health service. Such speedy, safe, and efficient models of communication are geographically sensitive to service provision, especially in remote and rural regions. Along with advances in teleophthalmology, such systems promote the earlier detection of sight-threatening disease and safe follow-up of non-sight-threatening disease in the community. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  12. CT and MR imaging anatomy of the fascia in the pelvic extraperitoneal space

    International Nuclear Information System (INIS)

    Nagayoshi, Kensuke

    1993-01-01

    CT and MRI anatomy of the fascia in the pelvic extraperitoneal space has not been established. CT and some MR imagings of nine patients who received irradiation to the pelvis and of eleven patients who received transarterial infusion for urinary bladder carcinoma were studied about the anterior and posterior attachment sites of the coccygeus muscle, the sacrouterine ligament and the lateral ligament. Observing the course of the inferior gluteal artery, the author set up three axial levels: (a), (b) and (c) levels, where the artery passes in front of the piriformis muscle, just gets over the coccygeus muscle and over the sacrospinous ligament, respectively. At (b) and (c) levels, the posterior attachment site of the sacrouterine ligament was the coccygeus muscle and the posterior attachment site of the lateral ligament was the sacrouterine ligament. By these ligaments, the pelvic extraperitoneal space was divided into three compartments; the prevesical, the perivesical and the perirectal spaces. The prevesical space was limited by the coccygeus muscle and the sacrouterine ligament posteriorly, the perivesical space was limited by the sacrouterine ligament and the lateral ligament posteriorly, and the perirectal space was surrounded by the sacrouterine ligament and the coccygeus muscle. On the coronal image through the level slightly posterior to the anus, the sacrouterine ligament attached to the levator ani muscle at the lateral third like a screen. On the basis of these results, new axial and coronal models of the pelvic extraperitoneal space are presented, which are useful for understanding the location and spread of the lesion. (author)

  13. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    Science.gov (United States)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  14. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to...

  15. Local helioseismology: three-dimensional imaging of the solar interior

    NARCIS (Netherlands)

    Gizon, L.; Birch, A.C.; Spruit, H.C.

    2010-01-01

    The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The Global Oscillation Network Group (GONG) network and the SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager) space instrument provide an exceptional database of spatially

  16. Perturbative S-matrix for massive scalar fields in global de Sitter space

    International Nuclear Information System (INIS)

    Marolf, Donald; Srednicki, Mark; Morrison, Ian A

    2013-01-01

    We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)

  17. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    Science.gov (United States)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  18. International Space Law

    Directory of Open Access Journals (Sweden)

    M. Lits

    2017-01-01

    Full Text Available It is well known that the modern day technologies that drive our global society are highly dependent on the use of outer space. For example, daily activities such as sending emails, making phone calls and carrying out bank transactions cannot be done unless satellite technologies are involved. When you catch a plane, the air traffic control is dependent on GPS. Even natural disaster management is dependent on satellite imaging. Taking into account the importance of this, it becomes increasingly necessary to be knowledgeable in the field of international law as it is the only sphere of law that reaches beyond the physical boundaries of the Earth, goes deep into space and provides protection for today’s society. With new steps being taken to exploit further the potentials of outer space, and with increasing talk of new space missions and new discoveries, current international space law is being placed under scrutiny, for it should be remembered that the major international legal documents in this field were adopted in the middle of the 20th century, and thus there are fears that the law may have become obsolete, irrelevant in the face of new challenges in the use of outer space. This paper delivers an analysis of existing international space law and attempts to raise several crucial issues pertinent in the area.

  19. Population Pressure, Global Living Standards, and the Promise of Space Solar Power

    Science.gov (United States)

    Strickland, John K., Jr.

    2002-01-01

    uses of electricity and fuels currently covered by fossil fuels. This is a global replacement load of about 9000 gigawatts. Green theorists are divided on this issue. Some claim that ground based solar, wind, and other renewable sources will supply all the energy we need, ignoring economic costs that severely limit their use. Others would (unrealistically) require the developed countries to reduce their energy consumption per capita to a level closer to that of the developing world, thereby admitting the limitations of the "appropriate" systems they espouse. Both sides in the past have rejected as "non-appropriate" and/or "dangerous" all the chemically clean energy sources of high capacity that have been previously proposed, such as safer nuclear fission, fusion power, and space solar power. If ground based "appropriate" energy sources are not sufficient, the economic and social effects of sudden forced curtailments of fossil energy use could be drastic. This paper supports the thesis that Space Solar Power does have the potential to provide such a clean, abundant, and economical energy source. It will cover both the limitations and promise of ground based energy sources, including the difficulties of using intermittent energy sources. It will discuss whether specified levels of energy cost increases would be damaging to the world economy and whether economical ground based sources alone would have sufficient capacity. It will show how the one major problem of launch costs, (currently preventing economical implementation of Space Solar Power), has a number of quite reasonable solutions. Finally, it will consider whether Space Solar Power, along with the other major space goals of Science &Exploration, Mars Colonization, Non- terrestrial Materials Recovery and Space Tourism, could be another space "killer app" which, by creating a high demand for launch services, could force large reductions in launch costs.

  20. The OMERACT-RAMRIS Rheumatoid Arthritis Magnetic Resonance Imaging Joint Space Narrowing Score

    DEFF Research Database (Denmark)

    Møller Døhn, Uffe; Conaghan, Philip G; Eshed, Iris

    2014-01-01

    To test the intrareader and interreader reliability of assessment of joint space narrowing (JSN) in rheumatoid arthritis (RA) wrist and metacarpophalangeal (MCP) joints on magnetic resonance imaging (MRI) and computed tomography (CT) using the newly proposed OMERACT-RAMRIS JSN scoring method...

  1. Global Positioning System Energetic Particle Data: The Next Space Weather Data Revolution

    Science.gov (United States)

    Knipp, Delores J.; Giles, Barbara L.

    2016-01-01

    The Global Positioning System (GPS) has revolutionized the process of getting from point A to point Band so much more. A large fraction of the worlds population relies on GPS (and its counterparts from other nations) for precision timing, location, and navigation. Most GPS users are unaware that the spacecraft providing the signals they rely on are operating in a very harsh space environment the radiation belts where energetic particles trapped in Earths magnetic field dash about at nearly the speed of light. These subatomic particles relentlessly pummel GPS satellites. So by design, every GPS satellite and its sensors are radiation hardened. Each spacecraft carries particle detectors that provide health and status data to system operators. Although these data reveal much about the state of the space radiation environment, heretofore they have been available only to system operators and supporting scientists. Research scientists have long sought a policy shift to allow more general access. With the release of the National Space Weather Strategy and Action Plan organized by the White House Office of Science Technology Policy (OSTP) a sample of these data have been made available to space weather researchers. Los Alamos National Laboratory (LANL) and the National Center for Environmental Information released a months worth of GPS energetic particle data from an interval of heightened space weather activity in early 2014 with the hope of stimulating integration of these data sets into the research arena. Even before the public data release GPS support scientists from LANL showed the extraordinary promise of these data.

  2. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  3. High resolution inverse synthetic aperture radar imaging of three-axis-stabilized space target by exploiting orbital and sparse priors

    International Nuclear Information System (INIS)

    Ma Jun-Tao; Gao Mei-Guo; Xiong Di; Feng Qi; Guo Bao-Feng; Dong Jian

    2017-01-01

    The development of inverse synthetic aperture radar (ISAR) imaging techniques is of notable significance for monitoring, tracking and identifying space targets in orbit. Usually, a well-focused ISAR image of a space target can be obtained in a deliberately selected imaging segment in which the target moves with only uniform planar rotation. However, in some imaging segments, the nonlinear range migration through resolution cells (MTRCs) and time-varying Doppler caused by the three-dimensional rotation of the target would degrade the ISAR imaging performance, and it is troublesome to realize accurate motion compensation with conventional methods. Especially in the case of low signal-to-noise ratio (SNR), the estimation of motion parameters is more difficult. In this paper, a novel algorithm for high-resolution ISAR imaging of a space target by using its precise ephemeris and orbital motion model is proposed. The innovative contributions are as follows. 1) The change of a scatterer projection position is described with the spatial-variant angles of imaging plane calculated based on the orbital motion model of the three-axis-stabilized space target. 2) A correction method of MTRC in slant- and cross-range dimensions for arbitrarily imaging segment is proposed. 3) Coarse compensation for translational motion using the precise ephemeris and the fine compensation for residual phase errors by using sparsity-driven autofocus method are introduced to achieve a high-resolution ISAR image. Simulation results confirm the effectiveness of the proposed method. (paper)

  4. Evaluation of an accelerated 3D SPACE sequence with compressed sensing and free-stop scan mode for imaging of the knee.

    Science.gov (United States)

    Henninger, B; Raithel, E; Kranewitter, C; Steurer, M; Jaschke, W; Kremser, C

    2018-05-01

    To prospectively evaluate a prototypical 3D turbo-spin-echo proton-density-weighted sequence with compressed sensing and free-stop scan mode for preventing motion artefacts (3D-PD-CS-SPACE free-stop) for knee imaging in a clinical setting. 80 patients underwent 3T magnetic resonance imaging (MRI) of the knee with our 2D routine protocol and with 3D-PD-CS-SPACE free-stop. In case of a scan-stop caused by motion (images are calculated nevertheless) the sequence was repeated without free-stop mode. All scans were evaluated by 2 radiologists concerning image quality of the 3D-PD-CS-SPACE (with and without free-stop). Important knee structures were further assessed in a lesion based analysis and compared to our reference 2D-PD-fs sequences. Image quality of the 3D-PD-CS-SPACE free-stop was found optimal in 47/80, slightly compromised in 21/80, moderately in 10/80 and severely in 2/80. In 29/80, the free-stop scan mode stopped the 3D-PD-CS-SPACE due to subject motion with a slight increase of image quality at longer effective acquisition times. Compared to the 3D-PD-CS-SPACE with free-stop, the image quality of the acquired 3D-PD-CS-SPACE without free-stop was found equal in 6/29, slightly improved in 13/29, improved with equal contours in 8/29, and improved with sharper contours in 2/29. The lesion based analysis showed a high agreement between the results from the 3D-PD-CS-SPACE free-stop and our 2D-PD-fs routine protocol (overall agreement 96.25%-100%, Cohen's Kappa 0.883-1, p SPACE free-stop is a reliable alternative for standard 2D-PD-fs protocols with acceptable acquisition times. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  6. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    International Nuclear Information System (INIS)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin; Prager, Marcel; Heiland, Sabine; Schwindling, Franz Sebastian; Rammelsberg, Peter; Nittka, Mathias; Grodzki, David

    2017-01-01

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  7. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Prager, Marcel; Heiland, Sabine [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Heidelberg University Hospital, Section of Experimental Radiology, Heidelberg (Germany); Schwindling, Franz Sebastian; Rammelsberg, Peter [Heidelberg University Hospital, Department of Prosthodontics, Heidelberg (Germany); Nittka, Mathias; Grodzki, David [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-12-15

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  8. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)

    2002-03-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  9. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.

