WorldWideScience

Sample records for space hiis experiment

  1. HRM: HII Region Models

    Science.gov (United States)

    Wenger, Trey V.; Kepley, Amanda K.; Balser, Dana S.

    2017-07-01

    HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

  2. The Southern HII Region Discovery Survey

    Science.gov (United States)

    Wenger, Trey; Miller Dickey, John; Jordan, Christopher; Bania, Thomas M.; Balser, Dana S.; Dawson, Joanne; Anderson, Loren D.; Armentrout, William P.; McClure-Griffiths, Naomi

    2016-01-01

    HII regions are zones of ionized gas surrounding recently formed high-mass (OB-type) stars. They are among the brightest objects in the sky at radio wavelengths. HII regions provide a useful tool in constraining the Galactic morphological structure, chemical structure, and star formation rate. We describe the Southern HII Region Discovery Survey (SHRDS), an Australia Telescope Compact Array (ATCA) survey that discovered ~80 new HII regions (so far) in the Galactic longitude range 230 degrees to 360 degrees. This project is an extension of the Green Bank Telescope HII Region Discovery Survey (GBT HRDS), Arecibo HRDS, and GBT Widefield Infrared Survey Explorer (WISE) HRDS, which together discovered ~800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees. Similar to those surveys, candidate HII regions were chosen from 20 micron emission (from WISE) coincident with 10 micron (WISE) and 20 cm (SGPS) emission. By using the ATCA to detect radio continuum and radio recombination line emission from a subset of these candidates, we have added to the population of known Galactic HII regions.

  3. Giant HII regions as distance indicators

    International Nuclear Information System (INIS)

    Melnick, Jorge; Terlevich, Robert; Moles, Mariano

    1987-01-01

    The correlations between the integrated Hβ luminosities, the velocity widths of the nebular lines and the metallicities of giant HII regions and HII galaxies are demonstrated to provide powerful distance indicators. They are calibrated on a homogeneous sample of giant HII regions with well determined distances and applied to distant HII galaxies to obtain a value of H 0 =95+-10 for the Hubble parameter, consistent with the value obtained by the Tully-Fisher technique. The effect of Malmquist bias and other systematic effects on the HII region method are discussed in detail. (Author)

  4. The Southern HII Region Discovery Survey: The Bright Catalog

    Science.gov (United States)

    Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine

    2018-01-01

    HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.

  5. A Complete Census of the ~7000 Milky Way HII Regions

    Science.gov (United States)

    Armentrout, William Paul; Anderson, Loren Dean; Wenger, Trey; Bania, Thomas; Balser, Dana; Dame, Thomas; Dickey, John M.; Dawson, Joanne; Jordan, Christopher H.; McClure-Griffiths, Naomi M.; Andersen, Morten

    2018-01-01

    HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions to date.To bring us closer to a complete census of high-mass star formation regions in the Milky Way, we have several ongoing observational campaigns. These efforts include (1) Green Bank Telescope radio recombination line (RRL) observations as part of the HII Region Discovery Survey (HRDS); (2) Australia Telescope Compact Array observations of southern HII region candidates in the Southern HII Region Discovery Survey (SHRDS); (3) Green Bank and Gemini North Telescope observations of star formation regions thought to reside at the edge of the star forming disk in the Outer Scutum-Centaurus Arm (OSC); and (4) Very Large Array continuum observations of the faintest HII region candidates in the second and third Galactic quadrants.Together, these observations will detect the RRL emission from all Galactic HII regions with peak cm-wavelength flux densities > 60mJy, establish the outer edge of Galactic high-mass star formation, and determine the number of HII regions in the Galaxy. The HRDS and SHRDS surveys have more than doubled the known population of Galactic HII regions. We use the OSC observations to determine the properties of high-mass star formation in the extreme outer Galaxy and our VLA observations to determine how many of our faint candidates are indeed HII regions. We combine the completeness limits we obtain through these HII region surveys with an HII region population synthesis model to estimate the total number of Galactic HII regions. From this, we

  6. The Southern HII Region Discovery Survey: Preliminary Results

    Science.gov (United States)

    Shea, Jeanine; Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Armentrout, William P.; Bania, Thomas M.; Dawson, Joanne; Miller Dickey, John; Jordan, Christopher; McClure-Griffiths, Naomi M.

    2017-01-01

    HII regions are some of the brightest sources at radio frequencies in the Milky Way and are the sites of massive O and B-type star formation. They have relatively short (Bank Telescope. Candidate HII regions were selected from mid-infrared emission coincident with radio continuum emission, and confirmed as HII regions by the detection of radio recombination lines. Here we discuss the Southern HII Region Discovery Survey (SHRDS), a continuation of the HRDS using the Australia Telescope Compact Array over the Galactic longitude range 230 to 360 degrees. We have reduced and analyzed a small sub-set of the SHRDS sources and discuss preliminary results, including kinematic distances and metallicities.

  7. A radio catalog of Galactic HII regions for applications from decimeter to millimeter wavelengths

    Science.gov (United States)

    Paladini, R.; Burigana, C.; Davies, R. D.; Maino, D.; Bersanelli, M.; Cappellini, B.; Platania, P.; Smoot, G.

    2003-01-01

    By collecting the information from 24 previously published lists and catalogs, we produce a comprehensive catalog (Master Catalog) of 1442 Galactic HII regions. For each object, we quote the original fluxes and diameters as well as the available information on radio line velocities, line widths and line temperatures and the errors on these quantitities. References to the original works are also reported. By exploiting all these data we produce a Synthetic Catalog of fluxes and diameters (with corresponding errors) at 2.7 GHz. This choice is motivated by the extensive, although not complete, information available at this frequency, widely spread among many different catalogs, and by its relevance for both detailed studies on Galactic HII regions and the extrapolation up to millimetric wavelengths. The catalog can be used for detailed studies of Galactic HII regions and, by extrapolation, for investigations of HII regions up to millimetric wavelengths. In particular, we discuss the study of the effects of microwave emission from HII regions on the new generation of Cosmic Microwave Background (CMB) experiments. We present simulations of the detection of HII regions in the PLANCK high resolution CMB survey, and briefly analize some of the typical applications of our catalog to the evaluation of CMB anisotropy experiments such as calibration, beam reconstruction and straylight effects. The Master Catalog and the Synthetic Catalog are available via ftp at: cdsarc.u-strasbg.fr. This work is related to PLANCK-LFI activities. The Master Catalog and the Synthetic Catalog are only available in electronic form via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/213

  8. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  9. Aperture synthesis observations of recombination lines from compact HII regions

    International Nuclear Information System (INIS)

    Gorkom, J.H. van.

    1980-01-01

    This thesis describes a continuation of early attempts to attain a high spectral dynamic range in general and to study recombination lines from compact HII regions in particular. These observations are made with the WSRT, until recently, the only instrument with sufficient angular resolution and sensitivity to provide at 6 cm detailed line maps of compact HII regions. An investigation into the spectral stability of the WSRT is described. Chromatic errors were found and their effects on maps are shown. These errors were found in the 80 channel filter spectrometer which was still in use at that time. The advent of the digital line backend (DLB) improved the dynamic range by an order of magnitude. An experiment is described which was partially aimed at testing the spectral stability of the DLB. It concerns a search for HI emission from the high velocity system of NGC 1275. Recombination line observations of the compact components in five giant HII regions are presented. The author discusses the radiative transfer problem in recombination lines and shows that non-LTE effects and pressure broadening can be of importance in compact HII regions. Observations obtained with the DLB are also presented. Because of the much better instrumental quality and improved insight into calibration procedures, mapping the H110α emission of DR21 and both the H110α and H166α emission of W3 was succeeded. (Auth.)

  10. The formation of HII regions. Pt. 1

    International Nuclear Information System (INIS)

    Tenorio-Tagle, G.

    1978-04-01

    Numerical models of the evolution of HII regions accounting for the fact that star formation takes place inside a dense cloud are presented. The gas dynamical effects produced after the ionization of the cloud's edge (from the inside) are here postulated to determine the size, velocity field, and large scale density variation observed in HII regions. The consequences and observational predictions from these models are also given. (orig.) [de

  11. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  12. Differences in the size-internal velocity relation of galactic and extragalactic HII regions

    International Nuclear Information System (INIS)

    Odell, C.R.

    1990-01-01

    The nature of the size-internal velocity relation in extragalactic HII regions is examined in order to improve their use as distance determinants. The relation between the linear size and the internal velocity was compared for HII regions in the Galaxy and in external galaxies. Data for the former are from the researcher's own studies at high spatial resolution, while the latter have been the subject of spectroscopy that includes almost the entire objects. The Galactic HII regions are corrected to values of the internal velocity that would be observed if they were at extragalactic distances. A very different size-internal velocity relation was found for the two types of objects in the sense that the extragalactic objects are some ten times larger at the same internal velocity. This is interpreted to mean that the extragalactic HII regions are actually complexes of small HII regions comparable in size to their Galactic counterparts

  13. The evolution of young HII regions. I. Continuum emission and internal dynamics

    Science.gov (United States)

    Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.

    2018-04-01

    Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  14. Vibration test of 1/5 scale H-II launch vehicle

    Science.gov (United States)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  15. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  16. Properties of the HII Regions Derived Using Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian F. Sánchez

    2013-01-01

    Full Text Available Here we review some of our more recent results on the observed properties of HII regions using Integral Field Spectroscopy. In particular, we illustrate the use of this technique to study in detail the ionization conditions across the nebulae for galactic HII regions (focused on the Orion Nebula and the statistical study of large samples of extragalactic HII regions. We review the reported new scaling relation between the local mass density and the oxygen abundance across the disk galaxies and the recently discovered universal gradient for oxygen abundances. We update our previous results the lack of a dependence of the Mass-Metallicity relation with the starformation rate, including new unpublished data. Finally we discuss on the relation between the ionization conditions in the nebulae and the underlying stellar population. All together our results indicate that disk galaxies present a chemical enrichment dominated by an inside-out growth scenario, with a less evident effect of radial migrations and/or outflows.

  17. Rotational Modulation and Activity Cycles at Rotational Extremes: 25 yrs of NURO Photometry for HII 1883

    Science.gov (United States)

    Milingo, Jackie; Saar, Steven; Marschall, Laurence

    2018-01-01

    We present a 25 yr compilation of V-band differential photometry for the Pleiades K dwarf HII 1883 (V660 Tau). HII 1883 has a rotational period of ~ 0.24 d and displays significant rotational modulation due to non-uniform surface brightness or "starspots". Preliminary work yields a cycle period of ~ 9 yrs and rotational shear (ΔP_rot/) considerably less than solar. HII 1883 is one of the fastest rotating single stars with a known cycle. With additional data available we compare newly determined P_cyc and ΔP_rot/ values with those of other stars, putting HII 1883 into the broader context of dynamo properties in single cool dwarfs.

  18. Condições físicas em galáxias HII

    Science.gov (United States)

    Kehrig, C.; Telles, E.; Cuisinier, F.

    2003-08-01

    Galáxias HII são galáxias anãs de baixa luminosidade que apresentam alta taxa de formação estelar. Seus espectros são dominados por intensas linhas de emissão devido à fotoionização pela presença de um grande número de estrelas do tipo O e B. Nós apresentamos um catálogo espectrofotométrico de 111 galáxias HII observadas no telescópio 1.52m do ESO com o espectrógrafo Boller & Chivens. Determinamos propriedades estatísticas da amostra e derivamos condições físicas (temperatura eletrônica, densidade eletrônica) e abundâncias químicas. Para algumas galáxias, fomos também capazes de resolver espacialmente regiões de formação estelar individuais e determinar propriedades espectroscópicas para estas regiões separadamente, o que nos permitiu avaliar as flutuações das condições físico-químicas dentro das galáxias HII. Em particular, vimos que apesar das galáxias HII apresentarem formação estelar espalhada ao longo do corpo da galáxia, são objetos quimicamente homogêneos. A fim de estudar a evolução temporal dos objetos durante o tempo de vida das estrelas ionizantes construimos também alguns diagramas relacionando razões de linhas de emissão com a largura equivalente de Hb (EW(Hb)). Para interpretar tais diagramas utilizamos modelos de fotoionização para populações estelares integradas. Concluímos que as galáxias HII não correspondem a simples idéia de um burst instantâneo envolvido por um gás opaco aos fótons ionizantes e com densidade constante. As relações observadas entre razões de linhas e EW(Hb) podem ser melhor compreendidas se as galáxias HII apresentarem populações estelares mais velhas, que contribuem para o contínuo óptico observado.

  19. Spectrophotometric observations of very low ionization HII regions in the LMC

    International Nuclear Information System (INIS)

    Pena, M.; Ruiz, M.T.; Rubio, M.

    1987-01-01

    Optical spectrophotometric observations of 17 very low ionization HII regions of the LMC are reported. Physical conditions and chemical composition of these objects are derived from the emission line intensities. The average chemical abundances obtained are: log O/H=8.49+-0.08, log N/H=6.91+-0.07 and log S/H=6.89+-0.10. We do not find evidence of any composition gradient in the LMC. The HII regions in the vicinity of the detected molecular cloud complexes show higher nebular reddening. (Author)

  20. GMRT and VLA Observations at 49 cm and 20 cm of the HII Region ...

    Indian Academy of Sciences (India)

    2007-03-08

    Mar 8, 2007 ... as arising in the diffuse HII region and find that the best fitting model has an electron density ... these observations was to image and determine the physical properties of the diffuse. HII region from which ... At the time of our observations, noise switching to measure the system temperature was not available.

  1. Smoothed particle hydrodynamic simulations of expanding HII regions

    Science.gov (United States)

    Bisbas, Thomas G.

    2009-09-01

    This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we

  2. Shape Analysis of HII Regions - I. Statistical Clustering

    Science.gov (United States)

    Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred

    2018-04-01

    We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.

  3. Estudo da região HII galática NGC 2579

    Science.gov (United States)

    Riffel, R.; Copetti, M. V. F.

    2003-08-01

    Desde a descoberta dos gradientes de abundância química em galáxias espirais, as regiões HII galáticas têm sido intensamente estudadas com o objetivo de determinar a forma do gradiente de abundância química na Via-Láctea. Entretanto, a forma do gradiente galático continua controversa e existem muitas regiões HII que continuam inexploradas. A região HII galática NGC 2579 é um objeto que aparece em imagens Ha, como uma pequena mancha brilhante de aproximadamente 2 segundos de arco de diâmetro a 20 segundos de arco ao leste de RCW 20, sendo NGC 2579 muitas vezes confundida com esta última. Apesar de seu alto brilho superficial, NGC 2579 é um objeto pouco estudado provavelmente por problemas de identificação deste objeto. Como parte de um projeto de reavaliação dos gradientes de abundância química das regiões HII na Via-Láctea, estamos realizando um estudo extensivo das propriedades físicas básicas como temperatura eletrônica, densidade eletrônica e composição química da região HII galática NGC 2579. Analisamos dados espectrofotométricos de fenda longa na faixa de 3700Å a 7750Å obtidos com o telescópio de 1.52 m do ESO, Chile, em 2002. Determinamos a temperatura eletrônica usando a razão entre as linhas do [OIII] (l4959+l5007/l4363) e a densidade eletrônica pela razão entre as linhas do [SII] (l6716/l6731). As abundâncias químicas do O, N, Cl, S, Ne e He foram determinadas. Realizamos um estudo de imagens fotométricas nas bandas UBVRI obtidas em 2000 no observatório astronômico San Pedro Mártir, México, para identificar e classificar as estrelas ionizantes de NGC 2579 e determinar a distância deste objeto.

  4. Why is observable radio recombination line emission from galactic HII regions always close to LTE

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1980-01-01

    There is no evidence for significant deviations from LTE in single-dish observations of radio recombination line emission from galactic HII regions. This is in agreement with the known properties of HII regions, particularly their density variations and limited range of excitation parameters; the optimum configuration for strong observable non-LTE effects, low electron density and high emission measure, simply does not exist in galactic HII regions, and the observed lines are emitted under near-LTE conditions. Models of the Orion Nebulae and NGC 6604 are presented which fit all available data and show only weak stimulated emission. It is concluded that reliable electron temperatures can indeed be obtained from straightforward analysis of appropriate radio recombination lines. (orig.)

  5. Optical and near-IR study of LMC HII region N11AB

    International Nuclear Information System (INIS)

    Lee, M.G.

    1990-01-01

    N11 (DEM 34), complex HII region located about 4 degrees from the center of the LMC bar, is a very interesting giant interstellar shell. It has a complicated structure and motion. It is located on the edge of an HI concentration. This is the progress report of the study of its two components, A and B at the optical and near-IR wavelengths to investigate stars, dust and ionized gas associated with them. N11A is a compact high-excitation blob and N11B is a bright HII region in this complex, which embeds OB association Lucke-Hodge 10

  6. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    Science.gov (United States)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  7. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  8. Herschel observations in the ultracompact HII region Mon R2 : Water in dense photon-dominated regions (PDRs)

    NARCIS (Netherlands)

    Fuente, A.; Berne, O.; Cernicharo, J.; Rizzo, J. R.; Gonzalez-Garcia, M.; Goicoechea, J. R.; Pilleri, P.; Ossenkopf, V.; Gerin, M.; Guesten, R.; Akyilmaz, M.; Benz, A. O.; Boulanger, F.; Bruderer, S.; Dedes, C.; France, K.; Garcia-Burillo, S.; Harris, A.; Joblin, C.; Klein, T.; Kramer, C.; Le Petit, F.; Lord, S. D.; Martin, P. G.; Martin-Pintado, J.; Mookerjea, B.; Neufeld, D. A.; Okada, Y.; Pety, J.; Phillips, T. G.; Roellig, M.; Simon, R.; Stutzki, J.; van der Tak, F.; Teyssier, D.; Usero, A.; Yorke, H.; Schuster, K.; Melchior, M.; Lorenzani, A.; Szczerba, R.; Fich, M.; McCoey, C.; Pearson, J.; Dieleman, P.

    2010-01-01

    Context. Monoceros R2, at a distance of 830 pc, is the only ultracompact Hii region (UC Hii) where the photon-dominated region (PDR) between the ionized gas and the molecular cloud can be resolved with Herschel. Therefore, it is an excellent laboratory to study the chemistry in extreme PDRs (G0 >

  9. Fractal dimension and turbulence in Giant HII Regions

    International Nuclear Information System (INIS)

    Caicedo-Ortiz, H E; Santiago-Cortes, E; López-Bonilla, J; er piso, CP 07738, México D.F (Mexico))" data-affiliation=" (ESFM, Instituto Politécnico Nacional, Edif. 9, 1er piso, CP 07738, México D.F (Mexico))" >Castañeda, H O

    2015-01-01

    We have measured the fractal dimensions of the Giant HII Regions Hubble X and Hubble V in NGC6822 using images obtained with the Hubble's Wide Field Planetary Camera 2 (WFPC2). These measures are associated with the turbulence observed in these regions, which is quantified through the velocity dispersion of emission lines in the visible. Our results suggest low turbulence behaviour

  10. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    Science.gov (United States)

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis.

    Science.gov (United States)

    Burkhart, Brett W; Cubonova, Lubomira; Heider, Margaret R; Kelman, Zvi; Reeve, John N; Santangelo, Thomas J

    2017-07-01

    Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea , a 5'-to-3' exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for G INS- a ssociated n uclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase. IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer

  12. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  13. Examining Sites of Recent Star Formation in the Galactic Center: A Closer Look at the Arched Filaments and H HII Regions

    Science.gov (United States)

    Hankins, Matthew; Herter, Terry; Lau, Ryan; Morris, Mark; Mills, Elisabeth

    2018-01-01

    In this dissertation presentation, we analyze mid-infrared imaging of the Arched Filaments and H HII regions in the Galactic center taken with the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). Examining these regions are of great interest because they provide insights on star formation in the Galactic center and the interactions massive stars have with the ISM. The Arched Filaments are a collection of molecular cloud ridges which are ionized by the nearby Arches star cluster, and give the appearance of large (~25 pc) arch-like structures. The H HII regions are a collection of HII regions just to the west of the Arches cluster (~5-15 pc). The origin of the stars powering the H HII regions is uncertain, as they may have formed in a nearby molecular cloud or could be ejected members of the Arches cluster. FORCAST observations of these regions were used to study the morphology and heating structure of the HII regions, as well as constrain their luminosities.Color-temperature maps of the Arched Filaments created with the FORCAST data reveals fairly uniform dust temperatures (~70-100 K) across the length filaments. The temperature uniformity of the clouds can be explained if they are heated by the Arches cluster but are located at a larger distance from the cluster than they appear. The density of the Arched Filaments clouds was estimated from the FORCAST data and was found to be below the threshold for tidal shearing, indicating that that the clouds will be destroyed by the strong tidal field near the Galactic center. To the west of the Arched Filaments, there is an interesting collection of HII regions, referred to as the H HII regions. These regions are likely heated by massive O/B type stars, and the morphology of the dust emission associated with these objects indicate a mixture of potential in situ formation mechanisms and interlopers. Interestingly, FORCAST imaging of the H HII regions also reveal several compact sources, which may be young

  14. [NEII] Line Velocity Structure of Ultracompact HII Regions

    Science.gov (United States)

    Okamoto, Yoshiko K.; Kataza, Hirokazu; Yamashita, Takuya; Miyata, Takashi; Sako, Shigeyuki; Honda, Mitsuhiko; Onaka, Takashi; Fujiyoshi, Takuya

    Newly formed massive stars are embedded in their natal molecular clouds and are observed as ultracompact HII regions. They emit strong ionic lines such as [NeII] 12.8 micron. Since Ne is ionized by UV photons of E>21.6eV which is higher than the ionization energy of hydrogen atoms the line probes the ionized gas near the ionizing stars. This enables to probe gas motion in the vicinity of recently-formed massive stars. High angular and spectral resolution observations of the [NeII] line will thus provide siginificant information on structures (e.g. disks and outflows) generated through massive star formation. We made [NeII] spectroscopy of ultracompact HII regions using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru Telescope in July 2002. Spatial and spectral resolutions were 0.5"" and 10000 respectively. Among the targets G45.12+0.13 shows the largest spatial variation in velocity. The brightest area of G45.12+0.13 has the largest line width in the object. The total velocity deviation amounts to 50km/s (peak to peak value) in the observed area. We report the velocity structure of [NeII] emission of G45.12+0.13 and discuss the gas motion near the ionizing star.

  15. New 20-cm radio-continuum study of the small Magellanic cloud - part III: Compact Hii regions

    Directory of Open Access Journals (Sweden)

    Wong G.F.

    2012-01-01

    Full Text Available We present and discuss a new catalogue of 48 compact Hii regions in the Small Magellanic Cloud (SMC and a newly created deep 1420 MHz (λ=20 cm radio-continuum image of the N19 region located in the southwestern part of the SMC. The new images were created by merging 1420 MHz radiocontinuum archival data from the Australian Telescope Compact Array. The majority of these detected radio compact Hii regions have rather flat spectral indices which indicates, as expected, that the dominant emission mechanism is of thermal nature.

  16. CO J=2-1 observations toward southern HII regions

    International Nuclear Information System (INIS)

    Martin, R.N.; Ruf, K.; Wilson, T.L.; Zimmermann, P.; Emerson, D.T.

    1983-01-01

    A spectral line receiver system developed at the Max-Planck-Institut fuer Radioastronomie in Bonn was installed on the ESO 3.6-m and 1-m telescopes in July 1981. The cooled mixer front end gave DSB receiver temperatures of 260-600 K at 230 GHz. The spectrometer was a 256 x 1 MHz filterbank. The authors have observed the CO 2-1 transition towards 42 positions corresponding to the brightest southern HII regions. (Auth.)

  17. Exploring the 13CO/C18O abundance ratio towards Galactic young stellar objects and HII regions

    Science.gov (United States)

    Areal, M. B.; Paron, S.; Celis Peña, M.; Ortega, M. E.

    2018-05-01

    Aims: Determining molecular abundance ratios is important not only for the study of Galactic chemistry, but also because they are useful to estimate physical parameters in a large variety of interstellar medium environments. One of the most important molecules for tracing the molecular gas in the interstellar medium is CO, and the 13CO/C18O abundance ratio is usually used to estimate molecular masses and densities of regions with moderate to high densities. Nowadays isotope ratios are in general indirectly derived from elemental abundances ratios. We present the first 13CO/C18O abundance ratio study performed from CO isotope observations towards a large sample of Galactic sources of different natures at different locations. Methods: To study the 13CO/C18O abundance ratio, we used 12CO J = 3 - 2 data obtained from the CO High-Resolution Survey, 13CO and C18O J = 3 - 2 data from the 13CO/C18O (J = 3 - 2) Heterodyne Inner Milky Way Plane Survey, and some complementary data extracted from the James Clerk Maxwell Telescope database. We analyzed a sample of 198 sources composed of young stellar objects (YSOs), and HII and diffuse HII regions as catalogued in the Red MSX Source Survey in 27.°5 ≤ l ≤ 46.°5 and |b|0.°5. Results: Most of the analyzed sources are located in the galactocentric distance range 4.0-6.5 kpc. We found that YSOs have, on average, lower 13CO/C18O abundance ratios than HII and diffuse HII regions. Taking into account that the gas associated with YSOs should be less affected by the radiation than in the case of the others sources, selective far-UV photodissociation of C18O is confirmed. The 13CO/C18O abundance ratios obtained in this work are systematically lower than those predicted from the known elemental abundance relations. These results will be useful in future studies of molecular gas related to YSOs and HII regions based on the observation of these isotopes.

  18. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  19. H-alpha observations of Sh2-190, Sh2-222, Sh2-229, Sh2-236 HII regions

    Science.gov (United States)

    Sahan, Muhittin

    2018-02-01

    Hα spectral line (6563Å) profiles of four northern HII regions in the our galaxy (Sh2-190, Sh2-222, Sh2-229, Sh2-236) have been obtained using DEFPOS spectrometer, located at coude focus of 150 cm RTT150 telescope at TUBITAK National Observatory (TUG, Antalya, Turkey). Observations were carried out at nights of 2015 December 24-27 with long exposure times ranging from 900s to 3600s. The LSR velocities and the linewidths (Full Width Half Maximum: FWHM) of the Hα emission lines were found to be in the range of -45.46 kms-1 to +3.57 kms-1 and 38.50 kms-1 to 44.10 kms-1, respectively. The Sh2-229 HII region is the faintest one (211.16 R), while the Sh2-236 HII region (IC410) is brightest source (535.75 R). The LSR velocity and the line width (FWHM) results of the DEFPOS/RTT150 system were compared with the data by several authors given in literature and results of DEFPOS data were found to be in good agreement with data given in literature.

  20. Properties of the HII Regions Derived Using Integral Field Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Sánchez, Sebastián F.

    2013-01-01

    Roč. 2013, č. 1 (2013), 596501/1-596501/14 ISSN 1687-7969 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031241; Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031201 Program:M Institutional support: RVO:67985815 Keywords : H-II regions * star -foraming galaxies * chemo-spectrophotometric evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.234, year: 2013

  1. Starbursts and the chemical evolution of HII galaxies: ages of bursts VS local environmental pollution

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1987-01-01

    Results previously published for oxygen, nitrogen and helium abundances in HII galaxies are revised to allow for collisional contributions to the helium lines and a few further objects added. The relationships found are similar in general to those found previously, though with fewer objects departing from the dY/dZ relation derived by Peimbert and his colleagues, and are confirmed by a principal component analysis which shows that O/H accounts for about half of the variation in helium but N/H for essentially all of it. These effects are consistent with an additional component of helium and secondary nitrogen, superposed on primary nitrogen, with the additional component either coming from low-mass stars made in very old bursts or resulting from local pollution of the observed HII regions by winds from massive stars within them. Evidence from different regions of POX 4 and NGC 5253 gives some slight support to the latter hypothesis

  2. VizieR Online Data Catalog: Inner/outer HII regions: galaxy sample (Rodriguez-Baras+, 2018)

    Science.gov (United States)

    Rodriguez-Baras, M.; Diaz, A. I.; Rosales-Ortega, F. F.; Sanchez, S. F.

    2017-11-01

    Physical properties for 263 isolated spiral galaxies, observed by the CALIFA survey, are presented. These galaxies compose this work galaxy sample. For each galaxy redshift, morphological type, inclination, distance, effective radius, g and r SDSS magnitudes, absolute B magnitude and total number of HII regions extracted in the galaxy are given. (1 data file).

  3. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  4. A Substellar Companion to Pleiades HII 3441

    Science.gov (United States)

    Konishi, Mihoko; Matsuo, Taro; Yamamoto, Kodai; Samland, Matthias; Sudo, Jun; Shibai, Hiroshi; Itoh, Yoichi; Fukagawa, Misato; Sumi, Takhiro; Kudo, Tomoyuki; hide

    2016-01-01

    We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0". 49+/-0". 02 (66+/-2 au) and a mass of 68+/-5M(sub J) based on three observations in the J-, H-, and K(sub s)-bands. The spectral type is estimated to be M7 (approx. 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0+26.1 -8.8 %. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.

  5. VizieR Online Data Catalog: Multiwavelength study of HII region S311 (Yadav+, 2016)

    Science.gov (United States)

    Yadav, R. K.; Pandey, A. K.; Sharma, S.; Ojha, D. K.; Samal, M. R.; Mallick, K. K.; Jose, J.; Ogura, K.; Richichi, A.; Irawati, P.; Kobayashi, N.; Eswaraiah, C.

    2017-11-01

    We observed the HII region S311 (centred on RA(2000)=07:52:24, DE(2000)=-26:24:58.40) in NIR broad-bands J (1.25um), H (1.63um) and Ks (2.14um) on 2010 March 3 using the Infrared Side Port Imager (ISPI) camera mounted on the CTIO Blanco 4-m telescope. We consider only those sources having error data files).

  6. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  7. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  8. Entering 'A NEW REALM' of KIBO Payload Operations - Continuous efforts for microgravity experiment environment and lessons learned from real time experiment operations in KIBO -

    International Nuclear Information System (INIS)

    Sakagami, K; Goto, M; Matsumoto, S; Ohkuma, H

    2011-01-01

    On January 22nd, 2011(JST), KOUNOTORI2 (H-II Transfer Vehicle: HTV2) was successfully launched from Tanegashima Space Center toward the International Space Station (ISS) and two new JAXA payload racks, Kobairo rack and MSPR (Multi-purpose Small Payload Rack) were transferred to ISS/KIBO (Japanese Experiment Module: JEM). In addition to Saibo rack and Ryutai rack which are already in operation in KIBO, in total 4 Japanese experiment payload racks start operations in KIBO. Then KIBO payload operations embark on a new realm, full utilization phase. While the number and variety of microgravity experiments become increasing, simultaneous operation constraints should be considered to achieve multitask payload operations in ISS/KIBO and ever more complicated cooperative operations between crewmember and flight control team/science team are required. Especially for g-jitter improvement in ISS/KIBO, we have greatly advanced cooperative operations with crewmember in the recent increment based on the microgravity data analysis results. In this paper, newly operating Japanese experiment payloads characteristics and some methods to improve g-jitter environment are introduced from the front line of KIBO payload operations.

  9. HII regions in IC 1613: The ISM in a nearby dwarf irregular galaxy

    Science.gov (United States)

    Price, Jill S.; Mason, Stephen F.; Gullixson, Craig A.

    1990-01-01

    IC 1613, a nearby (725 kpc distant) dwarf irregular galaxy, has always been known to contain large, ring-shaped HII regions in its northeast corner. A new H alpha image has been obtained using the Bell Labs Charge Coupled Device (CCD) camera, an RCA 320 X 512 pixel-thinned, back-illuminated CCD, an H alpha filter of central wavelength 6562 A and width (full width half maximum) of 30 A, and the 42 inch telescope at Lowell Observatory. The low resolution images exhibit many new, faint features.

  10. Measuring Preferences: from Conjoint Analysis to Integrated Conjoint Experiments // Medición de preferencias: desde el Análisis Conjunto a los Experimentos Conjuntos Integrados

    Directory of Open Access Journals (Sweden)

    Ramírez-Hurtado, José Manuel

    2010-01-01

    Full Text Available When there are many attributes, experiments with Conjoint Analysis include problems of information overload that affect the validity of such experiments. The impact of these problems can be avoided or reduced by using Hierarchical Information Integration (HII. The present work aims to demonstrate how the integrated experimentscan resolve the limitations arising in Conjoint Analysis and HII, and to further establish ways to proceed in these types of situations. A variation of Louviere's (1984 original HII model, proposed by Oppewal et al. (1994, is applied in this work for the selection of mobile phones. // Los experimentos de Análisis Conjunto con muchos atributos incluyen problemas de sobrecarga de información que afectan a la validez de dichos experimentos. El impacto de esos problemas puede ser evitado o reducido utilizando la Integración de Información Jerárquica (HII. El objetivo de este trabajo es mostrar cómo los experimentos integrados pueden resolver las limitaciones planteadas en el Análisis Conjunto y en el HII, estableciendo una forma de actuar para este tipo de situaciones. Una variante del modelo original de HII de Louviere (1984, propuesta por Oppewal et al. (1994, se aplica en este trabajo a la elección de teléfonos móviles.

  11. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  12. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  13. Double-slit experiment in momentum space

    Science.gov (United States)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  14. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  15. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  16. Spaces of interaction, places for experience

    CERN Document Server

    Benyon, David

    2014-01-01

    Spaces of Interaction, Places for Experience is a book about Human-Computer Interaction (HCI), interaction design (ID) and user experience (UX) in the age of ubiquitous computing. The book explores interaction and experience through the different spaces that contribute to interaction until it arrives at an understanding of the rich and complex places for experience that will be the focus of the next period for interaction design. The book begins by looking at the multilayered nature of interaction and UX-not just with new technologies, but with technologies that are embedded in the world. Peop

  17. El medio interestelar en los alrededores de la region HII Sh2-183

    Science.gov (United States)

    Cichowolski, S.; Cappa, C. E.; Blanco, A.; Eppens, L.; Ertini, K.; Leiva, M. M.

    2017-10-01

    We present a multiwavelength study of the HII region Sh2-183, located at (,) = (123.3,+3.0) at a distance of 7.0 1.5 kpc from the Sun. Based on the radio continuum data we estimated the amount of ionized gas, the electronic density, and the number of ionizing photons needed to keep the region ionized, which is important since the star/s responsible of the region was/were not detected yet. On the other hand, based on IRAS data we have analyzed the dust temperature and distribution. The Hi line data allowed the detection of a shell-like structure surrounding the ionized gas and the CO data revealed the presence of 6 molecular clouds probably related to Sh2-183, which harbor several young stellar object candidates.

  18. A Distributed Public Key Infrastructure Based on Threshold Cryptography for the HiiMap Next Generation Internet Architecture

    Directory of Open Access Journals (Sweden)

    Oliver Hanka

    2011-02-01

    Full Text Available In this article, a security extension for the HiiMap Next Generation Internet Architecture is presented. We regard a public key infrastructure which is integrated into the mapping infrastructure of the locator/identifier-split addressing scheme. The security approach is based on Threshold Cryptography which enables a sharing of keys among the mapping servers. Hence, a more trustworthy and fair approach for a Next Generation Internet Architecture as compared to the state of the art approach is fostered. Additionally, we give an evaluation based on IETF AAA recommendations for security-related systems.

  19. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  20. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  1. he First Superconductivity Experiment in Space

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.

    1999-01-01

    One of the most promising applications of high Tc superconductors is in the field of satellite communications. In view of the rapidly increasing demand for satellite communication channels due to the formation of global networks of cellular phones, internet, etc., one needs to (develop more efficient ways of dividing the finite frequency band into more and more channels without paying for it with excessive interference or an increasingly large weight of conventional filters. Superconductive components can save an order of magnitude on the weight and volume of such filters, a very important factor in satellite design. Yet, up to now superconductors were never tested in space. We present the design and performance of the first such experiment to reach space. The experiment consists of a thin film HTSC device integrated with a miniature cryo cooler. It was launched into space in July 1998 aboard the Thatch's-II micro satellite. We will present data obtained from this experiment until the present time. Long term survivability of HTSC devices in space would be discussed

  2. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

    Science.gov (United States)

    Kolbin, A. I.; Shimansky, V. V.

    2014-04-01

    We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

  3. The Creation of Experience Spaces

    DEFF Research Database (Denmark)

    Pedersen, Michael Thyrrestrup

    2013-01-01

    will be conducted in the intersection field of collaboration between the Ministry of Culture and four municipalities in East Jutland. The analysis will evolve around how cultural experience spaces are created for the citizens to enjoy. This paper will contribute with knowledge about the creation of experiences...

  4. Space experiments with high stability clocks

    International Nuclear Information System (INIS)

    Vessot, R.F.C.

    1993-01-01

    Modern metrology depends increasingly on the accuracy and frequency stability of atomic clocks. Applications of such high-stability oscillators (or clocks) to experiments performed in space are described and estimates of the precision of these experiments are made in terms of clock performance. Methods using time-correlation to cancel localized disturbances in very long signal paths and a proposed space borne four station VLBI system are described. (TEC). 30 refs., 14 figs., 1 tab

  5. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, John; Rebull, L. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Mountain View, CA 94035 (United States); Conroy, Kyle; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Barrado, David [Centro de Astrobiología, INTA-CSIC, Dpto. Astrofísica, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ziegler, Carl; Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Baranec, Christoph, E-mail: tjd@astro.caltech.edu [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States)

    2015-11-20

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.

  6. Space experiments with particle accelerators: SEPAC

    International Nuclear Information System (INIS)

    Obayashi, T.

    1978-01-01

    In this paper, the program of the space experiments with particle accelerators (SEPAC) is described. The SEPAC is to be prepared for the Space Shuttle/First Spacelab Mission. It is planned in the SEPAC to carry out the active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for the overall program of Spacelab/SEPAC experiments. The instruments to be used are electron beam accelerators, MPD arcjects, and associated diagnostic equipments. The main scientific objectives of the experiments are Vehicle Charge Neutralization, Beam Plasma Physics, and Beam Atmosphere Interactions. The SEPAC system consists of the following subsystems. Those are accelerators, monitoring and diagnostic equipments, and control and data management equipments. The SEPAC functional objectives for experiment operations are SEPAC system checkout, EBA firing test, MPD firing test, electron beam experiments, plasma beam propagation, artificial aurora excitation, equatorial aerochemistry, electron echo experiment, E parallel B experiment, passive experiments, SEPAC system deactivation, and battery charging. Most experiment procedures are carried out by the pre-set computer program. (Kato, T.)

  7. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  8. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  9. Experimental study of the vapour-liquid equilibria of HI-I-2-H2O ternary mixtures, Part 2: Experimental results at high temperature and pressure

    International Nuclear Information System (INIS)

    Larousse, B.; Lovera, P.; Borgard, J.M.; Roehrich, G.; Mokrani, N.; Maillault, C.; Doizi, D.; Dauvois, V.; Roujou, J.L.; Lorin, V.; Fauvet, P.; Carles, P.; Hartmann, J.M.

    2009-01-01

    In order to assess the choice of the sulphur-iodine thermochemical cycle for massive hydrogen production, a precise knowledge of the concentrations of the gaseous species (HI, I 2 , and H 2 O) in thermodynamic equilibrium with the liquid phase of the HI-I 2 -H 2 O ternary mixture is required, in a wide range of concentrations and for temperatures and pressures up to 300 degrees C and 50 bar. In the companion paper (Part 1) the experimental device was described, which enables the measurement of the total pressure and concentrations of the vapour phase (and thus the knowledge of the partial pressures of the different gaseous species) for the HI-I 2 -H 2 O mixture in the 20-140 degrees C range and up to 2 bar. This (Part 2) article describes the experimental device which enables similar measurements but now in the process domain. The results concerning concentrations in the vapour phase for the HI-I 2 -H 2 O initial mixture (with a global composition) in the 120-270 degrees C temperature range and up to 30 bar are presented. As previously, optical online diagnostics are used, based on recordings of infrared transmission spectra for HI and H 2 O and on UV/visible spectrometry for I 2 . The concentrations measured in the vapour phase are the first to describe the vapour composition under thermophysical conditions close to those of the distillation column. The experimental results are compared with a thermodynamic model and will help us to scale up and optimize the reactive distillation column we promote for the HI section of the sulphur-iodine cycle. (authors)

  10. In-space research, technology and engineering experiments and Space Station

    Science.gov (United States)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  11. Free-Flyer Capture - New Robotic Challenges from the International Space Station

    Science.gov (United States)

    Smith, C.; Seagram, J.

    The Japanese H-II Transfer Vehicle (HTV) will be the first free-flyer to visit the International Space Station (ISS) that will be captured by the Space Station Remote Manipulator System (SSRMS). Experience gained from the free-flyer captures completed previously by the Remote Manipulator System of the Space Shuttle has helped provide a foundation for the operational concept of capturing free-flyers. However, additional complications arise in the concept of free-flyer capture when carried out by the SSRMS from the ISS. Such issues include: ISS manoeuvrability and the difficulty of the ISS to quickly react to collision avoidance; current hardware and architecture design constraints of the SSRMS on-orbit; and HTV retreat and system limitations. This paper will discuss these issues and the numerous challenges they generate in trying to ensure that the safety of the ISS is maintained while trying to also guarantee the successful capture of the HTV; a vehicle containing potentially critical equipment and supplies for the ISS and its crew. As well, this paper will highlight the SSRMS system enhancements and innovative operational solutions that have enhanced the probability of mission success, and have been necessary to meet the failure tolerance and recovery requirements.

  12. Analysis of ATLAS FLB-EC6 Experiment using SPACE Code

    International Nuclear Information System (INIS)

    Lee, Donghyuk; Kim, Yohan; Kim, Seyun

    2013-01-01

    The new code is named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). As a part of code validation effort, simulation of ATLAS FLB(Feedwater Line Break) experiment using SPACE code has been performed. The FLB-EC6 experiment is economizer break of a main feedwater line. The calculated results using the SPACE code are compared with those from the experiment. The ATLAS FLB-EC6 experiment, which is economizer feedwater line break, was simulated using the SPACE code. The calculated results were compared with those from the experiment. The comparisons of break flow rate and steam generator water level show good agreement with the experiment. The SPACE code is capable of predicting physical phenomena occurring during ATLAS FLB-EC6 experiment

  13. Lead-Free Experiment in a Space Environment

    Science.gov (United States)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  14. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  15. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  16. The OTTI space experiments

    International Nuclear Information System (INIS)

    Brewer, D.A.; Clifton, K.S.; Pearson, S.D.; Barth, J.L.; LaBel, K.; Ritter, J.C.; Peden, J.; Campbell, A.; Liang, R.

    1999-01-01

    The orbiting technology tested initiative (OTTI) provides a concept for a series of space experiment platforms to be flown at 2-year interval over the next ten years. The long-term purpose of this program is to provide a convenient test-beds to simulate high radiation environments. The purposes of the first platform is to evaluate the on-orbit performance of novel, emerging, breakthrough technologies and advanced state-of-the-art devices in high radiation orbits and to provide correlations between the natural space radiation environment and the device response in the flight test-bed. This short article presents the concept of the OTTI program

  17. High temperature superconductivity space experiment (HTSSE)

    International Nuclear Information System (INIS)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  18. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  19. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  20. Longevity of a Paramecium cell clone in space: Hypergravity experiments as a basis for microgravity experiments

    Science.gov (United States)

    Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.

    We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.

  1. Presence Experiences - the eventalisation of urban space

    DEFF Research Database (Denmark)

    Pløger, John

    2010-01-01

    Cultural events are, as part of an urban development strategy, about (symbolic) representations, but for the human beings participating in the event it may include acts of in/visibility (anonymity versus expressivity) and different articulations of meaning or subjectivity in space. A particular...... of space that make these events a desired experience and the qualities of the presence-experience more desired than, for instance, the political content of the event. Why it is so is theoretically and philosophically explored by discussing the expressive signification of such events. If expressive...

  2. MIT-NASA/KSC space life science experiments - A telescience testbed

    Science.gov (United States)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  3. Environmental monitors in the Midcourse Space Experiments (MSX)

    Science.gov (United States)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  4. Feasibility analysis of gravitational experiments in space

    Science.gov (United States)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  5. Proceedings of The Twentieth International Symposium on Space Technology and Science. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th international symposium on space technology and science was held in Nagaragawa city, Gifu prefecture on May 19-25, 1996, and 401 papers were made public. Out of those, 112 papers were summed up as Volume 2 following the previous Volume 1. As to space transportation, the paper included reports titled as follows: Conceptual study of H-IIA rocket (upgraded H-II rocket); Test flight of the launch vehicle; International cooperation in space transportation; etc. Concerning microgravity science, Recent advances in microgravity research; Use of microgravity environment to investigate the effect of magnetic field on flame shape; etc. Relating to satellite communications and broadcasting, `Project GENESYS`: CRL`s R and D project for realizing high data rate satellite communications networks; The Astrolink {sup TM/SM} system; etc. Besides, the paper contained reports on the following fields: lunar and planetary missions and utilization, space science and balloons, earth observations, life science and human presence, international cooperation and space environment, etc

  6. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  7. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  8. On minimalism in architecture - space as experience

    Directory of Open Access Journals (Sweden)

    Vasilski Dragana

    2016-01-01

    Full Text Available Architecture has to be experienced to be understood. The complexity of the experience is seen through a better understanding of the relationship between objectivity (architecture and subjectivity (our life. Being physically, emotionally and psychologically aware of the space we occupy is an experience that could be described as being present, which is a sensation that is personal and difficult to explicitly describe. Research into experience through perception and emotion positions architecture within scientific fields, in particular psychological disciplines. Relying on the standpoints of Immanuel Kant, the paper considers the juxtaposition between (minimalism in architecture and philosophy on the topic of experience. Starting from the basic aspects of perception and representation of the world around us, a thesis is presented in which the notions of silence and light as experienced in minimalism (in architecture are considered as adequate counterparts to Kant’s factors of experience - the awareness of the objective order of events and the impossibility to perceive time itself. Through a case study we verify the starting hypothesis on minimalism (in architecture whereby space becomes an experience of how the world touches us.

  9. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  10. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  11. Mission planning for space based satellite surveillance experiments with the MSX

    Science.gov (United States)

    Sridharan, R.; Fishman, T.; Robinson, E.; Viggh, H.; Wiseman, A.

    1994-01-01

    The Midcourse Space Experiment is a BMDO-sponsored scientific satellite set for launch within the year. The satellite will collect phenomenology data on missile targets, plumes, earth limb backgrounds and deep space backgrounds in the LWIR, visible and ultra-violet spectral bands. It will also conduct functional demonstrations for space-based space surveillance. The Space-Based Visible sensor, built by Lincoln Laboratory, Massachusetts Institute of Technology, is the primary sensor on board the MSX for demonstration of space surveillance. The SBV Processing, Operations and Control Center (SPOCC) is the mission planning and commanding center for all space surveillance experiments using the SBV and other MSX instruments. The guiding principle in the SPOCC Mission Planning System was that all routine functions be automated. Manual analyst input should be minimal. Major concepts are: (I) A high level language, called SLED, for user interface to the system; (2) A group of independent software processes which would generally be run in a pipe-line mode for experiment commanding but can be run independently for analyst assessment; (3) An integrated experiment cost computation function that permits assessment of the feasibility of the experiment. This paper will report on the design, implementation and testing of the Mission Planning System.

  12. History of Los Alamos Participation in Active Experiments in Space

    Energy Technology Data Exchange (ETDEWEB)

    Pongratz, Morris B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July of 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.

  13. Solar array experiments on the SPHINX satellite. [Space Plasma High voltage INteraction eXperiment satellite

    Science.gov (United States)

    Stevens, N. J.

    1974-01-01

    The Space Plasma, High Voltage Interaction Experiment (SPHINX) is the name given to an auxiliary payload satellite scheduled to be launched in January 1974. The principal experiments carried on this satellite are specifically designed to obtain the engineering data on the interaction of high voltage systems with the space plasma. The classes of experiments are solar array segments, insulators, insulators with pin holes and conductors. The satellite is also carrying experiments to obtain flight data on three new solar array configurations: the edge illuminated-multijunction cells, the teflon encased cells, and the violet cells.

  14. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Science.gov (United States)

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  15. Optical observations on critical ionization velocity experiments in space

    International Nuclear Information System (INIS)

    Stenbaek-Nielsen, H.C.

    1993-01-01

    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O + . This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  16. Students' Experience of University Space: An Exploratory Study

    Science.gov (United States)

    Cox, Andrew M.

    2011-01-01

    The last decade has seen a wave of new building across British universities, so that it would appear that despite the virtualization discourses around higher education, space still matters in learning. Yet studies of student experience of the physical space of the university are rather lacking. This paper explores the response of one group of…

  17. Deep space propagation experiments at Ka-band

    Science.gov (United States)

    Butman, Stanley A.

    1990-01-01

    Propagation experiments as essential components of the general plan to develop an operational deep space telecommunications and navigation capability at Ka-band (32 to 35 GHz) by the end of the 20th century are discussed. Significant benefits of Ka-band over the current deep space standard X-band (8.4 GHz) are an improvement of 4 to 10 dB in telemetry capacity and a similar increase in radio navigation accuracy. Propagation experiments are planned on the Mars Observer Mission in 1992 in preparation for the Cassini Mission to Saturn in 1996, which will use Ka-band in the search for gravity waves as well as to enhance telemetry and navigation at Saturn in 2002. Subsequent uses of Ka-band are planned for the Solar Probe Mission and the Mars Program.

  18. Kinematic Study of Ionized and Molecular Gases in Ultracompact HII Region in Monoceros R2

    Science.gov (United States)

    Kim, Hwihyun; Lacy, John H.; Jaffe, Daniel Thomas

    2017-06-01

    Monoceros R2 (Mon R2) is an UltraCompact HII region (UCHII) surrounded by several PhotoDissociation Regions (PDRs). It is an excellent example to investigate the chemistry and physics of early stage of massive star formation due to its proximity (830pc) and brightness. Previous studies suggest that the wind from the star holds the ionized gas up against the dense molecular core and the higher pressure at the head drives the ionized gas along the shell. In order for the model to work, there should be evidence for dense molecular gas along the shell walls, irradiated by the UCHII region and perhaps entrained into the flow along the walls.We obtained the Immersion Grating INfrared Spectrograph (IGRINS) spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the high resolution (R~45,000) H- and K-band (1.4-2.5μm) IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines; Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv ≈ 10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMTProject of KASI.