    2002-01-01

    We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)

  10. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  11. MR imaging findings of leiomyoma in the prevesical space: case report

    International Nuclear Information System (INIS)

    Whang, In Yong; Jung, Seung Eun; Lee, Jae Mun; Hahn, Seong Tai

    2003-01-01

    Leiomyomas most frequently occur in the genitourinary and gastrointestinal system. This report describes the clinical and imaging findings of a leiomyoma originating in the prevesical space, a rare location. The mass abutted the fundus of the uterus, but after the correct identification of feeding vessels from the right iliac artery, prevesical leiomyoma was diagnosed radiologically

  12. MR imaging findings of leiomyoma in the prevesical space: case report

    Energy Technology Data Exchange (ETDEWEB)

    Whang, In Yong; Jung, Seung Eun; Lee, Jae Mun; Hahn, Seong Tai [College of Medicine, Catholic Univ., Seoul (Korea, Republic of)

    2003-10-01

    Leiomyomas most frequently occur in the genitourinary and gastrointestinal system. This report describes the clinical and imaging findings of a leiomyoma originating in the prevesical space, a rare location. The mass abutted the fundus of the uterus, but after the correct identification of feeding vessels from the right iliac artery, prevesical leiomyoma was diagnosed radiologically.

  13. Nature-based solutions for urban landscapes under post-industrialization and globalization: Barcelona versus Shanghai.

    Science.gov (United States)

    Fan, Peilei; Ouyang, Zutao; Basnou, Corina; Pino, Joan; Park, Hogeun; Chen, Jiquan

    2017-07-01

    Using Barcelona and Shanghai as case studies, we examined the nature-based solutions (NBS) in urban settings-specifically within cities experiencing post-industrialization and globalization. Our specific research questions are: (1) What are the spatiotemporal changes in urban built-up land and green space in Barcelona and Shanghai? (2) What are the relationships between economic development, exemplified by post-industrialization, globalization, and urban green space? Urban land use and green space change were evaluated using data derived from a variety of sources, including satellite images, landscape matrix indicators, and a land conversion matrix. The relationships between economic development, globalization, and environmental quality were analyzed through partial least squares structural equation modeling based on secondary statistical data. Both Barcelona and Shanghai have undergone rapid urbanization, with urban expansion in Barcelona beginning in the 1960s-1970s and in Shanghai in the last decade. While Barcelona's urban green space and green space per capita began declining between the 1950s and 1990s, they increased slightly over the past two decades. Shanghai, however, has consistently and significantly improved urban green space and green space per capita over the past six decades, especially since the economic reform in 1978. Economic development has a direct and significant influence on urban green space for both cities and post-industrialization had served as the main driving force for urban landscape change in Barcelona and Shanghai. Based on secondary statistical and qualitative data from on-site observations and interviews with local experts, we highlighted the institution's role in NBS planning. Furthermore, aspiration to become a global or globalizing city motivated both cities to use NBS planning as a place-making tool to attract global investment, which is reflected in various governing policies and regulations. The cities' effort to achieve a

  14. A 4D global respiratory motion model of the thorax based on CT images: A proof of concept.

    Science.gov (United States)

    Fayad, Hadi; Gilles, Marlene; Pan, Tinsu; Visvikis, Dimitris

    2018-05-17

    Respiratory motion reduces the sensitivity and specificity of medical images especially in the thoracic and abdominal areas. It may affect applications such as cancer diagnostic imaging and/or radiation therapy (RT). Solutions to this issue include modeling of the respiratory motion in order to optimize both diagnostic and therapeutic protocols. Personalized motion modeling required patient-specific four-dimensional (4D) imaging which in the case of 4D computed tomography (4D CT) acquisition is associated with an increased dose. The goal of this work was to develop a global respiratory motion model capable of relating external patient surface motion to internal structure motion without the need for a patient-specific 4D CT acquisition. The proposed global model is based on principal component analysis and can be adjusted to a given patient anatomy using only one or two static CT images in conjunction with a respiratory synchronized patient external surface motion. It is based on the relation between the internal motion described using deformation fields obtained by registering 4D CT images and patient surface maps obtained either from optical imaging devices or extracted from CT image-based patient skin segmentation. 4D CT images of six patients were used to generate the global motion model which was validated by adapting it on four different patients having skin segmented surfaces and two other patients having time of flight camera acquired surfaces. The reproducibility of the proposed model was also assessed on two patients with two 4D CT series acquired within 2 weeks of each other. Profile comparison shows the efficacy of the global respiratory motion model and an improvement while using two CT images in order to adapt the model. This was confirmed by the correlation coefficient with a mean correlation of 0.9 and 0.95 while using one or two CT images respectively and when comparing acquired to model generated 4D CT images. For the four patients with segmented

  15. Cultural-Linguistic Globalization in the European Space

    Directory of Open Access Journals (Sweden)

    Sebastian Chirimbu

    2011-05-01

    Full Text Available Europe is a reality not only in economic and political terms mainly. The impact of globalization on contemporary European area is a contested subject in political debates, media or academically. Although occurring in the economic field with multiple meanings (the increase in economic interdependence of countries worldwide through increasing volume and variety of goods and services transactions across borders, in linguistics, globalization illustrates a particular facet of the relationship between the dynamics and needs of society communication. The impressive contemporary transformation processes triggered by globalization can be fully understood only if read in a cultural key, only if analyzed from a cultural perspective. At the same time, the multiple transformations modify the very structure of the cultural experience and affect the way we understand culture in the modern world. Globalization is the core of modern culture and cultural practices are the core of globalization.

  16. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    Science.gov (United States)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and

  17. High resolution time- and 2-dimensional space-resolved x-ray imaging of plasmas at NOVA

    International Nuclear Information System (INIS)

    Landen, O.L.

    1992-01-01

    A streaked multiple pinhole camera technique, first used by P. Choi et al. to record time- and 2-D space-resolved soft X-ray images of plasma pinches, has been implemented on laser plasmas at NOVA. The instrument is particularly useful for time-resolved imaging of small sources ( 2.5 key imaging, complementing the existing 1--3 key streaked X-ray microscope capabilities at NOVA

  18. Global Trends of Tropospheric NO2 Observed From Space

    Science.gov (United States)

    Schneider, P.; van der A, R. J.

    2012-04-01

    Nitrogen Dioxide (NO2) is one of the major atmospheric pollutants and is primarily emitted by industrial activity and transport. While observations of NO2 are frequently being carried out at air quality stations, such measurements are not able to provide a global perspective of spatial patterns in NO2 concentrations and their associated trends due to the stations' limited spatial representativity and an extremely sparse and often completely non-existent station coverage in developing countries. Satellite observations of tropospheric NO2 are able to overcome this issue and provide an unprecedented global view of spatial patterns in NO2 levels and due to their homogeneity are well suited for studying trends. Here we present results of a global trend analysis from nearly a decade of NO2 observations made by the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) instrument onboard the Envisat satellite platform. Using only SCIAMACHY data allows for mapping global and regional trends at an unprecedented spatial resolution since no aggregation to the coarser resolution of other sensors is necessary. Monthly average tropospheric NO2 column data was acquired for the period between August 2002 and August 2011. A trend analysis was subsequently performed by fitting a statistical model including a seasonal cycle and linear trend to the time series extracted at each grid cell. The linear trend component and the trend uncertainty were then mapped spatially at both regional and global scales. The results show that spatially contiguous areas of significantly increasing NO2 levels are found primarily in Eastern China, with absolute trends of up to 4.05 (± 0.41) - 1015 molecules cm-2 yr-1 at the gridcell level and large areas showing rapid relative increases of 10-20 percent per year. In addition, many urban agglomerations in Asia and the Middle East similarly exhibit significantly increasing trends, with Dhaka in Bangladesh being the megacity with

  19. Improving the Calibration of Image Sensors Based on IOFBs, Using Differential Gray-Code Space Encoding

    Directory of Open Access Journals (Sweden)

    Carlos Luna Vázquez

    2012-07-01

    Full Text Available This paper presents a fast calibration method to determine the transfer function for spatial correspondences in image transmission devices with Incoherent Optical Fiber Bundles (IOFBs, by performing a scan of the input, using differential patterns generated from a Gray code (Differential Gray-Code Space Encoding, DGSE. The results demonstrate that this technique provides a noticeable reduction in processing time and better quality of the reconstructed image compared to other, previously employed techniques, such as point or fringe scanning, or even other known space encoding techniques.

  20. Research on spatial-variant property of bistatic ISAR imaging plane of space target

    International Nuclear Information System (INIS)

    Guo Bao-Feng; Wang Jun-Ling; Gao Mei-Guo

    2015-01-01

    The imaging plane of inverse synthetic aperture radar (ISAR) is the projection plane of the target. When taking an image using the range-Doppler theory, the imaging plane may have a spatial-variant property, which causes the change of scatter’s projection position and results in migration through resolution cells. In this study, we focus on the spatial-variant property of the imaging plane of a three-axis-stabilized space target. The innovative contributions are as follows. 1) The target motion model in orbit is provided based on a two-body model. 2) The instantaneous imaging plane is determined by the method of vector analysis. 3) Three Euler angles are introduced to describe the spatial-variant property of the imaging plane, and the image quality is analyzed. The simulation results confirm the analysis of the spatial-variant property. The research in this study is significant for the selection of the imaging segment, and provides the evidence for the following data processing and compensation algorithm. (paper)

  1. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Zaidi, Habib

    2014-01-01

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function

  2. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB (Netherlands)

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis

  3. Mapping from Speech to Images Using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan

    2005-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...