  19. Formation of Pillars at the Boundaries between HII Regions and Molecular Clouds

    International Nuclear Information System (INIS)

    Mizuta, A; Kane, J O; Pound, M W; Remington, B A; Ryutov, D D; Takabe, H

    2006-01-01

    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value

  20. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Science.gov (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  1. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  2. The FAST (FRC Acceleration Space Thruster) Experiment

    Science.gov (United States)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  3. Report of space experiment project, 'Rad Gene', performed in the International Space Station Kibo

    International Nuclear Information System (INIS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nagamatsu, Aiko

    2010-01-01

    This report summarizes results of the project in the title adopted by Japan Aerospace Exploration Agency (JAXA) (in 2000) aiming to elucidate the biological effect of space environment, and contains 3 major parts of the process of the experiment, and of findings by analysis after flight and in radioadaptive response. The process for the experiment includes training of the experimenter crew (Dr. S. Magnus) in JAXA, preparation of samples (frozen cells with normal and mutated p53 genes derived from human lymphoblast TK6) and their transfer to the Space Shuttle Endeavour STS-126 launched on Nov. 15, 2008 (Japanese time) for cell culturing in Feb., 2009. Analyses after flight back to the Kennedy Space Center on Mar. 29, 2009, done on the ground in Japan thereafter include the physical evaluation, confirmation of DNA damage, and phenotypic expression with DNA- and protein-arrays (genes induced for expression of p53-related phenotypes in those cells which were stored frozen in the space, thawed on the ground and then cultured, genes induced for expressing the phenotypes and p53-related proteins expressed in cells cultured in space). Physically, total absorbed dose and dose equivalent are found to be respectively 43.5 mGy and 71.2 mSv (0.5 mSv/day). Interestingly, the biologically estimated dose by DNA-double strand breaks detected by γH2AX staining, 94.5 mSv (0.7 mSv/day), in living, frozen cells in space, is close to the above physical dose. Expression experiments of p53-related phenotypes have revealed that expression of 750 or more genes in 41,000 genes in the array is changed: enhanced or suppressed by space radiation, micro-gravity and/or their mixed effects in space environment. In 642 protein antibodies in the array, 2 proteins are found enhanced and 8, suppressed whereas heat-shock protein is unchanged. Radioadaptive response is the acquisition of radio-resistance to acute exposure by previous irradiation of small dose (window width 20-100 mSv) in normal p53

  4. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  5. Triggered massive star formation associated with the bubble Hii region Sh2-39 (N5)

    Science.gov (United States)

    Duronea, N. U.; Cappa, C. E.; Bronfman, L.; Borissova, J.; Gromadzki, M.; Kuhn, M. A.

    2017-09-01

    Aims: We perform a multiwavelength analysis of the bubble Hii region Sh2-39 (N5) and its environs with the aim of studying the physical properties of Galactic IR bubbles and exploring their impact in triggering massive star formation. Methods: To analyze the molecular gas, we used CO(3-2) and HCO+(4-3) line data obtained with the on-the-fly technique from the ASTE telescope. To study the distribution and physical characteristics of the dust, we made use of archival data from ATLASGAL, Herschel, and MSX, while the ionized gas was studied making use of an NVSS image. We used public WISE, Spitzer, and MSX point source catalogs to search for infrared candidate young stellar objects (YSOs) in the region. To investigate the stellar cluster [BDS2003]6 we used IR spectroscopic data obtained with the ARCoIRIS spectrograph, mounted on Blanco 4 m Telescope at CTIO, and new available IR Ks band observations from the VVVeXtended ESO Public Survey (VVVX). Results: The new ASTE observations allowed the molecular gas component in the velocity range from 30 km s-1 to 46 km s-1, associated with Sh2-39, to be studied in detail. The morphology of the molecular gas suggests that the ionized gas is expanding against its parental cloud. We identified four molecular clumps, which were likely formed by the expansion of the ionization front, and determined some of their physical and dynamical properties. Clumps with HCO+ and 870 μm counterparts show evidence of gravitational collapse. We identified several candidate YSOs across the molecular component. Their spatial distribution and the fragmentation time derived for the collected layers of the molecular gas suggest that massive star formation might have been triggered by the expansion of the nebula via the collect and collapse mechanism. The spectroscopical distance obtained for the stellar cluster [BDS2003]6, placed over one of the collapsing clumps in the border of the Hii region, reveals that this cluster is physically associated with

  6. Concept definition for space station technology development experiments. Experiment definition, task 2

    Science.gov (United States)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  7. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    Science.gov (United States)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    Materials and devices used on the exterior of spacecraft in low Earth orbit (LEO) are subjected to environmental threats that can cause degradation in material properties, possibly threatening spacecraft mission success. These threats include: atomic oxygen (AO), ultraviolet and x-ray radiation, charged particle radiation, temperature extremes and thermal cycling, micrometeoroid and debris impacts, and contamination. Space environmental threats vary greatly based on spacecraft materials, thicknesses and stress levels, and the mission environment and duration. For more than a decade the Materials International Space Station Experiment (MISSE) has enabled the study of the long duration environmental durability of spacecraft materials in the LEO environment. The overall objective of MISSE is to test the stability and durability of materials and devices in the space environment in order to gain valuable knowledge on the performance of materials in space, as well as to enable lifetime predictions of new materials that may be used in future space flight. MISSE is a series of materials flight experiments, which are attached to the exterior of the International Space Station (ISS). Individual experiments were loaded onto suitcase-like trays, called Passive Experiment Containers (PECs). The PECs were transported to the ISS in the Space Shuttle cargo bay and attached to, and removed from, the ISS during extravehicular activities (EVAs). The PECs were retrieved after one or more years of space exposure and returned to Earth enabling post-flight experiment evaluation. MISSE is a multi-organization project with participants from the National Aeronautics and Space Administration (NASA), the Department of Defense (DoD), industry and academia. MISSE has provided a platform for environmental durability studies for thousands of samples and numerous devices, and it has produced many tangible impacts. Ten PECs (and one smaller tray) have been flown, representing MISSE 1 through MISSE

  8. Seeds-in-space education experiment during the Dutch soyuz mission DELTA

    Science.gov (United States)

    Weterings, Koen; Wamsteker, Jasper; Loon, Jack van

    2007-09-01

    We have used the broad appeal of the universe and space flight to boost interest in science education in The Netherlands via a classroom experiment designated Seeds In Space (SIS). By germinating Rucola seeds in the dark and in the light in ground classrooms and by comparing these results with those obtained in the same experiment performed in the International Space Station (ISS) during the Dutch Soyuz mission DELTA, students could learn about the cues that determine direction of plant growth. This paper describes both the preparations that led up to the SIS experiment as well as the popular and scientific outcome. Within The Netherlands, some 80.000 students participated, representing 15% of the population in the age group of 10-14 years old. In addition, another 80.000 German pupils, a few local schools in the Moscow -Koroljov- area and some in the Dutch Antilles also participated in the SIS experiment. Considering these numbers, it can be concluded that SIS was a very successful educational project and might be considered for future space flight missions.

  9. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  10. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  11. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  12. Early space symmetry restoration and neutrino experiments

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.; Monich, V.A.

    1986-01-01

    The problem of early space symmetry restoration on the left-right symmetry models and the models with the extended (due to mirror quarks and leptons) fermion sector is being discussed. The experiments in which the derivations from the standard model of electroweak interactions should be studied are presented

  13. An opportunity analysis system for space surveillance experiments with the MSX

    Science.gov (United States)

    Sridharan, Ramaswamy; Duff, Gary; Hayes, Tony; Wiseman, Andy

    1994-01-01

    The Mid-Course Space Experiment consists of a set of payloads on a satellite being designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite will conduct a series of measurements of phenomenology of backgrounds, missile targets, plumes and resident space objects (RSO's); and will engage in functional demonstrations in support of detection, acquisition and tracking for ballistic missile defense and space-based space surveillance missions. A complex satellite like the MSX has several constraints imposed on its operation by the sensors, the supporting instrumentation, power resources, data recording capability, communications and the environment in which all these operate. This paper describes the implementation of an opportunity and feasibility analysis system, developed at Lincoln Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the Principal Investigator for space-based surveillance.

  14. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  15. Space, the final frontier: A critical review of recent experiments performed in microgravity.

    Science.gov (United States)

    Vandenbrink, Joshua P; Kiss, John Z

    2016-02-01

    Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space. Copyright © 2015. Published by Elsevier Ireland Ltd.

  16. Materials on the International Space Station - Forward Technology Solar Cell Experiment

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

    2005-01-01

    This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the

  17. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  18. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  19. The experience of lived space in persons with dementia: a systematic meta-synthesis.

    Science.gov (United States)

    Førsund, Linn Hege; Grov, Ellen Karine; Helvik, Anne-Sofie; Juvet, Lene Kristine; Skovdahl, Kirsti; Eriksen, Siren

    2018-02-01

    Identifying how persons with dementia experience lived space is important for enabling supportive living environments and creating communities that compensate for the fading capabilities of these persons. Several single studies have explored this topic; however, few studies have attempted to explicitly review and synthesize this research literature. The aim of this systematic meta-synthesis was therefore to interpret and synthesize knowledge regarding persons with dementia's experience of space. A systematic, computerized search of AgeLine, CINAHL Complete, Embase, Medline and PsycINFO was conducted using a search strategy that combined MeSH terms and text words for different types of dementia with different descriptions of experience. Studies with 1) a sample of persons with dementia, 2) qualitative interviews as a research method and 3) a description of experiences of lived space were included. The search resulted in 1386 articles, of which 136 were identified as eligible and were read and assessed using the CASP criteria. The analysis was inspired by qualitative content analyses. This interpretative qualitative meta-synthesis included 45 articles encompassing interviews with 672 persons with dementia. The analysis showed that living in one's own home and living in long-term care established different settings and posed diverse challenges for the experience of lived space in persons with dementia. The material revealed four main categories that described the experience of lived space: (1) belonging; (2) meaningfulness; (3) safety and security; and (4) autonomy. It showed how persons with dementia experienced a reduction in their lived space due to the progression of dementia. A comprehensive understanding of the categories led to the latent theme: "Living with dementia is like living in a space where the walls keep closing in". This meta-synthesis reveals a process whereby lived space gradually becomes smaller for persons with dementia. This underscores the

  20. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  1. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  2. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  3. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  4. FCJ-133 The Scripted Spaces of Urban Ubiquitous Computing: The experience, poetics, and politics of public scripted space

    Directory of Open Access Journals (Sweden)

    Christian Ulrik Andersen

    2011-12-01

    Full Text Available This article proposes and introduces the concept of ‘scripted space’ as a new perspective on ubiquitous computing in urban environments. Drawing on urban history, computer games, and a workshop study of the city of Lund the article discusses the experience of digitally scripted spaces, and their relation to the history of public spaces. In conclusion, the article discusses the potential for employing scripted spaces as a reinvigoration of urban public space.

  5. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  6. Dedicated Slosh Dynamics Experiment on ISS using SPHERES (Advanced Space Operations in CR)

    Data.gov (United States)

    National Aeronautics and Space Administration — At the Kennedy Space Center (KSC) the Launch Services Program is leading an effort to conduct an experiment aboard the International Space Station (ISS) to validate...

  7. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  8. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    Science.gov (United States)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  9. Radiobiological experiments in space: a review

    International Nuclear Information System (INIS)

    Horneck, G.

    1992-01-01

    This paper deals mainly with results from space experiments on the biological effects of cosmic ray high charge, high energy (HZE) particles and on their potential interactions with the microgravity environment. So far, mainly with resting systems, such as viruses, bacterial spores, plant seeds or shrimp cysts, as well as in a few embryonic systems, methods have been applied to trace injuries to the passage of a single HZE particle of comic radiation Most effects point to damage to the genetic material such as mutations, tumour induction, chromosomal aberrations, cell inactivation, or development anomalies. Using higher organisms, including mammals, a few attempts have been made to identify tissue damage along the passage of single HZE particles, such as microscopically visible injury in brain or eyes, or the light flash sensation. The latter, correlated with orbital parameters, showed highest frequency during the passage of the South Atlantic Anomaly. To study potential interactions of ionizing radiation with microgravity, either additional irradiation was applied, pre-, in-, or post-flight, or a 1 g reference centrifuge was utilized in combination with methods of particle effect correlation. Especially in embryonic systems, synergistic interactions were observed in producing mutations or anomalies with high frequency. It is assumed that, among other mechanisms, microgravity might interfere with the function of DNA repair systems. On the basis of the results obtained on the biological effectiveness of radiation in space and in view of upcoming space activities with an increasing number of manned missions, perspectives are given for future experimental approaches in space radiation biology. (author)

  10. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    Science.gov (United States)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  11. The Komplast Experiment: Space Environmental Effects after 12 Years in LEO (and Counting)

    Science.gov (United States)

    Golden, J. L.; Shaevich, S.; Aleksandrov, N. G.; Shumov, A. E.; Novikov, L. S.; Alred, J. A.; Shindo, D. J.; Kravchenko, M.

    2014-01-01

    The Komplast materials experiment was designed by the Khrunichev Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. The purpose is to study the effect of the low earth orbit (LEO) environment on exposed samples of various spacecraft materials. The Komplast experiment began with the launch of the first International Space Station (ISS) module on November 20, 1998. Two of eight experiment panels were retrieved during Russian extravehicular activity in February 2011 after 12 years of LEO exposure, and were subsequently returned to Earth by Space Shuttle "Discovery" on the STS-133/ULF-5 mission. The retrieved panels contained an experiment to detect micrometeoroid and orbital debris (MMOD) impacts, radiation sensors, a temperature sensor, several pieces of electrical cable, both carbon composite and adhesive-bonded samples, and many samples made from elastomeric and fluoroplastic materials. Our investigation is complete and a summary of the results obtained from this uniquely long-duration exposure experiment will be presented.

  12. Laser transmitter for Lidar In-Space Technology Experiment

    Science.gov (United States)

    Chang, John; Cimolino, Marc; Petros, Mulugeta

    1991-01-01

    The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.

  13. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  14. Drawing and conceiving space : how to express spatial experience through drawing?

    NARCIS (Netherlands)

    Schaeverbeke, R.; Aarts, H.M.T.; Heylighen, A.

    2015-01-01

    Teaching drawing in architectural education raises questions regarding the representation of spatial experiences: to what extent can sensory experiences of space be intensified through observing and drawing and, perhaps equally important, what those drawings would look like? In the context of their

  15. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A 12 years brazilian space education activity experience

    Science.gov (United States)

    Stancato, Fernando; Gustavo Catalani Racca, João; Ballarotti, MaurícioG.

    2001-03-01

    A multidisciplinary group of students from the university and latter also from the high school was formed in 1988 with the objective to make them put in practice their knowledge in physics, chemistry and mathematics and engineering fields in experimental rocketry. The group was called "Grupo de Foguetes Experimentais", GFE. Since that time more than 150 students passed throw the group and now many of them are in the space arena. The benefits for students in a space hands-on project are many: More interest in their school subjects is gotten as they see an application for them; Interrelation attitudes are learned as space projects is a team activity; Responsibility is gained as each is responsible for a part of a critical mission project; Multidisciplinary and international experience is gotten as these are space project characteristics; Learn how to work in a high stress environment as use to be a project launch. This paper will cover the educational experiences gotten during these years and how some structured groups work. It is explained the objectives and how the group was formed. The group structure and the different phases that at each year the new team passes are described. It is shown the different activities that the group uses to do from scientific seminars, scientific club and international meetings to technical tours and assistance to rocket activities in regional schools. It is also explained the group outreach activities as some launches were covered by the media in more then 6 articles in newspaper and 7 television news. In 1999 as formed an official group called NATA, Núcleo de Atividades Aerospaciais within the Universidade Estadual de Londrina, UEL, by some GFE members and teachers from university. It is explained the first group project results.

  17. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  18. Bunsen Reaction using a HIx Solution (HI-I2-H2O with Countercurrent Flow for Sulfur-Iodine Hydrogen Production Process

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Sub

    2016-01-01

    Full Text Available In the sulfur-iodine hydrogen production process, the Bunsen reaction is a crucial section because of the linkage with the H2SO4 and HI decomposition sections. The HIx solution (HI-I2-H2O mixture was fed to the Bunsen reaction section as a reactant from the HI decomposition section. In this study, the Bunsen reaction using the HIx solution with countercurrent flow was performed. The production rate of HIx phase solution increased while that of H2SO4 phase solution was maintained constant when increasing the flow rate of HIx solution. As the SO2 flow rate increased, the production rates of H2SO4 and HIx phase solutions increased. The amount of resultant H2SO4 phase was very lower than that of resultant HIx phase under the conditions examined in this study.

  19. ``From seed-to-seed'' experiment with wheat plants under space-flight conditions

    Science.gov (United States)

    Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  20. Model Experiments for the Determination of Airflow in Large Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Model experiments are one of the methods used for the determination of airflow in large spaces. This paper will discuss the formation of the governing dimensionless numbers. It is shown that experiments with a reduced scale often will necessitate a fully developed turbulence level of the flow....... Details of the flow from supply openings are very important for the determination of room air distribution. It is in some cases possible to make a simplified supply opening for the model experiment....

  1. Structural Design and Analysis of a Rigidizable Space Shuttle Experiment

    National Research Council Canada - National Science Library

    Holstein

    2004-01-01

    .... Once in space, the experiment will inflate and rigidize three composite structures and perform a vibration analysis on each by exciting the tubes using piezoelectric patches and collecting data via an accelerometer...

  2. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  3. Short-range inverse-square law experiment in space

    International Nuclear Information System (INIS)

    Strayer, D.M.; Paik, H.J.; Moody, M.V.

    2003-01-01

    The objective of ISLES (inverse-square law experiment in space) is to perform a null test of Newton's law on the ISS with a resolution of one part in 10 5 at ranges from 100 mm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R>= 5 μm. To accomplish these goals on the rather noisy International Space Station, the experiment is set up to provide immunity from the vibrations and other common-mode accelerations. The measures to be applied for reducing the effects of disturbances will be described in this presentation. As designed, the experiment will be cooled to less than 2 K in NASA's low temperature facility the LTMPF, allowing superconducting magnetic levitation in microgravity to obtain very soft, low-loss suspension of the test masses. The low-damping magnetic levitation, combined with a low-noise SQUID, leads to extremely low intrinsic noise in the detector. To minimize Newtonian errors, ISLES employs a near-null source of gravity, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a distance of 100 μm to 1 mm. The signal is detected by a superconducting differential accelerometer, making a highly sensitive sensor of the gravity force generated by the source mass

  4. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  5. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N. (Kobe University, Kobe, Japan); Tsutsui, M. (Kyoto University, Uji, Japan); Matsumoto, H. (Kyoto University, Kyoto, Japan)

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  6. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    Science.gov (United States)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  7. The Architectonic Experience of Body and Space in Augmented Interiors.

    Science.gov (United States)

    Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf

    2018-01-01

    The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space.

  8. The Architectonic Experience of Body and Space in Augmented Interiors

    Directory of Open Access Journals (Sweden)

    Isabella Pasqualini

    2018-04-01

    Full Text Available The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification and they shift their center of awareness toward the position of the avatar (self-location. However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented

  9. The Architectonic Experience of Body and Space in Augmented Interiors

    Science.gov (United States)

    Pasqualini, Isabella; Blefari, Maria Laura; Tadi, Tej; Serino, Andrea; Blanke, Olaf

    2018-01-01

    The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification) and they shift their center of awareness toward the position of the avatar (self-location). However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented architectonic space. PMID

  10. BASE-A space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight R. rubrum cultures returned back to...

  11. MESSAGE 2 space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight R. rubrum cultures returned...

  12. Development of an efficient Procedure for Resist Wall Space Experiment

    Science.gov (United States)

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  13. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    Science.gov (United States)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  14. Multinational Experiment 7. Protecting Access to Space: Presentation to Senior Leaders

    Science.gov (United States)

    2013-07-08

    Multinational Experiment 7: Outcome 3: Space Access Briefing to SLS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...operations Consequence management Ship status during search & rescue Tele-medicine Broadband internet TV signal distribution Satellite radio Rural...military-usage • Significant economic & societal consequences Access to space at risk • Current approach unsustainable • Broad range of threats

  15. International cooperation in the Space Station programme - Assessing the experience to date

    Science.gov (United States)

    Logsdon, John M.

    1991-01-01

    The origins and framework for cooperation in the Space Station program are outlined. Particular attention is paid to issues and commitments between the countries and to the political context of the Station partnership. A number of conclusions concerning international cooperation in space are drawn based on the Space Station experience. Among these conclusions is the assertion that an international partnership requires realistic assesments, mutual trust, and strong commitments in order to work.

  16. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  17. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  18. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  19. Erosion Results of the MISSE 7 Polymers Experiment and Zenith Polymers Experiment After 1.5 Years of Space Exposure

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.

    2016-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.

  20. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  1. Accuracy of the improved quasistatic space-time method checked with experiment

    International Nuclear Information System (INIS)

    Kugler, G.; Dastur, A.R.

    1976-10-01

    Recent experiments performed at the Savannah River Laboratory have made it possible to check the accuracy of numerical methods developed to simulate space-dependent neutron transients. The experiments were specifically designed to emphasize delayed neutron holdback. The CERBERUS code using the IQS (Improved Quasistatic) method has been developed to provide a practical yet accurate tool for spatial kinetics calculations of CANDU reactors. The code was tested on the Savannah River experiments and excellent agreement was obtained. (author)

  2. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  3. Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design

    Science.gov (United States)

    Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John

    2004-01-01

    This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.

  4. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    Science.gov (United States)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  5. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  6. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    International Nuclear Information System (INIS)

    Agodi, C; Bondì, M; Cavallaro, M; Carbone, D; Cirrone, G A P; Cuttone, G; Abou-Haidar, Z; Alvarez, M A G; Bocci, A; Aumann, T; Durante, M; Balestra, F; Battistoni, G; Bohlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cappuzzello, F; Cortes-Giraldo, M A; Napoli, M De

    2013-01-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) carbon target.

  7. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Science.gov (United States)

    Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.

    2013-03-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.

  8. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  9. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  10. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  11. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  12. Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E (∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment

  13. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  14. Calocube—A highly segmented calorimeter for a space based experiment

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.

    2016-01-01

    Future research in High Energy Cosmic Ray Physics concerns fundamental questions on their origin, acceleration mechanism, and composition. Unambiguous measurements of the energy spectra and of the composition of cosmic rays at the “knee” region could provide some of the answers to the above questions. Only ground based observations, which rely on sophisticated models describing high energy interactions in the earth's atmosphere, have been possible so far due to the extremely low particle rates at these energies. A calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification, especially when coupled to a dE/dx measuring detector, and thus overcome some of the limitations plaguing ground based experiments. For this to be possible very large acceptances are needed if enough statistic is to be collected in a reasonable time. This contrasts with the lightness and compactness requirements for space based experiments. A novel idea in calorimetry is discussed here which addresses these issues while limiting the mass and volume of the detector. In fact a small prototype is currently being built and tested with ions. In this paper the results obtained will be presented in light of the simulations performed.

  15. Calocube—A highly segmented calorimeter for a space based experiment

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessandro, R., E-mail: candi@fi.infn.it [University of Florence, Department of Physics and Astronomy, via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); INFN Firenze, via B. Rossi 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Adriani, O. [University of Florence, Department of Physics and Astronomy, via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); INFN Firenze, via B. Rossi 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Agnesi, A. [University of Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, Pavia (Italy); INFN Pavia, via A. Bassi 6, I-27100 Pavia (Italy); Albergo, S. [University of Catania, Department of Physics and Astronomy, via S. Sofia 64, I-95123 Catania (Italy); INFN Catania, via S. Sofia 64, I-95123 Catania (Italy); Auditore, L. [University of Messina, Department of Physics, sal. Sperone 31, I-98166 Messina (Italy); INFN Catania, via S. Sofia 64, I-95123 Catania (Italy); Basti, A. [University of Siena, Department of Physical Sciences, Earth and Environment, I-53100 Siena (Italy); INFN Pisa, via F. Buonarroti 2, I-56127 Pisa (Italy); Berti, E. [University of Florence, Department of Physics and Astronomy, via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); INFN Firenze, via B. Rossi 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bigongiari, G. [University of Siena, Department of Physical Sciences, Earth and Environment, I-53100 Siena (Italy); INFN Pisa, via F. Buonarroti 2, I-56127 Pisa (Italy); Bonechi, L. [INFN Firenze, via B. Rossi 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bonechi, S. [University of Siena, Department of Physical Sciences, Earth and Environment, I-53100 Siena (Italy); INFN Pisa, via F. Buonarroti 2, I-56127 Pisa (Italy); Bongi, M. [University of Florence, Department of Physics and Astronomy, via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); INFN Firenze, via B. Rossi 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bonvicini, V. [INFN Trieste, via Valerio 2, I-34127 Trieste (Italy); and others

    2016-07-11

    Future research in High Energy Cosmic Ray Physics concerns fundamental questions on their origin, acceleration mechanism, and composition. Unambiguous measurements of the energy spectra and of the composition of cosmic rays at the “knee” region could provide some of the answers to the above questions. Only ground based observations, which rely on sophisticated models describing high energy interactions in the earth's atmosphere, have been possible so far due to the extremely low particle rates at these energies. A calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification, especially when coupled to a dE/dx measuring detector, and thus overcome some of the limitations plaguing ground based experiments. For this to be possible very large acceptances are needed if enough statistic is to be collected in a reasonable time. This contrasts with the lightness and compactness requirements for space based experiments. A novel idea in calorimetry is discussed here which addresses these issues while limiting the mass and volume of the detector. In fact a small prototype is currently being built and tested with ions. In this paper the results obtained will be presented in light of the simulations performed.