  4. Measuring the Earth System in a Time of Global Environmental Change with Image Spectroscopy

    Science.gov (United States)

    Green, Robert O.

    2005-01-01

    Measuring the Earth system in a time of global environmental change. Imaging Spectroscopy enables remote measurement. Remote Measurement determination of the properties of the Earth's surface and atmosphere through the physics, chemistry and biology of the interaction of electromagnetic energy with matter.

  5. Imaging in real and reciprocal space at the Diamond beamline I13

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; De Fanis, A.

    2016-01-01

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction

  6. Imaging in real and reciprocal space at the Diamond beamline I13

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany)

    2016-01-28

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  7. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  8. Global Survey on Future Trends in Human Spaceflight: the Implications for Space Tourism

    Science.gov (United States)

    Gurtuna, O.; Garneau, S.

    2002-01-01

    With the much-publicized first ever space tourist flight, of Dennis Tito, and the announcement of the second space tourist flight to take place in April 2002, it is clear that an alternative motivation for human spaceflight has emerged. Human spaceflight is no longer only about meeting the priorities of national governments and space agencies, but is also about the tangible possibility of ordinary people seeing the Earth from a previously exclusive vantage point. It is imperative that major space players look beyond the existing human spaceflight rationale to identify some of the major driving forces behind space tourism, including the evolving market potential and developments in enabling technologies. In order to determine the influence of these forces on the future of commercial human spaceflight, the responses of a Futuraspace survey on future trends in human spaceflight are analyzed and presented. The motivation of this study is to identify sought-after space destinations, explore the expected trends in enabling technologies, and understand the future role of emerging space players. The survey will reflect the opinions of respondents from around the world including North America, Europe (including Russia) and Asia. The profiles of targeted respondents from space industry, government and academia are high-level executives/managers, senior researchers, as well as former and current astronauts. The survey instrument is a questionnaire which is validated by a pilot study. The sampling method is non-probabilistic, targeting as many space experts as possible who fit our intended respondent profile. Descriptive and comparative statistical analysis methods are implemented to investigate both global and regional perceptions of future commercial trends in human spaceflight. This study is not intended to be a formal market study of the potential viability of the space tourism market. Instead, the focus is on the future trends of human spaceflight, by drawing on the

  9. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  10. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  11. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    Science.gov (United States)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  12. Cultures in orbit: Satellite technologies, global media and local practice

    Science.gov (United States)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  13. The architecture of a video image processor for the space station

    Science.gov (United States)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  14. War of Images and Images of War: Rape and Sacrifice in the Iraq War

    Directory of Open Access Journals (Sweden)

    Carmem Rial

    2007-01-01

    Full Text Available This article addresses one of the great issues about which global media remains silent: the rape of Muslim women by U.S. soldiers in Iraq. Contemporary mediascape is prolix. But some silences remain, such as the issue of rape during war. With an anthropological approach to the meaning of war and through the analysis of images, the article focuses on the participation of women in this male space.

  15. Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

    International Nuclear Information System (INIS)

    Belloir, Jean-Marc

    2016-01-01

    CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such as space imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramatically increased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors have substantial advantages over CCDs which make them great candidates to replace CCDs in future space missions. However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidly degrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or the fusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure. These displacement damage effects lead to the formation of stable defects and to the introduction of states in the forbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, non ionizing radiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the image sensor sensitivity and dynamic range. The aim of the present work is to extend the understanding of the effect of displacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on the shape of the dark current distribution depending on the particle type, energy and fluence but also on the image sensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the dark current distribution induced by displacement damage in nuclear or space environments is experimentally validated and physically justified. Another central part of this work consists in using the dark current spectroscopy technique for the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects. Many types of defects are detected and two of them are identified

  16. ENCOUNTERING THE OTHER AS AN EXAMPLE OF GLOBAL EDUCATION WITHIN THE MUSEUM SPACE

    OpenAIRE

    Dorota Baumgarten-Szczyrska; Krystyna Milewska; Dorota Obalek

    2017-01-01

    In the face of the migration crisis in Europe in 2015, discussions on refugees and emigrants who live in Poland have been dominated by stereotypes and negative images presented by the media, and the division into supporters and opponents of the “Others” have also become highly visible in schools. The lack of topics in the field of global education and of knowledge about the current situation of African countries has contributed to the increase in xenophobic attitudes a...

  17. Elite International Schools in the Global South: Transnational Space, Class Relationalities and the "Middling" International Schoolteacher

    Science.gov (United States)

    Tarc, Paul; Mishra Tarc, Aparna

    2015-01-01

    The elite international school is a rich site for sociological inquiry in global times. In this paper, we conceptualize the international school as a transnational space of agonist social class-making given the dynamic positioning of the complement of international school actors. We position international schoolteachers in the middle of these…

  18. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  19. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  20. Distress detection, location, and communications using advanced space technology

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  1. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  2. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    Science.gov (United States)

    Gasparri, J. P.; Bouchet, A.; Abras, G.; Ballarin, V.; Pastore, J. I.

    2011-12-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  3. Medical Image Segmentation using the HSI color space and Fuzzy Mathematical Morphology

    International Nuclear Information System (INIS)

    Gasparri, J P; Bouchet, A; Abras, G; Ballarin, V; Pastore, J I

    2011-01-01

    Diabetic retinopathy is the most common cause of blindness among the active population in developed countries. An early ophthalmologic examination followed by proper treatment can prevent blindness. The purpose of this work is develop an automated method for segmentation the vasculature in retinal images in order to assist the expert in the evolution of a specific treatment or in the diagnosis of a potential pathology. Since the HSI space has the ability to separate the intensity of the intrinsic color information, its use is recommended for the digital processing images when they are affected by lighting changes, characteristic of the images under study. By the application of color filters, is achieved artificially change the tone of blood vessels, to better distinguish them from the bottom. This technique, combined with the application of fuzzy mathematical morphology tools as the Top-Hat transformation, creates images of the retina, where vascular branches are markedly enhanced over the original. These images provide the visualization of blood vessels by the specialist.

  4. q-Space imaging using small magnetic field gradient

    International Nuclear Information System (INIS)

    Umezawa, Eizou; Yamaguchi, Kojiro; Yoshikawa, Mayo; Ueoku, Sachiko; Tanaka, Eiji

    2006-01-01

    q-space diffusion analysis is a method to obtain the probability density function of the translational displacement of diffusing water molecules. Several quantities can be extracted from the function that indicate a characteristic of the water diffusion in tissue, e.g., the mean displacement of the diffusion, probability for zero displacement, and kurtosis of the function. These quantities are expected to give information about the microstructure of tissues in addition to that obtained from the apparent diffusion coefficient (ADC); however, this method requires high q (i.e., high b) values, which are undesirable in practical applications of the method using clinical magnetic resonance (MR) imaging equipment. We propose a method to obtain certain quantities that indicate a characteristic of the diffusion and that uses low q-value measurements. The quantities we can obtain are the moments of translational displacement, R; the n-th order moment is defined as the average of R n (n: integer). Kurtosis can also be calculated from the second and fourth moments. We tried to map the moments and kurtosis using clinical MR imaging equipment. We also estimated the inherent errors of the moments obtained. Our method requires precision in measuring spin echo signals and setting q values rather than using high q-value measurements. Although our results show that further error reductions are desired, our method is workable using ordinary clinical MR imaging equipment. (author)

  5. Restoration of color images degraded by space-variant motion blur

    Czech Academy of Sciences Publication Activity Database

    Šorel, Michal; Flusser, Jan

    2007-01-01

    Roč. 2007, č. 4673 (2007), s. 450-457 ISSN 0302-9743. [Computer Analysis of Images and Patterns. Vienna, 27.08.2007-29.08.2007] R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : deblurring * space-variant restoration * motion blur * color Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.402, year: 2005 http://dx.doi.org/10.1007/978-3-540-74272-2_56

  6. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    Directory of Open Access Journals (Sweden)

    T Nagatsuma

    2014-10-01

    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  7. Global model structures for ∗-modules

    DEFF Research Database (Denmark)

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  8. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Mattan

    2018-02-21

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.

  9. Compounding local invariant features and global deformable geometry for medical image registration.

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    Full Text Available Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM, are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve 6~8% of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods.

  10. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  11. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  12. Large anterior temporal Virchow-Robin spaces: unique MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Anthony T. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Chandra, Ronil V. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Department of Surgery, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia); Trost, Nicholas M. [St Vincent' s Hospital, Neuroradiology Service, Melbourne (Australia); McKelvie, Penelope A. [St Vincent' s Hospital, Anatomical Pathology, Melbourne (Australia); Stuckey, Stephen L. [Monash University, Neuroradiology Service, Monash Imaging, Monash Health, Melbourne, Victoria (Australia); Monash University, Southern Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne (Australia)

    2015-05-01

    Large Virchow-Robin (VR) spaces may mimic cystic tumor. The anterior temporal subcortical white matter is a recently described preferential location, with only 18 reported cases. Our aim was to identify unique MR features that could increase prospective diagnostic confidence. Thirty-nine cases were identified between November 2003 and February 2014. Demographic, clinical data and the initial radiological report were retrospectively reviewed. Two neuroradiologists reviewed all MR imaging; a neuropathologist reviewed histological data. Median age was 58 years (range 24-86 years); the majority (69 %) was female. There were no clinical symptoms that could be directly referable to the lesion. Two thirds were considered to be VR spaces on the initial radiological report. Mean maximal size was 9 mm (range 5-17 mm); majority (79 %) had perilesional T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensity. The following were identified as potential unique MR features: focal cortical distortion by an adjacent branch of the middle cerebral artery (92 %), smaller adjacent VR spaces (26 %), and a contiguous cerebrospinal fluid (CSF) intensity tract (21 %). Surgery was performed in three asymptomatic patients; histopathology confirmed VR spaces. Unique MR features were retrospectively identified in all three patients. Large anterior temporal lobe VR spaces commonly demonstrate perilesional T2 or FLAIR signal and can be misdiagnosed as cystic tumor. Potential unique MR features that could increase prospective diagnostic confidence include focal cortical distortion by an adjacent branch of the middle cerebral artery, smaller adjacent VR spaces, and a contiguous CSF intensity tract. (orig.)