  16. The Role of Space in Learning: Spatio-Educational Experiences of Female Students within Emirati Higher Education

    OpenAIRE

    Zaidan, Gergana

    2015-01-01

    This interdisciplinary research examines the intersectional relationship between\\ud the domains of space, gender and education. It aims, first, to understand the\\ud spatio-educational experience of Emirati female learners; and second, to make\\ud it possible to enhance their learning experience by exploring the role of space in\\ud learning in a single gender context. This thesis addresses the lack of literature\\ud on women’s spatiality and space in learning, specifically in relation to Arab\\ud...

  17. Your place or mine: shared sensory experiences elicit a remapping of peripersonal space.

    Science.gov (United States)

    Maister, Lara; Cardini, Flavia; Zamariola, Giorgia; Serino, Andrea; Tsakiris, Manos

    2015-04-01

    Our perceptual systems integrate multisensory information about objects that are close to our bodies, which allow us to respond quickly and appropriately to potential threats, as well as act upon and manipulate useful tools. Intriguingly, the representation of this area close to our body, known as the multisensory 'peripersonal space' (PPS), can expand or contract during social interactions. However, it is not yet known how different social interactions can alter the representation of PPS. In particular, shared sensory experiences, such as those elicited by bodily illusions such as the enfacement illusion, can induce feelings of ownership over the other's body which has also been shown to increase the remapping of the other's sensory experiences onto our own bodies. The current study investigated whether such shared sensory experiences between two people induced by the enfacement illusion could alter the way PPS was represented, and whether this alteration could be best described as an expansion of one's own PPS towards the other or a remapping of the other's PPS onto one's own. An audio-tactile integration task allowed us to measure the extent of the PPS before and after a shared sensory experience with a confederate. Our results showed a clear increase in audio-tactile integration in the space close to the confederate's body after the shared experience. Importantly, this increase did not extend across the space between participant and confederate, as would be expected if the participant's PPS had expanded. Thus, the pattern of results is more consistent with a partial remapping of the confederate's PPS onto the participant's own PPS. These results have important consequences for our understanding of interpersonal space during different kinds of social interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Computer modeling of active experiments in space plasmas

    International Nuclear Information System (INIS)

    Bollens, R.J.

    1993-01-01

    The understanding of space plasmas is expanding rapidly. This is, in large part, due to the ambitious efforts of scientists from around the world who are performing large scale active experiments in the space plasma surrounding the earth. One such effort was designated the Active Magnetospheric Particle Tracer Explorers (AMPTE) and consisted of a series of plasma releases that were completed during 1984 and 1985. What makes the AMPTE experiments particularly interesting was the occurrence of a dramatic anomaly that was completely unpredicted. During the AMPTE experiment, three satellites traced the solar-wind flow into the earth's magnetosphere. One satellite, built by West Germany, released a series of barium and lithium canisters that were detonated and subsequently photo-ionized via solar radiation, thereby creating an artificial comet. Another satellite, built by Great Britain and in the vicinity during detonation, carried, as did the first satellite, a comprehensive set of magnetic field, particle and wave instruments. Upon detonation, what was observed by the satellites, as well as by aircraft and ground-based observers, was quite unexpected. The initial deflection of the ion clouds was not in the ambient solar wind's flow direction (rvec V) but rather in the direction transverse to the solar wind and the background magnetic field (rvec V x rvec B). This result was not predicted by any existing theories or simulation models; it is the main subject discussed in this dissertation. A large three dimensional computer simulation was produced to demonstrate that this transverse motion can be explained in terms of a rocket effect. Due to the extreme computer resources utilized in producing this work, the computer methods used to complete the calculation and the visualization techniques used to view the results are also discussed

  19. Simulations and experiments of intense ion beam compression in space and time

    International Nuclear Information System (INIS)

    Yu, S.S.; Seidl, P.A.; Roy, P.K.; Lidia, S.M.; Coleman, J.E.; Kaganovich, I.D.; Gilson, E.P.; Welch, Dale Robert; Sefkow, Adam B.; Davidson, R.C.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) (P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)). To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ∼300 keV K + beam and have separately achieved transverse and longitudinal focusing to a radius Z 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  20. Subjective Experiences of Space and Time: Self, Sensation, and Phenomenal Time

    OpenAIRE

    Ram Lakhan Pandey Vimal

    2008-01-01

    The investigation of subjective experiences (SEs) of space and time is at the core of consciousness research. The term ‘space’ includes the subject and objects. The SE of subject, I-ness, is defined as ‘Self’. The SEs of objects, subject’s external body, and subject’s internal states such as feelings, thoughts, and so on can be investigated using the proto-experience (PE)-SE framework. The SE of time is defined as ‘phenomenal time’ (...

  1. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  2. Community-Based Field Experiences in Teacher Education: Possibilities for a Pedagogical Third Space

    Science.gov (United States)

    Hallman, Heidi L.

    2012-01-01

    The present article discusses the importance of community-based field experiences as a feature of teacher education programs. Through a qualitative case study, prospective teachers' work with homeless youth in an after-school initiative is presented. Framing community-based field experiences in teacher education through "third space" theory, the…

  3. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  4. The Paucity Problem: Where Have All the Space Reactor Experiments Gone?

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D.; Marshall, Margaret A.

    2016-10-01

    The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that the international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.

  5. Data collecting and treatment control system in the «Alpha-Electron» space experiment on board the International Space Station

    International Nuclear Information System (INIS)

    Galper, A M; Batischev, A G; Naumov, P P; Naumov, P Yu

    2017-01-01

    The fast multilayer scintillation detector of the new telescope-spectrometer for the ALFA-ELECTRON space experiment is in ground testing mode now. Modules of data control system for spectrometer are discussed. The structure of the main data format and functional blocks for data treatment are presented. The device will planned to install on the outer surface of the Russian Segment (RS) of the International Space Station (ISS) in 2018. (paper)

  6. The effect of whole-body cooling on brain metabolism following perinatal hypoxic-ischemic injury.

    Science.gov (United States)

    Corbo, Elizabeth T; Bartnik-Olson, Brenda L; Machado, Sandra; Merritt, T Allen; Peverini, Ricardo; Wycliffe, Nathaniel; Ashwal, Stephen

    2012-01-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) have proven valuable in evaluating neonatal hypoxic-ischemic injury (HII). MRI scores in the basal ganglia of HII/HT(+) neonates were significantly lower than HII/HT(-) neonates, indicating less severe injury and were associated with lower discharge encephalopathy severity scores in the HII/HT(+) group (P = 0.01). Lactate (Lac) was detected in the occipital gray matter (OGM) and thalamus (TH) of significantly more HII/HT(-) neonates (31.6 and 35.3%) as compared to the HII/HT(+) group (10.5 and 15.8%). In contrast, the -N-acetylaspartate (NAA)-based ratios in the OGM and TH did not differ between the HII groups. Our data show that the HT was associated with a decrease in the number of HII neonates with detectable cortical and subcortical Lac as well as a decrease in the number of MRI-detectable subcortical lesions. We retrospectively compared the medical and neuroimaging data of 19 HII neonates who received 72 h of whole-body cooling (HII/HT(+)) with those of 19 noncooled HII neonates (HII/HT(-)) to determine whether hypothermia was associated with improved recovery from the injury as measured by MRI and MRS within the first 14 days of life. MRI scores and metabolite ratios of HII/HT(+) and HII/HT(-) neonates were also compared with nine healthy, nonasphyxiated "control" neonates.

  7. The Mice Drawer System (MDS experiment and the space endurance record-breaking mice.

    Directory of Open Access Journals (Sweden)

    Ranieri Cancedda

    Full Text Available The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS, contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS. The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th, 2009. MDS returned to Earth on November 27(th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  8. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    Science.gov (United States)

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  9. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Science.gov (United States)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  10. Two-phase reduced gravity experiments for a space reactor design

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-08-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments

  11. Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle.

    Science.gov (United States)

    Burkhalter, B B; McLean, J E; Curtis, J P; James, G S

    1991-12-01

    Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

  12. Theory and experiments in model-based space system anomaly management

    Science.gov (United States)

    Kitts, Christopher Adam

    This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.

  13. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  14. Observations of star-forming regions with the Midcourse Space Experiment

    NARCIS (Netherlands)

    Kraemer, KE; Shipman, RF; Price, SD; Mizuno, DR; Kuchar, T; Carey, SJ

    We have imaged seven nearby star-forming regions, the Rosette Nebula, the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5, with the Spatial Infrared Imaging Telescope on the Midcourse Space Experiment (MSX) satellite at 1800 resolution at 8.3, 12.1, 14.7, and 21.3 mum. The large

  15. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  16. Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    Science.gov (United States)

    Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.

    2007-01-01

    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.

  17. "EGM" (Electrostatics of Granular Matter): A Space Station Experiment to Examine Natural Particulate Systems

    Science.gov (United States)

    Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.

    1999-09-01

    A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.

  18. A space standards application to university-class microsatellites: The UNISAT experience

    Science.gov (United States)

    Graziani, Filippo; Piergentili, Fabrizio; Santoni, Fabio

    2010-05-01

    Hands-on education is recognized as an invaluable tool to improve students' skills, to stimulate their enthusiasm and to educate them to teamwork. University class satellite programs should be developed keeping in mind that education is the main goal and that university satellites are a unique opportunity to make involved students familiar with all the phases of space missions. Moreover university budgets for education programs are much lower than for industrial satellites programs. Therefore two main constraints must be respected: a time schedule fitting with the student course duration and a low economic budget. These have an impact on the standard which can be followed in university class satellite programs. In this paper university-class satellite standardization is discussed on the basis of UNISAT program experience, reporting successful project achievements and lessons learned through unsuccessful experiences. The UNISAT program was established at the Scuola di Ingegneria Aerospaziale by the Group of Astrodynamics of the University of Rome "La Sapienza" (GAUSS) as a research and education program in which Ph.D. and graduate students have the opportunity to gain hands-on experience on small space missions. Four university satellites (UNISAT, UNISAT-2, UNISAT-3, UNISAT-4), weighing about 10 kg, have been designed, manufactured, tested and launched every two years since 2000 in the framework of this program In the paper, after a brief overview of new GAUSS programs, an analysis of the UNISAT satellites ground test campaign is carried out, identifying the most critical procedures and requirements to be fulfilled. Moreover a device for low earth orbit low-cost satellite end-of-life disposal is presented; this system (SIRDARIA) complies with the international guidelines on space debris.

  19. International Summer School on Astronomy and Space Science in Chile, first experience.

    Science.gov (United States)

    Stepanova, M.; Arellano-Baeza, A. A.

    I International Summer School on Astronomy and Space Science took place in the Elqui Valley Chile January 15-29 2005 Eighty 12-17 year old students from Chile Russia Venezuela and Bulgaria obtained a valuable experience to work together with outstanding scientists from Chile and Russia and with Russian cosmonaut Alexander Balandine They also had opportunity to visit the main astronomical observatories and to participate in workshops dedicated to the telescope and satellite design and remote sensing This activity was supported by numerous institutions in Chile including the Ministry of Education the European Southern Observatory Chilean Space Agency Chilean Air Force Latin American Association of Space Geophysics the principal Chilean universities and the First Lady Mrs Luisa Duran

  20. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  1. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  2. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  3. First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment

    Science.gov (United States)

    Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.

    2013-12-01

    During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.

  4. The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15

    Science.gov (United States)

    Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.

    2009-01-01

    This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering

  5. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  6. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  7. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  8. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  9. Experience with Space Forums and Engineering Courses Organized for the Broad Dissemination of Space-related Information

    Science.gov (United States)

    Dessimoz, J.-D.; D'Aquino, U.; Gander, J.-G.; Sekler, J.

    2002-01-01

    , the basics of propulsion techniques, and selected chapters in specific fields, such as communication, microgravity issues, space journeys, telerobotics, space instrumentation or bio-medical experiments, to mention just a few topics. Both types of actions are complementary and have each so far involved more than thousand participants, notably with very little overlap between both groups of attendees. Those numbers are particularly significant in view of the small country size and the low urban concentration of Switzerland. For the successful organisation of such actions, the co-ordinated effort of several institutions is mandatory. Among other main contributors, the SRV could gratefully count on the support and help from the European Space Agency (ESA), the Swiss Space Office (SSO), the Swiss Academy for Technical Sciences (SATW), as well as on numerous universities, schools, space industries and dedicated individuals. The communication mainly reports here on two types of actions: the Space technology courses for engineering students and professionals and our Space Forums for the interested public. In addition, the SRV association is also active in the realisation of yet other kinds of events: Space days, initiatives at the Swiss Transportation Museum, encouragement of applied R&D studies sponsored by the Swiss government (i.e. the CTI - Swiss Commission for Technology and Innovation), website offering and maintenance, newsletters, etc.

  10. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  11. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  12. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  13. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  14. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  15. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  16. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  17. Experience from the Student Programme REXUS/BEXUS: A Stepping Stone to a Space Career

    Science.gov (United States)

    Berquand, A.

    2015-09-01

    The aim of this paper is to give an inside view to the REXUS/BEXUS programme from the perspective of a student who has been involved in the project. Each year, the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), in cooperation with the European Space Agency (ESA), offer the opportunity to European University Students to fly an experiment on board sounding rockets or stratospheric balloons in the frame of the REXUS/BEXUS programme. From December 2012 to May 2014 a team of master students from KTH, the Royal Institute of Technology, worked on ISAAC project, an atmospheric experiment launched on board REXUS 15. The author was part of this student team and was involved in the whole process of the ISAAC project from design building and testing phases to the launch campaign and results analysis. The points raised in this article were presented on the occasion of a keynote speech during the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, in Tromsø (Norway) from the 7th to the 12th ofJune 2015. The aim of this presentation was to demonstrate the benefits of hands-on Education programme at University level. In addition to the research opportunities, future space engineers and scientists can profit from a first practical experience under the supervision of experimented experts. The results of the ISAAC project were also presented in the frame of this conference [1].

  18. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  19. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-01-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  20. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  1. Replacement Capability Options for the United States Space Shuttle

    Science.gov (United States)

    2013-09-01

    IIB Pamphlet . Retrieved April 29, 2012, from Japan Aerospace Exploration Agency (JAXA): http://www.jaxa.jp/pr/ brochure /pdf/01/rocket05.pdf JAXA...n.d.). HTV: H-II Transfer Vehicle "KOUNOTORI". Retrieved August 24, 2012, from JAXA: http://www.jaxa.jp/pr/ brochure /pdf/01/rocket03.pdf JAXA...n.d.). Dream Chaser. Retrieved December 29, 2011, from Sierra Nevada Corporation: http://sncspace.com/uploads/ brochures /Dream_Chaser.pdf

  2. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  3. Capacity building in emerging space nations: Experiences, challenges and benefits

    Science.gov (United States)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  4. LDEF - 69 Months in Space: First Post-Retrieval Symposium, Part 1,

    Science.gov (United States)

    1991-01-01

    detector calibration; (6) the Z-dependent 388 60 40 20 "I ’ I -|—i—r HIIS/ CR39 (Simulation) IL w I I I [ I I I I I h i T i r i o d o...lasting two days. During design of this system, no provision was made to prevent this clock from recycling after 256 intervals, {i.e., 512 days) of

  5. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines.

    Science.gov (United States)

    Seddon, J M; Cevc, G; Kaye, R D; Marsh, D

    1984-06-05

    The structure and polymorphism of a homologous series of diacyl- and of dialkylphosphatidylethanolamines have been investigated by X-ray diffraction, calorimetry, and density measurement. The compositional dependence of the repeat spacings of the gel (L beta or L beta'), fluid bilayer (L alpha), and inverted hexagonal (HII) phases has been determined both for the short chain length (di-C12) dialkyl didodecylphosphatidylethanolamine (DDPE) and for the long chain length (di-C20) diacyl diarachinoylphosphatidylethanolamine (DAPE). These data, in conjunction with the measured phase transition temperatures obtained both by X-ray diffraction and by differential scanning calorimetry, have been used to construct phase diagrams for the two lipids. DDPE exhibits metastable behavior in the L beta and L alpha phases below 44 degrees C at all water contents and forms cubic and other nonlamellar phases between the L alpha and HII phases. At low water contents, crystalline and fluid phases coexist at temperatures up to 83 degrees C. For DAPE, the behavior is simpler. In the gel phase, the hydrocarbon chains are tilted at 29 degrees to the bilayer normal, and metastability is only observed at water contents below 3 wt %. The L alpha phase is adopted within a narrow temperature range and then transforms directly to the HII phase. The structural parameters of the L beta (L beta'), L alpha, and HII phases of DDPE and DAPE have been calculated from the X-ray data, in conjunction with the measured values of lipid partial specific volume. In addition, the chain-length dependence of the repeat spacings of the phases has been measured for the homologous series of diacyl and dialkyl lipids. Taken together, the results allow a detailed description of the effects of temperature, hydration, and chain length on the polymorphism of the saturated phosphatidylethanolamines.

  6. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  7. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Directory of Open Access Journals (Sweden)

    Ravinder eJerath

    2015-08-01

    Full Text Available The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information is filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  8. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience.

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W; Barnes, Vernon A

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  9. Perception, experience and the use of public urban spaces by residents of urban neighbourhoods

    Directory of Open Access Journals (Sweden)

    Nataša Bratina Jurkovič

    2014-06-01

    Full Text Available In cities, public green open spaces offer residents a potentially better quality of life. The behavioural patterns by which people experience and use these spaces is therefore a valuable source of information for spatial planning. Indeed, studying how these spaces are used has also shown a significant difference between the intentions of planners and users. Only the frequency of visits to these public green spaces ultimately testifies to their appropriate and successful planning. Based on empirical research conducted in a residential area of Ljubljana, this article addresses the significance and methods of obtaining information on the experience and use of urban open spaces by residents of that neighbourhood. The article identifies factors (that could also be used by planners that significantly impact satisfaction levels among the intended users of the neighbourhood. The focus group method and socio spatial schema method were used, based on the assumption that a multi method approach provides more accurate and reliable information that is verifiable, and therefore more useful in developing planning policies. According to the research findings, residents perceive their “neighbourhood” to be the area around their home in which they know each other and socialise with neighbours. The factors that trigger a sense of satisfaction with their neighbourhood are well maintained green areas in the vicinity of their home, parks with trees that provide spaces for a variety of activities, tree lined streets, green areas connected into a system, the opportunity to use these areas for recreation and sports, and street furniture for rest or play. The spatial elements that hinder the use of such open spaces are, in particular, busy streets, unprotected pedestrian crossings, large garage areas and car parking.

  10. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    Science.gov (United States)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  11. NGC 6334 and NGC 6357 Insights from spectroscopy of their OB star populations

    Czech Academy of Sciences Publication Activity Database

    Russeil, D.; Adami, C.; Bouret, J.-C.; Hervé, Anthony; Parker, Q.A.; Zavagno, A.; Motte, F.

    2017-01-01

    Roč. 607, November (2017), A86/1-A86/32 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : stars distances * HII regions * ISM Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  12. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    Science.gov (United States)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  13. Preparation of guinea pig macrophage for electrophoretic experiments in space

    Science.gov (United States)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  14. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  15. Lessons from half a century experience of Japanese solid rocketry since Pencil rocket

    Science.gov (United States)

    Matogawa, Yasunori

    2007-12-01

    50 years have passed since a tiny rocket "Pencil" was launched horizontally at Kokubunji near Tokyo in 1955. Though there existed high level of rocket technology in Japan before the end of the second World War, it was not succeeded by the country after the War. Pencil therefore was the substantial start of Japanese rocketry that opened the way to the present stage. In the meantime, a rocket group of the University of Tokyo contributed to the International Geophysical Year in 1957-1958 by developing bigger rockets, and in 1970, the group succeeded in injecting first Japanese satellite OHSUMI into earth orbit. It was just before the launch of OHSUMI that Japan had built up the double feature system of science and applications in space efforts. The former has been pursued by ISAS (the Institute of Space and Astronautical Science) of the University of Tokyo, and the latter by NASDA (National Space Development Agency). This unique system worked quite efficiently because space activities in scientific and applicational areas could develop rather independently without affecting each other. Thus Japan's space science ran up rapidly to the international stage under the support of solid propellant rocket technology, and, after a 20 year technological introduction period from the US, a big liquid propellant launch vehicle, H-II, at last was developed on the basis of Japan's own technology in the early 1990's. On October 1, 2003, as a part of Governmental Reform, three Japanese space agencies were consolidated into a single agency, JAXA (Japan Aerospace Exploration Agency), and Japan's space efforts began to walk toward the future in a globally coordinated fashion, including aeronautics, astronautics, space science, satellite technology, etc., at the same time. This paper surveys the history of Japanese rocketry briefly, and draws out the lessons from it to make a new history of Japan's space efforts more meaningful.

  16. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    Science.gov (United States)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  17. Photometric Calibration of the Barium Cloud Image in a Space Active Experiment: Determining the Release Efficiency

    International Nuclear Information System (INIS)

    Xie Liang-Hai; Li Lei; Wang Jing-Dong; Tao Ran; Cheng Bing-Jun; Zhang Yi-Teng

    2014-01-01

    The barium release experiment is an effective method to explore the near-earth environment and to study all kinds of space physics processes. The first space barium release experiment in China was successfully carried out by a sounding rocket on April 5, 2013. This work is devoted to calculating the release efficiency of the barium release by analyzing the optical image observed during the experiment. First, we present a method to calibrate the images grey value of barium cloud with the reference stars to obtain the radiant fluxes at different moments. Then the release efficiency is obtained by a curve fitting with the theoretical evolution model of barium cloud. The calculated result is basically consistent with the test value on ground

  18. Safe Software for Space Applications: Building on the DO-178 Experience

    Science.gov (United States)

    Dorsey, Cheryl A.; Dorsey, Timothy A.

    2013-09-01

    DO-178, Software Considerations in Airborne Systems and Equipment Certification, is the well-known international standard dealing with the assurance of software used in airborne systems [1,2]. Insights into the DO-178 experiences, strengths and weaknesses can benefit the international space community. As DO-178 is an excellent standard for safe software development when used appropriately, this paper provides lessons learned and suggestions for using it effectively.

  19. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  20. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  1. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  2. Visual Experience Shapes the Neural Networks Remapping Touch into External Space.

    Science.gov (United States)

    Crollen, Virginie; Lazzouni, Latifa; Rezk, Mohamed; Bellemare, Antoine; Lepore, Franco; Collignon, Olivier

    2017-10-18

    Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space. SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception. Copyright © 2017 the authors 0270-6474/17/3710097-07$15.00/0.

  3. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  4. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    Science.gov (United States)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  5. Previous experience in manned space flight: A survey of human factors lessons learned

    Science.gov (United States)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  6. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  7. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  8. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  9. Personal attitudes toward time: The relationship between temporal focus, space-time mappings and real life experiences.

    Science.gov (United States)

    Li, Heng; Cao, Yu

    2017-06-01

    What influences how people implicitly associate "past" and "future" with "front" and "back?" Whereas previous research has shown that cultural attitudes toward time play a role in modulating space-time mappings in people's mental models (de la Fuente, Santiago, Román, Dumitrache & Casasanto, 2014), we investigated real life experiences as potential additional influences on these implicit associations. Participants within the same single culture, who are engaged in different intermediate-term educational experiences (Study 1), long-term living experiences (Study 2), and short-term visiting experiences (Study 3), showed their distinct differences in temporal focus, thereby influencing their implicit spatializations of time. Results across samples suggest that personal attitudes toward time related to real life experiences may influence people's space-time mappings. The findings we report on shed further light on the high flexibility of human conceptualization system. While culture may exert an important influence on temporal focus, a person's conceptualization of time may be attributed to a culmination of factors. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  10. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  11. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  12. Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design

    Science.gov (United States)

    Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie

    2018-01-01

    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…

  13. Erosion Data from the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2016-01-01

    The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.

  14. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  15. Behavior and reproduction of invertebrate animals during and after a long-term microgravity: space experiments using an Autonomous Biological System (ABS).

    Science.gov (United States)

    Ijiri, K; Mizuno, R; Narita, T; Ohmura, T; Ishikawa, Y; Yamashita, M; Anderson, G; Poynter, J; MacCallum, T

    1998-12-01

    Aquatic invertebrate animals such as Amphipods, Gastropods (pond snails), Ostracods and Daphnia (water flea) were placed in water-filled cylindrical vessels together with water plant (hornwort). The vessels were sealed completely and illuminated with a fluorescent lamp to activate the photosynthesis of the plant for providing oxygen within the vessels. Such ecosystem vessels, specially termed as Autonomous Biological System or ABS units, were exposed to microgravity conditions, and the behavior of the animals and their reproduction capacity were studied. Three space experiments were carried out. The first experiment used a Space shuttle only and it was a 10-day flight. The other two space experiments were carried out in the Space station Mir (Shuttle/Mir mission), and the flight units had been kept in microgravity for 4 months. Daphnia produced their offspring during a 10-day Shuttle flight. In the first Mir experiment, no Daphnia were detected when recovered to the ground. However, they were alive in the second Mir experiment. Daphnia were the most fragile species among the invertebrate animals employed in the present experiments. All the animals, i.e., Amphipods, pond snails, Ostracods and Daphnia had survived for 4 months in space, i.e., they had produced their offspring or repeated their life-cycles under microgravity. For the two Mir experiments, in both the flight and ground control ecosystem units, an inverse relationship was noted between the number of Amphipods and pond snails in each unit. Amphipods at 10 hours after the recovery to the ground frequently exhibited a movement of dropping straight-downward to the bottom of the units. Several Amphipods had their legs bent abnormally, which probably resulted from some physiological alterations during their embryonic development under microgravity. From the analysis of the video tape recorded in space, for Ostracods and Daphnia, a half of their population were looping under microgravity. Such looping animals

  16. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  17. Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates

    Science.gov (United States)

    Alekseev, Victor; Novikova, Nataliya; Levinskikh, Margarita; Sychev, Vladimir; Yusoff, Fatimah; Azuraidi, Osman

    2012-07-01

    Dormancy protects animals and plants in harsh environmental conditions from months up to hundred years. This phenomenon is perspective for space researches especially for interplanetary missions. Direct experiments in open space BYORYSK supported in principle the fact of survivorship of bacteria, fungi spores, seed of plants and crustacean dormant cysts. Even though the rate of survivorship in long-term treatments was low but good enough to conclude that biological invasion even to Mars is a real danger. As soon as the BYORYSK lunch was made of metal the possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it an ESA and RSA equipment titled EXPOSE-R was applied. The EXPOSE-R facility was an external facility attached to the outside of the Zvezda Service Module in ISS in the end of November 2008. It had glace windows transparent for UV-radiation and possibility to measure temperature, space- and UV-radiation. Among a number of experiments requiring exposure to the open space environment it had a biological launch containing resting stages of terrestrial and aquatic organisms. These stages included dried ephippia of cladoceran Daphnia magna differentiated on size, dormant eggs of ostracode Eucypris ornate, cysts of fair-shrimp Streptocephalus torvicornis ( all from hemi desert Caspian area) and Artemis salina from salt lake Crimean populations. All dormant stages were kept in transparent to UV plastic bags placed in three layers. After about two years of exposing in open space dormant stages of 3 species A. salina, D. magna, S. torvicornis successfully survived at different scales but in second and third layers only . The highest level of survivorship was found in A. salina cysts. In preliminary land experiments that imitated land EXPOSE imitation of outside space station UV and vacuum conditions survivorship in resting eggs of D .magna, S. torvicornis and E. ornate was tested also. The total UV dose of

  18. An Experiment on Radio Location of Objects in the Near-Earth Space with VLBI in 2012

    Directory of Open Access Journals (Sweden)

    Nechaeva M.

    2013-03-01

    Full Text Available An experiment on radar location of space debris objects using of the method of VLBI was carried out in April, 2012. The radar VLBI experiment consisted in irradiation of some space debris objects (4 rocket stages and 5 inactive satellites with a signal of the transmitter with RT-70 in Evpatoria, Ukraine. Reflected signals were received by a complex of radio telescopes in the VLBI mode. The following VLBI stations took part in the observations: Ventspils (RT-32, Urumqi (RT-25, Medicina (RT-32 and Simeiz (RT-22. The experiment included measurements of the Doppler frequency shift and the delay for orbit refining, and measurements of the rotation period and sizes of objects by the amplitudes of output interferometer signals. The cross-correlation of VLBI-data is performed at a correlator NIRFI-4 of Radiophysical Research Institute (Nizhny Novgorod. Preliminary data processing resulted in the series of Doppler frequency shifts, which comprised the information on radial velocities of the objects. Some results of the experiment are presented.

  19. Sacred space, analytic space, the self, and god.

    Science.gov (United States)

    Rizzuto, Ana-María

    2009-01-01

    Parental figures influence the type of religious experiences a person may have. Clinical material from the analysis of a young woman documents the importance of having an actual sacred space in which one can be oneself in religious life and a psychoanalytic space during treatment to progressively experience oneself.

  20. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    Science.gov (United States)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  1. The role of space communication in promoting national development with specific reference to experiments conducted in India

    Science.gov (United States)

    Chitnis, E. V.

    The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.

  2. The MISSE 7 Flexural Stress Effects Experiment After 1.5 Years of Wake Space Exposure

    Science.gov (United States)

    Snow, Kate E.; De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Low Earth orbit space environment conditions, including ultraviolet radiation, thermal cycling, and atomic oxygen exposure, can cause degradation of exterior spacecraft materials over time. Radiation and thermal exposure often results in bond- breaking and embrittlement of polymers, reducing mechanical strength and structural integrity. An experiment called the Flexural Stress Effects Experiment (FSEE) was flown with the objective of determining the role of space environmental exposure on the degradation of polymers under flexural stress. The FSEE samples were flown in the wake orientation on the exterior of International Space Station for 1.5 years. Twenty-four samples were flown: 12 bent over a 0.375 in. mandrel and 12 were over a 0.25 in. mandrel. This was designed to simulate flight configurations of insulation blankets on spacecraft. The samples consisted of assorted polyimide and fluorinated polymers with various coatings. Half the samples were designated for bend testing and the other half will be tensile tested. A non-standard bend-test procedure was designed to determine the surface strain at which embrittled polymers crack. All ten samples designated for bend testing have been tested. None of the control samples' polymers cracked, even under surface strains up to 19.7%, although one coating cracked. Of the ten flight samples tested, seven show increased embrittlement through bend-test induced cracking at surface strains from 0.70%to 11.73%. These results show that most of the tested polymers are embrittled due to space exposure, when compared to their control samples. Determination of the extent of space induced embrittlement of polymers is important for designing durable spacecraft.

  3. Impact of a hospital improvement initiative in Bangladesh on patient experiences and satisfaction with services: two cross-sectional studies

    Directory of Open Access Journals (Sweden)

    Omer Khalid

    2011-12-01

    Full Text Available Abstract Background The Bangladesh government implemented a pilot Hospital Improvement Initiative (HII in five hospitals in Sylhet division between 1998 and 2003. This included management and behaviour change training for staff, waste disposal and procurement, and referral arrangements. Two linked cross-sectional surveys in 2000 and 2003 assessed the impact of the HII, assessing both patients' experience and satisfaction and public views and use of the hospitals. Methods In each survey we asked 300 consecutive outpatients and a stratified random sample of 300 inpatients in the five hospitals about waiting and consultation time, use of an agent for admission, and satisfaction with privacy, cleanliness, and staff behaviour. The field teams observed cleanliness and privacy arrangements, and visited a sample of households in communities near the hospitals to ask about their opinions and use of the hospital services. Analysis examined changes over time in patients' experience and views. Multivariate analysis took account of other variables potentially associated with the outcomes. Survey managers discussed the survey findings with gender stratified focus groups in each sample community. Results Compared with 2000, an outpatient in three of the hospitals in 2003 was more likely to be seen within 10 minutes and for at least five minutes by the doctor, but outpatients were less likely to report receiving all the prescribed medicines from the hospital. In 2003, inpatients were more likely to have secured admission without using an agent. Although patients’ satisfaction with several aspects of care improved, most changes were not statistically significant. Households in 2003 were significantly more likely to rate the hospitals as good than in 2000. Use of the hospitals did not change, except that more households used the medical college hospital for inpatient care in 2003. Focus groups confirmed criticisms of services and suggested improvements

  4. Genelab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    Science.gov (United States)

    Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.

    2016-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong

  5. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    Science.gov (United States)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  6. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  7. Mechanical and thermal design of an experiment aboard the space shuttle: the Spacelab spectrometer

    International Nuclear Information System (INIS)

    Besson, J.

    1985-01-01

    The spectrometer designed by ONERA and IASB (Belgium Space Aeronomy Institute) to measure atmospheric trace constituents was flown aboard Spacelab 1 during the 9 th mission of the American Space Shuttle from November 28 to December 8, 1983. After a brief summary of the history of the project related to Spacelab, the mechanical and thermal design of the spectrometer is described. Some methods, calculations and characteristic tests are detailed as examples. The behaviour of the experiment during the mission and the results of the post-flight tests are shortly analyzed in order to prepare the qualification for a reflight [fr

  8. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  9. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    Science.gov (United States)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  10. The Rhetoric of Multi-Display Learning Spaces: exploratory experiences in visual art disciplines

    Directory of Open Access Journals (Sweden)

    Brett Bligh

    2010-11-01

    Full Text Available Multi-Display Learning Spaces (MD-LS comprise technologies to allow the viewing of multiple simultaneous visual materials, modes of learning which encourage critical reflection upon these materials, and spatial configurations which afford interaction between learners and the materials in orchestrated ways. In this paper we provide an argument for the benefits of Multi-Display Learning Spaces in supporting complex, disciplinary reasoning within learning, focussing upon our experiences within postgraduate visual arts education. The importance of considering the affordances of the physical environment within education has been acknowledged by the recent attention given to Learning Spaces, yet within visual art disciplines the perception of visual material within a given space has long been seen as a key methodological consideration with implications for the identity of the discipline itself. We analyse the methodological, technological and spatial affordances of MD-LS to support learning, and discuss comparative viewing as a disciplinary method to structure visual analysis within the space which benefits from the simultaneous display of multiple partitions of visual evidence. We offer an analysis of the role of the teacher in authoring and orchestration and conclude by proposing a more general structure for what we term ‘multiple perspective learning’, in which the presentation of multiple pieces of visual evidence creates the conditions for complex argumentation within Higher Education.

  11. Building on the Past - Looking to the Future. Part 2; A Focus on Expanding Horizons

    Science.gov (United States)

    Guidry, Richard W.; Nash, Sally K.; Rehm, Raymond B.; Wolf, Scott L.; Wong, Teresa K.

    2010-01-01

    The history of space endeavors stretches far from Robert Goddard s initial flights and will certainly extend far beyond the construction of the International Space Station. As society grows in knowledge of and familiarity with space, the focus of maintaining the safety of the crews and the habitability of the vehicles will be of the utmost importance to the National Aeronautics and Space Administration (NASA) community. Through the years, Payload Safety has developed not only as a Panel, but also as part of the NASA community, striving to enhance the efficiency and understanding of how business should be conducted as more International Partners become involved. The recent accomplishments of the first docking of the Japan Aerospace Exploration Agency (JAXA) HII Transfer Vehicle (HTV 1) and completion of the Japanese Experiment Module (JEM) or KIBO and the Russian MRM2 to the International Space Station (ISS) mark significant steps for the future of ISS. 2010 will mark the final flights of the Shuttle and the completion of ISS assembly. Future delivery of humans and hardware will rely on the Russian Progress and Soyuz, the Japanese HII Transfer Vehicle (HTV), the European Automated Transfer Vehicle (ATV) and US "Commercial Off-The-Shelf" (COTS) and Constellation vehicles. The International Partners (IPs) will have more capability in delivery as well as responsibility for review of hardware they deliver to assure safe operation. This is the second in a series of papers and presentations in what is hoped to be an annual update that illustrates challenges and lessons learned in the areas of communication (how hazard reports can be misunderstood), safety requirements (transitioning from Shuttle-centric to ISS-centric), and processes (review of hardware by RSC-E and Franchised ESA and JAXA PSRP) which have been vital in conducting the business of the Payload Safety Review Panel (PSRP). This year will focus on the items annotated above.

  12. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    Science.gov (United States)

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  13. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    Science.gov (United States)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Evolução química de galáxias HII anãs

    Science.gov (United States)

    Ferraresi, M., Jr.; Cuisinier, F.; Telles, E.

    2003-08-01

    Galáxias HII anãs são galáxias de baixa massa, com alto conteúdo de gás, e se encontram em uma fase intensa de formação estelar. A taxa de formação estelar está tão alta nestas galáxias que não pode ter se mantido durante sua vida inteira. O tempo máximo de duração do episódio atual de formação estelar deve ser no máximo de algumas dezenas de milhões de anos, bem inferior à idade destas galáxias. Isto leva naturalmente a idéia de que já aconteceram surtos anteriores. Abundâncias químicas oferecem uma ferramenta poderosa para investigar a história evolutiva destas galáxias, porque aumentam de geração em geração estelar. O hidrogênio, o oxigênio, o nitrogênio produzem algumas das linhas mais importantes em um gás foto-ionizado, permitindo a determinação das abundâncias destes elementos facilmente. A dispersão das abundâncias em oxigênio e nitrogênio é significativa, sendo maior que os erros observacionais. O oxigênio é produzido em estrelas massivas, que explodem quase instâneamente, enquanto o nitrogênio é produzido em estrelas de massa intermediária, que só o liberam depois de um atraso de @ 500 mihões de anos. Construímos um modelo de evolução química semi-analítico, utilizando rendimentos empíricos baseados nas abundâncias observadas destes dois elementos. Conseguimos através deste modelo rudimentar explicar nas galáxias de mais baixas metalicidades as abundâncias de oxigênio e de nitrogênio, assim como a dispersão dos dados observacionais devida a formação estelar descontínua, e isto com um número baixo de surtos (1 ou 2, no máximo 3).

  15. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-01-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and 'iron' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper

  16. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    Science.gov (United States)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  17. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  18. Performance of the Hack's Impairment Index Score: A Novel Tool to Assess Impairment from Alcohol in Emergency Department Patients.

    Science.gov (United States)

    Hack, Jason B; Goldlust, Eric J; Ferrante, Dennis; Zink, Brian J

    2017-10-01

    Over 35 million alcohol-impaired (AI) patients are cared for in emergency departments (EDs) annually. Emergency physicians are charged with ensuring AI patients' safety by identifying resolution of alcohol-induced impairment. The most common standard evaluation is an extemporized clinical examination, as ethanol levels are not reliable or predictive of clinical symptoms. There is no standard assessment of ED AI patients. The objective was to evaluate a novel standardized ED assessment of alcohol impairment, Hack's Impairment Index (HII score), in a busy urban ED. A retrospective chart review was performed for all AI patients seen in our busy urban ED over 24 months. Trained nurses evaluated AI patients with both "usual" and HII score every 2 hours. Patients were stratified by frequency of visits for AI during this time: high (≥ 6), medium (2-5), and low (1). Within each category, comparisons were made between HII scores, measured ethanol levels, and usual nursing assessment of AI. Changes in HII scores over time were also evaluated. A total of 8,074 visits from 3,219 unique patients were eligible for study, including 7,973 (98.7%) with ethanol levels, 5,061 (62.7%) with complete HII scores, and 3,646 (45.2%) with health care provider assessments. Correlations between HII scores and ethanol levels were poor (Pearson's R 2  = 0.09, 0.09, and 0.17 for high-, medium-, and low-frequency strata). HII scores were excellent at discriminating nursing assessment of AI, while ethanol levels were less effective. Omitting extrema, HII scores fell consistently an average 0.062 points per hour, throughout patients' visits. The HII score applied a quantitative, objective assessment of alcohol impairment. HII scores were superior to ethanol levels as an objective clinical measure of impairment. The HII declines in a reasonably predictable manner over time, with serial evaluations corresponding well with health care provider evaluations. © 2017 by the Society for Academic

  19. A high resolution, low power time-of-flight system for the space experiment AMS

    International Nuclear Information System (INIS)

    Alvisi, D.; Anselmo, F.; Baldini, L.; Bari, G.; Basile, M.; Bellagamba, L.; Bruni, A.; Bruni, G.; Boscherini, D.; Casadei, D.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Recupero, S.; Sartorelli, G.; Williams, C.; Zichichi, A.

    1999-01-01

    The system of plastic scintillator counters for the AMS experiment is described. The main characteristics of the detector are: (a) large sensitive area (four 1.6 m 2 planes) with small dead space; (b) low-power consumption (150 W for the power and the read-out electronics of 336 PMs); (c) 120 ps time resolution

  20. The experience to use space data as educational resources for secondary school students

    Science.gov (United States)

    Zaitzev, A.; Boyarchuk, K.

    The space science data available free from Internet and include all kind of data: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, ground-based and satellite aurora images and magnetic field variations in real time, ionospheric data etc. Beside that we have the direct transmissions of meteorological images from NOAA satellites in the APT and HRPT modes. All such sources of data can be used for educational programs for secondary school students. During last 10 years we conduct special classes in local school, where we use such space data. After introduction course each student might choose the topic which he can study in details. Each year the students prepare the original papers and participate in the special conferences, which one is in The Space Day, April 12. As curriculum materials we also use Russian language magazine "Novosti Kosmonavtiki", original data bases with space data available on CD-ROMs and publications in English. Such approach stimulate students to lean English also. After finish the classes K-12 students motivated well to continue education into space science and IZMIRAN will plan to support that students. In past two years we pay attention to use microsatellites for education. Last one is Russian-Australian KOLIBRI-2000 microsatellite, which was launched March 2002. KOLIBRI-2000 conduct simple measurements as magnetic field and particles. The experience in the usage of microsatellites data in classes are analyzed. The prospects and recommendations are discussed.

  1. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  2. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  3. The Affect of the Space Environment on the Survival of Halorubrum Chaoviator and Synechococcus (Nageli): Data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2014-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life

  4. Space plasma branch at NRL

    Science.gov (United States)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  5. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  6. Things That Squeak and Make You Feel Bad: Building Scalable User Experience Programs for Space Assessment

    Directory of Open Access Journals (Sweden)

    Rebecca Kuglitsch

    2018-04-01

    Full Text Available This article suggests a process for creating a user experience (UX assessment of space program that requires limited resources and minimal prior UX experience. By beginning with small scale methods, like comment boxes and easel prompts, librarians can overturn false assumptions about user behaviors, ground deeper investigations such as focus groups, and generate momentum. At the same time, these methods should feed into larger efforts to build trust and interest with peers and administration, laying the groundwork for more in-depth space UX assessment and more significant changes. The process and approach we suggest can be scaled for use in both large and small library systems. Developing a user experience space assessment program can seem overwhelming, especially without a dedicated user experience librarian or department, but does not have to be. In this piece, we explore how to scale and sequence small UX projects, communicate UX practices and results to stakeholders, and build support in order to develop an intentional but still manageable space assessment program. Our approach takes advantage of our institutional context—a large academic library system with several branch locations, allowing us to pilot projects at different scales. We were able to coordinate across a complex multi-site system, as well as in branch libraries with a staffing model analogous to libraries at smaller institutions. This gives us confidence that our methods can be applied at libraries of different sizes. As subject librarians who served as co-coordinators of a UX team on a voluntary basis, we also confronted the question of how we could attend to user needs while staying on top of our regular workload. Haphazard experimentation is unsatisfying and wasteful, particularly when there is limited time, so we sought to develop a process we could implement that applied approachable, purposeful UX space assessments while building trust and buy-in with colleagues

  7. Water masers in NGC7538 region

    Science.gov (United States)

    Kameya, Osamu

    We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.

  8. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  9. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  10. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    Science.gov (United States)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  11. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  12. Comparison of MARS-KS and SPACE for UPTF TRAM Loop Seal Clearing Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gil; Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Bang, Young Seok [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the authors assessed SPACE code, which was developed by a consortium led by Korea Hydro and Nuclear Power Co., Ltd. (KHNP), now in licensing process and MARS-KS code for UPTF TRAM loop seal clearing experiment to evaluate the code predictability regarding loop seal clearing for supporting the regulatory review. The sensitivity of PT/CT sagging contact angle has been studied. The results of sagging contact angle could explain in different ways. In the case of wide sagging contact angle, the result is quite conservative in the aspect of containment as the heat is well-transferred to moderator. it causes the moderator to heat up. On the other hand, the narrow sagging contact angle results fuel heatup and give limiting condition for fuel integrity. As a result of estimation, a proper application of sagging contact angle is required to provide limiting condition for subsequent analysis. The results from the two codes were compared to the experimental data, but due to the lack of information on the uncertainties it is too early to conclude the both code's performance. However, from the obtained analysis results, some differences between MARS-KS and SPACE are initially observed. Especially, SPACE has larger oscillation in the calculated mass flow rate value than MARS-KS. This phenomenon was observed in comparison of SPACE and MARS-KS CCFL model as well.

  13. Control of an experiment to measure acoustic noise in the space shuttle

    Science.gov (United States)

    Cameron, Charles B.

    1989-06-01

    The potential use of a general-purpose controller to measure acoustic vibration autonomously in the Space Shuttle Cargo Bay during launch is described. The experimental package will be housed in a Shuttle Get Away Special (GAS) canister. The control functions were implemented with software written largely in the C programming language. An IBM MS DOS computer and C cross-compiler were used to generate Z-80 assembly language code, assemble and link this code, and then transfer it to EPROM for use in the experiment's controller. The software is written in a modular fashion to permit adapting it easily to other applications. The software combines the experimental control functions with a menu-driven, diagnostic subsystem to ensure that the software will operate in practice as it does in theory and under test. The experiment uses many peripheral devices controlled by the software described here. These devices include: (1) a solid-state data recorder; (2) a bubble memory storage module; (3) a real-time clock; (4) an RS-232C serial interface; (5) a power control subsystem; (6) a matched filter subsystem to detect activation of the Space Shuttle's auxillary power units five minutes prior to launch; (7) a launch detection subsystem based on vibrational and barometric sensors; (8) analog-to-digital converters; and (9) a heater subsystem. The matched filter design is discussed in detail and the results of a computer simulation of the performance of its most critical sub-circuit are presented.

  14. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  15. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    Science.gov (United States)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  16. Space chamber experiments of ohmic heating by high power microwave from the solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.

    1981-12-01

    It is quantitatively predicted that a high power microwave from the Solar Power Satellite (SPS) nonlinearly interacts with the ionospheric plasma. The possible nonlinear interactions are ohmic heating, self-focusing and parametric instabilities. A rocket experiment called MINIX (Microwave-Ionosphere Nonlinear Interaction Experiment) has been attempted to examine these effects, but is note reported here. In parallel to the rocket experiment, a laboratory experiment in a space plasma simulation chamber has been carried out in order to examine ohmic heating in detail and to develop a system of the rocket experiment. Interesting results were observed and these results were utilized to revise the system of the rocket experiments. A significant microwave heating of plasma up to 150% temperature increase was observed with little electron density decrease. It was shown that the temperature increase is not due to the RF breakdown but to the ohmic heating in the simulated ionospheric plasma. These microwave effects have to be taken into account in the SPS Project in the future.

  17. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    Science.gov (United States)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  18. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  19. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    Science.gov (United States)

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  20. Fasihi ya Kiswahili na rushwa Tanzania: Thomas A. R. Kamugisha ...

    African Journals Online (AJOL)

    Makala hii inajaribu kuelezea mchango wa fasihi ya Kiswahili katika kuijadili rushwa. Kwa kurejea kwenye Riwaya ya Thomas A.R. Kamugisha Kitu Kidogo tu! makala hii inasawilisha miongo takribani mitatu ya dhana ya “kitu kidogo” na athari zake kwa jamii ya Tanzania. Kwa kuijadili riwaya ya Kitu Kidogo tu! makala hii ...

  1. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  2. The phase-space structure of a dark-matter halo: Implications for dark-matter direct detection experiments

    International Nuclear Information System (INIS)

    Helmi, Amina; White, Simon D.M.; Springel, Volker

    2002-01-01

    We study the phase-space structure of a dark-matter halo formed in a high resolution simulation of a ΛCDM cosmology. Our goal is to quantify how much substructure is left over from the inhomogeneous growth of the halo, and how it may affect the signal in experiments aimed at detecting the dark matter particles directly. If we focus on the equivalent of 'solar vicinity', we find that the dark matter is smoothly distributed in space. The probability of detecting particles bound within dense lumps of individual mass less than 10 7 M · h -1 is small, less than 10 -2 . The velocity ellipsoid in the solar neighborhood deviates only slightly from a multivariate Gaussian, and can be thought of as a superposition of thousands of kinematically cold streams. The motions of the most energetic particles are, however, strongly clumped and highly anisotropic. We conclude that experiments may safely assume a smooth multivariate Gaussian distribution to represent the kinematics of dark-matter particles in the solar neighborhood. Experiments sensitive to the direction of motion of the incident particles could exploit the expected anisotropy to learn about the recent merging history of our Galaxy

  3. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  4. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2015-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary

  5. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  6. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Science.gov (United States)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  7. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  8. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  9. Swimming in a contained space: Understanding the experience of indoor lap swimmers.

    Science.gov (United States)

    Ward, Miranda

    2017-07-01

    Drawing on ethnographic work, this paper explores the convergence of bodies, materialities and practices found at the indoor swimming pool - a space that has not often been the subject of geographical study, in spite of the fact that swimming is one of the most popular forms of exercise in countries such as the UK. The paper focuses on the "contained" nature of the indoor pool environment, examining the distinct experience this can create for lap swimmers. This focus is placed in the context of a broader politics of exercise, with an emphasis on the popularity and potential benefits of swimming, as well as less encouraging facts about participation and facility provision, suggesting that in order to encourage further uptake of swimming and preservation of swimming facilities the voices and experiences of regular swimmers should be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Neutron dose study with bubble detectors aboard the International Space Station as part of the Matroshka-R experiment

    International Nuclear Information System (INIS)

    Machrafi, R.; Garrow, K.; Ing, H.; Smith, M. B.; Andrews, H. R.; Akatov, Yu; Arkhangelsky, V.; Chernykh, I.; Mitrikas, V.; Petrov, V.; Shurshakov, V.; Tomi, L.; Kartsev, I.; Lyagushin, V.