  13. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  14. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels.

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  15. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.; Eschbach, R.; Braun, K.

    1997-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma veriation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, ect.) To obtain

  16. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.

    1993-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma variation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, etc.). To obtain

  17. Global Dynamical Systems Involving Generalized -Projection Operators and Set-Valued Perturbation in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Yun-zhi Zou

    2012-01-01

    Full Text Available A new class of generalized dynamical systems involving generalized f-projection operators is introduced and studied in Banach spaces. By using the fixed-point theorem due to Nadler, the equilibrium points set of this class of generalized global dynamical systems is proved to be nonempty and closed under some suitable conditions. Moreover, the solutions set of the systems with set-valued perturbation is showed to be continuous with respect to the initial value.

  18. Space programs in Taiwan

    Science.gov (United States)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-10-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, &3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload "Imager of Sprites and Upper Atmospheric Lightning (ISUAL)". ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  19. Complex Pupil Masks for Aberrated Imaging of Closely Spaced Objects

    Science.gov (United States)

    Reddy, A. N. K.; Sagar, D. K.; Khonina, S. N.

    2017-12-01

    Current approach demonstrates the suppression of optical side-lobes and the contraction of the main lobe in the composite image of two object points of the optical system under the influence of defocusing effect when an asymmetric phase edges are imposed over the apodized circular aperture. The resolution of two point sources having different intensity ratio is discussed in terms of the modified Sparrow criterion, functions of the degree of coherence of the illumination, the intensity difference and the degree of asymmetric phase masking. Here we have introduced and explored the effects of focus aberration (defect-of-focus) on the two-point resolution of the optical systems. Results on the aberrated composite image of closely spaced objects with amplitude mask and asymmetric phase masks forms a significant contribution in astronomical and microscopic observations.

  20. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    Science.gov (United States)

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  1. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    Science.gov (United States)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  2. NIRAC: Near Infrared Airglow Camera for the International Space Station

    Science.gov (United States)

    Gelinas, L. J.; Rudy, R. J.; Hecht, J. H.

    2017-12-01

    NIRAC is a space based infrared airglow imager that will be deployed to the International Space Station in late 2018, under the auspices of the Space Test Program. NIRAC will survey OH airglow emissions in the 1.6 micron wavelength regime, exploring the spatial and temporal variability of emission intensities at latitudes from 51° south to 51° north. Atmospheric perturbations in the 80-100 km altitude range, including those produced by atmospheric gravity waves (AGWs), are observable in the OH airglow. The objective of the NIRAC experiment is to make near global measurement of the OH airglow and airglow perturbations. These emissions also provide a bright source of illumination at night, allowing for nighttime detection of clouds and surface characteristics. The instrument, developed by the Aerospace Space Science Applications Laboratory, employs a space-compatible FPGA for camera control and data collection and a novel, custom optical system to eliminate image smear due to orbital motion. NIRAC utilizes a high-performance, large format infrared focal plane array, transitioning technology used in the existing Aerospace Corporation ground-based airglow imager to a space based platform. The high-sensitivity, four megapixel imager has a native spatial resolution of 100 meters at ISS altitudes. The 23° x 23° FOV sweeps out a 150 km swath of the OH airglow layer as viewed from the ISS, and is sensitive to OH intensity perturbations down to 0.1%. The detector has a 1.7 micron cutoff that precludes the need for cold optics and reduces cooling requirements (to 180 K). Detector cooling is provided by a compact, lightweight cryocooler capable of reaching 120K, providing a great deal of margin.

  3. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  4. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    Science.gov (United States)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Design and breadboarding activities of the second-generation Global imager (SGLI) on GCOM-C

    Science.gov (United States)

    Okamura, Yoshihiko; Tanaka, Kazuhiro; Amano, Takahiro; Hiramatsu, Masaru; Shiratama, Koichi

    2017-11-01

    The Global Change Observation Mission (GCOM) is the next generation earth observation project of Japan Aerospace Exploration Agency (JAXA). GCOM concept will take over the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of global climate change. The GCOM observing system consists of two series of medium size satellites: GCOM-W (Water) and GCOM-C (Climate). The Second-generation Global Imager (SGLI) on GCOM-C is a multi-band imaging radiometer with 19 spectral bands in the wavelength range of near-UV to thermal infrared. SGLI will provide high-accuracy measurements of Ocean, Atmosphere, Land and Cryosphere. These data will be utilized for studies to understand the global climate change, especially human activity influence on earth environments. SGLI is a suite of two radiometers called Visible and Near Infrared Radiometer (VNR) and Infrared Scanner (IRS). VNR is a pushbroom-type radiometer with 13 spectral bands in 380nm to 865nm range. While having quite wide swath (1150km), instantaneous field of view (IFOV) of most bands is set to 250m comparing to GLI's 1km requirement. Unique observation function of the VNR is along-track +/-45deg tilting and polarization observation for 670nm and 865nm bands mainly to improve aerosol retrieval accuracy. IRS is a wiskbroom-type infrared radiometer that has 6 bands in 1μm to 12μm range. Swath and IFOV are 1400km and 250m to 1km, respectively. This paper describes design and breadboarding activities of the SGLI instrument.

  6. Masticator space abscess derived from odontogenic infection: imaging manifestation and pathways of extension depicted by CT and MR in 30 patients

    International Nuclear Information System (INIS)

    Schuknecht, B.; Stergiou, G.; Graetz, K.

    2008-01-01

    Propagation of odontogenic masticator space abscesses is insufficiently understood. The purpose was to analyse pathways of spread in 30 patients with odontogenic masticator space abscess. The imaging findings in 30 patients (CT in 30, MR in 16 patients) were retrospectively analysed. CT and MR imaging depicted a masticator space abscess within: medial pterygoid muscle in 13 patients (43.3%), lateral masseter and/or pterygoid muscle in 14 (46.7%) and superficial temporal muscle in 3 patients (10%). In the lateral masticator space intra-spatial abscess extension occurred in 7 of 14 patients (50%). The sub-masseteric space provided a pathway in seven (70%). Extra-spatial extension involved the submandibular space only in 3 of 14 patients (21.4%). Medial masticator space abscesses exhibited extra-spatial spread only. Extension affected the parapharyngeal space and/or soft palate in 7 of 13 lesions (53.8%). MR imaging in comparison to CT increased the number of abscess locations from 18 to 23 (27.8%) and regions affected by a cellular infiltrate from 12 to 16 (33.3%). The sub-masseteric space served as a previously underestimated pathway for intra-spatial propagation of lateral masticator abscesses. Medial masticator space abscesses tend to display early extra-spatial parapharyngeal space and/or soft palate extension. (orig.)

  7. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index Land Reflectance Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  8. High-speed imaging using CMOS image sensor with quasi pixel-wise exposure

    Science.gov (United States)

    Sonoda, T.; Nagahara, H.; Endo, K.; Sugiyama, Y.; Taniguchi, R.

    2017-02-01

    Several recent studies in compressive video sensing have realized scene capture beyond the fundamental trade-off limit between spatial resolution and temporal resolution using random space-time sampling. However, most of these studies showed results for higher frame rate video that were produced by simulation experiments or using an optically simulated random sampling camera, because there are currently no commercially available image sensors with random exposure or sampling capabilities. We fabricated a prototype complementary metal oxide semiconductor (CMOS) image sensor with quasi pixel-wise exposure timing that can realize nonuniform space-time sampling. The prototype sensor can reset exposures independently by columns and fix these amount of exposure by rows for each 8x8 pixel block. This CMOS sensor is not fully controllable via the pixels, and has line-dependent controls, but it offers flexibility when compared with regular CMOS or charge-coupled device sensors with global or rolling shutters. We propose a method to realize pseudo-random sampling for high-speed video acquisition that uses the flexibility of the CMOS sensor. We reconstruct the high-speed video sequence from the images produced by pseudo-random sampling using an over-complete dictionary.

  9. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  10. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  11. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  12. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    International Nuclear Information System (INIS)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  13. Global land ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth's cryosphere

    Science.gov (United States)

    Bishop, Michael P.; Olsenholler, Jeffrey A.; Shroder, John F.; Barry, Roger G.; Rasup, Bruce H.; Bush, Andrew B. G.; Copland, Luke; Dwyer, John L.; Fountain, Andrew G.; Haeberli, Wilfried; Kääb, Andreas; Paul, Frank; Hall, Dorothy K.; Kargel, Jeffrey S.; Molnia, Bruce F.; Trabant, Dennis C.; Wessels, Rick L.

    2004-01-01

    Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earth's cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.

  14. Overview of IMAGE 2.0. An integrated model of climate change and the global environment

    International Nuclear Information System (INIS)

    Alcamo, J.; Battjes, C.; Van den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Kreileman, G.J.J.; Krol, M.; Leemans, R.; Van Minnen, J.G.; Olivier, J.G.J.; De Vries, H.J.M.; Toet, A.M.C.; Van den Wijngaart, R.A.; Van der Woerd, H.J.; Zuidema, G.

    1995-01-01

    The IMAGE 2.0 model is a multi-disciplinary, integrated model, designed to simulate the dynamics of the global society-biosphere-climate system. In this paper the focus is on the scientific aspects of the model, while another paper in this volume emphasizes its political aspects. The objectives of IMAGE 2.0 are to investigate linkages and feedbacks in the global system, and to evaluate consequences of climate policies. Dynamic calculations are performed to the year 2100, with a spatial scale ranging from grid (0.5x0.5 latitude-longitude) to world political regions, depending on the sub-model. A total of 13 sub-models make up IMAGE 2.0, and they are organized into three fully linked sub-systems: Energy-Industry, Terrestrial Environment, and Atmosphere-Ocean. The fully linked model has been tested against data from 1970 to 1990, and after calibration it can reproduce the following observed trends: regional energy consumption and energy-related emissions, terrestrial flux of carbon dioxide and emissions of greenhouse gases, concentrations of greenhouse gases in the atmosphere, and transformation of land cover. The model can also simulate current zonal average surface and vertical temperatures. 1 fig., 10 refs

  15. Overview of CMOS process and design options for image sensor dedicated to space applications

    Science.gov (United States)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  16. Ultrasound Imaging of Spine: State of the Art and Utility for Space Flight

    Science.gov (United States)

    Sargsyan, Ashot E.; Bouffard, Antonio J.; Garcia, Kathleen; Hamilton, Douglas R.; Van Holsbeeck, Marnix; Ebert, Douglas J. W.; Dulchavsky, Scott A.