    2009-01-01

    As part of the Matroshka-R experiments, a spherical phantom and space bubble detectors (SBDs) were used on board the International Space Station to characterise the neutron radiation field. Seven experimental sessions with SBDs were carried out during expeditions ISS-13, ISS-14 and ISS-15. The detectors were positioned at various places throughout the Space Station, in order to determine dose variations with location and on/in the phantom in order to establish the relationship between the neutron dose measured externally to the body and the dose received internally. Experimental data on/in the phantom and at different locations are presented. (authors)

  11. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Vasyl P. Oleksyuk

    2013-06-01

    Full Text Available The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and educational space of the Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University.

  12. CaloCube: an innovative homogeneous calorimeter for the next-generation space experiments

    Science.gov (United States)

    Pacini, L.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Cappello, G.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Chiari, M.; Daddi, N.; DAlessandro, R.; Detti, S.; Fasoli, M.; Finetti, N.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Miritello, M.; Mori, N.; Orzan, G.; Olmi, M.; Papini, P.; Pellegriti, M. G.; Pirzio, F.; Rappoldi, A.; Ricciarini, S.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifirò, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.

    2017-11-01

    The direct measurement of the cosmic-ray spectrum, up to the knee region, is one of the instrumental challenges for next generation space experiments. The main issue for these measurements is a steeply falling spectrum with increasing energy, so the physics performance of the space calorimeters are primarily determined by their geometrical acceptance and energy resolution. CaloCube is a three-year R&D project, approved and financed by INFN in 2014, aiming to optimize the design of a space-born calorimeter. The peculiarity of the design of CaloCube is its capability of detecting particles coming from any direction, and not only those on its upper surface. To ensure that the quality of the measurement does not depend on the arrival direction of the particles, the calorimeter will be designed as homogeneous and isotropic as possible. In addition, to achieve a high discrimination power for hadrons and nuclei with respect to electrons, the sensitive elements of the calorimeter need to have a fine 3-D sampling capability. In order to optimize the detector performances with respect to the total mass of the apparatus, which is the most important constraint for a space launch, a comparative study of different scintillating materials has been performed using detailed Monte Carlo simulation based on the FLUKA package. In parallel to simulation studies, a prototype consisting in 14 layers of 3 x 3 CsI(Tl) crystals per layer has been assembled and tested with particle beams. An overview of the obtained results during the first two years of the project will be presented and the future of the detector will be discussed too.

  13. Calculation methods for estimating the prospects of a space experiment by means of impact by asteroid Apophis on the Moon surface

    Science.gov (United States)

    Ostrik, A. V.; Kazantsev, A. M.

    2018-01-01

    The problem of principal change of asteroid 99952 (Apophis) orbit is formulated. Aim of this change is the termination of asteroid motion in Solar system. Instead of the passive rescue tactics from asteroid threat, an option is proposed for using the asteroid for setting up a large-scale space experiment on the impact interaction of the asteroid with the Moon. The scientific and methodical apparatus for calculating the possibility of realization, searching and justification the scientific uses of this space experiment is considered.

  14. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  15. Budgeting Academic Space

    Science.gov (United States)

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  16. A radio continuum and infrared study of Galactic HII regions

    NARCIS (Netherlands)

    Martin-Hernandez, NL; van der Hulst, JM; Tielens, AGGM

    We present observations of the 4.8 and 8.6 GHz continuum emission towards 11 southern H II regions made with the Australian Telescope Compact Array. The observed objects were selected from the Infrared Space Observatory (ISO) spectral catalogue of compact H II regions (Peeters et al. 2002b). The

  17. Feasibility analysis of large length-scale thermocapillary flow experiment for the International Space Station

    Science.gov (United States)

    Alberts, Samantha J.

    The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.

  18. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  19. Investigation of pulse shape analyzers for phoswich detectors in space-borne hard X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, J A.M.; Overtoom, J M [Huygens Lab., Leiden (Netherlands). Cosmic Ray Working Group

    1979-12-01

    A low-background telescope for hard X-ray astronomy (15-250 keV), comprising arrays of NaI(Tl)/CsI(Na) phoswiches as photon collectors, was recently developed. The background rejection efficiency of such a telescope, and hence the minimum source in a given time, critically depends on the performance of the phoswich pulse shape analyzer (PSA) in a space radiation environment. Results from theoretical and experimental work on analyzer configurations based on zero-crossing detection are presented. This led to the selection of an optimum configuration for space application. The in-situ performance of this analyzer was evaluated in a balloon-borne hard X-ray experiment, showing excellent discrimination efficiency throughout the entire energy regime.

  20. The relative benefits of green versus lean office space: three field experiments.

    Science.gov (United States)

    Nieuwenhuis, Marlon; Knight, Craig; Postmes, Tom; Haslam, S Alexander

    2014-09-01

    Principles of lean office management increasingly call for space to be stripped of extraneous decorations so that it can flexibly accommodate changing numbers of people and different office functions within the same area. Yet this practice is at odds with evidence that office workers' quality of life can be enriched by office landscaping that involves the use of plants that have no formal work-related function. To examine the impact of these competing approaches, 3 field experiments were conducted in large commercial offices in The Netherlands and the U.K. These examined the impact of lean and "green" offices on subjective perceptions of air quality, concentration, and workplace satisfaction as well as objective measures of productivity. Two studies were longitudinal, examining effects of interventions over subsequent weeks and months. In all 3 experiments enhanced outcomes were observed when offices were enriched by plants. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Free-Operant Field Experiences: Differentially Reinforcing Successive Approximations to Behavior Analysis through a ShaperSpace

    Directory of Open Access Journals (Sweden)

    Lee L . Mason

    2016-11-01

    Full Text Available Over the past few years an increasing number of schools and community organizations have developed transformative learning spaces referred to as “MakerSpaces” for research and training purposes. MakerSpaces are organizations in which members sharing similar interests in science, technology, engineering, and math (STEM gather to work on self-selected projects. Proponents of MakerSpaces highlight the implicit benefits arising from participants’ increased engagement with complex technical content in a voluntary, authentic context. We extend the MakerSpace concept to applications of training special education teachers to address the needs of students with Autism Spectrum Disorder (ASD. Applied behavior analysis (ABA has vast empirical support for treating ASD. We believe the MakerSpace model provides a platform for developing a new generation of special education teachers. However, rather than making novel products, the focus is on shaping the behavior-analytic repertoires of special education teachers. In the field of ABA, the term “shaping” describes the differential reinforcement of successive approximations to a target behavior. Accordingly, we propose the name ShaperSpace to describe a novel clinical training approach to developing special education teachers who employ research-validated interventions for individuals with ASD. The supervision model described in this article is provided, not as a recommendation, but as an exemplar that has developed over four years’ contingency shaping and continues to be refined. We appeal to the reader to consider the ShaperSpace as a starting point from which skills developed through free-operant field experiences will ultimately be shaped and selected by the naturally occurring contingencies of the environment.

  2. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    OpenAIRE

    Vasyl P. Oleksyuk

    2013-01-01

    The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and education...

  3. Glass Melting under microgravity. ; Space experiment by Mori astronaut. Mujuryokuka deno glass yoyu. ; Morisan no uchu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Makihara, M. (Osaka National Research Institute, Osaka (Japan))

    1993-03-01

    A space experiment on glass melting under microgravity was performed in a space shuttle in September 1992. The experiment has been intended to make glass from glass material floating in air by heating and melting it with light and an acoustic levitation furnace. The acoustic levitation furnace used in the experiment has been arranged so that a sound wave from a speaker makes a steady wave in a cylindrical quartz glass core tube with a length of 16 cm and a diameter of 4 cm, and a test sample can be retained floating in a valley of central wave pressures. The test sample retained floating has been collected and heated by light from a 500-W halogen lamp. Behavior of molten glass liquid under microgravity has been investigated. The glass material powder spheres have been melted completely and made into glass without crystallization. With regard to flows generated in the test sample placed in the acoustic levitation furnace, a glass spot containing cobalt oxide has been attached onto part of the test sample surface for observation. As a result, the spot has been incorporated in the glass without developing diffusion. 6 refs., 4 figs.

  4. The Cosmic Abundance of 3He: Green Bank Telescope Observations

    Science.gov (United States)

    Balser, Dana; Bania, Thomas

    2018-01-01

    The Big Bang theory for the origin of the Universe predicts that during the first ~1,000 seconds significant amounts of the light elements (2H, 3He, 4He, and 7Li) were produced. Many generations of stellar evolution in the Galaxy modifies these primordial abundances. Observations of the 3He+ hyperfine transition in Galactic HII regions reveals a 3He/H abundance ratio that is constant with Galactocentric radius to within the uncertainties, and is consistent with the primordial value as determined from cosmic microwave background experiments (e.g., WMAP). This "3He Plateau" indicates that the net production and destruction of 3He in stars is approximately zero. Recent stellar evolution models that include thermohaline mixing, however, predict that 3He/H abundance ratios should slightly decrease with Galactocentric radius, or in places in the Galaxy with lower star formation rates. Here we discuss sensitive Green Bank Telescope (GBT) observations of 3He+ at 3.46 cm in a subset of our HII region sample. We develop HII region models and derive accurate 3He/H abundance ratios to better constrain these new stellar evolution models.

  5. Role of HZE particles in space flight - Results from spaceflight and ground-based experiments

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H.; Facius, R.

    1981-09-01

    Selected results from experiments investigating the potentially specific radiobiological importance of the cosmic HZE (equals high Z, energetic) particles are discussed. Results from the Biostack space flight experiments, which were designed to meet the experimental requirements imposed by the microdosimetric nature of this radiation field, clearly indicate the existence of radiation mechanisms which become effective only at higher values of LET (linear energy transfer). Accelerator irradiation studies are reviewed which conform with this conjecture. The recently discovered production of 'micro-lesions' in mammalian tissues by single HZE particles is possibly the most direct evidence. Open questions concerning the establishment of radiation standards for manned spaceflight, such as late effects, interaction with flight dynamic parameters, and weightlessness, are indicated.

  6. Analysis and evaluation of ZPPR critical experiments for a 100 kilowatt-electric space reactor

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Collins, P.J.; Carpenter, S.G.; Olsen, D.N.; Smith, D.M.; Schaefer, R.W.; Doncals, R.A.; Andre, S.V.; Porter, C.A.; Cowan, C.L.; Stewart, S.L.; Protsik, R.

    1990-01-01

    ZPPR critical experiments were used for physics testing the reactor design of the SP-100, a 100-kW thermoelectric LMR that is being developed to provide electrical power for space applications. These tests validated all key physics characteristics of the design, including the ultimate safety in the event of a launch or re-entry accident. Both the experiments and the analysis required the use of techniques not previously needed for fast reactor designs. A few significant discrepancies between the experimental and calculated results leave opportunities for further reductions in the mass of the SP-100. An initial investigation has been made into application of the ZPPR-20 results, along with those of other relevant integral data, to the SP-100 design

  7. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  8. A distância e o conteúdo estelar da região HII gigante G333.1-0.4 - vínculos para a taxa de formação estelar da galáxia

    Science.gov (United States)

    Figuerêdo, E.; Damineli, A.; Blum, R.; Conti, P.

    2003-08-01

    Neste trabalho apresentamos imagens de alta resolução angular da região HII gigante G333.1-0.4 obtidas através dos filtros J, H e K no telescópio de 4-m do CTIO. Este trabalho faz parte de um estudo de regiões HII gigantes no infravermelho próximo que tem por objetivo estudar a natureza da formação de estrelas massivas e traçar a estrutura espiral de nossa galáxia. Nossa determinação da distância é baseada no método da paralaxe espectroscópica de estrelas OB localizadas na seqüência principal de idade zero (ZAMS) do Diagrama HR. No caso de G333.1-0.4, a magnitude aparente das estrelas localizadas na ZAMS indica que a distância não pode ser maior do que o limite inferior determinado por técnica rádio (2,8 kpc). Resultados semelhantes foram encontrados para regiões estudadas anteriormente, reforçando a idéia de que a taxa de formação estelar na Via Láctea é menor do que o determinado a partir de dados rádio. Nossos resultados mais recentes sobre o conteúdo estelar de G333.1-0.4 revelaram vários objetos que possuem cores bastante avermelhadas (H-K > 2,0). Nós identificamos estes objetos usando os diagramas cor-cor e cor-magnitude dos aglomerados. Estes objetos apresentam um forte excesso em emissão na banda K e possivelmente se tratam de estrelas do tipo OB envolvidas por um disco/envelope circumestelar espesso. O estudo da função de massa inical desta região, em conjunto com resultados de nossos trabalhos anteriores, aponta para uma IMF independente da posição galática. A contagem de estrelas nos fornece um valor para o número de fótons no contínuo de Lyman que corrobora com a afirmação de que G333.1-0.4 se encontra mais próxima da menor distância determinada por rádio.

  9. Midcourse Space Experiment Observations of Small Solar System Bodies

    Science.gov (United States)

    Kraemer, Kathleen E.; Lisse, C. M.; Price, Stephan D.; Mizuno, D.; Walker, R. G.; Farnham, T. L.; Mäkinen, T.

    2005-11-01

    Eight comets, two transition objects (extinct comet candidates), and two near-Earth asteroids were imaged in four infrared bands with the SPIRIT III instrument on the Midcourse Space Experiment, namely, C/1996 B2 (Hyakutake), C/1995 O1 (Hale-Bopp), C/1996 Q1 (Tabur), 126P/IRAS, 22P/Kopff, 46P/Wirtanen, (3200) Phaethon, (4015) 107P/Wilson-Harrington, (4179) Toutatis, (4197) 1982 TA, 125P/Spacewatch, and 55P/Tempel-Tuttle. We present maps of each object detected and a description of their characteristics. Five of the comets had extended dust tails, all of which show evidence for silicate emission in the 8.3 μm band. The comet C/Hyakutake had a strong secondary dust tail along the direction of the comet's motion, which the dynamical models showed was consistent with emission from large particles. The dust trail from P/Kopff was detected more than 2° from the coma in three of the four bands and is probably composed of large particles emitted during the 1996 apparition.

  10. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  11. Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station.

    Science.gov (United States)

    Fujiwara, Takahisa; Suzuki, Yoshihisa; Yoshizaki, Izumi; Tsukamoto, Katsuo; Murayama, Kenta; Fukuyama, Seijiro; Hosokawa, Kouhei; Oshi, Kentaro; Ito, Daisuke; Yamazaki, Tomoya; Tachibana, Masaru; Miura, Hitoshi

    2015-08-01

    The normal growth rates of the {110} faces of tetragonal hen egg-white lysozyme crystals, R, were measured as a function of the supersaturation σ parameter using a reflection type interferometer under μG at the International Space Station (NanoStep Project). Since water slightly evaporated from in situ observation cells during a long-term space station experiment for several months, equilibrium temperature T(e) changed, and the actual σ, however, significantly increased mainly due to the increase in salt concentration C(s). To correct σ, the actual C(s) and protein concentration C(p), which correctly represent the measured T(e) value in space, were first calculated. Second, a new solubility curve with the corrected C(s) was plotted. Finally, the revised σ was obtained from the new solubility curve. This correction method successfully revealed that the 2.8% water was evaporated from the solution, leading to 2.8% increase in the C(s) and C(p) of the solution.

  12. Public open space as the only urban space for walking: Sumatera Utara experience

    Science.gov (United States)

    Nasution, A. D.; Zahrah, W.; Ginting, Nurlisa

    2018-03-01

    One of successful public open space (POS) criteria is the proper pedestrian linkage. Furthermore, a good quality POS should pay attention to pedestrian activities. This will contribute to the physical and mental health of people and enhance their quality of life. The research means to investigate how POS accommodate the pedestrians. The study takes place in twenty small towns in Sumatra Utara province, Indonesia. The analysis is a descriptive, explorative study that collects data about physical elements of POS. The survey also uses a set of questionnaire to get information about the visitors walking tradition. The result of the study shows that most of the citizens approach and get to the POS by vehicle, both cars, and motorcycles. They use their private vehicles although the distance between their houses and the POS is less than one kilometer. There is no pedestrian linkage that connects the POS with the other part of urban space. However, the POS is active by various physical activities, such as walking, playing and exercising. These events occur both in pedestrian ways in the periphery, inside the POS, and in the other spots of the POS, such as grass field or multipurpose plaza. The visitors’ vehicle tradition relates to the whole urban space which is planned in a car-oriented way. Thus, the POS becomes the only space that people can walk and enjoy the environment.

  13. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  14. A review of the findings of the plasma diagnostic package and associated laboratory experiments: Implications of large body/plasma interactions for future space technology

    Science.gov (United States)

    Murphy, Gerald B.; Lonngren, Karl E.

    1986-01-01

    The discoveries and experiments of the Plasma Diagnostic Package (PDP) on the OSS 1 and Spacelab 2 missions are reviewed, these results are compared with those of other space and laboratory experiments, and the implications for the understanding of large body interactions in a low Earth orbit (LEO) plasma environment are discussed. First a brief review of the PDP investigation, its instrumentation and experiments is presented. Next a summary of PDP results along with a comparison of those results with similar space or laboratory experiments is given. Last of all the implications of these results in terms of understanding fundamental physical processes that take place with large bodies in LEO is discussed and experiments to deal with these vital questions are suggested.

  15. An expert system for fault management assistance on a space sleep experiment

    Science.gov (United States)

    Atamer, A.; Delaney, M.; Young, L. R.

    2002-01-01

    The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.

  16. Space-Charge Experiments at the CERN Proton Synchrotron

    CERN Document Server

    Franchetti, Giuliano; Hofmann, I; Martini, M; Métral, E; Qiang, J; Ryne, D; Steerenberg, R; CFA Beam Dynamics Workshop “High Intensity and Brightness Hadron Beams”

    2005-01-01

    Benchmarking of the simulation codes used for the design of the next generation of high beam power accelerators is of paramount importance due to the very demanding requirements on the level of beam losses. This is usually accomplished by comparing simulation results against available theories, and more importantly, against experimental observations. To this aim, a number of well-defined test cases, obtained by accurate measurements made in existing machines, are of great interest. Such measurements have been made in the CERN Proton Synchrotron to probe three space-charge effects: (i) transverse emittance blow-up due to space-charge induced crossing of the integer or half-integer stop-band, (ii) space-charge and octupole driven resonance trapping, and (iii) intensity-dependent emittance transfer between the two transverse planes. The last mechanism is discussed in detail in this paper and compared to simulation predictions.

  17. Simulating and assessing boson sampling experiments with phase-space representations

    Science.gov (United States)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  18. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  19. Upper-Atmospheric Space and Earth Weather Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The USEWX project is seeking to monitor, record, and distribute atmospheric measurements of the radiation environment by installing a variety of dosimeters and other...

  20. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  1. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela; Liimets, T.; Cappa, C.E.; Cidale, L.S.; Nickeler, Dieter Horst; Duronea, N.; Arias, M.L.; Gunawan, D.S.; Oksala, M.E.; Borges Fernandes, M.; Maravelias, G.; Curé, M.; Santander-Garcia, M.

    2017-01-01

    Roč. 154, č. 5 (2017), 186/1-186/16 ISSN 0004-6256 R&D Projects: GA ČR(CZ) GA17-02337S; GA ČR(CZ) GA16-05011S; GA MŠk LG14013 Institutional support: RVO:67985815 Keywords : emission-line stars * stellar populations * hii-regions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.609, year: 2016

  2. Solid deuterated water in space: detection constraints from laboratory experiments

    Science.gov (United States)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  3. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  4. Upper-atmospheric Space and Earth Weather eXperiment (USEWX)

    Science.gov (United States)

    Wiley, Scott Lee

    2014-01-01

    This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.

  5. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  6. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  7. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data

    Directory of Open Access Journals (Sweden)

    Silvia de Haan-Rietdijk

    2017-10-01

    Full Text Available The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1 and VAR(1 models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (VAR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.

  8. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    Science.gov (United States)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  9. Race Has Always Mattered: An Intergeneration Look at Race, Space, Place, and Educational Experiences of Blacks

    Directory of Open Access Journals (Sweden)

    Denise G. Yull

    2014-01-01

    Full Text Available Within school settings race continues to be one of the most formidable obstacles for Black children in the United States (US school system. This paper expands the discussions of race in education by exploring how the social links among race, space, and place provide a lens for understanding the persistence of racism in the educational experiences of Black children. This paper examines how differences in a rural versus urban geographical location influence a student’s experience with race, racism, and racial identity across four generations of Black people in the context of school and community. Implications for research and practice are discussed.

  10. The International Heat Pipe Experiment. [international cooperation zero g experiment

    Science.gov (United States)

    Mcintosh, R.; Ollendorf, S.; Harwell, W.

    1976-01-01

    The aims of the experiment are outlined. Flight experiments included in this program were provided by NASA, Goddard Space Flight Center, ESA (European Space Agency), the German Ministry of Technology, Hughes Aircraft Company and NASA, Ames Research Center.

  11. The NGC 7538 region: the distribution and dynamics of molecules compared with those of HI and H+

    International Nuclear Information System (INIS)

    Dickel, H.R.; Dickel, J.R.; Wilson, W.J.

    1982-01-01

    CO maps and preliminary H 2 S and H 2 CO data for the molecular cloud associated with the HII region NGC 7538 are compared with the distributions of ionized and neutral hydrogen. South of the optical HII region is a ridge of high 13 CO column density with cold, self-absorbed HI gas just beyond it. A dense clump within the ridge is found adjacent to the HII region in the southeast. The percentage of the hydrogen in atomic form varies from approximately 0.1% in the dense region to approximately 0.8% in the outskirts. The lower-density region of expanding gas seen next to the HII region in the southwest is attributed to the passage of a molecular dissociation wave. (Auth.)

  12. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  13. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    Science.gov (United States)

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  14. Fungi in space--literature survey on fungi used for space research.

    Science.gov (United States)

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  15. Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation.

    Science.gov (United States)

    van Lutterveld, Remko; Houlihan, Sean D; Pal, Prasanta; Sacchet, Matthew D; McFarlane-Blake, Cinque; Patel, Payal R; Sullivan, John S; Ossadtchi, Alex; Druker, Susan; Bauer, Clemens; Brewer, Judson A

    2017-05-01

    Meditation is increasingly showing beneficial effects for psychiatric disorders. However, learning to meditate is not straightforward as there are no easily discernible outward signs of performance and thus no direct feedback is possible. As meditation has been found to correlate with posterior cingulate cortex (PCC) activity, we tested whether source-space EEG neurofeedback from the PCC followed the subjective experience of effortless awareness (a major component of meditation), and whether participants could volitionally control the signal. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators were briefly trained to perform a basic meditation practice to induce the subjective experience of effortless awareness in a progressively more challenging neurofeedback test-battery. Experienced meditators performed a self-selected meditation practice to induce this state in the same test-battery. Neurofeedback was provided based on gamma-band (40-57Hz) PCC activity extracted using a beamformer algorithm. Associations between PCC activity and the subjective experience of effortless awareness were assessed by verbal probes. Both groups reported that decreased PCC activity corresponded with effortless awareness (Pneurofeedback to link an objective measure of brain activity with the subjective experience of effortless awareness, and suggest potential utility of this paradigm as a tool for meditation training. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comparison of the orientational order of lipid chains in the Lα and HII phases

    International Nuclear Information System (INIS)

    Lafleur, M.; Cullis, P.R.; Fine, B.; Bloom, M.

    1990-01-01

    The orientational order profile has been determined by using deuterium nuclear magnetic resonance ( 2 H NMR) for POPE in the lamellar liquid-crystalline (L α ) and the hexagonal (H II ) phases and is shown to be sensitive to the symmetry of the lipid phase. In the H II phase, as compared to the L α phase, the acyl chains are characterized by a greater motional freedom, and the orientational order is distributed more uniformly along the lipid acyl chain. This is consistent with a change from a cylindrical to a wedge-shaped space available for the lipid chain. 2 H NMR studies of POPE dispersions containing tetradecanol or decane, both of which can induce H II phase structure, show very different behavior. Tetradecanol appears to align with the phospholipid chains and experience the L α to H II phase transition with a similar change in motional averaging as observed for the phospholipid chains themselves. In contrast, decane is apparently deeply embedded in the lipid structure and exhibits only a small degree of orientation. The L α to H II phase transition for systems containing decane leads to a dramatic increase of the motional freedom of decane which is more pronounced than that observed for the lipid chains. The presence of decane in the H II phase structure does not modify the order of the lipid chains. However, the L α phase of POPE is slightly disordered by the addition of 9 mol% decane whereas it can accommodate as much as 20 mol% tetradecanol without a significant change of order. Finally, the concept of a stretching vector associated with the lipid acyl chain has been introduced to analyze the orientational order profile obtained in the H II phase. With this model, the average order parameter of the H II phase has been calculated and found to be in good agreement with experiment

  17. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    Science.gov (United States)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  18. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  19. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    Czech Academy of Sciences Publication Activity Database

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurný, František; Yukihara, E.; Gaza, R.; McKeever, S.

    2006-01-01

    Roč. 120, 1- 4 (2006), s. 433-437 ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : bacteria l experiments * space flight * etched track detectors * thermoluminescent detectors Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.446, year: 2006

  20. Embodiment and the experience of built space: the contributions of ...

    African Journals Online (AJOL)

    This paper explores the problem of how we perceive built space and the ways that we relate to its abstract representations. Poincaré presented the problem that space poses for the 20th century in his essay 'The Relativity of Space', in which the human body and technics are already a part of our spatial perceptions.

  1. Technological mediations in the city: from a notion of augmented urban space to the construction of a sense of connectedness by the collective experience

    Directory of Open Access Journals (Sweden)

    Julieta M. de V. LEITE

    2010-01-01

    Full Text Available This paper presents a contribution to the research on Information and Communication Technologies (ICT for the construction and share of urban experience. We illustrate our considerations with examples that combine dynamics of urban and virtual spaces according to a notion of augmented urban space. In this dynamics ICT function as mediators of the perception of space and social relations.

  2. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  3. Fire safety in space

    DEFF Research Database (Denmark)

    Jomaas, Grunde; Torero, Jose L.; Eigenbrod, Christian

    2015-01-01

    experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped...... undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever...

  4. United States Army Space Experiment 601

    Science.gov (United States)

    1992-07-29

    impossible to urinate except into a diaper . The LES is hot and humid, bulky and heavy, and is unacceptable for space flight. The risk versus comfort...that the DSP satellite solar panels -r::eived enough sunlight reflected from the Earth to completely power the spacecraft, making the CRU output voltage...that were excessively cloudy were excluded from the statistics (if > 90% of pixels in the sample had brightness values above the threshold). The solar

  5. How Body Orientation Affects Concepts of Space, Time and Valence: Functional Relevance of Integrating Sensorimotor Experiences during Word Processing.

    Directory of Open Access Journals (Sweden)

    Martin Lachmair

    Full Text Available The aim of the present study was to test the functional relevance of the spatial concepts UP or DOWN for words that use these concepts either literally (space or metaphorically (time, valence. A functional relevance would imply a symmetrical relationship between the spatial concepts and words related to these concepts, showing that processing words activate the related spatial concepts on one hand, but also that an activation of the concepts will ease the retrieval of a related word on the other. For the latter, the rotation angle of participant's body position was manipulated either to an upright or a head-down tilted body position to activate the related spatial concept. Afterwards participants produced in a within-subject design previously memorized words of the concepts space, time and valence according to the pace of a metronome. All words were related either to the spatial concept UP or DOWN. The results including Bayesian analyses show (1 a significant interaction between body position and words using the concepts UP and DOWN literally, (2 a marginal significant interaction between body position and temporal words and (3 no effect between body position and valence words. However, post-hoc analyses suggest no difference between experiments. Thus, the authors concluded that integrating sensorimotor experiences is indeed of functional relevance for all three concepts of space, time and valence. However, the strength of this functional relevance depends on how close words are linked to mental concepts representing vertical space.

  6. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  7. Mini-magnetosphere plasma experiment for space radiation protection in manned spaceflight

    International Nuclear Information System (INIS)

    Jia Xianghong; Xu Feng; Jia Shaoxia; Wan Jun; Wang Shouguo

    2012-01-01

    With the development of Chinese manned spaceflight, the planetary missions will become true in the future. The protection of astronauts from cosmic radiation is an unavoidable problem that should be considered. There are many revolutionary ideas for shielding including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. The concept using cold plasma to expand a magnetic field was recommended for further assessment. Magnetic field inflation was produced by the injection of plasma onto the magnetic field. The method can be used to deflect charged ions and to reduce space radiation dose. It can supply the suitable radiation protection for astronauts and spacecraft. Principle experiments demonstrated that the magnetic field was inflated by the injection of the plasma in the vacuum chamber and the magnetic field intensity strengthened with the increasing of input RF power in this paper. The mechanism should be studied in following steps. (authors)

  8. Observing floods from space: Experience gained from COSMO-SkyMed observations

    Science.gov (United States)

    Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L.

    2013-03-01

    The COSMO-SkyMed mission offers a unique opportunity to obtain all weather radar images characterized by short revisit time, thus being useful for flood evolution mapping. The COSMO-SkyMed system has been activated several times in the last few years in occasion of flood events all over the world in order to provide very high resolution X-band SAR images useful for flood detection purposes. This paper discusses the major outcomes of the experience gained, within the framework of the OPERA Pilot Project funded by the Italian Space Agency, from using COSMO-SkyMed data for the purpose of near real time generation of flood maps. A review of the mechanisms which determine the imprints of the inundation on the radar images and of the fundamental simulation tools able to predict these imprints and help image interpretation is provided. The approach developed to process the data and to generate the flood maps is also summarized. Then, the paper illustrates the experience gained with COSMO-SkyMed by describing and discussing a number of significant examples. These examples demonstrate the potential of the COSMO-SkyMed system and the suitability of the approach developed for generating the final products, but they also highlight some critical aspects that require further investigations to improve the reliability of the flood maps.

  9. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.

    Science.gov (United States)

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela

    2017-04-01

    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  11. Cell bioprocessing in space - Applications of analytical cytology

    Science.gov (United States)

    Todd, P.; Hymer, W. C.; Goolsby, C. L.; Hatfield, J. M.; Morrison, D. R.

    1988-01-01

    Cell bioprocessing experiments in space are reviewed and the development of on-board cell analytical cytology techniques that can serve such experiments is discussed. Methods and results of experiments involving the cultivation and separation of eukaryotic cells in space are presented. It is suggested that an advanced cytometer should be developed for the quantitative analysis of large numbers of specimens of suspended eukaryotic cells and bioparticles in experiments on the Space Station.

  12. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    Science.gov (United States)

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  13. Contaminations of inner surface of magnesium fluoride windows in the `Expose-R' experiment on the International Space Station

    Science.gov (United States)

    Skurat, V. E.

    2017-10-01

    A series of experiments was carried out previously on board of the International Space Station in `EXPOSE-R', a multi-user expose facility, provided by European Space Agency attached to the external surface of the Russian Segment. In one experiment, spores of microorganisms and species of higher plant seeds, in heat-sealed polymer bags were irradiated by solar radiation passed through MgF2 windows in a high space vacuum. After sample exposure, it was found that in many cases the inner surfaces of windows were contaminated. Analysis of the contamination revealed the presence of chemical groups CH2, CH3, NH, OH, C═O, Si-CH3 (Demets et al. in 2015). Their presence in deposits was explained by photofixation of gaseous precursors - some of the vapours of glues and additives in polymeric materials in the core facility of `Expose-R'. Carbon-, oxygen- and silicon-containing groups may be deposited from outer intrinsic atmosphere. This atmosphere is connected with sample compartments and core facility. However, the presence of NH groups on inner surfaces of windows was not expected. This paper shows that the process responsible for carbon-, nitrogen- and oxygen-containing group formation can be a photopolymerization of caprolactam, which is released from the outer Nylon 6 layer of polymer bags under Solar vacuum ultraviolet radiation.

  14. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing

  15. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  16. 3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)

    Science.gov (United States)

    Bean, Quincy; Cooper, Ken; Werkheiser, Niki

    2015-01-01

    The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.

  17. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  18. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    Science.gov (United States)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and

  19. Optical and millimeter wavelength study of the complex Sh2-147/Sh2-153

    International Nuclear Information System (INIS)

    Heydari-Malayeri, M.; Testor, G.; Kahane, C.; Lucas, R.

    1982-01-01

    Sh2-147/Sh2-153 is a vast HII region-molecular cloud complex of dimension 1 0 .5 located in the Perseus arm at l approximately 109 0 . This cloud embodies the HII regions Sh2-147, 148, 149, 152 and 153. In this direction were detected several H 2 O and OH masers, a number of infrared sources, and a supernova remnant. The authors present the 13 CO map and also optical results on two of the HII regions: Sh2-152 and 148. (Auth.)

  20. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  1. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  2. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    Science.gov (United States)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  3. Social experience infrastructure

    DEFF Research Database (Denmark)

    Kvistgaard, Peter

    2006-01-01

    and explorative fashion to share with others thoughts and ideas concerning the development of new ways to construct/reconstruct recreational spaces with a better coherence with regard to designing experiences. This article claims that it is possible to design recreational spaces with good social experience...

  4. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Anosov, V.; Baranov, S.; Bednyakov, V.

    1999-01-01

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  5. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  6. Radon mitigation experience in houses with basements and adjoining crawl spaces

    International Nuclear Information System (INIS)

    Messing, M.; Henschel, D.B.

    1990-01-01

    Active soil depressurization systems were installed in four basement houses with adjoining crawl spaces in Maryland. In addition, existing soil depressurization systems were modified in two additional basement-plus-crawl-space houses. These six houses were selected to include both good and poor communication beneath the basement slab, and different degrees of importance of the crawl space as a source of the indoor radon. The radon reduction effectiveness was compared for: depressurization only under the basement slab; depressurization only under a polyethylene liner over the unpaved crawl-space floor; and simultaneous depressurization under both the basement slab and the crawl-space liner. The objective of this paper is to identify under what conditions treatment of the basement alone might provide sufficient radon reductions in houses of this substructure, and what incremental benefits might be achieved by also treating the crawl space

  7. Autogenic feedback training experiment: A preventative method for space motion sickness

    Science.gov (United States)

    Cowings, Patricia S.

    1993-01-01

    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member.

  8. What makes a space invader? Passenger perceptions of personal space invasion in aircraft travel.

    Science.gov (United States)

    Lewis, Laura; Patel, Harshada; D'Cruz, Mirabelle; Cobb, Sue

    2017-11-01

    The invasion of personal space is often a contributory factor to the experience of discomfort in aircraft passengers. This paper presents a questionnaire study which investigated how air travellers are affected by invasions of personal space and how they attempt to adapt to, or counter, these invasions. In support of recent findings on the factors influencing air passenger comfort, the results of this study indicate that the invasion of personal space is not only caused by physical factors (e.g. physical contact with humans or objects), but also other sensory factors such as noise, smells or unwanted eye contact. The findings of this study have implications for the design of shared spaces. Practitioner Summary: This paper presents a questionnaire study which investigated personal space in an aircraft environment. The results highlight the factors which affect the perception of personal space invasion in aircraft and can therefore inform the design of aircraft cabin environments to enhance the passenger experience.

  9. Scale-model Experiment of Magnetoplasma Sail for Future Deep Space Missions

    International Nuclear Information System (INIS)

    Funaki, Ikkoh; Yamakawa, Hiroshi; Ueno, Kazuma; Kimura, Toshiyuki; Ayabe, Tomohiro; Horisawa, Hideyuki

    2008-01-01

    When Magnetic sail (MagSail) spacecraft is operated in space, the supersonic solar wind plasma flow is blocked by an artificially produced magnetic cavity to accelerate the spacecraft in the direction leaving the Sun. To evaluate the momentum transferring process from the solar wind to the coil onboard the MagSail spacecraft, we arranged a laboratory experiment of MagSail spacecraft. Based on scaling considerations, a solenoidal coil was immersed into the plasma flow from a magnetoplasmadynamic arcjet in a quasi-steady mode of about 1 ms duration. In this setup, it is confirmed that a magnetic cavity, which is similar to that of the geomagnetic field, was formed around the coil to produce thrust in the ion Larmor scale interaction. Also, the controllability of magnetic cavity size by a plasma jet from inside the coil of MagSail is demonstrated, although the thrust characteristic of the MagSail with plasma jet, which is so called plasma sail, is to be clarified in our next step

  10. HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha

    2017-06-01

    With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.

  11. Project Based Learning experiences in the space engineering education at Technical University of Madrid

    Science.gov (United States)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta

    2015-10-01

    This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.

  12. Probing the Galactic Structure of the Milky Way with H II Regions

    Science.gov (United States)

    Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas

    2018-01-01

    Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.

  13. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  14. Grounding word learning in space.

    Directory of Open Access Journals (Sweden)

    Larissa K Samuelson

    Full Text Available Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects--space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts.

  15. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  16. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  17. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  18. Beyond spaces of counselling

    DEFF Research Database (Denmark)

    Bank, Mads; Nissen, Morten

    2017-01-01

    The article articulates experiments with spatial constructions in two Danish social work agencies, basing on (a) a sketchy genealogical reconstruction of conceptualisations and uses of space in social work and counselling, (b) a search for theoretical resources to articulate new spaces, and (c...... spaces are forms of spatialisations which might be taken as prototypical in attempts to develop social work and counselling...

  19. Spacelab 3 flight experiment No. 3AFT23: Autogenic-feedback training as a preventive method for space adaptation syndrome

    Science.gov (United States)

    Cowings, Patricia S.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.; Sharp, Joseph C.

    1988-01-01

    Space adaptation syndrome is a motion sickness-like disorder which affects up to 50 percent of all people exposed to microgravity in space. This experiment tested a physiological conditioning procedure (Autogenic-Feedback Training, AFT) as an alternative to pharmacological management. Four astronauts participated as subjects in this experiment. Crewmembers A and B served as treatment subjects. Both received preflight training for control of heart rate, respiration rate, peripheral blood volume, and skin conductance. Crewmembers C and D served as controls (i.e., did not receive training). Crewmember A showed reliable control of his own physiological responses, and a significant increase in motion sickness tolerance after training. Crewmember B, however, demonstrated much less control and only a moderate increase in motion sickness tolerance was observed after training. The inflight symptom reports and physiological data recordings revealed that Crewmember A did not experience any severe symptom episodes during the mission, while Crewmember B reported one severe symptom episode. Both control group subjects, C and D (who took antimotion sickness medication), reported multiple symptom episodes on mission day 0. Both inflight data and crew reports indicate that AFT may be an effective countermeasure. Additional data must be obtained inflight (a total of eight treatment and eight control subjects) before final evaluation of this treatment can be made.

  20. Setting priorities for space research: An experiment in methodology

    Science.gov (United States)

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  1. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    Science.gov (United States)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  2. Gravity Probe B: final results of a space experiment to test general relativity.

    Science.gov (United States)

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  3. Crucible: A System for Space Synthetic Biology Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to expand the capability and methodologies in experimental extreme biology as a step towards Martian ecopoiesis. The objectives in...

  4. The YES2 Experience : Towards Sustainable Space Transportation using Tethers

    NARCIS (Netherlands)

    Van der Heide, E.J.; Kruijff, M.; Ockels, W.J.

    2008-01-01

    Today there is no common vision on sustainable space transportation. Rockets expel gasses and solid rockets often small particles. These have negative effect on the environment, but it is not understood to what extent. With ever growing demand for access to space, sustainable technology developments

  5. Planetary and Space Simulation Facilities (PSI) at DLR

    Science.gov (United States)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial

  6. Thinking-space as Research Creation

    DEFF Research Database (Denmark)

    Amhøj, Christa Breum

    2016-01-01

    to occur here and now. Design/methodology/approach: The object of the chapter is an experiment entitled The Future Public Leadership Education Now. It is based on non-representational studies and designed to operate on the affective registers. Findings: The chapter offers a theoretical and pragmatic...... than criticising existing practices. Building on notions of affective studies, the aim is to experiment on how to shift the focus from thinking about open spaces to intensifying thinking-spaces, able to generate the processual relations increasing the opportunity for a qualitative better welfare...... wandering as wondering. It continues and expands the experiment as an ongoing thinking-spaces moving between the known and the unknown. It aims at gently opening the opportunity for a qualitatively better welfare to occur. Practical implications: Researchers become welfare artists intensifying affective co...

  7. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  8. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  9. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  10. The City's new hybrid experience spaces

    DEFF Research Database (Denmark)

    Andersson, Lasse; Kiib, Hans

    2007-01-01

    In a series of workshops in Danish cities during the last couple of years, we have been establishing new ways of working with a clear local perspective in the new global discourse on culture, creativity and urbanity - urban innovation and urban branding in what could be called the experience city...... serve as frameworks for traditional functions, while simultaneously taking on new roles, new meanings and new narratives. This article serves as the first tentative reflection on results from a workshop at the ‘Skanok 05'; a conference on the experience economy held in Aalborg, October 2005.In...

  11. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  12. Space in Space: Designing for Privacy in the Workplace

    Science.gov (United States)

    Akin, Jonie

    2015-01-01

    Privacy is cultural, socially embedded in the spatial, temporal, and material aspects of the lived experience. Definitions of privacy are as varied among scholars as they are among those who fight for their personal rights in the home and the workplace. Privacy in the workplace has become a topic of interest in recent years, as evident in discussions on Big Data as well as the shrinking office spaces in which people work. An article in The New York Times published in February of this year noted that "many companies are looking to cut costs, and one way to do that is by trimming personal space". Increasingly, organizations ranging from tech start-ups to large corporations are downsizing square footage and opting for open-office floorplans hoping to trim the budget and spark creative, productive communication among their employees. The question of how much is too much to trim when it comes to privacy, is one that is being actively addressed by the National Aeronautics and Space Administration (NASA) as they explore habitat designs for future space missions. NASA recognizes privacy as a design-related stressor impacting human health and performance. Given the challenges of sustaining life in an isolated, confined, and extreme environment such as Mars, NASA deems it necessary to determine the acceptable minimal amount for habitable volume for activities requiring at least some level of privacy in order to support optimal crew performance. Ethnographic research was conducted in 2013 to explore perceptions of privacy and privacy needs among astronauts living and working in space as part of a long-distance, long-duration mission. The allocation of space, or habitable volume, becomes an increasingly complex issue in outer space due to the costs associated with maintaining an artificial, confined environment bounded by limitations of mass while located in an extreme environment. Privacy in space, or space in space, provides a unique case study of the complex notions of

  13. Logic for physical space

    DEFF Research Database (Denmark)

    Aiello, Marco; Bezhanishvili, Guram; Bloch, Isabelle

    2012-01-01

    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora...

  14. Erasing Space from Places Brandscapes, Art and the (devalorisation of the Olympic Space

    Directory of Open Access Journals (Sweden)

    Andrea Pavoni

    2010-12-01

    Full Text Available Beyond use, exchange and sign value, current marketing practices have consistently turned on notions of contextual fruition, experience, performativity, affective spaces, atmospheres. The logic of the experience economy has quickly spilled over other realms: architecture and design, security and control, urban planning and law. As the language of brand overflows the marketing jargon to apply to urban events1 and renewal projects, the notion of brandscape becomes increasingly relevant to indicate the institutional engineering of material and immaterial, visible and invisible spaces. Brandscaping is a “more or less successful institutional attempt to inscribe spaces and their inhabitants in their own terms” (Ball and Wood, 2008, in other words, to freeze space, to capture and tame its multiplicity, to make it static, organised, predictable, not in the cumbersome, panoptical way, but rather through affective strategies, by producing, managing and securing “atmospherically enriched experiences” (Klingmann, 2007: 6.

  15. Space of solitude in culture

    Directory of Open Access Journals (Sweden)

    Agnieszka Małgorzata Kulig

    2014-04-01

    Full Text Available In my article I suggest looking at the phenomenon of solitude in culture not only as an opportunity to study an intimate and individual experience, to which numerous descriptions refer. I would rather consider whether possessing knowledge about this experience we acquire competencies regarding the culture in which this solitude has occurred. The discourse of melancholy, for which the space of solitude and confrontation with the ultimate has been the natural environment, supports me in describing the space of solitude in culture. For the purposes of reflection, I initiate my own definition of solitude as a space between life and death. That space allows the individual to feel the energy of life and the presence of death, even in such moments of human life (youth when the individual is not fully aware of their role in society, and is in the process of crystallizing their identity. In this case, solitude as a space between would be a state of suspension, which, however, prepares for active, independent life in the community. In this article, I refer to the postulate of the German culture researcher Thomas Macho in order to treat the experience of solitude as a context, an opportunity to practise techniques of culture, as well as to heterotopic space as defined by Michel Foucault.

  16. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  17. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  18. Re-Entering My Space: A Narrative Inquiry into Teaching English as a Foreign Language in an Imagined Third Space

    Science.gov (United States)

    Ai, Bin; Wang, Lifei

    2017-01-01

    The purpose of this study is to reflect on my experience of teaching English as a Foreign Language (EFL) in an inland Chinese university when I returned from Australia: I re-entered the space of EFL teaching, and experimented with a new model of teaching. In my experiment, I applied the concepts of third space and hybrid identity as a theoretical…

  19. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  20. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  1. Experiencing the relationship between architectural space and the major space phobias

    Directory of Open Access Journals (Sweden)

    Dana Pop

    2015-12-01

    Full Text Available During the past decades there was a noticeable effervescence characterising the space-psychology related studies. These studies established a connection between the characteristics of the environment and behaviour. Thus, this paper would like to join this field of research. Consequently, the first issue raised is whether architecture is about a space in itself, or whether it is about perception, of a mental representation. A second issue is whether a space has qualities of its own, or whether its characteristics depend on the subjectivity of the perceptual process. This hypothesis generated an entire field of research, which disputes the differences between space and place. The last issue would be the role played by architecture in the context of the space-place-perception discussion. Thus, architecture finds itself in the middle of this debate, being the instrument which carves the environment we inhabit. In order to provide a practical answer to this last question, the paper bases its conclusions on the results obtained through an experiment. This experiment tested certain situations in which the natural adaptation process has been short-circuited. These are phobic reactions. Thus, the paper wishes to lay the first theoretical ‘brick’ at the foundation of an interdisciplinary research project between architecture, psychology, sociology and virtual reality.

  2. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy.

    Science.gov (United States)

    Li, Yuqin; Mu, Jinxiu; Chen, Di; Xu, Hua; Han, Fangxin

    2015-05-01

    A structured heterotrophic-iron (II) induction (HII) strategy was proposed to enhance lipid accumulation in oleaginous Chlorella protothecoides. C. protothecoides subjected to heterotrophic-iron (II) induction achieved a favorable lipid accumulation up to 62 % and a maximum lipid productivity of 820.17 mg/day, representing 2.78-fold and 3.64-fold increase respectively over heterotrophic cultivation alone. HII-induced cells produced significantly elevated levels of 16:0, 18:1(Δ9), and 18:2(Δ9,12) fatty acids (over 90 %). The lipid contents and plant lipid-like fatty acid compositions exhibit the potential of HII-induced C. protothecoides as biodiesel feedstock. Furthermore, 31 altered proteins in HII-induced algal cells were successfully identified. These differentially expressed proteins were assigned into nine molecular function categories, including carbohydrate metabolism, lipid biosynthesis, Calvin cycle, cellular respiration, photosynthesis, energy and transport, protein biosynthesis, regulate and defense, and unclassified. Analysis using the Kyoto encyclopedia of genes and genomes and gene ontology annotation showed that malic enzyme, acyltransferase, and ACP were key metabolic checkpoints found to modulate lipid accumulation in C. protothecoides. The results provided possible applications of HII cultivation strategy in other microalgal species and new possibilities in developing genetic and metabolic engineering microalgae for desirable lipid productivity.

  3. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  4. Shared Space, Liminal Space: Five Years into a Community-University Place-Based Experiment

    Science.gov (United States)

    Barajas, Heidi Lasley; Martin, Lauren

    2016-01-01

    This article explores shared space at the University of Minnesota's Robert J. Jones Urban Research and Outreach Engagement Center (UROC), located four miles off campus in a community strong in assets, but facing inequality, disinvestment and racism. UROC's mission promotes university-community collaboration to solve critical urban challenges. We…

  5. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  6. The Mobilisatsia experience

    International Nuclear Information System (INIS)

    De Boever, P.

    2005-01-01

    The hazards of long-duration manned space flight are real. In order to participate effectively in long duration orbital missions or to continue the exploration of space, the health of the astronaut must be secured. There is mounting evidence that changes in the immune response of an astronaut in short-term flights, resemble those occurring after acute stress, while the changes during long-term flights resemble those caused by chronic stress. This blunting of the immune system occurs concomitant with a relative increase in microbial contamination in the space cabin environment. Such a combination of events results in an increased probability of in-flight infectious events. Micro-organisms are subject to a genetic evolution, which may lead to the capacity to colonize new environments and to cause infections. Central players in this evolutionary process are mobile genetic elements. They help to mobilize and reorganize genes, be it within a given genome (intragenomic mobility) or between bacterial cells (intercellular mobility). Hence, the processes of genetic exchange can mobilize genetic elements between bacterial strains, and therefore play a role in determining the infectious potential. The specific confined environment and space-flight related factors (such as microgravity and cosmic radiation) may increase the frequency in which mobile genetic elements are exchanged between micro organisms. The aim of the Mobilisatsia experiment was to promote microbial gene transfer under space flight conditions during a short-term experiment conducted aboard the International Space Station (ISS). The efficiency of the gene exchange process was compared with a synchronously performed ground control experiment. An experiment was carried out with well-characterized Gram-negative reference strains and one experiment was done with Gram-positive reference strains

  7. Dhima za Mbinu Linganishi katika Kuhusisha Lugha na Lahaja ...

    African Journals Online (AJOL)

    Lengo la makala hii ni kujadili dhima za Mbinu Linganishi katika kuhusisha lugha na lahaja. Data za makala hii zilikusanywa kwa kutumia mbinu mbalimbali ambazo ni usaili, ushuhudiaji, hojaji na majadiliano katika majopo. Utafiti ulifanyika Tanzania Bara hususan Mkoani Mtwara na Tanzania Visiwani katika maeneo ya ...