    2010-01-01

    Introduction: Ultrasound imaging (sonography) has been increasingly used for both primary diagnosis and monitoring of musculoskeletal injury, including fractures. In certain injuries, sonography has been shown to equal or surpass Magnetic Resonance Imaging in accuracy. Long-term exposure to reduced gravity may be expected to cause physiological and anatomical changes of the musculoskeletal system, which are not fully described or understood. In a limited-resource environment like space flight, sonography will likely remain the only imaging modality; therefore, further attention to its potential is warranted, including its ability to image anatomical deviations as well as irregularities of vertebrae and the spinal column. Methods: A thorough review of literature was conducted on the subject. A multipurpose ultrasound system was used to identify specific vertebrae, intervertebral disks, and other structures of the cervical spine in healthy volunteers, selected to represent various age, gender, and Body Mass Index (BMI) groups. Sonographic views were sought that would parallel radiographic views and signs used in the diagnosis of cervical spine injuries. Results: While using widely accepted radiographic signs of cervical spine injury, this sonographic protocol development effort resulted in successful identification of scanning planes and imaging protocols that could serve as alternatives for radiography. Some of these views are also applicable to diagnosing degenerative disk and bone disease, and other non-traumatic spine pathology. Strong, preliminary correlation has been demonstrated in a number of clinical cases between sonography and other imaging modalities. Conclusion: In the absence of radiography, sonography can be used to diagnose or rule out certain common types of cervical spine conditions including injury. Clinical validation of the findings appears to be realistic and would facilitate establishment of new sonographic protocols for special environments

  17. Bombay in Salman Rushdie’s novels: a study from global perspective.

    Directory of Open Access Journals (Sweden)

    Madhumita Roy

    2014-12-01

    Full Text Available Bombay, the city where Salman Rushdie spent his childhood, features prominently in four of his novels, namely Midnight’s Children (1981, The Satanic Verses (1988, The Moor’s Last Sigh (1995 and The Ground Beneath Her Feet (1999. However, in traditional literary approaches, the built environment and the materiality of Bombay evident in Rushdie’s fiction are largely lost disallowing Rushdie’s portrayal of the city to be explained as the real-imaged lived space, which Henri Lefebvre (1991 defines as “representational space” and Edward Soja (1996 as “third space”. In the globalized world of ubiquitous placelessness, the strategies and the tactics of recovering the lived space, sometimes involving the micro level of the body and sometimes larger scales such as the communities, are matters of great significance for the prominent spatial thinkers of our times. Therefore, by considering that Rushdie’s depiction of Bombay provides an access to its lived space, and particularly concentrating on the issues related to the land-reclamation in Bombay, this paper finally aims to explore how Rushdie’s sense of place is a progressive, global sense of place, which neither collapses in to a reactionary nostalgia; nativist bigotry, nor does it surrender to a spectral, deterritorialized globality.

  18. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    Science.gov (United States)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  19. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    Science.gov (United States)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  20. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    Science.gov (United States)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  1. Utilization of Solar Dynamics Observatory space weather digital image data for comparative analysis with application to Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Shekoyan, V.; Dehipawala, S.; Liu, Ernest; Tulsee, Vivek; Armendariz, R.; Tremberger, G.; Holden, T.; Marchese, P.; Cheung, T.

    2012-10-01

    Digital solar image data is available to users with access to standard, mass-market software. Many scientific projects utilize the Flexible Image Transport System (FITS) format, which requires specialized software typically used in astrophysical research. Data in the FITS format includes photometric and spatial calibration information, which may not be useful to researchers working with self-calibrated, comparative approaches. This project examines the advantages of using mass-market software with readily downloadable image data from the Solar Dynamics Observatory for comparative analysis over with the use of specialized software capable of reading data in the FITS format. Comparative analyses of brightness statistics that describe the solar disk in the study of magnetic energy using algorithms included in mass-market software have been shown to give results similar to analyses using FITS data. The entanglement of magnetic energy associated with solar eruptions, as well as the development of such eruptions, has been characterized successfully using mass-market software. The proposed algorithm would help to establish a publicly accessible, computing network that could assist in exploratory studies of all FITS data. The advances in computer, cell phone and tablet technology could incorporate such an approach readily for the enhancement of high school and first-year college space weather education on a global scale. Application to ground based data such as that contained in the Baryon Oscillation Spectroscopic Survey is discussed.

  2. EUV imager and spectrometer for LYOT and solar orbiter space missions

    Science.gov (United States)

    Millard, Anne; Lemaire, Philippe; Vial, Jean-Claude

    2017-11-01

    In the 2010 horizon, solar space missions such as LYOT and Solar Orbiter will allow high cadence UV observations of the Sun at spatial and spectral resolution never obtained before. To reach these goals, the two missions could take advantage of spectro-imagers. A reflective only optical solution for such an instrument is described in this paper and the first results of the mock-up being built at IAS are shown.

  3. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  4. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    Science.gov (United States)

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  5. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  6. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    Science.gov (United States)

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  7. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  8. Secure image retrieval with multiple keys

    Science.gov (United States)

    Liang, Haihua; Zhang, Xinpeng; Wei, Qiuhan; Cheng, Hang

    2018-03-01

    This article proposes a secure image retrieval scheme under a multiuser scenario. In this scheme, the owner first encrypts and uploads images and their corresponding features to the cloud; then, the user submits the encrypted feature of the query image to the cloud; next, the cloud compares the encrypted features and returns encrypted images with similar content to the user. To find the nearest neighbor in the encrypted features, an encryption with multiple keys is proposed, in which the query feature of each user is encrypted by his/her own key. To improve the key security and space utilization, global optimization and Gaussian distribution are, respectively, employed to generate multiple keys. The experiments show that the proposed encryption can provide effective and secure image retrieval for each user and ensure confidentiality of the query feature of each user.

  9. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    Science.gov (United States)

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  10. Anatomy of the retroperitoneal space as shown by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zilch, H.G.; Hammersen, F.

    1989-01-01

    More than 300 NMR examinations form the basis of the survey presented of the anatomy and topography of the retroperitoneal space. The examinations were done with the Siemens supraconducting magnet system 'Magnetom' (1.0 Tesla), with different planes of imaging chosen, according to clinical approaches (axial, sagittal, frontal). Sectional thicknesses varied between 5 and 10 mm. The spin-echo technique was applied, with repetition times between 0.3 and 2.0s, echo times between 30 and 150 ms. In addition, special means such as high-resolution coils and respiratory gating were applied, and also a contrast medium (gadolinium-DTPA). The possibilities of imaging are explained, referring to the pancreas, kidneys, adrenal glands, lymph nodes, aorta abdominalis, and vena cava inferior. (orig./MG) [de

  11. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction

    International Nuclear Information System (INIS)

    Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang

    2014-01-01

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)

  12. Global-local feature attention network with reranking strategy for image caption generation

    Science.gov (United States)

    Wu, Jie; Xie, Si-ya; Shi, Xin-bao; Chen, Yao-wen

    2017-11-01

    In this paper, a novel framework, named as global-local feature attention network with reranking strategy (GLAN-RS), is presented for image captioning task. Rather than only adopting unitary visual information in the classical models, GLAN-RS explores the attention mechanism to capture local convolutional salient image maps. Furthermore, we adopt reranking strategy to adjust the priority of the candidate captions and select the best one. The proposed model is verified using the Microsoft Common Objects in Context (MSCOCO) benchmark dataset across seven standard evaluation metrics. Experimental results show that GLAN-RS significantly outperforms the state-of-the-art approaches, such as multimodal recurrent neural network (MRNN) and Google NIC, which gets an improvement of 20% in terms of BLEU4 score and 13 points in terms of CIDER score.

  13. Terrestrial ring current - from in situ measurements to global images using energetic neutral atoms

    International Nuclear Information System (INIS)

    Roelof, E.C.; Williams, D.J.

    1988-01-01

    Electrical currents flowing in the equatorial magnetosphere, first inferred from ground-based magnetic disturbances, are carried by trapped energetic ions. Spacecraft measurements have determined the spectrum and composition of those currents, and the newly developed technique of energetic-neutral-atom imaging allows the global dynamics of that entire ion population to be viewed from a single spacecraft. 71 references

  14. Space programs in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lou-Chuang [Academia Sinica, Institute of Earth Sciences, 128, Sec. 2, Academia Road, Nangang, Taipei 115, Taiwan (China); Institute of Space Science, National Central University, 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (China); Chang, Guey-Shin, E-mail: gschang@nspo.narl.org.tw [National Space Organization, 8F, 9 Prosperity 1st Rd., Hsinchu Science Park, Hsinchu 30078, Taiwan (China); Ting, Nan-Hong [National Applied Research Laboratories, 3F, 106, Sec. 2, Hepin East Rd., Taipei 10622, Taiwan (China)

    2013-10-15

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  15. Space programs in Taiwan

    International Nuclear Information System (INIS)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-01-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research

  16. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  17. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  18. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    Science.gov (United States)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  19. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    Science.gov (United States)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; hide

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  20. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    Science.gov (United States)

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  1. A Novel Multi-View-Angle Range Images Generation Method for Measurement of Complicated Polyhedron in 3D Space

    Directory of Open Access Journals (Sweden)

    Deming Kong

    2017-01-01

    Full Text Available A new kind of generation method is proposed in this paper to acquire range images for complicated polyhedron in 3D space from a series of view angles. In the proposed generation method, concept of three-view drawing in mechanical cartography is introduced into the range image generation procedure. Negative and positive directions of x-, y-, and z-axes are selected as the view angles to generate the range images for complicated polyhedron in 3D space. Furthermore, a novel iterative operation of mathematical morphology is proposed to ensure that satisfactory range images can be generated for the polyhedron from all the selected view angles. Compared with the existing method based on single view angle and interpolation operation, structure features contained in surface of the complicated polyhedron can be represented more consistently with the reality by using the proposed multi-view-angle range images generation method. The proposed generation method is validated by using an experiment.