  8. "No Girls on the Internet": The Experience of Female Gamers in the Masculine Space of Violent Gaming

    OpenAIRE

    Carina Assunção

    2016-01-01

    The experience of female gamers in the masculine space of violent videogame playing was explored. Hypotheses concerned identity management strategies used online as well as offline. The study adopts a mixed methods approach. 291 women aged 18-48 were recruited via advertisements on social media. An online questionnaire addressed gaming habits, while a focus group with three women explored the pleasures they take from playing violent games. It was found that those who do play violent games, pl...

  9. Genetic and Proteomics Analyses of Space Flown Mice Skin

    Science.gov (United States)

    Terada, Masahiro; Takahashi, Rika; Yamada, Shin; Masaya, Seki; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    Many astronauts stay in the International Space Station (ISS) for a long period of time. Therefore, the development of astronaut health care technologies is very important. Especially, an understanding of the effects of the space environment, such as microgravity and radiation, on protein, gene, and mineral metabolism is important for developing countermeasures against the adverse effects experienced by astronauts who are in space for long periods of time. Since December 2009, the Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples from ISS crew members who have been in space (experiment nicknamed “HAIR”). As animal control experiments, we could have an opportunity to analyze rodents samples by participating the tissue sharing program of space-flown mice organized by Italian Space Agency (AGI) and National Aeronautics and Space Administration (NASA). It will reasonably complement human hair experiment because we able to conduct more detailed skin analysis which is enable in human experiment. The purpose of this flown-mice experiment is to study the effects of long-term exposure to space environment. In this experiment, we analyzed mice skin contained hair roots. The samples were taken from space-flown (3-month and 2-week) and 3-month hindlimb suspensioned and 3-month 2G exposed mice, and ground-control mice. For the skin contained hair roots, the extracted and amplified RNA was used to DNA microarray analysis, and was further analyzed with expression on the interesting genes by real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. And the extracted protein was used to Mass Spectrometer analysis. Data analysis on the specimen are in progress.

  10. AMS prepares for long stay in space

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the successful space qualification tests at the ESA Technology Centre (ESTEC) in Noordwijk in the Netherlands, AMS is now back in the integration hall at CERN Prévessin. The collaboration is replacing the superconducting magnet with a permanent (non-superconducting) one, which will ensure reliable operation of the experiment for the recently planned longer run on board the International Space Station (ISS).   Work is under way at the AMS integration hall at CERN Prévessin. Following a trip to ESTEC in Noordwijk in the Netherlands, where tests confirmed its fitness for launch into space on board the International Space Station (ISS), the AMS experiment is now back at CERN for final modifications. “The collaboration agreed to adopt a modified configuration that, among other things, re-uses the permanent magnet of the AMS-01 prototype that was flown into space in 1998”, says Samuel Ting, Spokesperson of the AMS experiment. Althoug...

  11. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Science.gov (United States)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  12. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Directory of Open Access Journals (Sweden)

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  13. Developments of space station; Uchu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  14. Outreach Education Modules on Space Sciences in Taiwan

    Science.gov (United States)

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  15. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    Science.gov (United States)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  16. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    Science.gov (United States)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  17. Women in Space

    Science.gov (United States)

    Mukai, Chiaki

    Since 1963 women have successfully flown and worked in space so much so that having a female aboard the shuttle, on Soyuz or on the International Space Station is considered commonplace. We do know that women have historically been virturally equal in capabilities and performance with their male counterparts. For example, there have been superb shuttle pilots, shuttle commanders, EVA participants as well as mission specialists and payload specialists. Thus, gender is not an issue within the ranks, rather a simple fact. In addition, there is a positive psychological factor that has been noted in that a mixed crew seems to have better intercommunications dynamics. JAXA has conducted the experiments on 7 subjects on bone mineral density in short duration of space flight and noticed a slight decrease in that density in both male and female. Lean body mass was also examined and found to be reduced by 3.0 % on average. There was no significant difference between male and female subjects in short duration of space flight. Unfortunately, only 1 of the 7 subjects was a woman. In fact, only 48 women have flown in total, some more than once, and science is still discovering the effects of the space experience. This is due to the limited exposure on orbit and in microgravity and the limited number of potential subjects. Time in space is beginning to increase with the continued progress of the ISS, thereby creating a demand for more knowledge on what effects long term exposure will have on the female of the species. The presentation will address these and other concerns involved with women in space from the perspective of a female scientist and an astronaut.

  18. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  19. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  20. Tests of gravity with future space-based experiments

    Science.gov (United States)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  1. Experimenting Galileo on Board the International Space Station

    Science.gov (United States)

    Fantinato, Samuele; Pozzobon, Oscar; Sands, Obed S.; Welch, Bryan W.; Clapper, Carolyn J.; Miller, James J.; Gamba, Giovanni; Chiara, Andrea; Montagner, Stefano; Giordano, Pietro; hide

    2016-01-01

    The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the

  2. Working with Space and Shape in Early Childhood Education: Experiences in Collaboration

    Directory of Open Access Journals (Sweden)

    Karina Luiza da Silva Fernandes

    2016-11-01

    Full Text Available This report shows the experience of a work conducted with the Meli-Melo puzzle in two early childhood education classes at two different schools in the state of São Paulo, Brazil. With the work’s activities as a starting point, aspects related to space and shape, as well as quantities and measures, were approached. Children from two and a half to five years old participated in the playful activities, which had the following goals: to develop spatial and geometric skills, to allow measuring actions, to favor dialogue and to boost group work experience. There were several activities, like handling the pieces, assembling images freely or according with outlines and models, assembling three-dimensional figures, and the length game. The following questions were considered in the evaluation of the work: how was the children’s participation in large groups and small groups? How did children of different age groups engage in the different proposals? Which activities were easier or more difficult for each group? Which behaviors and conversations showed us new knowledge? The fulfillment of the planned activities showed that the children had several hypotheses regarding shapes and that they were able to identify similarities and differences, use geometry vocabulary, and discuss their thoughts, particularly when working in small groups, which favored the participation of nearly all children. We believe the work reported has allowed learnings and a contact with mathematics in early childhood education.

  3. LDR structural experiment definition

    Science.gov (United States)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  4. First results of registering ionospheric disturbances obtained with SibNet network of GNSS receivers in active space experiments

    Science.gov (United States)

    Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy

    2017-12-01

    Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.

  5. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  6. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  7. F-106 Scheduled Maintenance Study. User’s Manual,

    Science.gov (United States)

    1972-09-01

    TO HIST-TlTLE-1. 99030 MOVt HliT-NO-IF-OBS TO HIST-ERR-2. 9OUD0 HHITF HIST-HE^ FROM HIiT -TlTLE. 99050 MOVt III TO HISf-FLAO, 99U60...OCCURANCE INTO APPROPRIATE CHANNEL. 97bl0 MOVt 2L*0 TO HIST-INDEX-2. 97620 HIST-OCCUHANCf. 97b30 ADD 1 TO hIST-INDEX-2, 976*0 MOVt HIiT . VALUE t...WRITE HIST-REC FROM HIST-TITLE. C96970 MOVE IIS T3 HIST-FLAG. C98970 GO TO ENO-HIST. C98970 HIST-ERKOH-4. C98970 MOVt HIiT -ERR-i» TO HIST-TITLE-1

  8. Landing in the future: Biological experiments on Earth and in space orbit

    Science.gov (United States)

    Pokrovskiy, A.

    1980-01-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  9. Landing in the future: Biological experiments on Earth and in space orbit

    Science.gov (United States)

    Pokrovskiy, A.

    1980-09-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  10. The Assumed Space: Pre-reflective Spatiality and Doctrinal Configurations in Juridical Experience

    Directory of Open Access Journals (Sweden)

    Massimo Meccarelli

    2015-01-01

    Full Text Available The purpose of this contribution is to analyse, by means of the legal-historical perspective, the relationship between the pre-reflections of space and the configurations of legal concepts and categories. Three examples of the interplay between doctrinal configurations and the spatial dimension within the context of three different historical periods will be illustrated: given space in the Middle Ages, possible space in the Modern Age and decided space in the Contemporary Age. From this basis, the essay considers the heuristic importance of such an analytical approach – mindful of the profiles of presupposition, such as the space assumption, underlying the conceptualisation of ideas – for a history attentive to the constraints of the theoretical sustainability of legal concepts.

  11. Where are the massive stars of the bar of NGC 1530 forming?

    NARCIS (Netherlands)

    Zurita, A.

    2008-01-01

    NGC 1530 has one of the strongest bars ever observed and recent star formation sites are distributed across its bar. Our aim is to study the photometric properties of the bar and its Hii regions, to elucidate the conditions under which Hii regions form and their spatial relation to the principal

  12. Learning Space Service Design

    Directory of Open Access Journals (Sweden)

    Elliot Felix

    2011-12-01

    Full Text Available Much progress has been made in creating informal learning spaces that incorporate technology and flexibly support a variety of activities. This progress has been principally in designing the right combination of furniture, technology, and space. However, colleges and universities do not design services within learning spaces with nearly the same level of sophistication or integration. Nor do they adequately assess their services. This paper calls for a focus on designing services to facilitate better learning experiences. It describes the fundamentals of service design practice, a selection of exemplary spaces, and the implications for design, budgeting, and staffing.

  13. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  14. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    Science.gov (United States)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  15. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  16. Does emotion modulate the efficacy of spaced learning in recognition memory?

    Directory of Open Access Journals (Sweden)

    Nicola Mammarella

    2014-12-01

    Full Text Available Memory for repeated items improves when presentations are spaced during study. Here, two experiments assessed the so-called spacing effect on a yes–no recognition memory task using affective and neutral words. In Experiment 1, a group of participants was asked to orient their attention to semantic features of target words (deep semantic analysis that were consecutively repeated or spaced, while another group was engaged in a graphemic shallow analysis of words (Experiment 2. The depth of word processing approach was meant to highlight the role of repetition priming mechanisms in the generation of spacing effects. We found that spacing effects occurred for both affective and neutral words (Experiment 1. However, following shallow analysis of words, the spacing effect was reduced for both affective and neutral words (Experiment 2. No differences were detected in terms of positive versus negative words. These results suggest that spaced learning operates when the to-be-remembered material is also affectively charged and that, under certain circumstances, it may enhance recognition memory as affective connotation does.

  17. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  18. Toward Microsatellite Based Space Situational Awareness

    Science.gov (United States)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments

  19. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  20. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  1. The International Space University

    Science.gov (United States)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  2. Microgravity Science Glovebox Aboard the International Space Station

    Science.gov (United States)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  3. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine

    2016-01-01

    BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess....

  4. Breaching barriers to collaboration in public spaces

    DEFF Research Database (Denmark)

    Heinemann, Trine; Mitchell, Robb

    2014-01-01

    Technology provoking disparate individuals to collaborate or share experiences in the public space faces a difficult barrier, namely the ordinary social order of urban places. We employed the notion of the breaching experiment to explore how this barrier might be overcome. We analyse responses...... of life in public spaces. Arising from this, we argue for the importance of qualities such as availability, facilitation, perspicuous settings, and perspicuous participants to encourage and support co-located strangers to collaborate and share experiences....

  5. Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space

    International Nuclear Information System (INIS)

    Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.

    2003-01-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast

  6. Exploring Inpatients' Experiences of Healing and Healing Spaces

    Directory of Open Access Journals (Sweden)

    Lorissa MacAllister PhD, AIA

    2016-12-01

    Full Text Available In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment.

  7. Particle Beam Tests of the Calorimetric Electron Telescope

    CERN Document Server

    Tamura, Tadahisa

    The Calorimetric Electron Telescope (CALET) is a new mission addressing outstanding astrophysics questions including the nature of dark matter, the sources of high-energy particles and photons, and the details of particle acceleration and transport in the galaxy by measuring the high-energy spectra of electrons, nuclei, and gamma-rays. It will launch on HTV-5 (H-II Transfer Vehicle 5) in 2014 for installation on the Japanese Experiment Module–Exposed Facility (JEM-EF) of the International Space Station. The CALET collaboration is led by JAXA and includes researchers from Japan, the U.S. and Italy. The CALET Main Telescope uses a plastic scintillator charge detector followed by a 30 radiation-length (X0) deep particle calorimeter divided into a 3 X0 imaging calorimeter, with scintillating optical fibers interleaved with thin tungsten sheets, and a 27 X0 fully-active total-absorption calorimeter made of lead tungstate scintillators. CALET prototypes were tested at the CERN (European Laboratory for Particle Ph...

  8. Mechanical design of a lidar system for space applications - LITE

    Science.gov (United States)

    Crockett, Sharon K.

    1990-01-01

    The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.

  9. Laboratory and space experiments as a key to the plasma universe

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1993-08-01

    Almost all of the known matter in our universe is in the state of plasma. Because of the complexity of the plasma state, a reliable understanding has to be built on empirical knowledge, since theoretical models easily become misleading unless guided by experiment or observation. Cosmical plasmas cover a vast range of densities and temperatures, but in important respects they can be classified into three main categories: high, medium, and low density plasmas. The ability of a plasma to carry electric current is very different in different kinds of plasma, varying from high density plasmas, where the ordinary Ohms law applies to low density plasmas, where no local macroscopic relation needs to exist between electric field and current density. According to classical formulas, the electrical conductivity of many plasmas should be practically infinite. But on the basis of laboratory experiments and in situ measurements in space we now know that in important cases the plasmas ability to carry electric current can be reduced by many powers of ten, and even collisionless plasmas may support significant magnetic-field aligned electric fields. A small number of processes responsible for this have been identified. They include anomalous resistivity, magnetic mirror effect and electric double layers. One of the consequences is possible violation of the frozen field condition, which greatly simplifies the analysis but can be dangerously misleading. Another is the possibility of extremely efficient release of magnetically stored energy. Cosmical plasmas have a strong tendency to form filamentary and cellular structures, which complicates their theoretical description by making homogeneous models inappropriate. In situ observations in the Earths magnetosphere have revealed completely unexpected and still not fully understood chemical separation processes that are likely to be important also in astrophysical plasmas. 108 refs

  10. Plant experiments with light-emitting diode module in Svet space greenhouse

    Science.gov (United States)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  11. Hypothermia Modulates Cytokine Responses After Neonatal Rat Hypoxic-Ischemic Injury and Reduces Brain Damage

    Directory of Open Access Journals (Sweden)

    Xiangpeng Yuan

    2014-11-01

    Full Text Available While hypothermia (HT is the standard-of-care for neonates with hypoxic ischemic injury (HII, the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18 or normothermia (NT, 35℃; n = 15. Outcomes included magnetic resonance imaging (MRI, neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII. Lesion volumes (24 hr were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19. Lesion volumes rebounded at 72 hr (48 hr post-HT with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β at all time points (p < .05; monocyte chemoattractant protein-1 (MCP-1 trended toward being decreased in HT pups (p = .09. The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1 was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr, potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury.

  12. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  13. Culture, economics, politics and knowledge as meaning-spaces in Social Occupational Therapy: reflections on the experience of “Ponto de Encontro e Cultura”

    Directory of Open Access Journals (Sweden)

    Denise Dias Barros

    2013-12-01

    Full Text Available This article describes and analyzes the “Ponto de Encontro e Cultura - PEC”, an experience developed by METUIA - University of São Paulo (USP-SP in São Paulo from 2007 to 2011 which linked occupational therapy to areas of cultural production. It was attended by the homeless, occupational therapists and students of occupational therapy. To perform the analysis of the different dimensions of the experience we were guided by the meaning-space notion. We took the space as an organizer to understand a reality in which relationships and actions are being empowered in four different spheres: culture, economics, politics and knowledge. We noted that this practice showed that there was an ongoing collective effort to build what may be called piece. This characterizes a process where the space is a common reference point which brings into play different modes of sociability that are created by the management of common symbols and codes. It was important to recognize and appreciate the plurality of modes of knowledge. Thus, we observed that, from the cultural sphere, it is possible to articulate economics, health, social assistance, politics, and knowledge production.

  14. The AMS-02 experiment status

    International Nuclear Information System (INIS)

    Oliva, A.

    2011-01-01

    The Alpha Magnetic Spectrometer (AMS) is a high-energy physics experiment built to operate in space. The prototype of the AMS detector was AMS-01, fown in1998 on-board of the space shuttle Discovery (missionSTS-91). Starting from the experience acquired in the high successful AMS-01 mission the detector AMS-02 has been designed improving the AMS-01 energetic range, geometric acceptance and particle identifcation capabilities. In 2010 the AMS-02 detector has been validated for the space/scientifc operations by means of a wide test campaign(including beam tests, TVT test and EMI test). A major change in the design of AMS-02 has been decided after the thermo-vacuum test to extend as much aspossible the endurance of the experiment, profiting also of the extended endurance of the International Space Station (ISS) program toward 2020. The final AMS-02 configuration has been integrated during summer 2010, then tested on the H8 beam-line at CERN, and finally delivered to the launch site (Kennedy Space Center, Florida) at the end of August. AMS-02 is planned to be installed on the International Space Station in 2011 by the space shuttle Endeavour (mission STS-134).

  15. The Oxygen and Nitrogen Abundance of Leo A and GR 8

    Science.gov (United States)

    van Zee, L.; Skillman, E. D.; Haynes, M. P.

    1999-05-01

    Gas phase abundances are one of the best measures of the intrinsic metallicity of low mass galaxies. We recently obtained low resolution long slit optical spectra of several HII regions in Leo A and GR 8 with the Palomar 5m telescope. Previous studies of the resolved stellar population of Leo A indicated that the stars have metallicities approximately 2% of solar (Tolstoy et al. 1998). Preliminary analysis of the HII region spectra, and that of a planetary nebula, indicates that the gas phase oxygen abundance of Leo A is approximately 3% of solar. This confirms the result of Skillman et al. (1989), who also derived an oxygen abundance for Leo A from a planetary nebula. Similarly, for GR 8 we find a mean oxygen abundance of 5% of solar. For all the HII regions, the derived log(N/O) is -1.5 +/- 0.1, as has been found for other low metallicity systems. These new observations of multiple HII regions in Leo A and GR 8 confirm that metals in low mass galaxies are well mixed.

  16. Gene expression variations during Drosophila metamorphosis in space: The GENE experiment in the Spanish cervantes missions to the ISS

    Science.gov (United States)

    Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto

    2005-08-01

    The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.

  17. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  18. Space Biology in Russia Today

    Science.gov (United States)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  19. Rethinking humanitarian space

    OpenAIRE

    Ahmad, Sana

    2016-01-01

    This study looks at the humanitarian space in Myanmar which includes not just the humanitarian operations in the country, the access to volatile zones by the humanitarian organisations, the humanitarian principles, but also a space which permits a complementary arrangement of diverse actors holding different positions and skill sets and deliver to those in need. The study is based on the practical experiences and reflections of these different actors on field and their operations in different...

  20. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    Science.gov (United States)

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  1. Student Pave Way for First Microgravity Experiments on International Space Station

    Science.gov (United States)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  2. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  3. The Space Station Freedom - International cooperation and innovation in space safety

    Science.gov (United States)

    Rodney, George A.

    1989-01-01

    The Space Station Freedom (SSF) being developed by the United States, European Space Agency (ESA), Japan, and Canada poses novel safety challenges in design, operations, logistics, and program management. A brief overview discloses many features that make SSF a radical departure from earlier low earth orbit (LEO) space stations relative to safety management: size and power levels; multiphase manned assembly; 30-year planned lifetime, with embedded 'hooks and scars' forevolution; crew size and skill-mix variability; sustained logistical dependence; use of man, robotics and telepresence for on-orbit maintenance of station and free-flyer systems; closed-environment recycling; use of automation and expert systems; long-term operation of collocated life-sciences and materials-science experiments, requiring control and segregation of hazardous and chemically incompatible materials; and materials aging in space.

  4. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Science.gov (United States)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  5. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  6. Through the Students’ Lens: Photographic Methods for Research in Library Spaces

    Directory of Open Access Journals (Sweden)

    Shailoo Bedi

    2017-06-01

    Full Text Available Abstract Objective – As librarians and researchers, we are deeply curious about how our library users navigate and experience our library spaces. Although we have some data about users’ experiences and wayfinding strategies at our libraries, including anecdotal evidence, statistics, surveys, and focus group discussions, we lacked more in-depth information that reflected students’ real-time experiences as they move through our library spaces. Our objective is to address that gap by using photographic methods for studying library spaces. Methods – We present two studies conducted in two academic libraries that used participant-driven photo-elicitation (PDPE methods. Described simply, photo-elicitation methods involve the use of photographs as discussion prompts in interviews. In both studies presented here, we asked participants to take photographs that reflected their experiences using and navigating our library spaces. We then met with participants for an interview using their photos as prompts to discuss their experiences. Results – Our analysis of students’ photos and interviews provided rich descriptions of student experiences in library spaces. This analysis resulted in new insights into the ways that students navigate the library as well as the ways that signage, furniture, technology, and artwork in the library can shape student experiences in library spaces. The results have proven productive in generating answers to our research questions and supporting practical improvements to our libraries. Additionally, when comparing the results from our two studies we identified the importance of detailed spatial references for understanding student experiences in library spaces, which has implications beyond our institutions. Conclusion – We found that photographic methods were very productive in helping us to understand library users’ experiences and supporting decision-making related to library spaces. In addition, engaging with

  7. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    Science.gov (United States)

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  8. Fibre optic gyroscopes for space use

    Science.gov (United States)

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  9. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  10. Desdemona and a ticket to space; training for space flight in a 3g motion simulator

    NARCIS (Netherlands)

    Wouters, M.

    2014-01-01

    On October 5, 2013, Marijn Wouters and two other contestants of a nation-wide competition ‘Nederland Innoveert’ underwent a space training exercise. One by one, the trainees were pushed to their limits in the Desdemona motion simulator, an experience that mimicked the Space Expedition Corporation

  11. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  12. Is power-space a continuum? Distance effect during power judgments.

    Science.gov (United States)

    Jiang, Tianjiao; Zhu, Lei

    2015-12-01

    Despite the increasing evidence suggesting that power processing can activate vertical space schema, it still remains unclear whether this power-space is dichotomic or continuous. Here we tested the nature of the power-space by the distance effect, a continuous property of space cognition. In two experiments, participants were required to judge the power of one single word (Experiment 1) or compare the power of two words presented in pairs (Experiment 2). The power distance was indexed by the absolute difference of power ratings. Results demonstrated that reaction time decreased with the power distance, whereas accuracy increased with the power distance. The findings indicated that different levels of power were presented as different vertical heights, implying that there was a common mechanism underlying space and power cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  14. On-orbit technology experiment facility definition

    Science.gov (United States)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  15. The Metric of Colour Space

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2015-01-01

    and found the MacAdam ellipses which are often interpreted as defining the metric tensor at their centres. An important question is whether it is possible to define colour coordinates such that the Euclidean distance in these coordinates correspond to human perception. Using cubic splines to represent......The space of colours is a fascinating space. It is a real vector space, but no matter what inner product you put on the space the resulting Euclidean distance does not correspond to human perception of difference between colours. In 1942 MacAdam performed the first experiments on colour matching...

  16. Elements of a pragmatic approach for dealing with bias and uncertainty in experiments through predictions : experiment design and data conditioning; %22real space%22 model validation and conditioning; hierarchical modeling and extrapolative prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vicente Jose

    2011-11-01

    This report explores some important considerations in devising a practical and consistent framework and methodology for utilizing experiments and experimental data to support modeling and prediction. A pragmatic and versatile 'Real Space' approach is outlined for confronting experimental and modeling bias and uncertainty to mitigate risk in modeling and prediction. The elements of experiment design and data analysis, data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. Rationale is given for the various choices underlying the Real Space end-to-end approach. The approach adopts and refines some elements and constructs from the literature and adds pivotal new elements and constructs. Crucially, the approach reflects a pragmatism and versatility derived from working many industrial-scale problems involving complex physics and constitutive models, steady-state and time-varying nonlinear behavior and boundary conditions, and various types of uncertainty in experiments and models. The framework benefits from a broad exposure to integrated experimental and modeling activities in the areas of heat transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids and solids.

  17. Space Microbiology

    Science.gov (United States)

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  18. Why do science in space? Researchers' Night at CERN 2017

    CERN Multimedia

    Nellist, Clara

    2017-01-01

    Space topic and debate "Why do science in space?" With the special presence of Matthias Maurer, European Space Agency astronaut, and Mercedes Paniccia, PhD, Senior Research Associate for space experiment AMS.

  19. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  20. A Foundation for Mobile User Experiences in Theme Parks

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller

    2013-01-01

    Based on case studies, this paper proposes a theoretical understanding of three essential aspects, which affect mobile user experiences in theme parks. The aspect are (a) the controllability of the mobile content, (b) the balance in the hybrid space of proximate physical place and remote digital...... space, and (c) the social space. Furthermore, the social space is exceptionally important in understanding mobile user experiences in theme parks. Thus, this paper proposes to extract the social space from the physical place. This means, that mobile user experiences in theme parks can be understood...