  2. Real-space imaging of fractional quantum Hall liquids

    Science.gov (United States)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  3. A decade of global volcanic SO2 emissions measured from space

    Science.gov (United States)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  4. Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis

    Science.gov (United States)

    Ceffa, N. G.; Radaelli, F.; Pozzi, P.; Collini, M.; Sironi, L.; D'alfonso, L.; Chirico, G.

    2017-06-01

    Optical Microscopy has been applied to life science from its birth and reached widespread application due to its major advantages: limited perturbation of the biological tissue and the easy accessibility of the light sources. However, as the spatial and time resolution requirements and the time stability of the microscopes increase, researchers are struggling against some of its limitations: limited transparency and the refractivity of the living tissue to light and the field perturbations induced by the path in the tissue. We have developed a compact stand-alone, completely scan-less, optical setup that allows to acquire non-linear excitation images and to measure the sample dynamics simultaneously on an ensemble of arbitrary chosen regions of interests. The image is obtained by shining a square array of spots on the sample obtained by a spatial light modulator and by shifting it (10 ms refresh time) on the sample. The final image is computed from the superposition of (100-1000) images. Filtering procedures can be applied to the raw images of the excitation array before building the image. We discuss results that show how this setup can be used for the correction of wave front aberrations induced by turbid samples (such as living tissues) and for the computation of space-time cross-correlations in complex networks.

  5. Probing the parameter space of HD 49933: A comparison between global and local methods

    Energy Technology Data Exchange (ETDEWEB)

    Creevey, O L [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Bazot, M, E-mail: orlagh@iac.es, E-mail: bazot@astro.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2011-01-01

    We present two independent methods for studying the global stellar parameter space (mass M, age, chemical composition X{sub 0}, Z{sub 0}) of HD 49933 with seismic data. Using a local minimization and an MCMC algorithm, we obtain consistent results for the determination of the stellar properties: M 1.1-1.2 M{sub sun} Age {approx} 3.0 Gyr, Z{sub 0} {approx} 0.008. A description of the error ellipses can be defined using Singular Value Decomposition techniques, and this is validated by comparing the errors with those from the MCMC method.

  6. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  7. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    Science.gov (United States)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  8. Lightning and 85-GHz MCSs in the Global Tropics

    Science.gov (United States)

    Toracinta, E. Richard; Zipser, E. J.

    1999-01-01

    Numerous observations of tropical convection show that tropical continental mesoscale convective systems (MCSs) are much more prolific lightning producers than their oceanic counterparts. Satellite-based climatologies using 85-GHz passive microwave ice-scattering signatures from the Special Sensor Microwave/Imager (SSM/I) indicate that MCSs of various size and intensity are found throughout the global tropics. In contrast, global lightning distributions show a strong land bias with an order of magnitude difference between land and ocean lightning. This is somewhat puzzling, since 85-GHz ice-scattering and the charge separation processes that lead to lightning are both thought to depend upon the existence of large graupel particles. The fact that low 85-GHz brightness temperatures are observed in tropical oceanic MCSs containing virtually no lightning leads to the postulate that tropical oceanic and tropical continental MCSs have fundamentally different hydrometeor profiles through the mixed phase region of the cloud (0 C Lightning Imaging Sensor (LIS), and the first space-borne radar, facilitates high-resolution case studies of MCS structure throughout the global tropics. An important precursor, however, is to better understand the distribution of MCSs and lightning in the tropics. With that objective in mind, this research undertakes a systematic comparison of 85-GHz-defined MCSs and lightning over the global tropics for a full year, as an initial step toward quantifying differences between land and ocean convective systems.

  9. Magnetosphere imager science definition team: Executive summary

    Science.gov (United States)

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  10. Magnetosphere imager science definition team interim report

    Science.gov (United States)

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  11. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    Science.gov (United States)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  12. Relative Panoramic Camera Position Estimation for Image-Based Virtual Reality Networks in Indoor Environments

    Science.gov (United States)

    Nakagawa, M.; Akano, K.; Kobayashi, T.; Sekiguchi, Y.

    2017-09-01

    Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  13. RELATIVE PANORAMIC CAMERA POSITION ESTIMATION FOR IMAGE-BASED VIRTUAL REALITY NETWORKS IN INDOOR ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    M. Nakagawa

    2017-09-01

    Full Text Available Image-based virtual reality (VR is a virtual space generated with panoramic images projected onto a primitive model. In imagebased VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite Systems (GNSS positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for image-based VR in indoor environments without GNSS position data.

  14. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  15. Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Photosynthetically Available Radiation (PAR) Global Binned Data, reprocesing v2018

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  16. ESA is now a major player in global space science

    Science.gov (United States)

    1997-07-01

    for the new millennium. Note to Editors : A picture is available of a huge cloud of hydrogen gas around Comet Hale-Bopp. This image illustrates two areas of space science where ESA leads : comet research and solar research. The image is from SOHO=s SWAN instrument, the primary task of which is to chart the solar wind. Note : To learn more about ESA, visit the ESA homepage on the World Wide Web at the new address : http://www.esa.int

  17. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  18. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  19. Claim Your Space: Leadership Development as a Research Capacity Building Goal in Global Health.

    Science.gov (United States)

    Airhihenbuwa, Collins O; Ogedegbe, Gbenga; Iwelunmor, Juliet; Jean-Louis, Girardin; Williams, Natasha; Zizi, Freddy; Okuyemi, Kolawole

    2016-04-01

    As the burden of noncommunicable diseases (NCDs) rises in settings with an equally high burden of infectious diseases in the Global South, a new sense of urgency has developed around research capacity building to promote more effective and sustainable public health and health care systems. In 2010, NCDs accounted for more than 2.06 million deaths in sub-Saharan Africa. Available evidence suggests that the number of people in sub-Saharan Africa with hypertension, a major risk factor for cardiovascular diseases, will increase by 68% from 75 million in 2008 to 126 million in 2025. Furthermore, about 27.5 million people currently live with diabetes in Africa, and it is estimated that 49.7 million people living with diabetes will reside in Africa by 2030. It is therefore necessary to centralize leadership as a key aspect of research capacity building and strengthening in the Global South in ways that enables researchers to claim their spaces in their own locations. We believe that building capacity for transformative leadership in research will lead to the development of effective and appropriate responses to the multiple burdens of NCDs that coexist with infectious diseases in Africa and the rest of the Global South. © 2016 Society for Public Health Education.

  20. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  1. Fine structure of sprites and proposed global observations

    DEFF Research Database (Denmark)

    Mende, S.B; Frey, H.U.; Rairden, R.l.

    2002-01-01

    structures of columniform sprites (C sprites) consisted of slant directed, nearly vertically aligned columns of intense pinpoint like beads. The distance of the sprites from the observer was measured and the altitude and vertical spacing of the beads were estimated. The distribution of beads showed...... bore-sighted photometers. The imager will locate the sprites near the earth limb and make global synoptic measurements while the photometers will measure the spectral and temporal properties of sprites and other upper atmospheric luminous phenomena in a number of different wavelength regions...

  2. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  3. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  4. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  5. A rationalized approach to the imaging of space-occupying lesions in the liver

    International Nuclear Information System (INIS)

    Engelbrecht, H.E.

    1985-01-01

    A rational approach to the imaging of mass lesions within the liver has been presented. An attempt has been made to advocate a philosophy which emphasizes the importance of considering pathological, biochemical, clinical and likely management criteria in each case before selecting a first-line imaging procedure. The subject is presented under three headings: i) What That is, clinical and pathological criteria for assesing the nature of a suspected space-occupying lesion in the liver; ii) Why That is a projection of the likely practical value of the result; iii) How That is determination of a logical imaging program depending on the assesment of criteria under the first two headings. The following examples of active treatment are discussed: partial hepotectomy, highly vascular lesions, toxaemia and pyrexia. The following factors influence the decision of the imaging procedure to be used: the accuracy of the modality in relation to the suspected lesion, local availability of equipment and expentise, invasive versus non-invasive aspects and cost-effectiveness

  6. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.

    Science.gov (United States)

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-10-01

    Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding

  7. Mapping the global land surface using 1 km AVHRR data

    Science.gov (United States)

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  8. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  9. Resliced image space construction for coronary artery collagen fibers.

    Science.gov (United States)

    Luo, Tong; Chen, Huan; Kassab, Ghassan S

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.

  10. Photometric Calibration of the Barium Cloud Image in a Space Active Experiment: Determining the Release Efficiency

    International Nuclear Information System (INIS)

    Xie Liang-Hai; Li Lei; Wang Jing-Dong; Tao Ran; Cheng Bing-Jun; Zhang Yi-Teng

    2014-01-01

    The barium release experiment is an effective method to explore the near-earth environment and to study all kinds of space physics processes. The first space barium release experiment in China was successfully carried out by a sounding rocket on April 5, 2013. This work is devoted to calculating the release efficiency of the barium release by analyzing the optical image observed during the experiment. First, we present a method to calibrate the images grey value of barium cloud with the reference stars to obtain the radiant fluxes at different moments. Then the release efficiency is obtained by a curve fitting with the theoretical evolution model of barium cloud. The calculated result is basically consistent with the test value on ground

  11. The global existence problem in general relativity

    CERN Document Server

    Andersson, L

    2000-01-01

    We survey some known facts and open questions concerning the global properties of 3+1 dimensional space--times containing a compact Cauchy surface. We consider space--times with an $\\ell$--dimensional Lie algebra of space--like Killing fields. For each $\\ell \\leq 3$, we give some basic results and conjectures on global existence and cosmic censorship. For the case of the 3+1 dimensional Einstein equations without symmetries, a new small data global existence result is announced.

  12. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  13. Spatiotemporal models of global soil organic carbon stock to support land degradation assessments at regional and global scales: limitations, challenges and opportunities

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert

    2017-04-01

    There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation

  14. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    Science.gov (United States)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  15. GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer

    Science.gov (United States)

    McKeever, J.; Durak, B. O. A.; Gains, D.; Jervis, D.; Varon, D. J.; Germain, S.; Sloan, J. J.

    2017-12-01

    GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing flux of methane from the outlet of a recently impounded hydroelectric reservoir will be shown as an example. Finally we discuss some performance limitations of GHGSat-D and our plans to overcome them as we update the instrument design for the next satellites.

  16. Breaking new ground in mapping human settlements from space - The Global Urban Footprint

    Science.gov (United States)

    Esch, Thomas; Heldens, Wieke; Hirner, Andreas; Keil, Manfred; Marconcini, Mattia; Roth, Achim; Zeidler, Julian; Dech, Stefan; Strano, Emanuele

    2017-12-01

    Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70% will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4″ (∼ 12m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3 m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98%. The GUF will be provided open and free for any scientific use in

  17. A global "imaging'' view on systems approaches in immunology.

    Science.gov (United States)

    Ludewig, Burkhard; Stein, Jens V; Sharpe, James; Cervantes-Barragan, Luisa; Thiel, Volker; Bocharov, Gennady

    2012-12-01

    The immune system exhibits an enormous complexity. High throughput methods such as the "-omic'' technologies generate vast amounts of data that facilitate dissection of immunological processes at ever finer resolution. Using high-resolution data-driven systems analysis, causal relationships between complex molecular processes and particular immunological phenotypes can be constructed. However, processes in tissues, organs, and the organism itself (so-called higher level processes) also control and regulate the molecular (lower level) processes. Reverse systems engineering approaches, which focus on the examination of the structure, dynamics and control of the immune system, can help to understand the construction principles of the immune system. Such integrative mechanistic models can properly describe, explain, and predict the behavior of the immune system in health and disease by combining both higher and lower level processes. Moving from molecular and cellular levels to a multiscale systems understanding requires the development of methodologies that integrate data from different biological levels into multiscale mechanistic models. In particular, 3D imaging techniques and 4D modeling of the spatiotemporal dynamics of immune processes within lymphoid tissues are central for such integrative approaches. Both dynamic and global organ imaging technologies will be instrumental in facilitating comprehensive multiscale systems immunology analyses as discussed in this review. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. From Planetary Boundaries to national fair shares of the global safe operating space — How can the scales be bridged?

    NARCIS (Netherlands)

    Häyhä, Tiina; Lucas, Paul L.|info:eu-repo/dai/nl/272607444; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Cornell, Sarah E.; Hoff, Holger

    2016-01-01

    The planetary boundaries framework proposes quantitative global limits to the anthropogenic perturbation of crucial Earth system processes, and thus marks out a planetary safe operating space for human activities. Yet, decisions regarding resource use and emissions are mostly made at less aggregated

  19. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations co...

  20. Image slicer manufacturing: from space application to mass production

    Science.gov (United States)

    Bonneville, Christophe; Cagnat, Jean-François; Laurent, Florence; Prieto, Eric; Ancourt, Gérard

    2004-09-01

    This presentation aims to show technical and industrial inputs to be taking into account for Image Slicer systems design and development for different types of projects from space application to mass production for multi-IFU instruments. Cybernétix has a strong experience of precision optics assembled thanks to molecular adhesion and have already manufactured 6 prototypes of image slicer subsystem (prototypes of NIRSPEC-IFU, IFS for JWST, MUSE ...) in collaboration with the Laboratoire d"Astrophysique de Marseille (LAM) and the Centre de Recherche Astronomique de Lyon (CRAL). After a brief presentation of the principle of manufacturing and assembly, we will focus on the different performances achieved in our prototypes of slicer mirrors, pupil and slit mirrors lines: an accuracy on centre of curvature position better than 15 arsec has been obtained for a stack of 30 slices. The contribution of the slice stacking to this error is lower than 4 arcsec. In spite of very thin surfaces (~ 0.9 x 40 mm for instance), a special process allows to guarantee a surface roughness about 5 nm and very few digs on the slice borders. The WFE of the mini-mirror can also be measured at a stage of the manufacturing. Different environmental tests have shown the withstanding of these assemblies to cryogenic temperature (30 K). Then, we will describe the different solutions (spherical, flat, cylindrical surfaces) and characteristics of an image slicer that can influence difficulties of manufacturing and metrology, cost, schedule and risks with regard to fabrication. Finally, the study of a mass production plan for MUSE (CRAL) composed of 24 Image Slicers of 38 slices, that"s to say 912 slices, will be exposed as an example of what can be do for multi-module instruments.

  1. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  2. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  3. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  4. The Global-Scale Observations of the Limb and Disk (GOLD) Mission

    Science.gov (United States)

    Eastes, R. W.; McClintock, W. E.; Burns, A. G.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Correira, J. T.; Daniell, R. E.; England, S. L.; Evans, J. S.; Harvey, J.; Krywonos, A.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Solomon, S. C.; Strickland, D. J.; Woods, T. N.; Aksnes, A.; Budzien, S. A.; Dymond, K. F.; Eparvier, F. G.; Martinis, C. R.; Oberheide, J.

    2017-10-01

    The Earth's thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere ( T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth's atmosphere. Previous missions have successfully determined how the "climate" of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the "weather" of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth's atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth's emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.

  5. Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation

    KAUST Repository

    Pan, B.

    2016-03-22

    Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances of these different DIC approaches have been experimentally investigated using numerical and real-world experimental tests. The results have shown that in typical cases, where the subset (element) size is no less than a few pixels and the local deformation within a subset (element) can be well approximated by the adopted shape functions, the subset-based local DIC outperforms FE-based global DIC approaches because the former provides slightly smaller root-mean-square errors and offers much higher computation efficiency. Here we investigate the theoretical origin and lay a solid theoretical basis for the previous comparison. We assume that systematic errors due to imperfect intensity interpolation and undermatched shape functions are negligibly small, and perform a theoretical analysis of the random errors or standard deviation (SD) errors in the displacements measured by two local DIC approaches (i.e., a subset-based local DIC and an element-based local DIC) and two FE-based global DIC approaches (i.e., Q4-DIC and Q8-DIC). The equations that govern the random errors in the displacements measured by these local and global DIC approaches are theoretically derived. The correctness of the theoretically predicted SD errors is validated through numerical translation tests under various noise levels. We demonstrate that the SD errors induced by the Q4-element-based local DIC, the global Q4-DIC and the global Q8-DIC are 4, 1.8-2.2 and 1.2-1.6 times greater, respectively, than that associated with the subset-based local DIC, which is consistent with our conclusions from previous work. © 2016 Elsevier Ltd. All rights reserved.

  6. 3D Reconfigurable NoC Multiprocessor Imaging Interferometer for Space Climate

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the development of an imaging interferometer for long-term observations of solar activity related events. Heliospheric physics phenomena are responsible for causing irregularities to the ionospheric-magnetospheric plasmasphere. Distinct signatures of these events are captured and studied over long periods of time deducting crucial conclusions about the short-term Space Weather and in the long run about Space Climate. The new prototype features an eight-channel implementation. The available hardware resources permit a 256- channel configuration for accurate beam scanning of the Earth's plasmasphere. A dual-polarization scheme has been implemented for obtaining accurate measurements. The system is based on state-of-the-art three-dimensional reconfigurable logic and exhibits a performance increase in the range of 70% compared to similar instruments in operation. Special circuits allow measurements of the most intense heliospheric physics events to be fully captured and analyzed.

  7. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    KAUST Repository

    Tao, Ran

    2015-05-01

    Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  8. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  9. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    Science.gov (United States)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  10. Sentinel-2B image quality commissioning phase results and Sentinel2 constellation performances

    Science.gov (United States)

    Languille, F.; Gaudel, A.; Vidal, B.; Binet, R.; Poulain, V.; Trémas, T.

    2017-09-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites on a polar sun-synchronous orbit with a revisit time of 5 days (with both satellites), a high field of view - 290km, 13 spectral bands in visible and shortwave infrared, and high spatial resolution - 10m, 20m and 60m. The Sentinel-2 mission offers a global coverage over terrestrial surfaces. The satellites acquire systematically terrestrial surfaces under the same viewing conditions in order to have temporal images stacks. The first satellite was launched in June 2015 and the second in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensured the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 Global Reference Image (GRI) geolocation performance assessment. This paper points on geometric image quality on Sentinel-2B commissioning phase. It relates to the methods and the performances obtained, as well as the comparison between S2A and S2B. This deals with geolocation and multispectral registration. A small focus is also done on the Sentinel-2 GRI which is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference leads to ensure an accurate multi-temporal registration -on refined Sentinel-2 products over GRI- which is also presented in this paper.

  11. Estimation of the depth of the thoracic epidural space in children using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Wani TM

    2017-03-01

    Full Text Available Tariq M Wani,1,2 Mahmood Rafiq,1 Arif Nazir,1 Hatem A Azzam,1 Usama Al Zuraigi,1 Joseph D Tobias2 1Department of Anesthesia, King Fahad Medical City, Riyadh, Saudi Arabia; 2Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, Columbus, OH, USA Background: The estimation of the distance from the skin to the thoracic epidural space or skin to epidural depth (SED may increase the success rate and decrease the incidence of complications during placement of a thoracic epidural catheter. Magnetic resonance imaging (MRI is the most comprehensive imaging modality of the spine, allowing for the accurate determination of tissue spaces and distances. The present study uses MRI-derived measurements to measure the SED and define the ratio between the straight and inclined SEDs at two thoracic levels (T6–7 and T9–10 in children.Methods: The T2-weighed sagittal MRI images of 109 children, ranging in age from 1 month to 8 years, undergoing radiological evaluation unrelated to spine pathology were assessed. The SEDs (inclined and straight were determined, and a comparison between the SEDs at two thoracic levels (T6–7 and T9–10 was made. Univariate and multivariate linear regression models were used to assess the relationship of the inclined thoracic T6–7 and T9–10 SED measurements with age, height, and weight.Results: Body weight demonstrated a stronger association with the SED than did the age or height with R2 values of 0.6 for T6–7 and 0.5 for T9–10. The formulae describing the relationship between the weight and the inclined SED were T6–7 inclined (mm = 7 + 0.9 × kg and T9–10 inclined (mm = 7 + 0.8 × kg.Conclusion: The depth of the pediatric thoracic epidural space shows a stronger correlation with weight than with age or height. Based on the MRI data, the predictive weight-based formulas can serve as guide to clinicians for placement of thoracic epidural catheters. Keywords: thoracic epidural space

  12. Global Landslide Hazard Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Hazard Distribution is a 2.5 minute grid of global landslide and snow avalanche hazards based upon work of the Norwegian Geotechnical Institute...

  13. Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging.

    Science.gov (United States)

    Gao, Aiqin; Xu, Wenjing; Ponce de León, Yenisey; Bai, Yaocai; Gong, Mingfu; Xie, Kongliang; Park, Boris Hyle; Yin, Yadong

    2017-07-01

    Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  15. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  16. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  17. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Science.gov (United States)

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  18. Space-time relationship in continuously moving table method for large FOV peripheral contrast-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Sabati, M; Lauzon, M L; Frayne, R

    2003-01-01

    Data acquisition using a continuously moving table approach is a method capable of generating large field-of-view (FOV) 3D MR angiograms. However, in order to obtain venous contamination-free contrast-enhanced (CE) MR angiograms in the lower limbs, one of the major challenges is to acquire all necessary k-space data during the restricted arterial phase of the contrast agent. Preliminary investigation on the space-time relationship of continuously acquired peripheral angiography is performed in this work. Deterministic and stochastic undersampled hybrid-space (x, k y , k z ) acquisitions are simulated for large FOV peripheral runoff studies. Initial results show the possibility of acquiring isotropic large FOV images of the entire peripheral vascular system. An optimal trade-off between the spatial and temporal sampling properties was found that produced a high-spatial resolution peripheral CE-MR angiogram. The deterministic sampling pattern was capable of reconstructing the global structure of the peripheral arterial tree and showed slightly better global quantitative results than stochastic patterns. Optimal stochastic sampling patterns, on the other hand, enhanced small vessels and had more favourable local quantitative results. These simulations demonstrate the complex spatial-temporal relationship when sampling large FOV peripheral runoff studies. They also suggest that more investigation is required to maximize image quality as a function of hybrid-space coverage, acquisition repetition time and sampling pattern parameters

  19. Globalization and democracy

    Directory of Open Access Journals (Sweden)

    DEEPAK NAYYAR

    2015-09-01

    Full Text Available ABSTRACTThe gathering momentum of globalization in the world economy has coincided with the spread of political democracy across countries. Economies have become global. But politics remains national. This essay explores the relationship between globalization and democracy, which is neither linear nor characterized by structural rigidities. It seeks to analyze how globalization might constrain degrees of freedom for nation states and space for democratic politics, and how political democracy within countries might exercise some checks and balances on markets and globalization. The essential argument is that the relationship between globalization and democracy is dialectical and does not conform to ideological caricatures.

  20. Masticator space masses and pseudomasses

    International Nuclear Information System (INIS)

    Connor, S.E.J.; Davitt, S.M.

    2004-01-01

    We review the anatomy of the masticator space and the localization of masticator space lesions on cross-sectional imaging. The magnetic resonance imaging and computed tomography appearances of inflammatory, neoplastic, developmental and vascular masticator space lesions are discussed and illustrated. Benign processes and normal variations, which mimic masticator space pathology, are also considered

  1. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  2. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    Science.gov (United States)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  3. The development of a specialized processor for a space-based multispectral earth imager

    Science.gov (United States)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  4. Analysis and Research on Several Global Subdivision Grids

    Directory of Open Access Journals (Sweden)

    SONG Shuhua

    2016-12-01

    Full Text Available In order to solve the problem that lacking of an unified organization frame about global remote sensing satellite image data, this paper introduces serval global subdivision grids as the unified organization frame for remote sensing image. Based on the characteristics of remote sensing image data, this paper analyzes and summarizes the design principles and difficulties of the organization frame. Based on analysis and comparison with these grids, GeoSOT is more suitable as the unified organization frame for remote sensing image. To provide a reference for the global remote sensing image organization.

  5. Unconscious Local Motion Alters Global Image Speed

    Science.gov (United States)

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  6. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    Science.gov (United States)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  7. What is the public's role in 'space' policymaking? Images of the public by practitioners of 'space' communication in the United Kingdom.

    Science.gov (United States)

    Entradas, Marta

    2016-07-01

    Studies on experts' understanding of the public have mainly focused on the views of scientists. We add to the literature on constructions of the public by analyzing the views of decision-makers, professional science communicators and scientists involved in 'space' communication on the public and public participation in policy. Findings show that contextual situations and roles determine the way the public is conceptualised: the public is sophisticated and knowledgeable to participate in space activities/citizen science, but in matters of policy, a gullible image of the public is brought up. Despite the democratic talk on participation, practitioners delimited public involvement in policy in some way or other to protect their own power and decision-making capabilities. This conception of the public competes with the stated aims of scientific and political institutions for public engagement and the substantive value of public participation, leaving a limited role for the public in space policymaking. © The Author(s) 2015.

  8. Semiautomated digital analysis of knee joint space width using MR images

    International Nuclear Information System (INIS)

    Agnesi, Filippo; Amrami, Kimberly K.; Frigo, Carlo A.; Kaufman, Kenton R.

    2007-01-01

    The goal of this study was to (a) develop a semiautomated computer algorithm to measure knee joint space width (JSW) from magnetic resonance (MR) images using standard imaging techniques and (b) evaluate the reproducibility of the algorithm. Using a standard clinical imaging protocol, bilateral knee MR images were obtained twice within a 2-week period from 17 asymptomatic research participants. Images were analyzed to determine the variability of the measurements performed by the program compared with the variability of manual measurements. Measurement variability of the computer algorithm was considerably smaller than the variability of manual measurements. The average difference between two measurements of the same slice performed with the computer algorithm by the same user was 0.004 ± 0.07 mm for the tibiofemoral joint (TF) and 0.009 ± 0.11 mm for the patellofemoral joint (PF) compared with an average of 0.12 ± 0.22 mm TF and 0.13 ± 0.29 mm PF, respectively, for the manual method. Interuser variability of the computer algorithm was also considerably smaller, with an average difference of 0.004 ± 0.1 mm TF and 0.0006 ± 0.1 mm PF compared with 0.38 ± 0.59 mm TF and 0.31 ± 0.66 mm PF obtained using a manual method. The between-day reproducibility was larger but still within acceptable limits at 0.09 ± 0.39 mm TF and 0.09 ± 0.51 mm PF. This technique has proven consistently reproducible on a same slice base,while the reproducibility comparing different acquisitions of the same subject was larger. Longitudinal reproducibility improvement needs to be addressed through acquisition protocol improvements. A semiautomated method for measuring knee JSW from MR images has been successfully developed. (orig.)

  9. Semiautomated digital analysis of knee joint space width using MR images

    Energy Technology Data Exchange (ETDEWEB)

    Agnesi, Filippo [Mayo Clinic, Motion Analysis Laboratory, Division of Orthopedic Research, Rochester, MN (United States); Polytechnic of Milan, Department of Bioengineering, Milan (Italy); Amrami, Kimberly K. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Frigo, Carlo A. [Polytechnic of Milan, Department of Bioengineering, Milan (Italy); Kaufman, Kenton R. [Mayo Clinic, Motion Analysis Laboratory, Division of Orthopedic Research, Rochester, MN (United States); Mayo Clinic, Mayo Foundation, Motion Analysis Laboratory, Department of Orthopedic Surgery, Rochester, MN (United States)

    2007-05-15

    The goal of this study was to (a) develop a semiautomated computer algorithm to measure knee joint space width (JSW) from magnetic resonance (MR) images using standard imaging techniques and (b) evaluate the reproducibility of the algorithm. Using a standard clinical imaging protocol, bilateral knee MR images were obtained twice within a 2-week period from 17 asymptomatic research participants. Images were analyzed to determine the variability of the measurements performed by the program compared with the variability of manual measurements. Measurement variability of the computer algorithm was considerably smaller than the variability of manual measurements. The average difference between two measurements of the same slice performed with the computer algorithm by the same user was 0.004 {+-} 0.07 mm for the tibiofemoral joint (TF) and 0.009 {+-} 0.11 mm for the patellofemoral joint (PF) compared with an average of 0.12 {+-} 0.22 mm TF and 0.13 {+-} 0.29 mm PF, respectively, for the manual method. Interuser variability of the computer algorithm was also considerably smaller, with an average difference of 0.004 {+-} 0.1 mm TF and 0.0006 {+-} 0.1 mm PF compared with 0.38 {+-} 0.59 mm TF and 0.31 {+-} 0.66 mm PF obtained using a manual method. The between-day reproducibility was larger but still within acceptable limits at 0.09 {+-} 0.39 mm TF and 0.09 {+-} 0.51 mm PF. This technique has proven consistently reproducible on a same slice base,while the reproducibility comparing different acquisitions of the same subject was larger. Longitudinal reproducibility improvement needs to be addressed through acquisition protocol improvements. A semiautomated method for measuring knee JSW from MR images has been successfully developed. (orig.)

  10. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  11. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  12. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  13. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  14. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  15. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    Science.gov (United States)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  16. Simultenious binary hash and features learning for image retrieval

    Science.gov (United States)

    Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.

    2016-05-01

    Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.

  17. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  18. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Pont, Frederic; Sing, David K. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Desert, Jean-Michel; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibson, Neale [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Lecavelier des Etangs, Alain, E-mail: tom.evans@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

    2013-08-01

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

  19. Batman flies: a compact spectro-imager for space observation

    Science.gov (United States)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    from the sky background is blocked. To get more than 2 millions independent micromirrors, the only available component is a Digital Micromirror Device (DMD) chip from Texas Instruments (TI) that features 2048 x 1080 mirrors and a 13.68μm pixel pitch. DMDs have been tested in space environment (-40°C, vacuum, radiations) by LAM and no showstopper has been revealed [7]. We are presenting in this paper a DMD-based spectrograph called BATMAN, including two arms, one spectroscopic channel and one imaging channel. This instrument is designed for getting breakthrough results in several science cases, from high-z galaxies to nearby galaxies and Trans-Neptunian Objects of Kuiper Belt.

  20. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower