WorldWideScience

Sample records for space heating equipment

  1. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  2. Chapter 12. Space Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    The performance evaluation of space heating equipment for a geothermal application is generally considered from either of two perspectives: (a) selecting equipment for installation in new construction, or (b) evaluating the performance and retrofit requirements of an existing system. With regard to new construction, the procedure is relatively straightforward. Once the heating requirements are determined, the process need only involve the selection of appropriately sized hot water heating equipment based on the available water temperature. It is important to remember that space heating equipment for geothermal applications is the same equipment used in non-geothermal applications. What makes geothermal applications unique is that the equipment is generally applied at temperatures and flow rates that depart significantly from traditional heating system design. This chapter presents general considerations for the performance of heating equipment at non-standard temperature and flow conditions, retrofit of existing systems, and aspects of domestic hot water heating.

  3. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  4. 46 CFR 184.210 - Heating equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Heating equipment. 184.210 Section 184.210 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.210 Heating equipment...

  5. 46 CFR 121.210 - Heating equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating equipment. 121.210 Section 121.210 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.210 Heating equipment. (a) Each heater must be so...

  6. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  7. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  8. Plasma Decontamination of Space Equipment for Planetary Protection

    Science.gov (United States)

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  9. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  10. 49 CFR 176.93 - Vehicles having refrigerating or heating equipment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicles having refrigerating or heating equipment... Transported on Board Ferry Vessels § 176.93 Vehicles having refrigerating or heating equipment. (a) A transport vehicle fitted with refrigerating or heating equipment using a flammable liquid or Division 2.1...

  11. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  12. 46 CFR 169.685 - Electric heating and cooking equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Electric heating and cooking equipment. 169.685 Section... More on Vessels of Less Than 100 Gross Tons § 169.685 Electric heating and cooking equipment. (a) Each...) All electric cooking equipment, attachments, and devices, must be of rugged construction and so...

  13. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  14. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br, E-mail: jamil@ieav.cta.br, E-mail: jalnsgf@outlook.com, E-mail: borges.em@hotmail.com, E-mail: ecorborges@hotmail.com, E-mail: ivayolini@gmail.com, E-mail: guilherme_placco@ig.com.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil); Barrios Junior, Ary Garcia, E-mail: arygarcia89@yahoo.com [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil)

    2013-07-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  15. Heat-electricity convertion systems for a Brazilian space micro nuclear reactor

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Marcelino, Natalia B.; Placco, Guilherme M.; Nascimento, Jamil A.; Borges, Eduardo M.; Barrios Junior, Ary Garcia

    2013-01-01

    This contribution will discuss the evolution work in the development of thermal cycles to allow the development of heat-electricity conversion for the Brazilian space micro nuclear Reactor. Namely, innovative core and nuclear fuel elements, Brayton cycle, Stirling engine, heat pipes, passive multi-fluid turbine, among others. This work is basically to set up the experimental labs that will allow the specification and design of the space equipment. Also, some discussion of the cost so far, and possible other applications will be presented. (author)

  16. Restoration to serviceability of Bruce 'A' heat transfer equipment

    International Nuclear Information System (INIS)

    Gammage, D.; Machowski, C.; McGillivray, R.; Durance, D.; Kazimer, D.; Werner, K.

    2009-01-01

    Bruce Units 1 to 4 were shut down during the 1990s by the former Ontario Hydro, due in part to a long list of system and equipment deficiencies and concerns, including steam generator tube degradation as a consequence of the then-existing steam generator secondary side water chemistry conditions. Upon its creation in 2001, and following a program of condition assessment, Bruce Power was able to determine that Units 3 and 4 could return to service; but that Units 1 and 2 would require refurbishment. That Refurbishment Program, which is currently well advanced, included the re-assessment of the condition of equipment throughout the plant including the heat transfer equipment; and determination item-by-item as to what inspection, cleaning, repair, or even replacement would be required to put the equipment into a condition where it could be expected to operate reliably for the additional 30 years expected from the plant. Clearly the objective is to suitably restore the equipment to serviceability without doing more refurbishment work than is warranted - without replacing equipment except where absolutely necessary. The first task in such a program is determination of its scope - i.e. a listing of all heat exchangers. That list included everything from the steam generators (which required replacement, now completed), to much smaller heat exchangers in the heavy water upgrader systems (which were found to be in very good overall condition). There is also a very large number of other so-called 'balance-of-plant' heat exchangers; these include the maintenance coolers, moderator heat exchangers, shutdown coolers and a whole raft of smaller coolers - many of which are cooled directly by lake water with its potential for bio-fouling and 'BIC' (Biologically Induced Corrosion). This paper focuses primarily on the engineering assessment, inspection, repair and general refurbishment of the balance-of-plant heat exchangers. As will be discussed in the paper, the assessment of the

  17. Sensors for Metering Heat Flux Area Density and Metrological Equipment for the Heat Flux Density Measurement

    Science.gov (United States)

    Doronin, D. O.

    2018-04-01

    The demand in measuring and studies of heat conduction of various media is very urgent now. This article considers the problem of heat conduction monitoring and measurement in various media and materials in any industries and branches of science as well as metrological support of the heat flux measurement equipment. The main study objects are both the sensors manufactured and facilities onto which these sensors will be installed: different cladding structures of the buildings, awnings, rocket fairings, boiler units, internal combustion engines. The Company develops and manufactures different types of heat flux sensors: thermocouple, thin-film, heterogeneous gradient as well as metrological equipment for the gauging calibration of the heat flux density measurement. The calibration shall be performed using both referencing method in the unit and by fixed setting of the heat flux in the unit. To manufacture heterogeneous heat flux gradient sensors (HHFGS) the Company developed and designed a number of units: diffusion welding unit, HHFGS cutting unit. Rather good quality HHFGS prototypes were obtained. At this stage the factory tests on the equipment for the heat flux density measurement equipment are planned. A high-sensitivity heat flux sensor was produced, now it is tested at the Construction Physics Research Institute (Moscow). It became possible to create thin-film heat flux sensors with the sensitivity not worse than that of the sensors manufactured by Captec Company (France). The Company has sufficient premises to supply the market with a wide range of sensors, to master new sensor manufacture technologies which will enable their application range.

  18. Procedures for selecting and buying district heating equipment. Sofia district heating. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The aim of this Final Report, prepared for the project `Procedures for Selecting and Buying DistRict Heating Equipment - Sofia District Heating Company`, is to establish an overview of the activities accomplished, the outputs delivered and the general experience gained as a result of the project. The main objective of the project is to enable Sofia District Heating Company to prepare specifications and tender documents, identify possible suppliers, evaluate offers, etc. in connection with purchase of district heating equipment. This objective has been reached by using rehabilitation of sub-stations as an example requested by Sofia DH. The project was originally planned to be finalized end of 1995, but due to the extensions of the scope of work, the project has been prolonged until end 1997. The following main activities were accomplished: Preparation of a detailed work plan; Collection of background information; Discussion and advice about technical specifications and tender documents for sub-station rehabilitation; Input to terms of reference for a master plan study; Input to technical specification for heat meters; Collection of ideas for topics and examples related to dissemination of information to consumers about matters related to district heating consumption. (EG)

  19. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Design of equipment for cooking and heating. 130.220... Design of equipment for cooking and heating. (a) Doors on each cooking appliance must be provided with heavy-duty hinges and locking-devices to prevent accidental opening in heavy weather. (b) Each cooking...

  20. Design guide for heat transfer equipment in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    1975-07-01

    Information pertaining to design methods, material selection, fabrication, quality assurance, and performance tests for heat transfer equipment in water-cooled nuclear reactor systems is given in this design guide. This information is intended to assist those concerned with the design, specification, and evaluation of heat transfer equipment for nuclear service and the systems in which this equipment is required. (U.S.)

  1. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-09-01

    Full Text Available With the urbanization process of the hot summer and cold winter (HSCW zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE and sustainability index based on exergy efficiency, are adopted to perform the evaluation. Models for the energy and total exergy efficiencies of various space and water heating equipment/systems are developed. The evaluation results indicate that common uses of electricity for space and water heating are the most unsustainable ways of space and water heating. In terms of PEE and sustainability index, air-source heat pumps for space and water heating are suitable for the HSCW zone. The PEE and sustainability index of solar water heaters with auxiliary electric heaters are greatly influenced by local solar resources. Air-source heat pump assisted solar hot water systems are the most sustainable among all water heating equipment/systems investigated in this study. Our works suggest the key potential for improving the energy efficiency and the sustainability of space and water heating in urban residential buildings of the HSCW zone.

  2. Space shuttle/food system study. Volume 2, Appendix A: Active heating system-screening analysis. Appendix B: Reconstituted food heating techniques analysis

    Science.gov (United States)

    1974-01-01

    Technical data are presented which were used to evaluate active heating methods to be incorporated into the space shuttle food system design, and also to evaluate the relative merits and penalties associated with various approaches to the heating of rehydrated food during space flight. Equipment heating candidates were subject to a preliminary screening performed by a selection rationale process which considered the following parameters; (1) gravitational effect; (2) safety; (3) operability; (4) system compatibility; (5) serviceability; (6) crew acceptability; (7) crew time; (8) development risk; and (9) operating cost. A hot air oven, electrically heated food tray, and microwave oven were selected for further consideration and analysis. Passive, semi-active, and active food preparation approaches were also studied in an effort to determine the optimum method for heating rehydrated food. Potential complexity, cost, vehicle impact penalties, and palatability were considered in the analysis. A summary of the study results is provided along with cost estimates for each of the potential sytems

  3. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  4. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  5. Thermal fatigue equipment to test joints of materials for high heat flux components

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Orsini, A.; Riccardi, B.; Sacchetti, M.

    2000-01-01

    The activity, carried out in the framework of an ITER divertor task, was aimed at defining a suitable method in order to qualify junctions between armour materials and heat sink of plasma-facing components (PFCs) mock-ups. An equipment able to perform thermal fatigue testing by electrical heating and active water-cooling was constructed and a standard for the sample was defined. In this equipment, during operation cycles, two samples are heated by thermal contact up to a relevant temperature value (350 deg. C) and then the water flow is switched on, thus producing fast cooling with time constants and gradients close to the real operating conditions. The equipment works with a test cycle of about 60 s and is suitable for continuous operation. A complete test consists of about 10000 cycles. After the assembling, the equipment and the control software were optimized to obtain a good reliability. Preliminary tests on mock-ups with flat CFC tiles joined to copper heat sink were performed. Finite-elements calculations were carried out in order to estimate the value of the thermal stresses arising close to the joint under the transient conditions that are characteristic of this equipment

  6. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  7. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  8. Deep Space Network equipment performance, reliability, and operations management information system

    Science.gov (United States)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  9. Methods for tube attachment in a heat exchange equipment

    International Nuclear Information System (INIS)

    Shilin, O.V.; Vasil'ev, V.B.

    1984-01-01

    Two main ways of attaching tubes to tube panels in heat exchange equipment are analyzed: expanding and pulse method (by explosion, for instance). Labour-consumption and cost price for the fastening of brass, perlitic and corrosion-resistant tubes for both of the methods are presented. The extent of fitting out with equipment for tube fixing and ways of testing the joints for attachment are evaluated. Measures for improving the joint quality and introduction of the advanced technology are suggested

  10. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  11. Heat Conduction of Air in Nano Spacing

    Directory of Open Access Journals (Sweden)

    Zhang Yao-Zhong

    2009-01-01

    Full Text Available Abstract The scale effect of heat conduction of air in nano spacing (NS is very important for nanodevices to improve their life and efficiency. By constructing a special technique, the changes of heat conduction of air were studied by means of measuring the heat conduction with heat conduction instrument in NS between the hot plate and the cooling plate. Carbon nanotubes were used to produce the nano spacing. The results show that when the spacing is small down to nanometer scale, heat conduction plays a prominent role in NS. It was found that the thickness of air is a non-linear parameter for demarcating the heat conduction of air in NS and the rate of heat conduction in unit area could be regard as a typical parameter for the heat conduction characterization at nanometer scale.

  12. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  14. 46 CFR 108.213 - Heating requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating requirements. 108.213 Section 108.213 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.213 Heating requirements. (a) Each accommodation space must be heated by a heating system that can maintain at least 20°C. (68°F.). (b) Radiators...

  15. Effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles

    International Nuclear Information System (INIS)

    Pourahmad, Saman; Pesteei, S.M.

    2016-01-01

    Highlights: • Double tube heat exchanger equipped with wavy strip turbulators was studied. • The effects of wavy strip angles on the effectiveness were investigated. • Variation of the effectiveness with hot and cold water flow rate was presented. • The effectiveness increases with the decrease of wavy strip angle. • The friction factor increases with the decrease of wavy strip angle. - Abstract: In the present study, effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles were experimentally studied. Moreover, variation of the effectiveness with hot water Reynolds numbers for different cold water flow rates were presented. These turbulators with different angles of 45°, 60°, 90°, 120° and 150° were made of galvanized plates with thickness of 1 mm and were installed in the inner tube of heat exchanger. The experiments were carried out at Reynolds numbers of 3000–13,500 at turbulent flow regime. Throughout the experiments, hot and cold water flowed through the inner pipe and the space between the pipes (annulus), respectively. It was tried to keep the inlet hot and cold water temperatures at constant values. Effectiveness-NTU analyses were made for the conditions with and without wavy strips including their different angles and compared to each other. Results showed the considerable effect of turbulators on effectiveness (ε) and number of heat transfer units (NTU) of double tube heat exchanger. In addition, some empirical correlations expressing the results were also developed based on curve fitting.

  16. A novel circuit topology of modified switched boost hybrid resonant inverter fitted induction heating equipment

    Directory of Open Access Journals (Sweden)

    Bhattacharya Ananyo

    2016-12-01

    Full Text Available A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.

  17. 14 CFR 125.206 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 125.206... Equipment Requirements § 125.206 Pitot heat indication systems. (a) Except as provided in paragraph (b) of... flight instrument pitot heating system unless the airplane is equipped with an operable pitot heat...

  18. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  19. 14 CFR 135.158 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 135.158... Equipment § 135.158 Pitot heat indication systems. (a) Except as provided in paragraph (b) of this section... instrument pitot heating system unless the airplane is also equipped with an operable pitot heat indication...

  20. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  1. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  2. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  3. 78 FR 63410 - Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment...

    Science.gov (United States)

    2013-10-24

    ... test procedures for direct heating equipment and pool heaters established under the Energy Policy and... U.S.C. 6293(e)(2)) The current energy conservation standards for direct heating equipment and pool... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2013-BT-TP-0004] RIN 1904-AC94 Energy...

  4. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  5. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    International Nuclear Information System (INIS)

    Mohd Ghazali, F.A.; Ab Rahim, M.F.; Jaafar, A.A.; Ahmad, M.N.

    2016-01-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method. (paper)

  6. A REVIEW ON TEXTILES IN SPACE PROTECTION EQUIPMENTS

    Directory of Open Access Journals (Sweden)

    SUNTER EROGLU Nilsen

    2017-05-01

    Full Text Available Astronauts need the lander for decelerate and bridle the speed when they land on the space surface slowly. This lander could be controlled velocity magnitude in any direction or orientation and provide protection. The landers consist of airbags and parachutes. The airbag is a type of vehicle safety device, have a soft cushioning and is an occupant restraint system. The parachute provides to slow the motion of an object through an atmosphere by the hauling. Space protection equipments must have some properties because of astronaut’s entry, descend and landing in safely. Textiles in airbags provide these properties especially which are light weight, low gas permeability, high strength, low cost, low temperature flexibility and low coefficient of friction. For textiles in parachutes must have properties such as smooth, porosity, air permeability, high strength, cost-effective, stability light weight and good in drag and lift. Airbags and parachutes in space protection equipment’s are improved in systems provide easy stability. Recently, inflatable technologies for space protection equipments plays a fundamental role in building re-entry capsule. It can be performed a variety of pre-flight analyses to ensure the success of the tests of protection systems from day to day. In this review, space protection systems, their textile materials and properties, their advantages and disadvantages are presented.

  7. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    Science.gov (United States)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  8. Buyers guide of industrial furnaces and heating equipment. Bau und Ausruestung von Industrieoefen und industriellen Waermeanlagen: Bezugsquellenverzeichnis

    Energy Technology Data Exchange (ETDEWEB)

    Stepanek, J [comp.

    1988-01-01

    The book is a glossary as well as a dictionary (German, English, French, Spanish). It comprises the following chapters: 1. Trade directory. 2. Industrial furnaces and industrial heating equipment. 3. Index to thermal processes. 4. Index to industrial furnaces and industrial heating equipment. 5. General accessories. 6. Special accessories. 7. Accessories for firing equipment. 8. Addresses. 9. Codes of practice. (HW).

  9. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  10. On variations of space-heating energy use in office buildings

    International Nuclear Information System (INIS)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-01-01

    Highlights: • Space heating is the largest energy end use in the U.S. building sector. • A key design and operational parameters have the most influence on space heating. • Simulated results were benchmarked against actual results to analyze discrepancies. • Yearly weather changes have significant impact on space heating energy use. • Findings enable stakeholders to make better decisions on energy efficiency. - Abstract: Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However

  11. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  12. SCHOOL LUNCH, SUGGESTED GUIDES FOR SELECTING LARGE EQUIPMENT.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia.

    THE TYPE AND CAPACITY OF A WIDE RANGE OF SCHOOL KITCHEN EQUIPMENT IS RECOMMENDED WITH RESPECT TO THE NUMBER OF MEALS SERVED PER DAY. THESE RECOMMENDATIONS ARE GIVEN FOR RANGES, SINKS, ELECTRIC HEATING, GAS HEATING, REFRIGERATION, TABLES, KITCHEN MACHINES, TRUCK DOLLIES, SCALES, STORAGE CABINETS, OFFICE SPACES, LOUNGES, GARBAGE AND CAN WASHING…

  13. Space station wardroom habitability and equipment study

    Science.gov (United States)

    Nixon, David; Miller, Christopher; Fauquet, Regis

    1989-01-01

    Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.

  14. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  15. 14 CFR 121.342 - Pitot heat indication systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pitot heat indication systems. 121.342... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.342 Pitot... a flight instrument pitot heating system unless the airplane is also equipped with an operable pitot...

  16. The Evaluation of the Equipment and Quality of the Public Space of Poznań

    Directory of Open Access Journals (Sweden)

    Budner Waldemar W.

    2016-06-01

    Full Text Available The article defines the notion of public space and attempts to explain its forms and roles. The article realizes two cognitive goals: the evaluation of the equipment of public spaces in Poznań with the selected elements of landscape architecture and the quality of those spaces. Empirical research was conducted in the form of a survey addressed at 300 respondents. The research activities conducted in the course of work allow for the formulation of the following conclusions: the quality of life in a city depends on the condition of equipment of public space; the elements of landscape architecture make the public space of Poznań more attractive (contribute to its functionality, increase the aesthetics of urban space; the condition of the equipment of public space with landscape architecture is evaluated as good; the users of the public space in Poznań pointed out the problem of advertising pillars, advertisements and signboards, public toilets and the insufficient number of seats.

  17. Anthropogenic heat flux estimation from space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmond, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2016-01-01

    H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts

  18. ANthropogenic heat FLUX estimation from Space

    NARCIS (Netherlands)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean Philippe; Grimmong, C.S.B.; Feigenwinter, Christian; Lindberg, Fredrik; Frate, Del Fabio; Klostermann, Judith; Mi, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-01-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the

  19. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  20. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  1. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  2. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  3. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Science.gov (United States)

    2010-01-01

    ... processing systems. 318.305 Section 318.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing...

  4. The point of view from thermal equipment managers; Le point de vue des gestionnaires d`equipements thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Barroyeur, P. [Compagnie General de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The new French regulations on air pollution and classified installations have increased the technical and economical constraints of thermal equipment managers in the domain of collective space heating and industrial heating. The aim of this paper is to precise the impact of these regulations in particular, on the valorization and elimination of fossil fuel ashes, and on the design, operation and maintenance of combustion installations (maximum acceptable limits of pollutant emissions). (J.S.)

  5. Potential for solar space heating in Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Macgregor, A W.K.

    1980-07-01

    This paper investigates the relative effectiveness of passive-type solar-assisted space heating systems at various latitudes within the British Isles. A comparison is made of the useful solar gain of the same system linked to the same house at four different locations. Month-by-month energy balances indicate that the annual useful solar contribution at the highest latitude (Lerwick, 60 deg N) is about 35% higher than at the lowest latitude (Kew, 53 deg N). The main reason for this difference is the higher heating loads in the north, particularly outside the winter months. The estimated available irradiation on south-facing vertical surfaces was almost the same at all four locations. Previous work in the UK indicates that, contrary to the conclusions in this paper, more southerly latitudes were the most favorable for solar space heating. The reasons for the disparity are discussed. It is recommended that research and development of passive solar-assisted space heating systems should be most vigorously pursued in the more northerly latitudes of the British Isles, where both the potential benefit and the need are greatest.

  6. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  7. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Canning and Canned... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Equipment and procedures for heat processing systems. 381.305 Section 381.305 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE...

  8. Solar thermal space heating combined with swimming pool heating: A promising solution for southern Europe climates

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.J.; Neves, Ana [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The system concept evaluation performed focused on systems that can provide hot water, space heating and swimming-pool heating, and are designed for application in southern climates specifically for single-family houses. Due to the climate characteristics of southern Europe, space heating is required only for a few months in the year. In this evaluation it was considered a six month period for space heating and, on the other six months, swimming pool heating was considered. This type of systems are applicable to a niche market of people who are building their houses as single-family houses and want also to take profit of the good climate conditions for the use of solar energy. It is common that the construction of a swimming pool is also planned and constructed. The evaluation is made considering as reference system a factory made with 4m{sup 2} collector area and 300 l storage tank. The system in evaluation offers extra service - space heating and swimming pool heating and is formed by a collector field and a combistore providing solar hot water preparation and space heating in the winter period and providing also swimming pool heating in the summer period. The evaluation made shows that in southern Europe climates this system will give extra service in comparison to the traditional solar systems used and can be economically interesting.

  9. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  10. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  11. TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts

    Science.gov (United States)

    Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.

    2018-05-01

    Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.

  12. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  13. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  14. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  15. Information technology equipment cooling method

    Science.gov (United States)

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  16. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  17. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  18. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  19. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  20. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  1. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  2. Corrosion resistance of heat exchange equipment in hydrotreating Orenburg Condensate

    International Nuclear Information System (INIS)

    Teslya, B.M.; Burlov, V.V.; Parputs, I.V.; Parputs, T.P.

    1986-01-01

    The authors study the corrosion resistance of materials of construction and select appropriate materials for the fabrication of heat exchange equipment that will be serviceable under hydrotreating conditions. This paper discusses the Orenburg condensate hydrotreating unit which has been shut down repeatedly for repair because of corrosion damage to components of heat exchangers in the reactor section: tube bundles (08Kh18N10T steel), corrugated compensators (12Kh18N10T steel), and pins of the floating heads (37Kh13N8G8MFB steel). The authors recommend that the tube bundles and the compensators in heat exchangers in the reaction section should be fabricated of 08Kh21N6M2T or 10Kh17N13M2T steel. The pins have been replaced by new pins made of 10Kh17N13 X M2T steel, increasing the service life from 6-12 months to 2 years

  3. An office building of Paris city air-conditioned by an aquifer-source heat pump; Un immeuble parisien climatise par une thermofrigopompe sur nappe phreatique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-09-01

    A 7000 m{sup 2} office building of Paris (France) is equipped with an aquifer-source heat pump for the space heating and cooling. This choice allows to save 28400 euros of heating/cooling expenses each year with respect to other solutions. The equipment ensures also the production of hot and chilled water and the calories recovered from the refrigeration system are used to supply the space heating needs of the building. This paper describes the equipments (heat pump, heat exchangers, ventilation-convection systems), the centralized control system and the cost-benefit aspects. (J.S.)

  4. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  5. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  6. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  7. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  8. The emissions from a space-heating biomass stove

    International Nuclear Information System (INIS)

    Koyuncu, T.; Pinar, Y.

    2007-01-01

    In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NO X ), sulphur dioxide (SO 2 ) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%. (author)

  9. Effects of Heating on Teflon(Registered Trademark) FEP Thermal Control Material from the Hubble Space Telescope

    Science.gov (United States)

    deGroh, Kim; Gaier, James R.; Hall, Rachelle L.; Norris, Mary Jo; Espe, Matthew P.; Cato, Daveen R.

    1999-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene) thermal control material on the Hubble Space Telescope (HST) is degrading in the space environment. Teflon(Registered Trademark) FEP thermal control blankets (space-facing FEP) retrieved during the first servicing mission (SM1) were found to be embrittled on solar facing surfaces and contained microscopic cracks. During the second servicing mission (SM2) astronauts noticed that the FEP outer layer of the multi-layer insulation (MLI) covering the telescope was cracked in many locations around the telescope. Large cracks were observed on the light shield, forward shell and equipment bays. A tightly curled piece of cracked FEP from the light shield was retrieved during SM2 and was severely embrittled, as witnessed by ground testing. A Failure Review Board (FRB) was organized to determine the mechanism causing the MLI degradation. Density, x-ray crystallinity and solid state nuclear magnetic resonance (NMR) analyses of FEP retrieved during SM1 were inconsistent with results of FEP retrieved during SM2. Because the retrieved SM2 material curled while in space, it experienced a higher temperature extreme during thermal cycling, estimated at 200 C, than the SM1 material, estimated at 50 C. An investigation on the effects of heating pristine and FEP exposed on HST was therefore conducted. Samples of pristine. SM1, and SM2 FEP were heated to 200 C and evaluated for changes in density and morphology. Elevated temperature exposure was found to have a major impact on the density of the retrieved materials. Characterization of polymer morphology of as-received and heated FEP samples by NMR provided results that were consistent with the density results. These findings have provided insight to the damage mechanisms of FEP in the space environment.

  10. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Taveau, F.; Huiban, A.M. [Alstom Power Heat Exchange, 78 - Velizy Villacoublay (France)

    2001-07-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  11. Rehabilitation of heat exchange equipment a key to power plant life extension and performance improvement

    International Nuclear Information System (INIS)

    Taveau, F.; Huiban, A.M.

    2001-01-01

    With the current evolutions of the energy market and the life extension of the power plants, all the equipment initially supplied need one day or another partial or total rehabilitation. For heat exchange equipment, this includes the condensers, feed water heaters and various heat exchangers. Modernization is in particular necessary when in-service monitoring and periodic inspections show significant deteriorations of the tubes and cooling water leakages leading to forced outages or when tube and tube plate materials are no longer suited to cooling water characteristics or to updated specifications of the secondary system. Feedwater heaters and heat exchangers damaged by erosion/corrosion, vibrations, etc. can be re-designed, manufactured and replaced easily. The operation is more complex on condensers and requires technical surveys, study of alternative solutions and has a more direct impact on the global output of the power plant. That is why our conference will focus on the condenser refurbishment. (author)

  12. Exercise Equipment Usability Assessment for a Deep Space Concept Vehicle

    Science.gov (United States)

    Rhodes, Brooke M.; Reynolds, David W.

    2015-01-01

    With international aspirations to send astronauts to deep space, the world is now faced with the complex problem of keeping astronauts healthy in unexplored hostile environments for durations of time never before attempted by humans. The great physical demands imparted by space exploration compound the problem of astronaut health, as the astronauts must not only be healthy, but physically fit upon destination arrival in order to perform the scientific tasks required of them. Additionally, future deep space exploration necessitates the development of environments conducive to long-duration habitation that would supplement propulsive vehicles. Space Launch System (SLS) core stage barrel sections present large volumes of robust structure that can be recycled and used for long duration habitation. This assessment will focus on one such conceptual craft, referred to as the SLS Derived Habitat (SLS-DH). Marshall Space Flight Center's (MSFC) Advanced Concepts Office (ACO) has formulated a high-level layout of this SLS-DH with parameters such as floor number and orientation, floor designations, grid dimensions, wall placement, etc. Yet to be determined, however, is the layout of the exercise area. Currently the SLS-DH features three floors laid out longitudinally, leaving 2m of height between the floor and ceilings. This short distance between levels introduces challenges for proper placement of exercise equipment such as treadmills and stationary bicycles, as the dynamic envelope for the 95th percentile male astronauts is greater than 2m. This study aims to assess the optimal equipment layout and sizing for the exercise area of this habitat. Figure 1 illustrates the layout of the DSH concept demonstrator located at MSFC. The exercise area is located on the lower level, seen here as the front half of the level occupied by a crew member. This small volume does not allow for numerous or bulky exercise machines, so the conceptual equipment has been limited to a treadmill and

  13. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  14. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  15. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Scully, L.W.; Fisk, A.; deBakker, P.; Friant, J.; Anderson, A.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a result of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 1000 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste will be discussed. Various options in concept will be presented as well as their advantages and disadvantages. The operating scenario of the selected concept will be described as well as solutions to potential problems encountered

  16. Equipment for the emplacement of heat-producing waste in long horizontal boreholes

    International Nuclear Information System (INIS)

    Young, K.D.; Fisk, A.; Friant, J.; Scully, L.W.

    1983-01-01

    Emplacement of heat-producing waste in long horizontal holes may offer several technical and economic advantages over shallow vertical hole emplacement. Less of the host rock suffers damage as a resul of drift construction; the heat from the waste can be isolated from the access drifts for long periods of time; and the amount of rock which must be excavated is much less than in traditional disposal scenarios. One of the major reasons that has been used to reject the long hole concept in the past and adhere to the shallow vertical hole concept is the equipment required to drill the holes and to emplace and retrieve the waste. Such equipment does not currently exist. It clearly is more difficult to drill a 600 to 100 foot horizontal hole, possibly 3 to 4 feet in diameter, and place a canister of waste at the end of it than to drill a 30 foot vertical hole and lower the waste to the bottom. A liner, for emplacement hole stabilization, appears to be feasible by adapting existing technology for concrete slip forming or jacking in a steel liner. The conceptual design of the equipment to drill long horizontal holes, emplace waste and retrieve waste is discussed. Various options in concept are presented as well as their advantages and disadvantages. The operating scenario of the selected concept is described as well as solutions to potential problems encountered

  17. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  18. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  19. Experimental validation of the buildings energy performance (PEC assessment methods with reference to occupied spaces heating

    Directory of Open Access Journals (Sweden)

    Cristian PETCU

    2010-01-01

    Full Text Available This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC in view of their correction of completing. The entire research activity aims to experimentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009, on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type. The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006. The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009. The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values

  20. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  1. Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-01-01

    During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

  2. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    Energy Technology Data Exchange (ETDEWEB)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  3. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  4. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  5. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    Science.gov (United States)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  6. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  7. Micro tube heat exchangers for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles, economizers...

  8. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  9. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  10. Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.

  11. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  12. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  13. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  14. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  15. Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri

    Science.gov (United States)

    1980-01-01

    The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.

  16. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  17. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system

    International Nuclear Information System (INIS)

    Yuan, Yuan; Shan, Jianqiang; Zhang, Bin; Gou, Junli; Bo, Zhang; Lu, Tianyu; Ge, Li; Yang, Zijiang

    2016-01-01

    Highlights: • A transient analysis code TAPIRS for HPS has been developed. • Three typical accidents are analyzed using TAPIRS. • The reactor system has the self-stabilization ability under accident conditions. - Abstract: A space power with high power density, light weight, low cost and high reliability is of crucial importance to future exploration of deep space. Space reactor is an excellent candidate because of its unique characteristics of high specific power, low cost, strong environment adaptability and so on. Among all types of space reactors, heat pipe cooled space reactor, which adopts the passive heat pipe (HP) as core cooling component, is considered as one of the most promising choices and is widely studied all over the world. This paper develops a transient analysis code (TAPIRS) for heat pipe cooled space reactor power system (HPS) based on point reactor kinetics model, lumped parameter core heat transfer model, combined HP model (self-diffusion model, flat-front startup model and network model), energy conversion model of Alkali Metal Thermal-to-Electric Conversion units (AMTEC), and HP radiator model. Three typical accidents, i.e., control drum failure, AMTEC failure and partial loss of the heat transfer area of radiator are then analyzed using TAPIRS. By comparing the simulation results of the models and steady state with those in the references, the rationality of the models and the solution method is validated. The results show the following. (1) After the failure of one set of control drums, the reactor power finally reaches a stable value after two local peaks under the temperature feedback. The fuel temperature rises rapidly, however it is still under safe limit. (2) The fuel temperature is below a safe limit under the AMTEC failure and partial loss of the heat transfer area of radiator. This demonstrates the rationality of the system design and the potential applicability of the TAPIRS code for the future engineering application of

  18. [Automated analysis of bacterial preparations manufactured on automatic heat fixation and staining equipment].

    Science.gov (United States)

    2012-01-01

    Heat fixation of preparations was made in the fixation bath designed by EMKO (Russia). Programmable "Emkosteiner" (EMKO, Russia) was used for trial staining. Reagents set Micko-GRAM-NITsF was applied for Gram's method of staining. It was demostrated that automatic smear fixation equipment and programmable staining ensure high-quality imaging (1% chromaticity variation) good enough for standardization of Gram's staining of microbial preparations.

  19. Prospective areas in the production technology of scientific equipment for space research

    Science.gov (United States)

    Breslavets, A. V.

    1974-01-01

    The average labor of individual types of operations in the percentage ratio of the total labor consumption of manufacturing scientific instruments and apparatus for space research is presented. The prospective areas in the production technology of billet, machining, mechanical assembly, installation and assembly, adjustment and regulation and testing and control operations are noted. Basic recommendations are made with respect to further reduction of labor consumption and an increase in the productivity of labor when manufacturing scientific equipment for space research.

  20. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  1. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  2. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  3. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  4. Two-story residence with solar heating--Newman, Georgia

    Science.gov (United States)

    1981-01-01

    Report evaluates performance of warm-air collector system for 11 month period and provides operation and maintenance information. System consists of 14 warm air collectors, rock-storage bin, air handler, heat exchangers, hot-water preheat tank, associated controls, plumbing, and air ducting. Average building temperature was maintained at 72 F (22 C); solar equipment provided 47 percent of space-heating requirement.

  5. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  6. An evaluation of solar energy for heating a highway maintenance headquarters building.

    Science.gov (United States)

    1985-01-01

    A highway maintenance area headquarters building having overall dimensions of 64 ft - 8 in by 42 ft - 0 in was equipped with an active solar heating system to assist in heating space and domestic hot water. The solar system was instrumented and its o...

  7. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  8. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  9. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  10. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    Science.gov (United States)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  11. Active charge, passive discharge floor space heating system

    Energy Technology Data Exchange (ETDEWEB)

    Salt, H.; Mahoney, K.J.

    1987-01-01

    This space heating system has a rockbed beneath and in contact with the floor of a dwelling, which is heated by radiation and convection from the floor. The ability of the heating system to maintain comfort conditions with no additional energy input is discussed and it is shown that the system is more suitable for use in mild climates than severe ones. Experimental work on horizontal air flow rockbeds is reported and shows that shallow beds can be designed in the same way as vertical air flow beds. The influence of natural convection on the effective thermal conductivity of the experimental rockbeds is reported.

  12. Benefits and well-being perceived by green spaces users during heat waves

    Directory of Open Access Journals (Sweden)

    Dentamaro I

    2010-07-01

    Full Text Available In urban environments, green spaces have proven to act as ameliorating factors of some climatic features related to heat stress, reducing their effects and providing comfortable outdoor settings for people. In addition, green spaces have demonstrated greater capacity, compared with built-up areas, for promoting human health and well-being. In this paper, we present results of a study conducted in Italy with the general goal to contribute to the theoretical and empirical rationale for linking green spaces with well-being in urban environments. Specifically, the study focused on the physical and psychological benefits and the general well-being associated with the use of green spaces on people when heat stress episodes are more likely to occur. A questionnaire was set up and administered to users of selected green spaces in Italy (metropolitan area of Milan and Bari - n=400. Results indicate that longer and frequent visits of green spaces generate significant improvements of the perceived benefits and well-being among users. These results are consistent with the idea that the use of green spaces could alleviate the perception of thermal discomfort during periods of heat stress.

  13. An energy and cost analysis of residential heat pumps in northern climates

    Science.gov (United States)

    Martin, J. K.; Oneal, D. L.

    1980-04-01

    Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.

  14. Convection heat transfer of closely-spaced spheres with surface blowing

    Energy Technology Data Exchange (ETDEWEB)

    Kleinstreuer, C. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering); Chiang, H. (Thermofluid Technology Div., Industrial Technology Research Inst., Chutung (Taiwan, Province of China))

    1993-05-01

    A validated computer simulation model has been developed for the analysis of colinear spheres in a heated gas stream. Using the Galerkin finite element method, the steady-state Navier-Stokes and heat transfer equations have been solved describing laminar axisymmetric thermal flow past closely-spaced monodisperse spheres with fluid injection. Of interest are the coupled nonlinear interaction effects on the temperature fields and ultimately on the Nusselt number of each sphere for different free stream Reynolds numbers (20 [<=] Re [<=] 200) and intersphere distances (1.5 [<=] d[sub ij] [<=] 6.0) in the presence of surface blowing (0 [<=] v[sub b] [<=] 0.1). Fluid injection (i.e. blowing) and associated wake effects generate lower average heat transfer coefficients for each interacting sphere when the Reynolds number increases (Re > 100). Heat transfer is also reduced at small spacings especially for the second and third sphere. A Nusselt number correlation for each interacting (porous) sphere has been developed based on computer experiments. (orig.)

  15. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  16. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  17. Investigation and assessment of wall heat transfer correlations in SPACE code

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Kim, Kyung Doo; Moon, Sang Ki; Choi, Ki Yong; Park, Hyun Sik

    2010-06-01

    SPACE, which is a safety analysis code for nuclear power plants, has been developed to analyze the multidimensional, two-component and three-field flow. This code can be applied to safety analysis for approval which is thermal-hydraulic analysis to support the nuclear power station design, establishment of accident ease strategy, development of operating guide line, experiment plan and analysis. To do so, SPACE code has 12 wall heat transfer mode and the corresponding models and correlations to deal with the physical heat transfer phenomenon in wall surface. In this report, the physical correlation models regarding the wall heat transfer are explained and their performance is assessed against several SET

  18. Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space

    Science.gov (United States)

    Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.

    2018-01-01

    Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.

  19. A Materials and Equipment Review of Selected U.S. Geothermal District Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, K D [P.E.

    0000-12-30

    Geothermal district heating systems are now quite common in the western U.S. A recent survey identified a total of 17 such systems. The performance of materials and equipment in 13 of these systems is reviewed in this paper. Specific areas covered include: production facilities, central plants, distribution, customer connection, metering and disposal. Those areas: characterized by the highest incidence of problems include: production well pumps, customer branch piping and energy metering.

  20. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M; Mullender, B; Druart, J [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W; Beddows, A [ESTEC-The (Netherlands)

    1997-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  1. Space qualification of high capacity grooved heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, M.; Mullender, B.; Druart, J. [SABCA, Societe Anomyme Belgel de Construction Aeronautique (Belgium); Supper, W.; Beddows, A. [ESTEC-The (Netherlands)

    1996-12-31

    Based on the thermal requirements of the future telecommunication satellites, the development of a High Capacity Grooved Heat Pipe (HPG), was contracted by ESA to SABCA leading to an aluminium extruded heat pipe (outer diameter of 25 mm) based on a multi re-entrant grooves design. After an intensive acceptance test campaign whose results showed a good confidence in the design and the fulfillment of the required specifications of heat transport and on tilt capability (experimental maximum heat transport capability of 1500 Watt metres for a vapour temperature of 20 deg C), similar heat pipes have been developed with various outer diameters (11 mm, 15 mm and 20 mm) and with various shapes (circular outer shapes, integrated saddles). Several of these heat pipes were tested during two parabolic flight campaigns, by varying the heat loads during the micro-gravity periods. This HGP heat pipe family is now being submitted to a space qualification program according to ESA standards (ESA PSS-49), both in straight and bent configuration. Within this qualification, the heat pipes are submitted to an extended test campaign including environmental (random/sinus vibration, constant acceleration) and thermal tests (thermal performance, thermal cycle, thermal soak, ageing). (authors) 9 refs.

  2. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  3. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  4. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  5. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  6. Heating homes and water with the sun. Solar thermal solutions adapted to individual homes

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier; Leplay, Camille

    2016-09-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook of the way to complete the installation of a solar space and hot water heating system in an individual home. After some recall of the key points to be considered before taking the decision to invest in a solar heating system (minimum surface, orientation, etc.) and the main administrative procedures to be respected (in France), this document presents the common individual solar water heating system (which is now reliable and robust), its various equipment and operating principles, the dimensioning of the system, gives recommendations on points such as the panel position and orientation, the risk of overheating and the way to avoid it, etc. It also presents combined solar heating solutions that simultaneously heat water and space, their operating principles and the way to complete their installation for a home. Informations on financing, selection of the equipment and the installer, and installation maintenance are also proposed

  7. Heat pumps. Tax credit: repercussions in the profession; Pompes a chaleur. Credit d'impot: des retentissements dans la profession

    Energy Technology Data Exchange (ETDEWEB)

    Lux, C.

    2005-04-01

    The French by-law from February 9, 2005, which completes the 2005 finances law, precises the equipments concerned by a 40% tax credit. It takes into account only the geothermal and air/water heat pumps for space heating with a coefficient of performance (COP) {>=} 3. The air/air heat pumps are excluded from this purview while they were included in 2004. This article presents the contrasted reactions of some professionals in front of this measure. The tax credit concerns only the heat pumps for space heating purposes, while the air/air heat pumps can produce indifferently heat and coldness and sometimes with different COPs in space heating and in space cooling. (J.S.)

  8. Performance predictions and measurements for space-power-system heat pipes

    International Nuclear Information System (INIS)

    Prenger, F.C. Jr.

    1981-01-01

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000

  9. Design of free-space optical transmission system in computer tomography equipment

    Science.gov (United States)

    Liu, Min; Fu, Weiwei; Zhang, Tao

    2018-04-01

    Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.

  10. Proceedings of the twenty third national heat and mass transfer conference and first international ISHMT-ASTFE heat and mass transfer conference: souvenir and book of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately

  11. Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators

    International Nuclear Information System (INIS)

    Zohir, A.E.; Abdel Aziz, A.A.; Habib, M.A.

    2011-01-01

    This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65 o ) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.

  12. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  13. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-09-01

    Full Text Available Titanium dioxide (TiO2 in water as nanofluid was employed for heat transfer enhancement together with overlapped dual twisted tapes (O-DTs. The study encompassed Reynolds numbers from 5400 to 15,200, O-DTs with overlapped twist ratios (yo/y of 1.5, 2.0 and 2.5 and nanofluids with TiO2 volume concentrations (ϕ of 0.07%, 0.14% and 0.21%. The experimental and numerical results indicated that O-DTs with smaller overlapped twisted ratio delivered a stronger swirl intensity and higher turbulent kinetic energy (TKE. The use of O-DTs at the smallest overlapped twist ratio of 1.5 enhanced heat transfer rates up to 89%, friction factor by 5.43 times and thermal performance up to 1.13 times as compared to those of plain tube. In addition, heat transfer increased as TiO2 volume concentration of nanofluid increased, owing to the increases of contact surface and thermal conductivity. The simultaneous use of the O-DTs having twist ratios 1.5 with the nanofluid with TiO2 volume concentration of 0.21% resulted in heat transfer enhancement around 9.9–11.2% and thermal performance improvement up to 4.5% as compared to the use of O-DTs alone. The empirical correlations of heat transfer rate (Nu, friction factor (f and thermal performance (η in a constant wall heat flux tube equipped O-DTs at different overlapped twist ratios (yo/y and volume concentrations of TiO2 nanoparticles (ϕ are also reported for heat transfer applications.

  14. SPECIFIC DEGRADATION STRUCTURE FEATURES AND MECHANICAL PROPERTIES OF FURNACE AND HEAT POWER EQUIPMENT ELEMENTS AFTER LONG-TERM OPERATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2012-01-01

    Full Text Available The paper presents results of investigations on structure and mechanical properties of technological equipment elements made of heat-resistant steels. A scale of chrome and molybdenum steel microstructure degradation based on evaluation of  coagulated carbide size and material mechanical properties (a point from 0-operation without time limits, up to 4-operation prohibition has been proposed in the paper. It has been  established that an analysis of  steel microstructure directly on equipment elements by means of a portable microscope is an efficient express method for evaluation of equipment condition and structures due to control of material structure degradation rate of a diagnosed object.

  15. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  16. Waste heat recovering device for reactors

    International Nuclear Information System (INIS)

    Sonoda, Masanobu; Shiraishi, Tadashi; Mizuno, Hiroyuki; Sekine, Yasuhiro.

    1982-01-01

    Purpose: To enable utilization of auxiliary-equipment-cooling water from a non-regenerative heat exchanger as a heat source, as well as prevent radioactive contamination. Constitution: A water warming device for recovering the heat of auxiliary equipment cooling water from a non-regenerative heat exchanger is disposed at the succeeding stage of the heat exchanger. Heat exchange is performed in the water warming device between the auxiliary equipment cooling water and a heat source water set to a higher pressure and recycled through the water warming device. The heat recovered from the auxiliary equipment cooling water is utilized in the heat source water for operating relevant equipments. (Aizawa, K.)

  17. Energetical and ecological assessment of solar- and heat pump technologies for hot water preparation and space heating in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Solar and heat pump systems have been proved in many applications on the market. To achieve an efficient energy output it is necessary to consider the special conditions of these technologies. The energetical and ecological criteria of solar and heat pump systems for hot water preparation and space heating are analysed on the basis of experimental data. (author)

  18. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  19. Solar Space and Water Heating for School -- Dallas, Texas

    Science.gov (United States)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  20. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  1. Investigations of heat-hydraulic noises in the equipment for creation of power-saving technologies

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.

    2000-01-01

    The results of experimental and theoretical studies on the parameters of vibroacoustic signals, originating in the TPP and NPP thermal energy equipment, are presented. The methods for calculation and identification of the heat-hydraulic perturbation sources, intended for improving the means of early diagnostics of anomalies in the technological process, forecasting their development, increasing the maintenance work efficiency and operational safety, as well as for creating power-saving technologies in the power engineering, are developed [ru

  2. Comparison of Advanced Residential Water Heating Technologies in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  3. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  4. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  5. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  6. Effect of the inter-block spacing on the thermal performance of a PCM based heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts

    2010-07-01

    Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.

  7. Solar heating system installed at Jackson, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  8. Remote control systems for space heating. Product overview 2010 and recommendations - Final report; Fernsteuerungen fuer Raumheizungen. Produktuebersicht 2010 und Empfehlungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geilinger, E.; Bush, E. [Bush Energie GmbH, Felsberg (Switzerland); Venzin, T. [Hochschule fuer Technik und Wirtschaft (HTW) Chur, Chur (Switzerland); Nipkow, J. [Arena, Zuerich (Switzerland)

    2010-09-15

    Saving space heating energy by remote control: A remote-controlled space heating system allows a person to lower the room temperature in homes that go unoccupied for periods of time to the lowest temperature that's safe to keep the pipes from freezing while they're away. Comfort is guaranteed because the desired room temperature or mode can be activated in time before the guests arrive, via text message, phone or the internet. As most people simply leave unoccupied homes heated, the remote-controlled system saves up to 70% of heating energy when used actively. Market overview and product features: This report presents remote control devices that are currently available on the market. Their advantages and disadvantages are discussed as well as their technical features and function. Most of them are universal remote controls that have various uses, including temperature control. The report also discusses requirements that not all the examined products meet. Some lack an emergency power supply, the possibility for manual control or the ability to check the current temperature of the home from a remote location. Better planning for remote control: The critical issue proved not to be the remote control device itself, but the heating systems. Unfortunately, they often don't provide an option to be extended by remote control. We therefore call on the manufacturers to equip all new heating systems with options for remote control. It would also be helpful and desirable to provide information on the internet or in the technical documentation on how to connect a remote control device and which products are suitable - both for existing and new heating systems. If the system cannot be retrofitted, it should be described whether and how a central remote control with room thermostat can be installed. Improving communication: In this study, remote control and heating suppliers were interviewed as well as planners, installers and users of remote-controlled heating. Their responses

  9. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  10. ENERGY EFFICIENCY OF ELECTRIC HEATING OF REACTORS IN THE MANUFACTURE OF VARNISHES AND PAINTS

    Directory of Open Access Journals (Sweden)

    Tovajniansky L.L.

    2014-08-01

    Full Text Available The drawbacks of the traditional design of the heaters, which make known imperfections in manufacturing processes, realized with the use of electric heating. This determines the need for a radically new design of the heating devices. Created by high-temperature ceramics, characterized by abnormally high thermal stability and clarified the parameters that allow a certain degree change its thermal conductivity. On this basis the contact type ceramic heaters that provide thermal flow direction using different materials in the body of the heater - of high thermal conductivity, the surface facing the heat transfer and low which differs opposite sides of the heater are designed to eliminate the dissipation of heat into the surrounding space. This made it possible to equip the modern production paint industry energy efficient heating equipment with explosion and fire heating system reactors.

  11. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  12. Touch Temperature Coating for Off-the-Shelf Electrical Equipment Used on Spacecraft

    Science.gov (United States)

    Ungar, Eugene K.; Brady, Timothy K.

    2010-01-01

    Off-the-shelf electrical equipment is frequently used in space-based applications to control costs. However, the reduced heat transfer in the spacecraft microgravity environment causes the equipment to operate at significantly higher temperatures than it would in terrestrial applications. This creates touch temperature issues where items particularly metallic ones become too hot for the crew to handle safely. A touch temperature coating layup has been developed that can be added to spacebased electrically powered hardware. The coating allows the crew to safely handle the hardware, but only slightly impedes the heat transfer from the component during normal operation. In the present work, the coating generic requirements are developed and a layup is described that meets these specifications. Analytical and experimental results are presented that demonstrate the ability of the coating layup to increase the allowable limits of touch temperature while only marginally degrading heat transfer to the environment. This allows the spacecraft crew to handle objects that, if not coated, would be hot enough to cause pain or skin damage.

  13. Determinants of residential space heating expenditures in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Helena [Department of Economics, University of Hamburg, Von Melle Park 5, 20146 Hamburg (Germany); Rehdanz, Katrin [Department of Economics, University of Kiel, Olshausenstrasse 40, 24118 Kiel (Germany)

    2010-09-15

    In Great Britain, several policy measures have been implemented in order to increase energy efficiency and reduce carbon emissions. In the domestic sector, this could, for example, be achieved by improving space heating efficiency and thus decreasing heating expenditure. However, in order to efficiently design and implement such policy measures, a better understanding of the determinants affecting heating expenditure is needed. In this paper we examine the following determinants: socio-economic factors, building characteristics, heating technologies and weather conditions. In contrast to most other studies we use panel data to investigate household demand for heating in Great Britain. Our data sample is the result of an annual set of interviews with more than 5000 households, starting in 1991 and ending in 2005. The sample represents a total of 64,000 observations over the fifteen-year period. Our aim is to derive price and income elasticities both for Britain as a whole and for different types of household. Our results suggest that differences exist between owner-occupied and renter households. These households react differently to changes in income and prices. Our results also imply that a number of socio-economic criteria have a significant influence on heating expenditure, independently of the fuel used for heating. Understanding the impacts of different factors on heating expenditure and impact differences between types of household is helpful in designing target-oriented policy measures. (author)

  14. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    Science.gov (United States)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-11-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of "self-rewetting fluids", i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59-61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20-100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  15. Self-rewetting carbon nanofluid as working fluid for space and terrestrial heat pipes

    International Nuclear Information System (INIS)

    Di Paola, R.; Savino, R.; Mirabile Gattia, D.; Marazzi, R.; Vittori Antisari, M.

    2011-01-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary heat transfer fluids with peculiar surface tension properties and in particular to that of “self-rewetting fluids”, i.e., liquids with a surface tension increasing with temperature and concentration. Since in the course of liquid/vapor-phase change, self-rewetting fluids behavior induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, this fluids have been proposed and investigated as new heat transfer fluids for advanced heat transfer devices, e.g., heat pipes or heat spreaders for terrestrial and space applications (Savino et al. in Space Technol 25(1):59–61, 2009). The present work is dedicated to the study of the thermophysical properties of a new class of heat transfer fluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesized by a homemade apparatus with an AC arc discharge in open air (Mirabile Gattia et al. in Nanotechnology 18:255604, 2007). SWNHs are cone-shaped nanoparticles with diameters between 1 and 5 nm and lengths in the range of 20–100 nm. SWNHs could be found in the form of quite-spherical aggregates with diameters ranging from 20 to 100 nm. The paper also discusses the results of these investigations and laboratory characterization tests of different heat pipes, including reference ordinary heat pipes and innovative pipes filled with self-rewetting fluids and self-rewetting nanofluids. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  16. Waste heat recovery for offshore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Kandepu, Rambabu; Haglind, Fredrik

    2012-01-01

    vary in the range 20-30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity...... production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal...... energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized...

  17. 46 CFR 129.550 - Power for cooking and heating.

    Science.gov (United States)

    2010-10-01

    ... INSTALLATIONS Miscellaneous Electrical Systems § 129.550 Power for cooking and heating. (a) Equipment for... with a thermal cut-out to prevent overheating. (e) Each element of an electric space-heater must be enclosed, and the case or jacket of the element made of a corrosion-resistant material. (f) Each electrical...

  18. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  19. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  20. [A reliability growth assessment method and its application in the development of equipment in space cabin].

    Science.gov (United States)

    Chen, J D; Sun, H L

    1999-04-01

    Objective. To assess and predict reliability of an equipment dynamically by making full use of various test informations in the development of products. Method. A new reliability growth assessment method based on army material system analysis activity (AMSAA) model was developed. The method is composed of the AMSAA model and test data conversion technology. Result. The assessment and prediction results of a space-borne equipment conform to its expectations. Conclusion. It is suggested that this method should be further researched and popularized.

  1. Microeconomics and the demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D.J.

    1977-12-01

    The techniques of economic utility theory are combined with the technical equations for heat loss from a dwelling to give insight into the variation of consumer demand for space heating. A theoretical relationship is established between the performance of the occupied dwelling as the external temperature falls and the short-run income elasticity of energy demand. The analysis is applied to studies of UK heating practice in the 1950s and the implied indifference map for thermal comfort deduced. This indifference map is found to show a considerable economic propensity to absorb some of the potential savings from energy conservation measurements in higher internal temperatures. The effect found is sufficiently large to have consequences for future energy planning if it were still present in the UK domestic sector. The analysis highlights a number of points that should aid the interpretation of field experiments on domestic energy consumption. In particular, it is shown that unless great care is taken to separate out the technical and economic origins of internal temperature variation, the results of field studies on the effectiveness of conservation techniques may only be of shortlived value.

  2. Proceedings of the 1993 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  4. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    Science.gov (United States)

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  5. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  6. Solar heating still in the early stages. Changes for hot water production - VDI meeting 'Efficient heating systems'

    Energy Technology Data Exchange (ETDEWEB)

    Goehringer, P

    1976-10-01

    More and more realism replaces the initial euphoria concerning the discussion on solar heating. Not only the possibilities are considered these days, but also the limits of this still controversial way of heating. This impression was deepened by a meeting of the VDI-Gesellschaft Technische Gebaeudeausruestung (Society for the technical equipment of buildings) held in Bonn. The heating of water with solar energy during the summer is viewed optimistically by the experts - as far as space heating is concerned, the sun collector is conceded only a very modest position in Central Europe within integrated heating systems. It is true that solar technology in the USA is already very sophisticated and economically feasible in many cases; however, techniques cannot be adopted unconditionally for Europe, as the average values of global solar radiation are much lower here. Thus, different technologies will be required.

  7. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  8. Heat recovery using a venturi scrubber

    International Nuclear Information System (INIS)

    Gilbert, W.J.

    1982-01-01

    When an air pollution problem involves scrubbing at relatively elevated temperatures, the possibility exists for practical use of the heat contained with the gas. A venturi type scrubber has been shown to successfully handle such hot exhaust gases for removal of both gases and particulates, as well as heat recovery. The use of a relatively simple overall system, using the recirculated liquid loop for space heating, can be made practical and efficient. Whenever possible, this will allow the scrubbing equipment, normally considered a nuisance, to actually produce a pay-back for the customer. Careful consideration must be given to all aspects of the system's installation, operation, and maintenance. The feasibility of such a system depends on conditions at the particular location and the relative need for a low temperature heat source

  9. Nuclear reactor equipped with a flooding tank and a residual heat removal and emergency cooling system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Winkler, F.

    1975-01-01

    A description is given of a nuclear reactor such as a pressurized-water reactor or the like which is equipped with a flooding tank and a residual heat removal and emergency cooling system. The flooding tank is arranged within the containment shell at an elevation above the upper edge of the reactor core and contains a liquid for flooding the reactor core in the event of a loss of coolant

  10. The point of view of thermal equipment users; Le point de vue des gestionnaires d`equipements thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Barroyer, P. [Compagnie Generale de Chauffe, 59 - Saint Andre Lez Lille (France)

    1997-12-31

    The influence of new pollution regulations in France on the operation of thermal equipment for central heating systems or industrial heat process systems, is examined. The main French regulations concerning air pollution control and energy rational consumption are reviewed, and their effects on the design, equipment, operation and costs of heat plants are discussed: impacts of the decree on upgrading and disposal of fossil fuel ashes, the decree on special protection zone (large cities), the clean air law, the compulsory declaration for classified combustion plants and limit air pollution emission levels

  11. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  12. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  13. Remote control systems for space heating. Product overview 2010 and recommendations - Final report; Fernsteuerungen fuer Raumheizungen. Produktuebersicht 2010 und Empfehlungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geilinger, E.; Bush, E. [Bush Energie GmbH, Felsberg (Switzerland); Venzin, T. [Hochschule fuer Technik und Wirtschaft (HTW) Chur, Chur (Switzerland); Nipkow, J. [Arena, Zuerich (Switzerland)

    2010-09-15

    Saving space heating energy by remote control: A remote-controlled space heating system allows a person to lower the room temperature in homes that go unoccupied for periods of time to the lowest temperature that's safe to keep the pipes from freezing while they're away. Comfort is guaranteed because the desired room temperature or mode can be activated in time before the guests arrive, via text message, phone or the internet. As most people simply leave unoccupied homes heated, the remote-controlled system saves up to 70% of heating energy when used actively. Market overview and product features: This report presents remote control devices that are currently available on the market. Their advantages and disadvantages are discussed as well as their technical features and function. Most of them are universal remote controls that have various uses, including temperature control. The report also discusses requirements that not all the examined products meet. Some lack an emergency power supply, the possibility for manual control or the ability to check the current temperature of the home from a remote location. Better planning for remote control: The critical issue proved not to be the remote control device itself, but the heating systems. Unfortunately, they often don't provide an option to be extended by remote control. We therefore call on the manufacturers to equip all new heating systems with options for remote control. It would also be helpful and desirable to provide information on the internet or in the technical documentation on how to connect a remote control device and which products are suitable - both for existing and new heating systems. If the system cannot be retrofitted, it should be described whether and how a central remote control with room thermostat can be installed. Improving communication: In this study, remote control and heating suppliers were interviewed as well as planners, installers and users of remote-controlled heating

  14. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  15. 46 CFR 184.220 - Cooking equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cooking equipment. 184.220 Section 184.220 Shipping...) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Cooking and Heating § 184.220 Cooking equipment. (a) Doors on a cooking appliance must be provided with hinges and locking devices to prevent...

  16. Study of heat exchange in cooling systems of heat-stressed structures

    Science.gov (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2017-01-01

    Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.

  17. Compact heat exchanger for power plants

    International Nuclear Information System (INIS)

    Kinnunen, L.

    2001-01-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators

  18. Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

    Science.gov (United States)

    Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.

    1999-01-01

    In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.

  19. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  20. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  1. Behavior of households equipped with fuel oil heating facing the petroleum price sudden increase in 2000; Le comportement des menages equipes de chauffage au fioul face a la brutale augmentation du prix du petrole en 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This paper analyses the public attitudes facing the sudden increase of the fuel oil increase during the year 2000. This increase has got a great impact on the households equipped with fuel oil heating. The households adapted their strategy to obtain the best prices, to defer the deliveries or to reduce energy consumption by a improve of the heating performances. (A.L.B.)

  2. Development and test of a space-reactor-core heat pipe

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

    1983-01-01

    A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500 0 K with an evaporator radial flux density of 100 w/cm 2 . The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500 0 K for 100 hours. No performance degradation was observed during the test

  3. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  4. Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant; Kombineret brugsvands- og rumvarmepumpe med CO{sub 2} som koelemiddel

    Energy Technology Data Exchange (ETDEWEB)

    Schoen Poulsen, C. [Teknologisk Institut (Denmark)

    2006-05-19

    This project report describes the implementation of the Danish project called 'Combined heat pump for sanitary hot water and space heating with CO{sub 2} as refrigerant'. In the course of the project, a combined heat pump has been developed for heating sanitary hot water and producing domestic space heating. The project shows that CO2 has excellent properties in systems where a high temperature is desired on the gas cooler side and that it is possible to combine the production of sanitary hot water with the production of domestic space heating. During the project, a number of system solutions have been analysed and at the end of the project a prototype was built. It was tested in the laboratory according to a current Dutch standard for heat pumps for sanitary hot water. The prototype was constructed without the space heat part which solely has been analysed according to calculations. The reason is that there currently are no applicable European standards for the testing of combined systems and as the total efficiency of the system mainly depends on the temperature out of the gas cooler it was decided not to spend resources on the construction of the combined system in the prototype version of the unit. Instead, a number of proposals have been submitted to how the system with a space heat section could be constructed. The main components used in the prototype (compressor, exchangers, valve, control and tank) are all partly commercially available and therefore focus has been on the system construction. During the project, a number of CFD calculations have been carried out on the gas cooler in the hot water tank and the results show how important it is that the gas cooler is designed and placed correctly. The laboratory tests carried out on the unit show that the COP of the heat pump plant in connection with sanitary hot water tapping (according to Dutch standard) is 1.4 1.5 which is not immediately satisfactory. But when it is considered that the unit is a

  5. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  6. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  7. 46 CFR 121.220 - Cooking equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cooking equipment. 121.220 Section 121.220 Shipping... SYSTEMS AND EQUIPMENT Cooking and Heating § 121.220 Cooking equipment. (a) Doors on a cooking appliance... cooking appliance must be installed to prevent movement in heavy seas. (c) For a grill or similar type of...

  8. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  9. Nuclear power plant with improved arrangements for the removal of post fission and emergency heating

    International Nuclear Information System (INIS)

    Buescher, E.; Vinzens, K.

    1977-01-01

    This is concerned with additional equipment for emergency heat removal in a sodium cooled reactor, which operates on failure of the post fission heat removal system. The space for pressure relieving spaces and concrete masses as heat sinks within the reactor cell is no longer required. In this nuclear power plant, a heat exchanger chain transmits heat and power: There is a first sodium circuit between pressure vessel and the first heat exchanger, a second one between the first and second heat excahngers, and a third (Steam) circuit with turbine, condenser and return pump. A fourth circuit connects the secondary side of the condenser with a cooling tower. There is a threee component heat excahgner in the primary circuit after the first heat exchanger, which is built around the first heat exchanger, and is sealed into an unloading space. This space is situated next to the reactor cell and is above the operating level of the sodium in the pressure vessel. It is connected to the cell by an upper duct, normally closed by a bursting disc, and by a lower duct. In the three comopnent heat exchanger, a liquid lead-bismuth eutectic mixture transmits the heat from sodium pipes to water pipes. In normal operation it is used for steam superheating or feedwater preheating. The three component heat exchanger bridges the first and second heat exchangers as an emergency heat exchanger. If in such a case the post fission heat removal has failed, the sodium evaporating in the pressure vessel flows into the unloading space and condenses on the ribs of the emergency heat exchanger. The post fission heat is fed by the water secondary medium directly into the tertiary circuit. The sodium condensate flows back from the unloading space via the lower duct into the reactor cell and maintains the emergency level there. (RW) 891 RW [de

  10. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  11. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    Science.gov (United States)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  12. Heat recovery apparatus

    International Nuclear Information System (INIS)

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained

  13. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    Science.gov (United States)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  14. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  15. Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers. To test the model, two space heating systems in Beijing and Tianjin were investigated, and the model was validated under three operation modes. There was good agreement between the measured and simulated values for room temperature, return water temperature, and flow rate. A modeling analysis case was given based on an existing building and heating system. It was found that when the set value of the TRVs were kept on 2-3, about 12.4% reduction of heat consumption could be gained, compared with the situation in which the TRVs were kept fully open. The water flow rate was an important index that truly reflected the heat load change. It was also noted that if the flow rate or supply water temperature changed much during the transport delay time in the radiator, ignoring the transport delay would introduce an obvious deviation of the simulation results. Additionally, when an apartment stopped using the heating system during a heating season, the heat consumption of its neighboring apartments would be increased about 6-14%. (author)

  16. 14 CFR 1273.32 - Equipment.

    Science.gov (United States)

    2010-01-01

    ... awarding agency. (d) Management requirements. Procedures for managing equipment (including replacement... return. (e) Disposition. When original or replacement equipment acquired under a grant or subgrant is no... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Equipment. 1273.32 Section 1273.32...

  17. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Eric Martin, Chuck Withers, Janet McIlvaine, Dave Chasar, and David Beal

    2018-03-29

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  18. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  19. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  20. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City.

    Science.gov (United States)

    Dang, Tran Ngoc; Van, Doan Quang; Kusaka, Hiroyuki; Seposo, Xerxes T; Honda, Yasushi

    2018-04-01

    To quantify heat-related deaths in Ho Chi Minh City, Vietnam, caused by the urban heat island (UHI) and explore factors that may alleviate the impact of UHIs. We estimated district-specific meteorological conditions from 2010 to 2013 using the dynamic downscaling model and calculated the attributable fraction and number of mortalities resulting from the total, extreme, and mild heat in each district. The difference in attributable fraction of total heat between the central and outer districts was classified as the attributable fraction resulting from the UHI. The association among attributable fraction, attributable number with a green space, population density, and budget revenue of each district was then explored. The temperature-mortality relationship between the central and outer areas was almost identical. The attributable fraction resulting from the UHI was 0.42%, which was contributed by the difference in temperature distribution between the 2 areas. Every 1-square-kilometer increase in green space per 1000 people can prevent 7.4 deaths caused by heat. Green space can alleviate the impacts of UHIs, although future studies conducting a heath economic evaluation of tree planting are warranted.

  1. Equipment for inspection and carrying out repairs, if required, for tube bundles of steam raising units

    International Nuclear Information System (INIS)

    Gugel, G.

    1976-01-01

    The equipment solves the problem of being able to inspect and possibly to repair U-tubes of a vertical steam raising unit standing on a tube floor, without draining the primary medium and bringing the test equipment and tools into the inside of the boiler first. This is achieved by leaving a considerable part of the equipment permanently in the hemispherical space under the tube floor and operating it from the outside, on the other side of the concrete shielding. An inspection tube is threaded in turn horizontally through a concrete shield, a tube duct in the heat insulation of the steam raising unit, and through a hole in the hemispherical space under the tube floor into this space. The end of an angle tube can be moved axially from outside the concrete shield and can be rotated in a semicircle above the tube axis. By interposing a, for example, 12 part distributor with 12 short, differently bent tubes 12 adjacent tubes opening into the tube floor can be controlled and tested, by axial movement of the angle tube together with the distributor, e.g. 4 x 12 other U tubes. A turbulent flow sensor, for example, can be introduced through the angle tube and distributor. In the non-operational condition the equipment is moved into a recess via a supporting angle and stopped there. (ORU) [de

  2. An experimental investigation of supercritical heat transfer in a three-rod bundle equipped with wire-wrap and grid spacers and cooled by carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca

    2016-07-15

    Highlights: • Heat transfer at supercritical pressures was studied experimentally in a three-rod bundle equipped with wire-wrap spacers or grid spacers. • Heat transfer deterioration occurred near the heated inlet under certain conditions. • Normal heat transfer was generally comparable to that in a tube and the predictions of a correlation. - Abstract: Heat transfer measurements in a three-rod bundle equipped with wire-wrap and grid spacers were obtained at supercritical pressures in the Supercritical University of Ottawa Loop (SCUOL). The tests were performed using carbon dioxide, as a surrogate fluid for water, flowing upwards for wide ranges of conditions, including conditions equivalent to the nominal and near-normal operating conditions of the proposed Canadian Super-Critical Water-Cooled Reactor. The test section contained three heated rods and three unheated rod segments with an outer diameter of 10 mm and a pitch-to-diameter ratio of 1.14; the heated length was 1500 mm. Detailed surface temperature measurements along and around the three heated rods were collected using internally traversed thermocouples. The following ranges of test conditions were covered, with equivalent water conditions given inside parentheses: pressure from 6.6 to 8.36 MPa (19.7–25 MPa); inlet temperature from 11 to 30 °C (330–371 °C); mass flux from 200 to 1175 kg m{sup −2} s{sup −1} (340–1822 kg m{sup −2} s{sup −1}); and wall heat flux from 1 to 175 kW m{sup −2} (11–1847 kW m{sup −2}). For one set of tests, the heated rods were fitted with a 1.3 mm OD wire wrap, having an axial pitch of 200 mm along the entire heated length; for a second set, the heated rods were fitted with grid spacers having a 5.3% flow blockage and located at 500 mm axial intervals. The effects of spacer configuration on heat transfer at supercritical pressures were documented and analyzed. The observed experimental trends were compared to those obtained in a experiment in a heated

  3. Equipment installation structure of roof slab for tank type FBR and method of equipment installation

    International Nuclear Information System (INIS)

    Sakai, Takao; Yamakawa, Masanori; Otsuka, Masaya; Sekine, Katsuhisa

    1986-01-01

    Purpose: To reduce equipment thermal stress and deformation by eliminating uneven temperature distribution caused at the equipment through section of the roof slab for the tank FBR, and at the same time, simplify the structure installation. Method: Multiple number of vertical fin projects are fit on the equipment through-section inside wall for the roof slab and the cylindrical equipment peripheral wall, and with these projected fins, the ring space of the through section is vertically divided into multiple sections in the circumferential direction. The vertical fins on the through-section inside wall and the fins on the equipment peripheral wall are contacted with each other by revolving them in the lateral direction. As a result, the natural convection caused by the difference of temperatures in the vertical direction of the ring space becomes a convection within each sector divided, and never generates circumferential circulation, which reduce uneven temperature distribution caused at the equipment through section. (Kawakami, Y.)

  4. Ultra-Low Heat-Leak, High-Temperature Superconducting Current Leads for Space Applications

    Science.gov (United States)

    Rey, Christopher M.

    2013-01-01

    NASA Goddard Space Flight Center has a need for current leads used in an adiabatic demagnetization refrigerator (ADR) for space applications. These leads must comply with stringent requirements such as a heat leak of approximately 100 W or less while conducting up to 10 A of electric current, from more than 90 K down to 10 K. Additionally, a length constraint of leak leads currently to NASA's specs.

  5. District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, P.K.; Rao, C.R.

    1978-10-01

    A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

  6. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  7. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    CERN Document Server

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  8. Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henley, Marion

    1980-06-01

    This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

  9. Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010

    International Nuclear Information System (INIS)

    Ó Broin, Eoin; Nässén, Jonas; Johnsson, Filip

    2015-01-01

    Highlights: • Space heating demand between 1990 and 2010 modelled using a panel of 14 EU countries. • The impacts of 260 efficiency polices affecting space heating demand are examined. • Regulatory policies found to have had a greater success than financial or informative. • High priority should be given to regulatory policies for space heating energy goals. - Abstract: We present an empirical analysis of the more than 250 space heating-focused energy efficiency policies that have been in force at the EU and national levels in the period 1990–2010. This analysis looks at the EU-14 residential sector (Pre-2004 EU-15, excluding Luxembourg) using a panel data regression analysis on unit consumption of energy for space heating (kWh/m 2 /year). The policies are represented as a regression variable using a semi-quantitative impact estimation obtained from the MURE Policy Database. The impacts of the policies as a whole, and subdivided into financial, regulatory, and informative policies, are examined. The correlation between the actual reductions in demand and the estimated impact of regulatory policies is found to be stronger than the corresponding correlations with the respective impacts of financial policies and informative polices. Together with the well-known market barriers to energy efficiency that exist in the residential sector, these findings suggest that regulatory policy measures be given a high priority in the design of an effective pathway towards the EU-wide goals for space heating energy

  10. Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads

    Directory of Open Access Journals (Sweden)

    Monika Chmielowiec-Jablczyk

    2018-02-01

    Full Text Available A modern thrust bearing tool is used to estimate the behavior of tilting pad thrust bearings not only in the oil film between pad and rotating collar, but also in the space between the pads. The oil flow in the space significantly influences the oil film inlet temperature and the heating of pad and collar. For that reason, it is necessary to define an oil mixing model for the space between the pads. In the bearing tool, the solutions of the Reynolds equation including a cavitation model, the energy equation and the heat transfer equation are done iteratively with the finite volume method by considering a constant flow rate. Both effects—laminar/turbulent flow and centrifugal force—are considered. The calculation results are compared with measurements done for a flooded thrust bearing with nominal eight tilting pads with an outer diameter of 180 mm. The heat convection coefficients for the pad surfaces mainly influence the pad temperature field and are adjusted to the measurement results. In the following paper, the calculation results for variable space distances, influence of different parameters on the bearing behavior and operating condition at high load are presented.

  11. Reconciliation of equipment flexibility effects on piping system dynamic response

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  12. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air

  13. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  14. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  15. Investigation of heat exchangers for energy conversion systems of megawatt-class space power plants

    Science.gov (United States)

    Ilmov, D. N.; Mamontov, Yu. N.; Skorohodov, A. S.; Smolyarov, V. A.; Filatov, N. I.

    2016-01-01

    The specifics of operation (high temperatures in excess of 1000 K and large pressure drops of several megapascals between "hot" and "cold" coolant paths) of heat exchangers in the closed circuit of a gasturbine power converter operating in accordance with the Brayton cycle with internal heat recovery are analyzed in the context of construction of space propulsion systems. The design of a heat-exchange matrix made from doubly convex stamped plates with a specific surface relief is proposed. This design offers the opportunity to construct heat exchangers with the required parameters (strength, rigidity, weight, and dimensions) for the given operating conditions. The diagram of the working area of a test bench is presented, and the experimental techniques are outlined. The results of experimental studies of heat exchange and flow regimes in the models of heat exchangers with matrices containing 50 and 300 plates for two pairs of coolants (gas-gas and gas-liquid) are detailed. A criterion equation for the Nusselt number in the range of Reynolds numbers from 200 to 20 000 is proposed. The coefficients of hydraulic resistance for each coolant path are determined as functions of the Reynolds number. It is noted that the pressure in the water path in the "gas-liquid" series of experiments remained almost constant. This suggests that no well-developed processes of vaporization occurred within this heat-exchange matrix design even when the temperature drop between gas and water was as large as tens or hundreds of degrees. The obtained results allow one to design flight heat exchangers for various space power plants.

  16. A Data Analysis Approach for Diagnosing Malfunctioning in Domestic Space Heating

    NARCIS (Netherlands)

    Tabatabaei, S.

    Around one third of worldwide energy usage is for the residential section and 60% of the energy consumption in this domestic area is for space heating. Therefore, monitoring and controlling this part of energy usage can have a major effect on the overall energy consumption and also on the emission

  17. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  18. Equipment for secondary water distribution in heat exchanger, especially saturated steam generator for nuclear power plants and heat plants

    Energy Technology Data Exchange (ETDEWEB)

    Riman, J; Manek, O; Rybnicek, J

    1979-09-15

    A special structure consisting of a system of channels and a distribution plate with ports in-built above the tube-plate of a vertical-type steam generator prevents secondary water vaporization in the space above the tube-plate and thus also salt and sludge sedimentation which causes increased corrosion of heat transfer tubes. The size of the distribution plate ports is variable in the radial direction. The distribution plate is divided by means of the system of channels into at least two parts. The middle section of each part is of the through-flow type.

  19. District heating

    International Nuclear Information System (INIS)

    Hansen, L.

    1993-01-01

    The environmental risks and uncertainties of a high-energy future are disturbing and give rise to several reservations concerning the use of fossil fuels. A number of technologies will help to reduce atmospheric pollution. In Denmark special importance is attached to the following: Energy conservation. Efficient energy conversion. Renewable energy sources. District heating, combined production of heat and power. Many agree that district heating (DH), produced by the traditional heat-only plant, and combined heat and power (CHP) have enormous potential when considering thermal efficiency and lowered environmental impacts: The basic technology of each is proven, it would be relatively simple to satisfy a substantial part of the energy demand, and their high efficiencies mean reduced pollution including greenhouse gas emissions. This is especially important in high population density areas - the obviously preferred sites for such energy generation. Compared with individual heating DH can provide a community with an operationally efficient and most often also an economically competitive heat supply. This is particularly true under the circumstances where the DH system is supplied from CHP plants. Their use results in very substantial improvements in overall efficiency. Further environmental improvements arise from the reduced air pollution obtainable in reasonably large CHP plants equipped with flue gas cleaning to remove particles, sulphur dioxide, and nitrogen acids. As a consequence of these considerations, DH plays an important role in fulfilling the space and water heating demand in many countries. This is especially the case in Denmark where this technology is utilised to a very great extent. Indeed, DH is one of the reasons why Denmark has relatively good air quality in the cities. (au)

  20. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies

    International Nuclear Information System (INIS)

    Grohnheit, Poul Erik; Gram Mortensen, Bent Ole

    2003-01-01

    None of the EU directives on liberalisation of the electricity and gas markets are considering the district heating systems, although the district heating networks offer the possibility of competition between natural gas and a range of other fuels on the market for space heating. Cogeneration of electricity and heat for industrial processes or district heating is a technology option for increased energy efficiency and thus reduction of CO 2 emissions. In the mid-1990s less than 10% of the electricity generation in the European Union was combined production with significant variations among Member States. These variations are explained by different national legislation and relative power of institutions, rather than difference in industrial structure, climate or urban physical structure. The 'single energy carrier' directives have provisions that support the development of combined heat and power (CHP), but they do not support the development and expansion of the district heating infrastructure. The article is partly based on a contribution to the Shared Analysis Project for the European Commission DG Energy, concerning the penetration of CHP, energy saving, and renewables as instruments to meet the targets of the Kyoto Protocol within the liberalised European energy market. The quantitative and legal differences of the heat markets in selected Member States are described, and the consequences of the directives are discussed. Finally, we summarise the tasks for a European policy concerning the future regulation of district heating networks for CHP, emphasising the need for rules for a fair competition between natural gas and district heating networks

  1. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  2. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  3. Using ADA Tasks to Simulate Operating Equipment

    Science.gov (United States)

    DeAcetis, Louis A.; Schmidt, Oron; Krishen, Kumar

    1990-01-01

    A method of simulating equipment using ADA tasks is discussed. Individual units of equipment are coded as concurrently running tasks that monitor and respond to input signals. This technique has been used in a simulation of the space-to-ground Communications and Tracking subsystem of Space Station Freedom.

  4. Proceedings of the 1996 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1996-07-01

    This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1996 Oil Technology Conference comprised: (a) fourteen technical papers, and (b) four workshops which focused on mainstream issues in oil-heating technology, namely: oilheat research agenda forum; fan atomized burner commercialization, applications, and product development; fuel quality, storage and maintenance--industry discussion; and application of oil heat venting tables, NFPA 31 standard. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  6. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  7. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  8. Redefinition of Space and Equipment in the Kindergarten and Involving the Children in the Process of Designing.

    Science.gov (United States)

    Bika, Anastasia

    This research examined the extent to which 2.5- to 5-year-old children in three Kindergarten classrooms in Thessaloniki, Greece could be taught about the use of classroom space and equipment. The study combined the theoretical perspectives of Piaget, Vygotsky, Bruner, and Frangos with the views of theater director Peter Brook. Mixed-age groups of…

  9. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank is a......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...

  10. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.

    1996-11-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  11. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  12. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  13. Design package for a complete residential solar space heating and hot water system

    Science.gov (United States)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  14. Practical versus theoretical domestic energy consumption for space heating

    International Nuclear Information System (INIS)

    Audenaert, A.; Briffaerts, K.; Engels, L.

    2011-01-01

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: → The energy advice procedure (EAP) calculates the energy use for heating in dwellings. → Calculations are compared with the real energy use for 5 dwellings. → A survey on the occupants' behaviour is used to interpret the observed differences. → Default values used in the EAP can be very different from the observed behaviour.

  15. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  16. Large-size deployable construction heated by solar irradiation in free space

    Science.gov (United States)

    Pestrenina, Irena; Kondyurin, Alexey; Pestrenin, Valery; Kashin, Nickolay; Naymushin, Alexey

    Large-size deployable construction in free space with subsequent direct curing was invented more than fifteen years ago (Briskman et al., 1997 and Kondyurin, 1998). It caused a lot of scientific problems, one of which is a possibility to use the solar energy for initiation of the curing reaction. This paper is devoted to investigate the curing process under sun irradiation during a space flight in Earth orbits. A rotation of the construction is considered. This motion can provide an optimal temperature distribution in the construction that is required for the polymerization reaction. The cylindrical construction of 80 m length with two hemispherical ends of 10 m radius is considered. The wall of the construction of 10 mm carbon fibers/epoxy matrix composite is irradiated by heat flux from the sun and radiates heat from the external surface by the Stefan- Boltzmann law. A stage of polymerization reaction is calculated as a function of temperature/time based on the laboratory experiments with certified composite materials for space exploitation. The curing kinetics of the composite is calculated for different inclination Low Earth Orbits (300 km altitude) and Geostationary Earth Orbit (40000 km altitude). The results show that • the curing process depends strongly on the Earth orbit and the rotation of the construction; • the optimal flight orbit and rotation can be found to provide the thermal regime that is sufficient for the complete curing of the considered construction. The study is supported by RFBR grant No.12-08-00970-a. 1. Briskman V., A.Kondyurin, K.Kostarev, V.Leontyev, M.Levkovich, A.Mashinsky, G.Nechitailo, T.Yudina, Polymerization in microgravity as a new process in space technology, Paper No IAA-97-IAA.12.1.07, 48th International Astronautical Congress, October 6-10, 1997, Turin Italy. 2. Kondyurin A.V., Building the shells of large space stations by the polymerisation of epoxy composites in open space, Int. Polymer Sci. and Technol., v.25, N4

  17. Application of Kalman Filter for Estimating a Process Disturbance in a Building Space

    Directory of Open Access Journals (Sweden)

    Deuk-Woo Kim

    2017-10-01

    Full Text Available This paper addresses an application of the Kalman filter for estimating a time-varying process disturbance in a building space. The process disturbance means a synthetic composite of heat gains and losses caused by internal heat sources e.g., people, lights, equipment, and airflows. It is difficult to measure and quantify the internal heat sources and airflows due to their dynamic nature and time-lag impact on indoor environment. To address this issue, a Kalman filter estimation method was used in this study. The Kalman filtering is well suited for situations when state variables of interest cannot be measured. Based on virtual and real experiments conducted in this study, it was found that the Kalman filter can be used to estimate the time-varying process disturbance in a building space.

  18. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    Science.gov (United States)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  19. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  20. 14 CFR 121.605 - Airplane equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  1. Seismic qualification of non-safety class equipment whose failure would damage safety class equipment

    International Nuclear Information System (INIS)

    LaSalle, F.R.

    1991-01-01

    Both Code of Federal Regulations, Title 10, Part 50, and US Department of Energy Order 6340.1A have requirements to assess the interaction of non-safety and safety class structures and equipment during a seismic event to maintain the safety function. At the Hanford Site, a cost effective program has been developed to perform the evaluation of non-safety class equipment. Seismic qualification is performed by analysis, test, or upgrading of the equipment to ensure the integrity of safety class structures and equipment. This paper gives a brief overview and synopsis that address design analysis guidelines including applied loading, damping values, component anchorage, allowable loads, and stresses. Test qualification of equipment and walkdown acceptance criteria for heating ampersand ventilation (H ampersand V) ducting, conduit, cable tray, missile zone of influence, as well as energy criteria are presented

  2. Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

  3. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict...... real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  4. Getting to First Flight: Equipping Space Engineers to Break the Start-Stop-Restart Cycle

    Science.gov (United States)

    Singer, Christopher E.; Dumbacher, Daniel L.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA s) history is built on a foundation of can-do strength, while pointing to the Saturn/Apollo Moon missions in the 1960s and 1970s as its apex a sentiment that often overshadows the potential that lies ahead. The chronicle of America s civil space agenda is scattered with programs that got off to good starts with adequate resources and vocal political support but that never made it past a certain milestone review, General Accountability Office report, or Congressional budget appropriation. Over the decades since the fielding of the Space Shuttle in the early 1980s, a start-stop-restart cycle has intervened due to many forces. Despite this impediment, the workforce has delivered engineering feats such as the International Space Station and numerous Shuttle and science missions, which reflect a trend in the early days of the Exploration Age that called for massive infrastructure and matching capital allocations. In the new millennium, the aerospace industry must respond to transforming economic climates, the public will, national agendas, and international possibilities relative to scientific exploration beyond Earth s orbit. Two pressing issues - workforce transition and mission success - are intertwined. As this paper will address, U.S. aerospace must confront related workforce development and industrial base issues head on to take space exploration to the next level. This paper also will formulate specific strategies to equip space engineers to move beyond the seemingly constant start-stop-restart mentality to plan and execute flight projects that actually fly.

  5. Heating of large format filters in sub-mm and fir space optics

    Science.gov (United States)

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  6. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  7. The potential reduction of household space heating CO2 emissions in the Netherlands

    NARCIS (Netherlands)

    Engelmoer, Wiebe

    2011-01-01

    SUMMARY Space heating is responsible for more than half of the total Dutch household energy demand, a large share is based on natural gas. With increasing concern about global warming and depleting gas reserves, energy saving has become an important topi

  8. Development of corrosion testing equipment under heat transfer and irradiation conditions to evaluate corrosion resistance of materials used in acid recovery evaporator. Contract research

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Numata, Masami; Kiuchi, Kiyoshi

    2002-01-01

    We have been evaluated the safety for corrosion of various metals applied to acid recovery evaporators by the mock-up tests using small scaled equipment and the reference tests in laboratories with small specimens. These tests have been conducted under-radioactive environment. The environment in practical reprocessing plants has many radioactive species. Therefore, the effect of irradiation on corrosion should be evaluated in detail. In this study, we have developed the corrosion testing equipment, which is employed to simulate environments in the acid recovery evaporators. This report describes the specification of corrosion testing equipment and the results of primary, reference and hot tests. Using the equipment, the corrosion test under heat transfer and irradiation conditions have been carried out for 930 hours in safety. It is expectable that useful corrosion test data in radioactive environment are accumulated with this equipment in future, and help the adequate choice of corrosion test condition in laboratories. (author)

  9. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  10. Development of logistic support for space equipment on the base of the “Sail-BMSTU” midget spacecraft

    Directory of Open Access Journals (Sweden)

    Brom Alla

    2016-01-01

    Full Text Available The paper envisages the application of integrated logistic support conception (ILS for space equipment on the base of the example of the student’s «Sail BMSTU» midget spacecraft (MS. The peculiarities of space equipment logistic support in operation phase are considered. The special focus is done to the problem of decrease in production expenses of spacecrafts. The paper suggests that the solution of this problem has to be based on tools commonly used in engineering fields – functional analysis and FMECA. The fragment of FMECA is presented. Due to FMECA it is clear what products in spacecrafts should be calibrated in accordance with quality requirements of military class and what ones should be calibrated in accordance with quality requirements of commercial and industrial classes. Each failure mode of midget spacecraft, identified within FMECA, is studied by assessing of criticality, severity and probability of emergence. The paper describes the main procedures of integrated logistic support on the base of the student’s «Sail MGTU» midget spacecraft. Recommended guidelines providing reliability of electro radio products are elaborated. The practical application of integrated logistic support in aerospace industry is reasonably presented.

  11. Bioprocessing: Prospects for space electrophoresis

    Science.gov (United States)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  12. Reliability problems of heat transfer equipment

    International Nuclear Information System (INIS)

    Collier, J.G.

    1983-01-01

    A short historical account is given of the development of pressure vessel codes. The subject is then discussed under the headings: the cost of heat exchanger unreliability; degraded performance or failure; fouling; mal-distribution of flow; corrosion; erosion; vibration; thermal fatigue; corrosion fatigue; mal-operation; water hammer; conclusions. (U.K.)

  13. Development and fabrication of heat-sterilizable inhalation therapy equipment

    Science.gov (United States)

    Irons, A. S.

    1974-01-01

    The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.

  14. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Science.gov (United States)

    2012-12-20

    ...-intensity discharge lamps, distribution transformers, and small electric motors as covered equipment. (42 U... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very... prescribed for certain types of covered equipment. Specific requirements are established for electric motors...

  15. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  16. Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China

    Science.gov (United States)

    Chen, Yuanchen; Shen, Guofeng; Liu, Weijian; Du, Wei; Su, Shu; Duan, Yonghong; Lin, Nan; Zhuo, Shaojie; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2016-01-01

    Pollutant emissions into outdoor air from cooking and space heating processes with various solid fuels were measured, and daily household emissions were estimated from the kitchen performance tests. The burning of honeycomb briquette had the lowest emission factors, while the use of wood produced the highest pollutants. Daily emissions from space heating were significantly higher than those from cooking, and the use of honeycomb briquette for cooking and raw coal chunk for space heating reduces 28%, 24% and 25% for CO, PM10 and PM2.5, compared to wood for cooking and peat for space heating. Much higher emissions were observed during the initial phase than the stable phase due to insufficient air supply and lower combustion temperature at the beginning of burning processes. However, more mass percent of fine particles formed in the later high temperature stable burning phase may increase potential inhalation exposure risks.

  17. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  18. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved airborne...

  19. Gas engine driven reversible heat pumps: Innovative design. Realizzazione di una pompa di calore reversibile azionata da motore a gas

    Energy Technology Data Exchange (ETDEWEB)

    Canci, F.; Zecchin, M.

    1992-01-01

    This paper describes the development of a series of gas engine driven air-water compression heat pumps designed for reversible summer-winter operation. The development work was carried out within the framework of a joint venture combing the efforts of the Italian Gas Society, Natural Gas of Barcellona and Climaveneta of Vicenza (Italy), who acted as the heat pump constructor. The main objective of this venture was to develop a series of machines that would be suitable for the contemporaneous summer air conditioning and winter space heating of medium-sized buildings. The designs were optimized to allow cost and energy savings with respect to conventional equipment. The useful cooling power range of the innovative heat pump systems goes from 100 to 250 kW thus giving them the flexibility not yet afforded by conventional equipment currently sold on international markets. In addition to pointing out the new heat pumps' main design and performance features, this paper suggests some feasible applications.

  20. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  1. 14 CFR 25.1441 - Oxygen equipment and supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oxygen equipment and supply. 25.1441... Oxygen equipment and supply. (a) If certification with supplemental oxygen equipment is requested, the... oxygen available in each source of supply. (d) The oxygen flow rate and the oxygen equipment for...

  2. Assessment of the energy performance of the solar space system attached to the CE – INCERC Bucharest experimental house – experimental validation

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2010-01-01

    Full Text Available The INCERC Bucharest experimental house is equipped on the Southern façade with a ventilated solar space. The solar space ensures the ventilation of the entire building at a constant rate of 0.60 exchanges / h during the cold season, by inletting the pre-heated space in the greenhouse space. In the hot season the system ensures the building reversible ventilation by providing the fresh air rate by air suction in the building Northern zone, a consequence of the natural draught effect ensured by the solar space. This report presents the experiments performed in the season 2008-2009 and the experimental validation of the mathematical model used in assessing the solar space energy performance in the heating season.

  3. Fiscal 1997 survey report. Survey consigned to NEDO of the development of energy use rationalization home welfare equipment systems; 1997 nendo energy shiyo gorika zaitaku fukushi kiki system kaihatsu chosa. Itaku kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of constructing new home welfare equipment systems of an energy effective use type, an investigational analysis was conducted of characteristics of the structure of houses considered of aged people, characteristics of the use of home welfare equipment, etc. As to the subject on space warming/cooling, it was found that the hour of stay-at-home of the aged tends to be longer, and the hour to be required for warming/cooling is longer, that the aged gradually lose senses regarding the peripheral environmental temperature, and the temperature to be considered should be at warmer/cooler levels, and that they are weak in heat shock, and the space of house where the temperature is uneven should be removed. Further, from the study in each welfare techno-house, possibilities were pointed out of further energy conservation in houses considered of the aged and home welfare equipment systems like the weight reduction of home welfare equipment systems and reduction of stand-by power, high air-tightness/high thermal insulation of houses for the aged, use of waste heat from air conditioners, introduction of solar energy to stand-by power and electrically-driven wheel chairs. 257 figs., 89 tabs.

  4. New Approach to Simulation of Heat State of Compartments from Lattice Composite Shells for Space Engineering Products

    Directory of Open Access Journals (Sweden)

    Razin Alexander F.

    2017-01-01

    Full Text Available A new approach to the simulation of the heat state of the compartment of lattice polymer composite materials (PCM, not providing for the use of known commercial software packages, has been proposed. The simulation has been performed using the PCM interstage of the Proton rocket as an example with due account of aerodynamic heating, solar radiation and acting of jets of auxiliary propulsion units. At the first stage of numerical analysis, a problem of unsteady heat conduction in the system “skin-air gap-heat insulation” has been solved. An effect of changing a pressure inside a compartment on thermal conductivity of heat insulation was taken into account. The effective thermal conductivity in gaps was used. An effect of a temperature of equipment on a value of radiant heat flux was also taken into account. At the second stage, the heat state of the system “skin-rib” was analyzed. A mathematical model in the form of a system of nonlinear equations for heat balance of control elements on which a rib and a skin section were partitioned, including an information about a temperature of heat insulation received at the first stage of the simulation, was used.

  5. Development of equipments for remote dismantling of joule heated ceramic melter

    International Nuclear Information System (INIS)

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  6. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Science.gov (United States)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  7. Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program

    International Nuclear Information System (INIS)

    McGuire, L.L.

    1991-01-01

    The Perry Nuclear Power Plant Area/Equipment Temperature Monitoring Program serves two purposes. The first is to track temperature trends during normal plant operation in areas where suspected deviations from established environmental profiles exist. This includes the use of Resistance Temperature Detectors, Recorders, and Temperature Dots for evaluation of equipment qualified life for comparison with tested parameters and the established Environmental Design Profile. It also may be used to determine the location and duration of steam leaks for effect on equipment qualified life. The second purpose of this program is to aid HVAC design engineers in determining the source of heat outside anticipated design parameters. Resistance Temperature Detectors, Recorders, and Temperature Dots are also used for this application but the results may include design changes to eliminate the excess heat or provide qualified equipment (cable) to withstand the elevated temperature, splitting of environmental zones to capture accurate temperature parameters, or continued environmental monitoring for evaluation of equipment located in hot spots

  8. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Parker, Danny [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWHs) on space conditioning and water heating energy use in residential applications. Two identical HPWHs, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  9. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  10. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  11. The history and development of NASA survival equipment.

    Science.gov (United States)

    Radnofsky, M. I.

    1972-01-01

    A research and development program on survival equipment was begun in early 1960 with the Mercury Program. The Mercury survival kit is discussed together with Gemini survival equipment, and Apollo I survival equipment. A study program is conducted to assess potential survival problems that may be associated with future space flights landing in polar waters. Survival kit requirements for applications on the Skylab program are also considered. Other investigations are concerned with the design of a global survival kit in connection with Space Shuttle missions.

  12. Dry heat tolerance of the dry colony in Nostoc sp. HK-01 for useful usage in space agriculture

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Yamashita, Masamichi; Sato, Seigo; Katoh, Hiroshi

    Space agriculture producing foods is important as one of approach for space habitation. Nostoc sp. HK-01 is one of terrestrial cyanobacterium having a high dry tolerance and it has several ability, photosynthesis, nitrogen fixation and usefulness as a food, it is thought that it can be used for space agriculture. Besides, a study on each tolerance predicted at the time of introduction to space agriculture is necessary. Therefore, as one of the tolerance that are intended to space environment, dry heat ( 100(°) C, 10 h ) tolerance of dry colony in Nostoc sp. HK-01 has been investigated, but the detail function of them has not yet been elucidated. We focused on the extracellular polysaccharides ( EPS ) having the various tolerance, desiccation, low temperature, NaCl, and heavy particle beam. We will consider the function and useful usage of this cyanobacterum in space agriculture after the consideration of the results of contribution of the possibility that EPS improves dry heat tolerance under a dry condition.

  13. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  14. Reducing residential solid fuel combustion through electrified space heating leads to substantial air quality, health and climate benefits in China's Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Yang, J.; Mauzerall, D. L.

    2017-12-01

    During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and

  15. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  16. PROCEEDINGS OF THE 1998 OIL HEAT TECHNOLOGY CONFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference will be held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting will be held in cooperation with the Petroleum Marketers Association of America (PMAA). The 1998 Oil Heat Technology Conference, will be the twelfth since 1984, is an important technology transfer activity and is supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The reason for the conference is to provide a forum for the exchange of information and perspectives among international researchers, engineers, manufacturers and marketers of oil-fired space-conditioning equipment. They will provide a channel by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the Conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  17. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  18. Effect of Ducted HPWH on Space-Conditioning and Water Heating Energy Use -- Central Florida Lab Home

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Carlos [Florida Solar Energy Center, Cocoa, FL (United States); Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2016-11-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  19. Heating of a fully saturated darcian half-space: Pressure generation, fluid expulsion, and phase change

    Science.gov (United States)

    Delaney, P.

    1984-01-01

    Analytical solutions are developed for the pressurization, expansion, and flow of one- and two-phase liquids during heating of fully saturated and hydraulically open Darcian half-spaces subjected to a step rise in temperature at its surface. For silicate materials, advective transfer is commonly unimportant in the liquid region; this is not always the case in the vapor region. Volume change is commonly more important than heat of vaporization in determining the position of the liquid-vapor interface, assuring that the temperatures cannot be determined independently of pressures. Pressure increases reach a maximum near the leading edge of the thermal front and penetrate well into the isothermal region of the body. Mass flux is insensitive to the hydraulic properties of the half-space. ?? 1984.

  20. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  1. Lunar Heat Flux Measurements Enabled by a Microwave Radiometer Aboard the Deep Space Gateway

    Science.gov (United States)

    Siegler, M.; Ruf, C.; Putzig, N.; Morgan, G.; Hayne, P.; Paige, D.; Nagihara, S.; Weber, R.

    2018-02-01

    We would like to present a concept to use the Deep Space Gateway as a platform for constraining the geothermal heat production, surface, and near-surface rocks, and dielectric properties of the Moon from orbit with passive microwave radiometery.

  2. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  3. 14 CFR 121.303 - Airplane instruments and equipment.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  4. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  5. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  6. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  7. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  8. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  9. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  10. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  11. 14 CFR 125.203 - Communication and navigation equipment.

    Science.gov (United States)

    2010-01-01

    ... within the degree of accuracy required for ATC; (ii) One marker beacon receiver providing visual and... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment. 125... Equipment Requirements § 125.203 Communication and navigation equipment. (a) Communication equipment—general...

  12. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  13. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  14. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  15. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, University of Firat, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, University of Firat, 23119 Elazig (Turkey)

    2007-05-15

    This paper reports a techno-economic comparison between a ground-coupled heat pump (GCHP) system and an air-coupled heat pump (ACHP) system. The systems connected to a test room in Firat University, Elazig (38.41{sup o}N, 39.14{sup o}E), Turkey, were designed and constructed for space cooling. The performances of the GCHP and the ACHP system were experimentally determined. The experimental results were obtained from June to September in cooling season of 2004. The average cooling performance coefficients (COP{sub sys}) of the GCHP system for horizontal ground heat exchanger (HGHE) in the different trenches, at 1 and 2m depths, were obtained to be 3.85 and 4.26, respectively and the COP{sub sys} of the ACHP system was determined to be 3.17. The test results indicate that system parameters can have an important effect on performance, and that GCHP systems are economically preferable to ACHP systems for the purpose of space cooling. (author)

  16. Improvement of Thrust Bearing Calculation Considering the Convectional Heating within the Space between the Pads

    OpenAIRE

    Monika Chmielowiec-Jablczyk; Andreas Schubert; Christian Kraft; Hubert Schwarze; Michal Wodtke; Michal Wasilczuk

    2018-01-01

    A modern thrust bearing tool is used to estimate the behavior of tilting pad thrust bearings not only in the oil film between pad and rotating collar, but also in the space between the pads. The oil flow in the space significantly influences the oil film inlet temperature and the heating of pad and collar. For that reason, it is necessary to define an oil mixing model for the space between the pads. In the bearing tool, the solutions of the Reynolds equation including a cavitation model, the ...

  17. Low-energy house in Sisimiut - Measurement equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hvidthoeft Delff Andersen, P.; Rode, C.; Madsen, Henrik

    2013-08-15

    This paper documents the measurement equipment in a low-energy house in Sisimiut, Greenland. Detailed measurements are being taken on energy consumption, indoor temperatures, floor heating, ventilation, open/closed state of doors and windows, and indoors climate. Equipped with a central control unit, experiments can be designed in order to study heat dynamics of the building. It is described how to plan and execute such experiments in one apartment in the building. The building also features both a solar thermal system and extra buffer tank facilitating testing of storage strategies on the power generated by the solar thermal system. A weather station equipped with thermometer, pyranometer and anemometer is installed on the building as well. Finally, it is described how to retrieve data from an SQL server which is configured to take monthly backups. R functions have been implemented to fetch and prepare the data for time series analysis. Examples are given on the use of these. (Author)

  18. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

  19. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    Science.gov (United States)

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  20. Improving the Thermal Testing Technology of Technological Equipment of Autonomous Complexes

    Directory of Open Access Journals (Sweden)

    V. V. Chugunkov

    2017-01-01

    Full Text Available The environmental conditions of autonomous objects of different-purpose technical complexes are in close relationship with increased values of operating temperatures. This requires thermal pretesting of the process equipment. The publication [1] considers the thermal test conditions in which the equipment elements under test are placed in a heated water tank covered by the globe insulators where, under automatic temperature control using a block of heaters, they are then kept for a specified period of time at a specified temperature range. Such an approach to the thermal tests of equipment allows us to reduce, but not eliminate completely the mass flows of water from evaporation with reducing power consumption of test equipment.Despite the results achieved, even a little bit of water vapor available when conducting the thermal tests may cause a failure of equipment. Therefore, there is a need in test equipment modernization for complete eliminating the fluxes of mass water and better power consumption in the test process. To this end, it is proposed to place a three-layer bubble wrap on the open surface of water.To justify an efficiency of the proposed option was developed a mathematical model of heat and mass transfer processes that occur during thermal tests, taking into account the geometric and thermo-physical characteristics of test tank, polymer film, and equipment. Using the laws and equations of heat and mass transfer enabled us to determine the required capacities for heating the tank with water and equipment to the required temperature range for a specified time, as well as the mass flows of water when evaporating from the tank surface.The efficiency of the three-layer bubble film as compared with the globe insulators as the elements for covering the test tank the surface has been analysed on the basis of the results obtained.The proposed film coating allowed almost complete elimination of evaporation losses of water mass and almost 8

  1. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  2. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  3. Methodology for assessing laser-based equipment

    Science.gov (United States)

    Pelegrina-Bonilla, Gabriel; Hermsdorf, Jörg; Thombansen, Ulrich; Abels, Peter; Kaierle, Stefan; Neumann, Jörg

    2017-10-01

    Methodologies for the assessment of technology's maturity are widely used in industry and research. Probably the best known are technology readiness levels (TRLs), initially pioneered by the National Aeronautics and Space Administration (NASA). At the beginning, only descriptively defined TRLs existed, but over time, automated assessment techniques in the form of questionnaires emerged in order to determine TRLs. Originally TRLs targeted equipment for space applications, but the demands on industrial relevant equipment are partly different in terms of, for example, overall costs, product quantities, or the presence of competitors. Therefore, we present a commonly valid assessment methodology with the aim of assessing laser-based equipment for industrial use, in general. The assessment is carried out with the help of a questionnaire, which allows for a user-friendly and easy accessible way to monitor the progress from the lab-proven state to the application-ready product throughout the complete development period. The assessment result is presented in a multidimensional metric in order to reveal the current specific strengths and weaknesses of the equipment development process, which can be used to direct the remaining development process of the equipment in the right direction.

  4. Regulation and Measurement of the Heat Generated by Automatic Tooth Preparation in a Confined Space.

    Science.gov (United States)

    Yuan, Fusong; Zheng, Jianqiao; Sun, Yuchun; Wang, Yong; Lyu, Peijun

    2017-06-01

    The aim of this study was to assess and regulate heat generation in the dental pulp cavity and circumambient temperature around a tooth during laser ablation with a femtosecond laser in a confined space. The automatic tooth preparing technique is one of the traditional oral clinical technology innovations. In this technique, a robot controlled an ultrashort pulse laser to automatically complete the three-dimensional teeth preparing in a confined space. The temperature control is the main measure for protecting the tooth nerve. Ten tooth specimens were irradiated with a femtosecond laser controlled by a robot in a confined space to generate 10 teeth preparation. During the process, four thermocouple sensors were used to record the pulp cavity and circumambient environment temperatures with or without air cooling. A statistical analysis of the temperatures was performed between the conditions with and without air cooling (p heat generated in the pulp cavity was lower than the threshold for dental pulp damage. These results indicate that femtosecond laser ablation with air cooling might be an appropriate method for automatic tooth preparing.

  5. Contact heating of water products of combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  6. 14 CFR 23.1441 - Oxygen equipment and supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oxygen equipment and supply. 23.1441... Miscellaneous Equipment § 23.1441 Oxygen equipment and supply. (a) If certification with supplemental oxygen..., during the flight, the quantity of oxygen available in each source of supply. (d) Each required flight...

  7. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  8. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  9. An optimization tool for satellite equipment layout

    Science.gov (United States)

    Qin, Zheng; Liang, Yan-gang; Zhou, Jian-ping

    2018-01-01

    Selection of the satellite equipment layout with performance constraints is a complex task which can be viewed as a constrained multi-objective optimization and a multiple criteria decision making problem. The layout design of a satellite cabin involves the process of locating the required equipment in a limited space, thereby satisfying various behavioral constraints of the interior and exterior environments. The layout optimization of satellite cabin in this paper includes the C.G. offset, the moments of inertia and the space debris impact risk of the system, of which the impact risk index is developed to quantify the risk to a satellite cabin of coming into contact with space debris. In this paper an optimization tool for the integration of CAD software as well as the optimization algorithms is presented, which is developed to automatically find solutions for a three-dimensional layout of equipment in satellite. The effectiveness of the tool is also demonstrated by applying to the layout optimization of a satellite platform.

  10. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  11. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions

    International Nuclear Information System (INIS)

    Coleman, Brittany; Ostanek, Jason; Heinzel, John

    2016-01-01

    Highlights: • Finite element analysis to evaluate heat sinks for large format li-ion batteries. • Solid metal heat sink and composite heat sink (metal filler and wax). • Transient simulations show response from rest to steady-state with normal load. • Transient simulations of two different failure modes were considered. • Significance of spacing, material properties, interface quality, and phase change. - Abstract: Thermal management is critical for large-scale, shipboard energy storage systems utilizing lithium-ion batteries. In recent years, there has been growing research in thermal management of lithium-ion battery modules. However, there is little information available on the minimum cell-to-cell spacing limits for indirect, liquid cooled modules when considering heat release during a single cell failure. For this purpose, a generic four-cell module was modeled using finite element analysis to determine the sensitivity of module temperatures to cell spacing. Additionally, the effects of different heat sink materials and interface qualities were investigated. Two materials were considered, a solid aluminum block and a metal/wax composite block. Simulations were run for three different transient load profiles. The first profile simulates sustained high rate operation where the system begins at rest and generates heat continuously until it reaches steady state. And, two failure mode simulations were conducted to investigate block performance during a slow and a fast exothermic reaction, respectively. Results indicate that composite materials can perform well under normal operation and provide some protection against single cell failure; although, for very compact designs, the amount of wax available to absorb heat is reduced and the effectiveness of the phase change material is diminished. The aluminum block design performed well under all conditions, and showed that heat generated during a failure is quickly dissipated to the coolant, even under the

  12. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  13. Renewable energy for passive house heating. Part 1. Building description

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    A passive house is a cost-efficient building that can manage throughout the heating period, due to its specific construction design, with more than 10 times less heat energy than the same building designed to standards presently applicable across Europe. Its extended thermal insulation and enhanced air-tightness removes the need for temperatures higher than 50 {sup o}C. This makes renewable energy sources particularly suitable for heating, cooling and domestic hot water production. Modeling of renewable energy usage for space heating requires as a preliminary stage the detailed description of the building structure, of the HVAC equipment and of the internal heat sources. This paper shows the main data used to model the thermal behavior of a passive house. Details about Pirmasens Passive House (Rhineland Palatinate, Germany) are given, as for example, the internal heat sources, including electric appliances, heat and humidity released by human bodies, thermal internal facilities as hot and cold water pipes. All these are quantified by using statistically derived data. A detailed time schedule for a standard German family with two adults and two children was prepared. It takes into account the national celebrations, vacation and weekends among others. (Author)

  14. Some reflections on the diffusion of pellet heating systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [1Mid Sweden University, Ecotechnology, SE-831 25 Oestersund (Sweden); Madlener, Reinhard [CEPE - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology, Zurich (Switzerland)

    2002-07-01

    In the context of global warming and dependence on fossil fuels, modern bioenergy systems have appeared as important sustainable energy solutions with a large untapped potential in Sweden and the rest of the European Union. Small-scale pellet heating systems for space heating of small houses is one of these solutions. In Sweden, such systems have relative advantages over oil- or electricity boiler systems both in terms of greenhouse gas emission reduction and total lifetime cost of equipment and fuel. However, so far the market diffusion process of this technology has been rather slow. This paper, by employing concepts and insights from the literature of evolutionary economics and sociology, studies the factors involved in the diffusion of such systems.

  15. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  16. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  17. Comparison between conventional heat exchanger performance and an heat pipes exchanger

    International Nuclear Information System (INIS)

    Souza, J.R.G. de; Rocha, N.R.

    1989-01-01

    The thermal performance of conventional compact heat exchanger and of exchanger with heat pipes are simulated using a digital computer, for equal volumes and the same process conditions. The comparative analysis is depicted in graphs that indicate which of the situations each equipment is more efficient. (author)

  18. Evolution of metering and control equipment in district heating house substations. Smaller, smarter and unchangingly robust; Mess- und Regelungstechnik fuer Fernwaermehausstationen im Wandel der Zeit. Kleiner, intelligenter, unveraendert robust

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Wolfgang; Hilbig, Thomas [Samson AG, Frankfurt am Main (Germany)

    2011-07-15

    The technical evolution of house substations in hot water networks reflects the trend towards greater efficiency. Changes are to be seen above all in the requirements placed on the measurement and control technology used in the energy management functions of the electronic district heating controller as well as on safety equipment. Here DDC (Direct Digital Control) technology has created possibilities for optimising energy consumption. The authors relate the evolution of drinking water heating, self-operated regulators, electrical actuators and of electronic district heating controllers.

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  20. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  1. 10 CFR 434.404 - Building service systems and equipment.

    Science.gov (United States)

    2010-01-01

    ... requirements require 24-hour pump operation. 404.5.2Heated swimming pools shall be equipped with pool covers... 10 Energy 3 2010-01-01 2010-01-01 false Building service systems and equipment. 434.404 Section 434.404 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND...

  2. Development and preliminary assessment of the wall condensation heat transfer models for the SPACE code

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Choi, Ki Yong; Moon, Sang Ki; Kim, Jung Woo; Kim, Kyung Doo

    2009-01-01

    The wall condensation heat transfer models are developed for the SPACE code and are assessed for various condensation conditions. Both default and alternative models were selected through an extensive literature survey. For a pure steam condensation, a maximum value among the Nusselt, Chato, and Shah's correlations is used in order to consider the geometric and turbulent effects. In the presence of non-condensable gases, the Colburn-Hougen's diffusion model was used as a default model and a non-iterative condensation model proposed by No and Park was selected as an alternative model. The wall condensation heat transfer models were assessed preliminarily by using arbitrary test conditions. Both wall condensation models could simulate the heat transfer coefficients and heat fluxes in the vertical, horizontal and turbulent conditions quite reasonably for a pure steam condensation. Both the default and alternative wall condensation models were also verified for the condensation heat transfer coefficient and heat flux in the presence of noncondensable gas. However, some improvements and further detailed verification are necessary for the condensation phenomena in the presence of noncondensable gas

  3. A study on experiment and numerical simulation of heat exchanger in heating furnace

    Directory of Open Access Journals (Sweden)

    Z. C. Lv

    2018-01-01

    Full Text Available In this paper, air preheater is used the research object and its heat transfer law is studied by experiment and numerical simulation. The experimental data showed that with the increases of inlet air velocity, the comprehensive heat transfer coefficient and heat transfer efficiency increase, but the temperature efficiency decreases and the resistance loss on the air side increases. The numerical simulation results showed that the larger the diameter of the tube, the better the heat transfer effect. When horizontal spacing in the range of 290 - 305 mm and longitudinal spacing is 70 - 90 mm, the heat transfer effect is best. The optimized heat exchanger structure is that diameter is 60 mm, horizontal spacing is 300 mm, longitudinal spacing is 90 mm. As the inlet air flow rate increases, the heat transfer efficiency increases, but the temperature efficiency decreases and the resistance loss on the air side increases.

  4. District heating in case of power failure

    International Nuclear Information System (INIS)

    Lauenburg, P.; Johansson, P.-O.; Wollerstrand, J.

    2010-01-01

    Power failures in combination with harsh weather conditions during recent years have led to an increased focus on a safe energy supply to our society. Many vital functions are dependent on electricity; e.g., lighting, telephony, medical equipment, lifts, alarm systems, payment, pumps for town's water and, perhaps the most critical of all, heating systems. In Sweden, district heating (DH) is the most common type of heating for buildings in town centres. Therefore, it is of great interest to investigate what happens in DH systems during a power failure. The present study shows that, by maintaining the DH production as well as the operation of the DH network, possibilities to supply connected buildings with space heat are surprisingly good. This is due to the fact that natural circulation will most often take place in radiator systems. In Sweden, and in many other countries, so-called indirect connection (heat supply across heat exchangers) of DH substations is applied. If a DH network operation can be maintained during a power failure, DH water will continue to pass the radiator system's heat exchanger (HEX), provided that the control valve does not close. The radiator circulation pump will stop, causing the radiator water to attain a relatively high temperature in the HEX, which promotes a natural circulation in the hydronic heating system, due to an increased water density differential at different temperatures. Several field tests and computer simulations have been performed and have displayed that almost all buildings can achieve a space heat supply corresponding to 40-80% of the amount prior to the interruption. A sufficient heat load in the DH network can be vital in certain cases: e.g., for 'island-operation' of an electric power plant to be performed during a power failure. Furthermore, for many combined heat and power stations, a requirement involves that the DH network continues to provide a heat sink when no other cooling is available. Based on the

  5. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  6. Experimental Investigation of a Solar Greenhouse Heating System Equipped with a Parabolic Trough Solar Concentrator and a Double-Purpose Flat Plate Solar Collector

    Directory of Open Access Journals (Sweden)

    M Jafari

    2017-10-01

    Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the

  7. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic......District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... to the surrounding ground. In larger networks involving both transmission and distribution systems, the heat loss is most significant from the distribution network. An estimate is that about 80-90 % of the heat loss occurs in the distribution system. In addition, the heat loss is naturally highest from the forward...

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  9. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  10. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  11. Monitoring the thermal performance of a heat pump with borehole heat exchangers in Lugano (TI); Projet: mesure des performances thermiques d'une PAC sur sondes geothermiques a Lugano (TI)

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.; Lachal, B.

    2001-07-01

    This report presents a heat pump system installed in a single-family house in Lugano, Switzerland, and the results of its monitoring for nine months. The 14 kW heat pump is meant exclusively for space heating while the domestic hot water is provided by a solar water heater with 7.8 m{sup 2} collector area. The cold source of the heat pump is formed by three 80 m deep underground wells from which the geothermal energy is extracted by water circulation. The installation allows to transfer excess heat from the solar collector to the underground wells. The whole system is equipped with a couple of flow meters, temperature sensors and electric counters, in order to characterise its dynamic response and efficiency. Diagrams show monthly values of the thermal energy extracted from the wells, the energy re-injected to the wells, the energy delivered by the heat pump as well as its electrical energy consumption. The heat pump coefficient of performance, which is roughly 4, is discussed.

  12. Timing criteria for supplemental BWR emergency response equipment

    International Nuclear Information System (INIS)

    Bickel, John H.

    2015-01-01

    The Great Tohuku Earthquake and subsequent Tsunami represented a double failure event which destroyed offsite power connections to Fukushima-Daiichi site and then destroyed on-site electrical systems needed to run decay heat removal systems. The accident could have been mitigated had there been supplemental portable battery chargers, supplemental pumps, and in-place piping connections to provide alternate decay heat removal. In response to this event in the USA, two national response centers, one in Memphis, Tennessee, and another in Phoenix, Arizona, will begin operation. They will be able to dispatch supplemental emergency response equipment to any nuclear plant in the U.S. within 24 hours. In order to define requirements for supplemental nuclear power plant emergency response equipment maintained onsite vs. in a regional support center it is necessary to confirm: (a) the earliest time such equipment might be needed depending on the specific scenario, (b) the nominal time to move the equipment from a storage location either on-site or within the region of a nuclear power plant, and (c) the time required to connect in the supplemental equipment to use it. This paper describes an evaluation process for a BWR-4 with a Mark I Containment starting with: (a) severe accident simulation to define best estimate times available for recovery based on the specific scenario, (b) identify the key supplemental response equipment needed at specific times to accomplish recovery of key safety functions, and (c) evaluate what types of equipment should be warehoused on-site vs. in regional response centers. (authors)

  13. Report on coal refining and chemical equipment analogous to coal liquefaction equipment in fiscal 1981. Maintenance of equipment for direct desulfurization, indirect desulfurization, and fluidized catalytic cracking; 1981 nendo sekitan ekika ruiji seiyu seisei oyobi kagaku sochi ni kansuru chosa hokokusho. Chokudatsu, kandatsu, ryudo sesshoku bunkai sochi no hozen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This questionnaire survey was intended to investigate the actual state of maintenance such as materials used, conditions for use, anti-corrosion measures, and cases and handling of damage, concerning primary apparatus in the direct/indirect desulfurization equipment and the fluidized catalytic crackers, which are owned by each oil refinery and which are analogous to coal liquefaction equipment. The questionnaire was intended for the following equipment and apparatus, with the actual state of their maintenance investigated. 1. Questionnaire concerning maintenance of direct desulfurization (reactor, high temperature separation tank, material furnace tube, reactor exit piping, high temperature heat exchanger, low temperature heat exchanger, and pressure reducing valve), 2. Questionnaire concerning maintenance of indirect desulfurization (reactor, high temperature separation tank, material furnace tube, reactor exit piping, high temperature heat exchanger, low temperature heat exchanger, and pressure reducing valve), 3. Questionnaire concerning maintenance of fluidized catalytic cracker (reactor, regeneration tower, riser pipe, and fractionator bottom pump). The questionnaire this time was distributed to 27 domestic oil companies, with the reply received from 23 of them. The replies were summarized by each type of equipment. Shown at the back of the report were the cases of damage and handling in FCC's and reactors. (NEDO)

  14. Weight Optimization of Active Thermal Management Using a Novel Heat Pump

    Science.gov (United States)

    Lear, William E.; Sherif, S. A.

    2004-01-01

    Efficient lightweight power generation and thermal management are two important aspects for space applications. Weight is added to the space platforms due to the inherent weight of the onboard power generation equipment and the additional weight of the required thermal management systems. Thermal management of spacecraft relies on rejection of heat via radiation, a process that can result in large radiator mass, depending upon the heat rejection temperature. For some missions, it is advantageous to incorporate an active thermal management system, allowing the heat rejection temperature to be greater than the load temperature. This allows a reduction of radiator mass at the expense of additional system complexity. A particular type of active thermal management system is based on a thermodynamic cycle, developed by the authors, called the Solar Integrated Thermal Management and Power (SITMAP) cycle. This system has been a focus of the authors research program in the recent past (see Fig. 1). One implementation of the system requires no moving parts, which decreases the vibration level and enhances reliability. Compression of the refrigerant working fluid is accomplished in this scheme via an ejector.

  15. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  16. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  17. Natural convective flows in a horizontal channel provided with heating isothermal blocks: Effect of the inter blocks spacing

    International Nuclear Information System (INIS)

    Bakkas, M.; Hasnaoui, M.; Amahmid, A.

    2010-01-01

    A numerical study of laminar steady natural convection induced in a two dimensional horizontal channel provided with rectangular heating blocks, periodically mounted on its lower wall, is carried out. The blocks' surface temperature, T H ' , is maintained constant and the former are connected with adiabatic surfaces. The upper wall of the channel is maintained cold at a temperature T C ' H ' . Fluid flow, temperature fields and heat transfer rates are presented for different combinations of the governing parameters which are the Rayleigh number (10 2 ≤Ra≤2x10 6 ), the blocks' spacing (1/4≤C=l ' /H ' ≤1), the blocks' height (1/8≤B=h ' /H ' ≤1/2) and the relative width of the blocks (A=(L ' -l ' )/H ' =1/2). The results obtained in the case of air (Pr = 0.72) show that the flow structure and the heat transfer are significantly influenced by the control parameters. It is found that there are situations where the increase of the blocks' spacing leads to a reduction of heat transfer.

  18. Maintenance program guidelines for programmatic equipment

    International Nuclear Information System (INIS)

    1994-11-01

    The Division Directors at Lawrence Berkeley Laboratory are responsible for implementing a maintenance program for research equipment (also referred to as programmatic equipment) assigned to them. The program must allow maintenance to be accomplished in a manner that promotes operational safety, environmental protection and compliance, and cost effectiveness; that preserves the intended functions of the facilities and equipment; and that supports the programmatic mission of the Laboratory. Programmatic equipment -- such as accelerators, lasers, radiation detection equipment, and glove boxes -- is dedicated specifically to research. Installed equipment, by contrast, includes the mechanical and electrical systems installed as part of basic building construction, equipment essential to the normal functioning of the facility and its intended use. Examples of installed equipment are heating, ventilating, and air conditioning systems; elevators; and communications systems. The LBL Operating and Assurance Program Plan (PUB-3111, Revision 4) requires that a maintenance program be prepared for programmatic equipment and defines the basic maintenance program elements. Such a program of regular, documented maintenance is vital to the safety and quality of research activities. As a part of that support, this document offers guidance to Laboratory organizations for developing their maintenance programs. It clarifies the maintenance requirements of the Operating and Assurance Program (OAP) and presents an approach that, while not the only possibility, can be expected to produce an effective maintenance program for research equipment belonging to the Laboratory's organizations

  19. Flow and heat transfer in parallel channel attached with equally-spaced ribs, 2

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Takizuka, Takakazu

    1980-09-01

    Using a computer code for the analysis of the flow and heat transfer in a parallel channel attached with equally-spaced ribs, calculations are performed when a pitch to rib-width ratio is 7 : 1, a rib-width to rib-height ratio is 2 : 1 and a channel-height to rib-height is 3 : 1. Assuming that the fluid properties and the heat-flux at the wall of this channel are constant, characteristics of the flow and heat transfer are analyzed in the range of Reynolds number from 10 to 250. The following results are obtained: (1) The separation region behind a rib grows downstream with the increase of Reynolds number. (2) The pressure drop of ribbed channel is greater than that of the smooth channel, and increases as Reynolds number increases. (3) The mean Nusselt number of ribbed channel is about 10 - 11 at the upper wall and about 7.5 at the lower wall in the range of Reynolds number from 10 to 250. (author)

  20. Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Science.gov (United States)

    Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.

    1990-01-01

    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.

  1. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Science.gov (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  2. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  3. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  4. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  5. Heat and mass transfer in porous media phase separation at temperatures below the lambda-point of He-4

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1986-01-01

    Newtonian fluid motion, coupled to heat transfer via latent heat of phase transition, is well known from numerous studies of condensation and boiling. Considerably less knowledge is available for vapor-liquid phase separation in the absence of gravity effect on the transport phenomena. The present studies are focused on heat and mass transfer associated with vapor-liquid phase separation required for long-term storage of the cryogen liquid He II in space vessels. Though space conditions are the dominant mode of interest in advanced equipment, e.g. IR telescopes, the systems may be operated in principle during terrestrial conditions. The latter are considered in the present work. It emphasizes the linear regime including an extrapolation based on variable thermophysical properties. Data taken with a phase separation approach show departures from the linear regime prediction. They agree with a transport equation proposed for the nonlinear, turbulent regime.

  6. Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced heat transport technology is presented that can enable space nuclear power systems to transfer reactor heat, convert heat into electricity, reject waste...

  7. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  8. Heat-pipe transient model for space applications

    International Nuclear Information System (INIS)

    Tournier, J.; El-Genk, M.S.; Juhasz, A.J.

    1991-01-01

    A two-dimensional model is developed for simulating heat pipes transient performance following changes in the input/rejection power or in the evaporator/condenser temperatures. The model employs the complete form of governing equations and momentum and energy jump conditions at the liquid-vapor interface. Although the model is capable of handling both cylindrical and rectangular geometries, the results reported are for a circular heat pipe with liquid lithium as the working fluid. The model incorporates a variety of other working fluids, such as water, ammonia, potassium, sodium, and mercury, and offers combinations of isothermal, isoflux, convective and radiative heating/cooling conditions in the evaporator and condenser regions of the heat pipe. Results presented are for lithium heat pipes with exponential heating of the evaporator and isothermal cooling of the condenser

  9. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    International Nuclear Information System (INIS)

    Sencan Sahin, Arzu; Kilic, Bayram; Kilic, Ulas

    2011-01-01

    Highlights: → Artificial Bee Colony for shell and tube heat exchanger optimization is used. → The total cost is minimized by varying design variables. → This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  10. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  11. Profiling Space Heating Behavior in Chilean Social Housing: Towards Personalization of Energy Efficiency Measures

    Directory of Open Access Journals (Sweden)

    Victor Bunster

    2015-06-01

    Full Text Available Global increases in the demand for energy are imposing strong pressures over the environment while compromising the capacity of emerging economies to achieve sustainable development. In this context, implementation of effective strategies to reduce consumption in residential buildings has become a priority concern for policy makers as minor changes at the household scale can result in major energy savings. This study aims to contribute to ongoing research on energy consumer profiling by exploring the forecasting capabilities of discrete socio-economic factors that are accessible through social housing allocation systems. Accordingly, survey data gathered by the Chilean Ministry of Social Development was used identify key characteristics that may predict firewood usage for space heating purposes among potential beneficiaries of the Chilean social housing program. The analyzed data evidences strong correlations between general household characteristics and space heating behavior in certain climatic zones, suggesting that personalized delivery of energy efficiency measures can potentially increase the effectiveness of initiatives aimed towards the reduction of current patterns of consumption.

  12. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  13. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  14. Proceedings of the 1997 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1997-09-01

    This report documents the Proceedings of the 1997 Oil Heat Technology Conference and Workshop, held on April 3--4 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy--Office of Building Technologies, State and Community programs (DOE-BTS), in cooperation with the Petroleum Marketers Association of America (PMAA). This Conference is a key technology transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R and D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: identify and evaluate the state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely: and foster cooperation among federal and industrial representatives with the common goal of sustained national economic growth and energy security via energy conservation. The 1997 Oil Technology Conference comprised: (a) five plenary sessions devoted to presentations and summations by public and private sector industry representatives from the US, and Canada, and (b) four workshops which focused on mainstream issues in oil-heating technology. This book contains 14 technical papers and four summaries from the workshops. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    Science.gov (United States)

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  16. Urgent reconstruction and re-equipping of coking plants

    Energy Technology Data Exchange (ETDEWEB)

    Kvitkin, I.A.; Martynenko, V.M.; Rozenfel' d, M.S.; Svyatogorov, A.A.; Shvartsman, I.G.

    1986-03-01

    This paper discusses the various options involved: complete or partial reconstruction of existing buildings and equipment or new construction with new equipment and new underground and surface communications. It explains that reconstruction work is divided into three phases: initial phase (clearance, dismantling, closing down coking batteries); basic phase (fitting heat-resistant materials, prestart-up assembly work); final phase (drying out, heating up, adjustments, start-up). A structured scheme for a typical initial phase is described and a method of calculating the durations of the various phases is discussed. Conclusion is that there is an urgent requirement for a document to be produced for the control of reconstruction work; it should contain standard durations and could serve as a standard for coking plant reconstruction work.

  17. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  18. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  19. Investigation of monitoring technologies for heat transfer corrosion in reprocessing equipment

    International Nuclear Information System (INIS)

    Tsukatani, I.; Kiuchi, K.

    2004-01-01

    Two types of in-situ monitoring techniques using electrical resistance methods were developed for estimating the wall thinning of heat transfer tubes used in evaporators for Purex process on commercial reprocessing plants. The corrosion rate is accelerated with oxidizer ions formed by the thermal decomposition of nitric acid under heat flux. An in-situ corrosion sensor was developed for estimating the corrosion rate of heat transfer tubes using miniature heat transfer tube specimens under heat flux control. It is possible to simulate the heating condition as same as heat transfer tubes. The applicability was evaluated by setting it in gas-liquid separator in a mock-up evaporator for acid recovery. The sensitivity of electric resistance methods is increased with decreasing the residual thickness of probe tube. The other is the electrical potential drop method using direct current so-called the field signature method. It is applicable to estimate the corrosiveness of reprocessing nitric acid by setting it on the drain tube in evaporator. The sensitivity to the thinning rate of tubes wall machined artificially was obtained within ±10% to the wall thickness. It has the non-sensitive region nearly 0.1mm up to begin working. The practical applicability has been also evaluated by setting it in a mock-up evaporator. (author)

  20. Space chamber experiments of ohmic heating by high power microwave from the solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.

    1981-12-01

    It is quantitatively predicted that a high power microwave from the Solar Power Satellite (SPS) nonlinearly interacts with the ionospheric plasma. The possible nonlinear interactions are ohmic heating, self-focusing and parametric instabilities. A rocket experiment called MINIX (Microwave-Ionosphere Nonlinear Interaction Experiment) has been attempted to examine these effects, but is note reported here. In parallel to the rocket experiment, a laboratory experiment in a space plasma simulation chamber has been carried out in order to examine ohmic heating in detail and to develop a system of the rocket experiment. Interesting results were observed and these results were utilized to revise the system of the rocket experiments. A significant microwave heating of plasma up to 150% temperature increase was observed with little electron density decrease. It was shown that the temperature increase is not due to the RF breakdown but to the ohmic heating in the simulated ionospheric plasma. These microwave effects have to be taken into account in the SPS Project in the future.

  1. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  2. Solar Energy Gain and Space-Heating Energy Supply Analyses for Solid-Wall Dwelling Retrofitted with the Experimentally Achievable U-value of Novel Triple Vacuum Glazing

    Directory of Open Access Journals (Sweden)

    Saim Memon

    2017-06-01

    Full Text Available A considerable effort is devoted to devising retrofit solutions for reducing space-heating energy in the domestic sector. Existing UK solid-wall dwellings, which have both heritage values and historic fabric, are being improved but they tend to have meagre thermal performance, partly, due to the heat-loss through glazings. This paper takes comparative analyses approach to envisage space-heating supply required in order to maintain thermal comfort temperatures and attainable solar energy gains to households with the retrofit of an experimentally achievable thermal performance of the fabricated sample of triple vacuum glazing to a UK solid-wall dwelling. 3D dynamic thermal models (timely regimes of heating, occupancy, ventilation and internal heat gains of an externally-insulated solid-wall detached dwelling with a range of existing glazing types along with triple vacuum glazings are modelled. A dramatic decrease of space-heating load and moderate increase of solar gains are resulted with the dwelling of newly achievable triple vacuum glazings (having centre-of-pane U-value of 0.33 Wm-2K-1 compared to conventional glazing types. The space-heating annual cost of single glazed dwellings was minimised to 15.31% (≈USD 90.7 with the retrofit of triple-vacuum glazings. An influence of total heat-loss through the fabric of solid-wall dwelling was analysed with steady-state calculations which indicates a fall of 10.23 % with triple vacuum glazings compared to single glazings.

  3. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Science.gov (United States)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed

  4. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  5. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  6. Equipment, components and production of x-ray

    International Nuclear Information System (INIS)

    Idris Besar

    2004-01-01

    The contents of this chapter are follows - Equipment, Components and Production of x-Ray: x-ray system, generator, control panel. x-ray tube, cathode, anode, envelope, housing, collimator, other components, x-ray production, Bremsstrahlung x-ray, characteristic x-ray, heat production

  7. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  8. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  9. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    Science.gov (United States)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  10. Gas-operated heat pump for monovalent space heating and tap water heating. A seizable contribution to carbon dioxide emission control; Gasbetriebene Waermepumpe zur monovalenten Raumbeheizung und Trinkwassererwaermung. Ein greifbarer Beitrag zur Reduktion der CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Heikrodt, K.; Heckt, R. [Viessmann Werke GmbH und Co., Allendorf (Germany)

    1999-07-01

    The project had the objectives to develop a Vuilleumier heat pump for space heating and make an experimental study testing it as a heat generator for a heating system for one- and multi-family houses. Apart from monovalent operation, the following boundary conditions were defined: provision for connection to existing heating systems, even radiator heatings with 75 C/60 C, tap water heating, and air-source heat. Performance constant, manufacturing cost, freedom from maintenance, and service life were taken into consideration in the design, rating and construction of the unit. (orig.) [German] Ziel des Vorhabens war die Entwicklung einer Vuilleumier-Waermepumpe zur Raumbeheizung und deren experimentelle Untersuchung als Waermeerzeuger fuer ein Heizungssystem in Ein- und Mehrfamilienhaeusern. Als Rahmebedingungen wurden neben einer monovalenten Betriebsweise auch die moegliche Anbindung an bestehende Heizungssysteme, sogar Radiatorheizungen mit 75 C/60 C, Trinkwassererwaermung und Luft als Waermequelle festgelegt. Leistungszahl, Herstellkosten, Wartungsfreiheit und Lebensdauer wurden in Konzeption, Auslegung und Konstruktion beruecksichtigt. (orig.)

  11. Estimating end-use emissions factors for policy analysis: the case of space cooling and heating.

    Science.gov (United States)

    Jacobsen, Grant D

    2014-06-17

    This paper provides the first estimates of end-use specific emissions factors, which are estimates of the amount of a pollutant that is emitted when a unit of electricity is generated to meet demand from a specific end-use. In particular, this paper provides estimates of emissions factors for space cooling and heating, which are two of the most significant end-uses. The analysis is based on a novel two-stage regression framework that estimates emissions factors that are specific to cooling or heating by exploiting variation in cooling and heating demand induced by weather variation. Heating is associated with similar or greater CO2 emissions factor than cooling in all regions. The difference is greatest in the Midwest and Northeast, where the estimated CO2 emissions factor for heating is more than 20% larger than the emissions factor for cooling. The minor differences in emissions factors in other regions, combined with the substantial difference in the demand pattern for cooling and heating, suggests that the use of overall regional emissions factors is reasonable for policy evaluations in certain locations. Accurately quantifying the emissions factors associated with different end-uses across regions will aid in designing improved energy and environmental policies.

  12. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  13. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  14. Building technical services - Compact equipment for heating, hot water preparation, ventilation and cooling - Final report; Haustechnik - Kompaktgeraete (Heizen, Warmwasser, Lueften, Kuehlen - alles aus einem). Erkenntnisse aus der Praxis - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Haessig, W.; Streit, S. [Haessig Sustech GmbH, Uster (Switzerland); Helfenfinger, D.; Keller, P. [Hochschule fuer Technik und Architektur Luzern (HSLU), Luzern (Switzerland)

    2009-06-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the knowledge gained in practice concerning compact equipment that can be used for heating, hot water preparation, ventilation and cooling. Such units combine heat-pumps and the further equipment necessary. Data on various factors were collected over a period of one year in three apartment blocks that meet Swiss Minergie-P very low energy consumption standards. Apart from the above mentioned factors, the study also considered humidity and carbon dioxide levels in the apartments and inhabitant behaviour. The authors note that the energy consumption of several apartments fell below the Minergie-P limiting, annual value of 30 kWh/m2. An increase in electricity consumption dependent on room temperatures is noted and commented on. The economic feasibility of Minergie-P and so-called passive housing is commented on.

  15. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  16. Proceedings of the 1998 oil heat technology conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  17. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  18. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  19. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  20. 46 CFR 169.703 - Cooking and heating.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Cooking and heating. 169.703 Section 169.703 Shipping... Control, Miscellaneous Systems, and Equipment § 169.703 Cooking and heating. (a) Cooking and heating... cooking, heating or lighting is prohibited on all vessels. (c) The use of liquefied petroleum gas (LPG) or...

  1. Heat pipes to reduce engine exhaust emissions

    Science.gov (United States)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  2. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  3. Improvements in or relating to heat exchangers

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1978-01-01

    According to the present invention there is provided a method of producing superheated steam by use of the heat in liquid sodium, in which liquid sodium is caused to flow through a space having boundaries of which no part is common with the boundaries of a space in which vapour is produced, a fluid that is inert to sodium is heated by heat exchange at the boundaries of the space through which the liquid sodium flows and serves as the heating medium for the production of vapour, and the vapour is subsequently heated to the final degree of superheat by heat exchange with liquid sodium in a space that has a common boundary with a space through which liquid sodium is passed. (U.K.)

  4. Remote handling facility and equipment used for space truss assembly

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs

  5. TDRSS S-shuttle unique receiver equipment

    Science.gov (United States)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  6. Solar air heating system for combined DHW and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-12-01

    The project deals with the development and testing of a simple system for utilization of the summer excess heat from small solar air heating systems for preheating of fresh air. The principle of the system is to lead the heated air down around a domestic hot water tank letting the surface of the tank act as heat exchanger between the air and the water. In order to increase the heat transfer, coefficient fins into the air stream were mounted on the tank. A complete system with 3 m{sup 2} solar air collector, ductworks and a 85 litre storage were set up and extensively monitored. The air stream through the system was created by a fan connected directly to one or two PV-panels leading to a solar radiation dependent flow rate without the use of any other control. Based on monitoring results the system was characterized and a TRNSYS model of the system was developed and calibrated/validated. The monitoring and the simulations with the TRNSYS model revealed several interesting things about the system. The monitoring revealed that the system is capable of bringing the temperature of the water in the storage above 60 deg. C at warm days with clear sky conditions. The storage is very stratified, which is beneficial as usable hot water temperatures rather quickly are obtained. The performance was highly dependent on the airflow rate through the system. It can be concluded that the investigated system will have a performance in the order of 500 kWh during the winter, spring and autumn months and around 250 kWh during the four summer months - or in total a yearly performance of 750 kWh/m{sup 2}. A small traditional solar heating system for preheating of domestic hot water would have a higher performance during the four summer months, but no performance during the rest of the year if the system is installed in a summer house, which only is occupied during the summer. The parametric analysis further indicates that it is possible to further optimise the system when the thermal

  7. Heat receivers for solar dynamic space power systems

    Science.gov (United States)

    Perez-Davis, Marla Esther

    A review of state-of-the-art technology is presented and discussed for phase change materials. Some of the advanced solar dynamic designs developed as part of the Advanced Heat Receiver Conceptual Design Study performed for LeRC are discussed. The heat receivers are analyzed and several recommendations are proposed, including two new concepts. The first concept evaluated the effect of tube geometries inside the heat receiver. It was found that a triangular configuration would provide better heat transfer to the working fluid, although not necessarily with a reduction in receiver size. A sensible heat receiver considered in this study uses vapor grown graphite fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The proposed heat receiver compares well with other latent and advanced sensible heat receivers while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material. In addition to the new concepts, the effect of atomic oxygen on several materials is reviewed. A test was conducted for atomic oxygen attack on boron nitride, which experienced a negligible mass loss when exposed to an atomic oxygen fluence of 5 x 10 exp 21 atoms/sq cm. This material could be used to substitute the graphite aperture plate of the heat receiver.

  8. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  9. Energy Efficiency of Technological Equipment at the Economic Agent by Identifying the Points with Recoverable Heat Potential

    Directory of Open Access Journals (Sweden)

    Arina Negoiţescu

    2017-11-01

    Full Text Available For an energy-efficient future, the EU needs to step up its efforts to maximize energy savings. In this context, the paper addresses the steps needed to establish energy efficiency measures and proposes effective measures to reduce consumption by recovering large amounts of energy lost to industrial consumers. The points with the highest recoverable energy potential have been identified and it is proposed to install the heat recovery systems on the flue gas exhaust circuits and polluted air from Industrial Technological Equipment (ITE such as dyeing/drying cabins (DDC. Therefore, whenever possible and as small as energy saving, energy recovery solutions at any level, but especially at local level, need to be applied. In conclusion, by concentrating all the energy-saving efforts that are still being wasted, Europe can contribute, by saving energy, to ensuring a sustainable energy future

  10. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  11. Method for Calculation of Steam-Compression Heat Transformers

    Directory of Open Access Journals (Sweden)

    S. V. Zditovetckaya

    2012-01-01

    Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.

  12. Local heat transfer performance and exit flow characteristics of a miniature axial fan

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2010-01-01

    Dimensional restrictions in electronic equipment have resulted in miniaturization of many existing cooling technologies. In addition to this, cooling solutions are required to dissipate increased thermal loads to maintain component reliability. Axial fans are widely used in electronics cooling to meet such thermal demands. However, if the extent of non-uniform heat transfer rates, produced by highly three-dimensional air patterns is unknown in the design stages, premature component failure may result. The current study highlights these non-uniformities in heat transfer coefficient, using infrared thermography of a miniature axial fan impinging air on a flat plate. Fan rotational speed and distance from the flat plate are varied to encompass heat transfer phenomena resultant from complex exit air flow distribution. Local peaks in heat transfer coefficient have been shown to be directly related to the air flow and fan motor support interaction. Optimum locations for discrete heat source positioning have been identified which are a function of fan to plate spacing and independent of fan rotational speed when the Reynolds number effect is not apparent.

  13. The reduction of noise from hydraulic equipments; La reduction du bruit provenant des equipements hydrauliques

    Energy Technology Data Exchange (ETDEWEB)

    Gential, R.

    1996-09-01

    Noise pollution from hydraulic equipments (bath filling, toilets taps, waste waters flow, vibrations, knocks in water pipes, dilatation clattering in heating pipes, hissing of heater taps etc..) are one of the principal causes of nuisance inside residential buildings. Solutions exist and consist in the replacement of old cocks and fittings, the use of soundproof clamps for pipes and noise absorbing supports for baths etc.. This paper summarizes the available modern equipments with a low-noise warranty (cocks and fittings, noise dampers, anti-backflow valves, pressure reducers) and the practical solutions for the modification of existing installations (increase of pipe diameters, reduction of pipe lengths, use of flexible fittings, hydraulic counterbalancing of water flows in heaters etc..). (J.S.)

  14. Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The paper presents results of thermal performance analysis of a solar air heater with v-down discrete rib roughness on the air flow side of the absorber plate, which supplies heated air for space heating applications. The air heater operates in a closed loop mode with inlet air at a fixed temperature of 295 K from the conditional space. The ambient temperature varied from 278 K to 288 K corresponding to the winter season of Western Rajasthan, India. The results of the analysis are presented in the form of performance plots, which can be utilized by a designer for calculating desired air flow rate at different ambient temperature and solar insolation values.

  15. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  16. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  17. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation, heat flow up

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Bruno, F.; Saman, W. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, SA 5095 (Australia)

    2011-01-15

    An experimental investigation was undertaken in which the thermal resistance for the heat flow through a typical timber framed pitched roofing system was measured under outdoor conditions for heat flow up. The measured thermal resistance of low resistance systems such as an uninsulated attic space and a reflective attic space compared well with published data. However, with higher thermal resistance systems containing bulk insulation within the timber frame, the measured result for a typical installation was as low as 50% of the thermal resistance determined considering two dimensional thermal bridging using the parallel path method. This result was attributed to three dimensional heat flow and insulation installation defects, resulting from the design and construction method used. Translating these results to a typical house with a 200 m{sup 2} floor area, the overall thermal resistance of the roof was at least 23% lower than the overall calculated thermal resistance including two dimensional thermal bridging. When a continuous layer of bulk insulation was applied to the roofing system, the measured values were in agreement with calculated resistances representing a more reliable solution. (author)

  18. Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Jonathan; Harrington, Curtis; Modera, Mark [University of California Davis, Western Cooling Efficiency Center, 1450 Drew Avenue, Suite 100, Davis, CA 95618 (United States)

    2011-01-15

    Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1 C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967. (author)

  19. Anthropogenic Heat Flux Estimation from Space: Results of the second phase of the URBANFLUXES Project

    Science.gov (United States)

    Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans

    2017-04-01

    The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu

  20. Development of drying equipment for heat sensitive material : final report

    Energy Technology Data Exchange (ETDEWEB)

    Schoenau, G.J.; Sokhansanj, S. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2003-07-01

    This paper described a project in which two types of prototype heat pump dryer systems were designed, constructed and field tested in 2000 to 2002. Performance testing was accomplished through a computer based simulation model for predicting dryer performance. The paper describes the procedures followed and the results obtained. The dryer is used for high value specialty crops such as ginseng, herbs and echinacea which require low temperature drying. The heat pump dryer operates under a closed loop and can dry these crops at low temperatures, independent of ambient conditions. The first prototype was a small fixed bed cabinet dryer suitable for small growers. The other was a full scale prototype moving bed cross flow system suitable for large scale commercial drying of sensitive agricultural crops. The heat pump system is faster and more energy efficient than conventional dryers. The average moisture content of ginseng roots was reduced by 10 per cent in 5 days using 190 kWh of energy. The heat pump dryer is 22 per cent more efficient than a conventional dryer due to its recirculating system. Drying time is reduced by 65 per cent. A computerized simulation validated experimental results. 30 refs., 10 tabs., 29 figs.

  1. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  2. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  3. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  4. 24 CFR 3285.905 - Heating oil systems.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heating oil systems. 3285.905... Installation Instructions § 3285.905 Heating oil systems. It is recommended that the installation instructions include the following information related to heating oil systems, when applicable: (a) Homes equipped with...

  5. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  6. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  7. Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kamel Hooman

    2017-10-01

    Full Text Available This paper focuses on the optimization of a Solar-Enhanced Natural-Draft Dry-Cooling Tower (SENDDCT, originally designed by the Queensland Geothermal Energy Centre of Excellence (QGECE, as the air-cooled condenser of a geothermal power plant. The conventional method of heat transfer augmentation through fin-assisted area extension is compared with a metal foam-wrapped tube bundle. Both lead to heat-transfer enhancement, albeit at the expense of a higher pressure drop when compared to the bare tube bundle as our reference case. An optimal design is obtained through the use of a simplified analytical model and existing correlations by maximizing the heat transfer rate with a minimum pressure drop goal as the constraint. Sensitivity analysis was conducted to investigate the effect of sunroof diameter, as well as tube bundle layouts and tube spacing, on the overall performance of the system. Aiming to minimize the flow and thermal resistances for a SENDDCT, an optimum design is presented for an existing tower to be equipped with solar panels to afterheat the air leaving the heat exchanger bundles, which are arranged vertically around the tower skirt. Finally, correlations are proposed to predict the total pressure drop and heat transfer of the extended surfaces considered here.

  8. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  9. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  10. DEVELOPMENT OF PROTOTYPE SYSTEM FOR REGULATING THERMAL CONDITIONS OF TELECOMMUNICATIONS EQUIPMENT CABINETS

    Directory of Open Access Journals (Sweden)

    A. T. Rashidkhanov

    2017-01-01

    Full Text Available Objectives. The main objective of the study was to regulate the thermal regime and ensure the reliability of electronic equipmentMethods. In order to conduct experimental studies of the thermoelectric cooling system using heat pipes, a stand was assembled on which the developed and manufactured prototype was studied. The object of the experimental studies was a prototype cooling system, consisting of a thermoelectric battery made of conventional unified thermoelectric materials of ICE-71 type. The solution of the research problems carried out by the method of reduction to ordinary differential equations (Kantorovich method provides acceptable accuracy for such a class of problems.Results. A design of a telecommunication equipment cabinet with a thermal management system based on the use of heat pipes and thermoelectric cooling units is proposed. A mathematical model for the determination of the thermal field in the cabinet volume is considered; an experimental stand for the prototype study is described; the results of experimental studies for various power sources of heat release are presented.Conclusion. Experimental studies confirm the operability of the developed cooling system for cabinets with telecommunication equipment; this cooling method has advantages over conventional forced or natural cooling; the temperature in the block volume and the peak values of the heat sources are significantly reduced; at dissipation powers on one board within 50 W there is no need to use special means to remove heat from hot junctions of the thermoelectric battery.

  11. The design and equipments of hospital pharmacies in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sabzghabaee

    2010-01-01

    Full Text Available Background: Nowadays pharmaceutical care departments located in hospitals are amongst the important pillars of the healthcare system. The aim of this study was to evaluate designing features and equipments of hospital drugstores affiliated with Isfahan University of Medical Sciences. Methods: In this cross-sectional study a self-defined and validated questionnaire was used which included all the necessary and standard needed spaces and equipments of an ideal hospital pharmacy. The questionnaire was filled in by one of the researchers in all twelve hospital drugstores located in the teaching and non-teaching hospitals affiliated with Isfahan University of Medical Sciences. Data analysis was done using SPSS (version 14. Results: Results showed that 56% of drugstore space allocations were unsuitable. Used pharmaceutical equipments in 75% of surveyed hospitals were not according to the standards. Almost all of these pharmacies had rather an enough space for storage, but cold storages were not designed in 58% of them. In 66% of perused hospitals, pharmaceutical services disposal level was admissible. The structural engineering parameters like size and dimensions, available spaces, availability of structural planes, existence of air conditioning systems and brightness controllers, adequate stores for drugs and safe places for narcotics were observed in 55% of pharmacies. Conclusions: There are apparent out of standard space allocations and shortages of needed equipments for offering drug services in studied drugstores that may probably lead to a waste of time and money. These issues may reduce the efficiency and safety of pharmaceutical services and drug administration in hospitals.

  12. Generation of Domestic Hot Water, Space Heating and Driving Pattern Profiles for Integration Analysis of Active Loads in Low Voltage Grids

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Pigazo, Alberto; Bak-Jensen, Birgitte

    2013-01-01

    at household level. Despite of the well-known flexible service that this kind of loads can provide, their flexibility is highly dependent of the domestic hot water and space heating demand and the driving habits of each user. This paper presents two methodologies employed to randomly generate thermal power......The changes in the Danish energy sector, consequence of political agreements, are expected to have direct impact in the actual power distribution systems. Large number of electric boiler, heat pumps and electric vehicles are planned and will cope large percentage of the future power consumption...... demand and electric vehicle driving profiles, to be used for power grid calculations. The generated thermal profiles relied on a statistical analysis made from real domestic hot water and space heating data from 25 households of a typical Danish residential area. The driving profiles instead were formed...

  13. Air-Source Integrated Heat Pump System Development – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uselton, R. B. [Lennox Industries, Inc., Knoxville, TN (United States)

    2017-07-01

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of the ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.

  14. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  15. The impact of consumer behavior on residential energy demand for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.; Auer, H.; Biermayr, P. [Vienna Univ. of Technology (Austria). Inst. of Energy Economics

    1998-04-01

    Besides technical parameters, consumer behavior is the most important issue with respect to energy consumption in households. In this paper, the results of a cross-section analysis of Austrian households are presented. The impact of the following parameters on residential energy demand for space heating have been investigated: (i) thermal quality of buildings; (ii) consumer behavior; (iii) heating degree days; (iv) building type (single- or multi-family dwellings). The result of this investigation provides evidence of a rebound-effect of about 15 to 30% due to building retrofit. This leads to the conclusion that energy savings achieved in practice (and straightforward the reduction in CO{sub 2} emissions) due to energy conservation measures will be lower than those calculated in engineering conservation studies. Straightforward, the most important conclusions for energy policy makers are: (i) Standards, building codes, respectively, are important tools to increase the thermal quality of new buildings; and (ii) Due to prevailing low energy prices, a triggering tool has to be implemented which may be rebates or loans. (orig.)

  16. Analysis of Tube Bank Heat Transfer In Downward Directed Foam Flow

    Directory of Open Access Journals (Sweden)

    Jonas Gylys

    2004-06-01

    Full Text Available Apparatus with the foam flow are suitable to use in different technologies like heat exchangers, food industry, chemical and oil processing industry. Statically stable liquid foam until now is used in technologic systems rather seldom. Although a usage of this type of foam as heat transfer agent in foam equipment has a number of advantages in comparison with one phase liquid equipment: small quantity of liquid is required, heat transfer rate is rather high, mass of equipment is much smaller, energy consumption for foam delivery into heat transfer zone is lower. The paper analyzes the peculiarities of heat transfer from distributed in staggered order and perpendicular to foam flow in channel of rectangular cross section tube bundle to the foam flow. It was estimated the dependence of mean gas velocity and volumetric void fraction of foam flow to heat transfer in downward foam flow. Significant difference of heat transfer intensity from front and back tubes of tube row in laminar foam flow was noticed. Dependence of heat transfer on flow velocity and volumetric void fraction of foam was confirmed and estimated by criterion equations.

  17. Accident alarm equipment for steam generator, especially liquid sodium heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Jung, J.; Banovec, J.

    1982-01-01

    The alarm equipment consists of a system of sensors mounted onto the steam generator and its accessories. Each of the sensors is used for a different accident characteristic, such as the flow of sodium, the acoustic spectrum, the concentration of hydrogen in sodium. The system of sensors is connected to the common accident alarm system. The equipment will not issue the alarm signal if it receives a message from only one sensor, only when the message is confirmed from other sensors. This excludes false alarm. (M.D.)

  18. Fundamental experiment of potassium heat exchanger using principle of heat pipe

    International Nuclear Information System (INIS)

    Sumida, Isao; Kotani, Koichi

    1976-01-01

    In order to provide compact and reliable sodium equipments including a steam generator, performance tests are conducted with a potassium heat exchanger, which is featured by the separate construction of primary and secondary coolant systems. A small amount of potassium plays a role as an intermediate media of heat transportation between these two coolant systems. Heat is transferred by evaporation and condensation of potassium on the surface of the primary and the secondary coolant pipings, respectively. The tests are performed in the temperature range of 200 -- 300 0 C and the maximum heat transfer reaches 1.3kW (heat transfer rate at the primary heating source: 8.6W/cm 2 at 300 0 C). The experimental results are analyzed by using Langmuir's and Schrage's equation and close agreement between experiment and theory is obtained. (auth.)

  19. Equipment and special tool design for remote maintenance

    International Nuclear Information System (INIS)

    Northey, L.M.; Thomson, J.D.

    1985-01-01

    Maintenance tasks performed in locations with hostile environments and/or limited space accesses often require equipment that is operated remotely. This paper discusses considerations that should be addressed in the design of remote maintenance equipment. Some of the topics include proper material selection, interface identifications, operational feedback devices and cost limitations. These considerations add ''human engineering'' to the equipment design to assure protection of the tool and the operating personnel. Examples of remote maintenance and inspection systems that were developed by the Westinghouse Hanford Company and that utilize many of these design considerations are included

  20. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  1. 46 CFR 154.178 - Contiguous hull structure: Heating system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous hull structure: Heating system. 154.178... Equipment Hull Structure § 154.178 Contiguous hull structure: Heating system. The heating system for transverse and longitudinal contiguous hull structure must: (a) Be shown by a heat load calculation to have...

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    Science.gov (United States)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  3. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  4. A challenging task: cleaning and repairing at nuclear power plant ATUCHA I (CAN-I) the primary's moderators cooling circuits heat exchangers

    International Nuclear Information System (INIS)

    Amaya, D.; Alaniz, A.; Bernasconi, R.

    2005-01-01

    A set of automatic and semiautomatic machines and tools were designed for the accomplishment of remotely controlled works in high radiation fields on the ATUCHA-I moderator heat exchangers. The object of this equipment is to carry out works related to the cleaning, inspection and eventual blocking of the heat exchanger's tubes. Due to the special characteristics of the area, such as difficult access, not much space and high dose rates, the remote operation of highly trained and specialized personnel with specially designed tools, is mandatory. The Principal operations consist of: 1. Equipment manually taken to the area by specialized personnel. 2. Remote cutting the bolting and cutting and re-weld seals with custom designed equipment. 3. Remote cutting and re-weld piping connections with equipment on customized tracks, special supports, drives and commands. 4. Remote cleaning, leak testing, machining and plugging of the tube sheets with a custom-made master-slave/Cartesian robotic manipulators. 5. Monitoring with video cameras and lighting systems incorporated into the equipment. 6. Ands others task as piping stabilization, supporting and moving flanges, re-alignment of seals and pipes, etc. This paper describes the entire development of this project, starting from the initial work plan to the completion of the first on-site work carried out at the facility. Including descriptions, drawings and pictures of the custom designed equipment, description of the performed works and comparisons between the actual doses and estimated manual operation doses. (authors)

  5. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  6. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    Science.gov (United States)

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  7. Energy Efficiency and Sustainability Evaluation of Space and Water Heating in Urban Residential Buildings of the Hot Summer and Cold Winter Zone in China

    OpenAIRE

    Xiao Chen; Yongquan Wen; Nanyang Li

    2016-01-01

    With the urbanization process of the hot summer and cold winter (HSCW) zone in China, the energy consumption of space and water heating in urban residential buildings of the HSCW zone has increased rapidly. This study presents the energy efficiency and sustainability evaluation of various ways of space and water heating taking 10 typical cities in the HSCW zone as research cases. Two indicators, primary energy efficiency (PEE) and sustainability index based on exergy efficiency, are adopted t...

  8. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  9. 14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false HIRF Environments and Equipment HIRF Test Levels J Appendix J to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF.... 23, App. J Appendix J to Part 23—HIRF Environments and Equipment HIRF Test Levels This appendix...

  10. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  11. Performance of Space Heating in a Modern Energy System

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2011-01-01

    In the paper we study the performance of a number of heat supply technologies. The background of the study is the changes in the Danish energy systems over the last three decades which have caused integration of large shares of combined heat and power (CHP), renewable fuels and wind power....... These changes mean that there is a significant integration of electricity and heat supply in the system and that several technologies may be beneficial. In particular, heat pumps are under consideration and are often considered to be renewable energy. We study how to distribute fuel and emissions to the heat...... supply. We find that heat supply is low-efficient seen from an exergy viewpoint, between 1% and 26% utilization. As exergy is a quantification of primary energy, we conclude that far better utilization of primary energy is possible. We also find that combined heat and power and domestic heat pumps...

  12. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  13. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore...

  14. Principles of commercially available pretreatment and feeding equipment for baled biomass

    Energy Technology Data Exchange (ETDEWEB)

    Koch, T. [Thomas Koch Energi, Vanloese (Denmark); Hummelshoej, R.M. [COWIconsult, Lyngby (Denmark)

    1993-12-31

    During the last 15 years, there has been a growing interest in utilizing waste biomass for energy production in Denmark. Since 1990, it has been unlawful to burn surplus straw on open land. Before the year 2000, it is intended to utilize most of the 2--3 million tons of surplus straw as an energy resource. The type of plants that were built in the beginning were combustion plants for district heating. The feeding equipment for these plants has been developed to an acceptable standard. Later, combustion plants for combined heat and power production based on a steam turbine were introduced. This type of plant demands a much greater continuity in the fuel flow, and the consequences of minor discontinuities are to be dropped from the grid. Gasification and pyrolysis demands a high sealing ability of the feeding equipment, because of the explosive and poisonous gas in the plant and a need for a very high continuity in the fuel feed. The first plants were built with the equipment and experiences from the farming industries, which have a long tradition in working with biomass-handling. The experiences gained with this type of equipment were not very promising, and in the early eighties, a more industrial type of biomass-handling equipment was developed. This paper presents the principles of the heavy-duty biomass pretreatment and feeding equipment that was commercially available in Denmark in May, 1993.

  15. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  16. Space Station Freedom - Accommodation for technology R&D

    Science.gov (United States)

    Holt, Alan C.

    1989-01-01

    The paper examines the features of the accommodation equipment designed for the candidate technology payloads of the Space Station, which include magnetic plasma thruster systems and a hypothetical advanced electromagnetic propulsion system utilizing high-temperature superconductivity materials. The review of the accommodation-equipment concepts supports the assumption that some propulsion technologies can be tested on the Space Station while being attached externally to the station's truss structure. For testing technologies with inherent operation or performance hazards, space platforms and smaller free-flyers coordinated with the Space Station can be used. Diagrams illustrating typical accommodation equipment configurations are included.

  17. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  18. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment... PERSONS ON BOARD SUCH AIRCRAFT Aircraft and Equipment § 135.165 Communication and navigation equipment... aircraft used for IFR operations is equipped with at least— (i) One marker beacon receiver providing visual...

  19. Well posedness and regularity for heat equation with the initial condition in weighted Orlitz-Slobodetskii space subordinated to Orlicz space like lambda (log lambda0alpha and the logarithmic weight

    Czech Academy of Sciences Publication Activity Database

    Kałamajska, A.; Krbec, Miroslav

    2015-01-01

    Roč. 28, č. 3 (2015), s. 677-713 ISSN 1139-1138 R&D Projects: GA ČR GAP201/10/1920 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution problems * heat equation * Orlitz-Slobodetskii spaces * Orlitz-Sobolev spaces Subject RIV: BA - General Mathematics Impact factor: 0.631, year: 2015 http://link.springer.com/article/10.1007%2Fs13163-014-0164-4

  20. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  1. Basic survey project for Joint Implementation, etc., fiscal 1999. Survey of modernization of energy saving equipment at Southern Steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions, a project was studied for the modernization of energy saving facilities at Southern Steel Co., Ltd. which is No. 2 iron/steel maker in Malaysia. Studies were made on scrap preheating equipment for electric furnace, direct hot charge rolling equipment (DHCR), and regenerative burner for billet heating furnace. The scrap preheating equipment recovers energy from the electric furnace exhaust gas, which saves energy of 70 kWh/t. The direct hot charge rolling equipment recovers the sensible heat of billets, of which energy saving of about 80 Mcal/t is expected. The generative burner, in which the ceramic heat exchanger is used, improves the heat recovery from exhaust gas by 20%. By adopting these technologies, an effect of energy saving of a total of 325 Mcal/t can be obtained. If the four major iron/steel making plants in Malaysia adopt the technologies, effects can be obtained of energy conservation of approximately 100,000 toe/y and reduction in greenhouse effect gas emissions by approximately 320,000 t-CO2/y. (NEDO)

  2. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  3. Thermal performance analysis and optimum design parameters of heat exchanger having perforated pin fins

    International Nuclear Information System (INIS)

    Sahin, Bayram; Demir, Alparslan

    2008-01-01

    This paper reports the heat transfer enhancement and corresponding pressure drop over a flat surface equipped with circular cross section perforated pin fins in a rectangular channel. The channel had a cross section area of 100-250 mm 2 . The experiments covered the following ranges: Reynolds number 13500-42,000, clearance ratio (C/H) 0, 0.33 and 1 and interfin spacing ratio (S y /D) 1.208, 1.524, 1.944 and 3.417. Correlation equations were developed for the heat transfer, friction factor and enhancement efficiency. The experimental results showed that the use of circular cross section pin fins may lead to heat transfer enhancement. Enhancement efficiencies varied between 1.4 and 2.6 depending on clearance ratio and interfin spacing ratio. Using a Taguchi experimental design method, optimum design parameters and their levels were investigated. Nusselt number and friction factor were considered as performance parameters. An L 9 (3 3 ) orthogonal array was selected as an experimental plan. First of all, each goal was optimized separately. Then, all the goals were optimized together, considering the priority of the goals, and the optimum results were found to be Reynolds number of 42,000, fin height of 50 mm and streamwise distance between fins of 51 mm

  4. Low-Load Space Conditioning Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  5. Heat treatment of nuclear reactor pump part in integrated furnace facility

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators

  6. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  7. Measurement and control system for ITER remote maintenance equipment

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro

    1998-01-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  8. Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.; Allen, Bradley J.

    2001-01-01

    Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.

  9. 14 CFR 135.167 - Emergency equipment: Extended overwater operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Emergency equipment: Extended overwater operations. 135.167 Section 135.167 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...) One CO2 bottle for emergency inflation; (x) One inflation pump; (xi) Two oars; (xii) One 75-foot...

  10. Method for keeping equipment and pipeline of nuclear power plant

    International Nuclear Information System (INIS)

    Okubo, Osamu.

    1990-01-01

    The present invention intends to suppress corrosion of equipments and pipelines in condensate, feedwater and feedwater heater drain systems during operation of a nuclear power plant. That is, condensate, feedwater and drain remained in equipments and pipelines just after the stopping of operation are passed through pipelines comprising only conduits, or they are introduced to a condensator passing through the pipelines and condensate pipes. Further, the remaining droplets on the inner surfaces are evaporated by the remaining heat of the equipments and the pipelines themselves. Then, the equipments and pipelines are isolated from other regions and kept. In view of the above, since condensate, feedwater and water feeder drains are introduced directly to the condensator passing through the conduits in which other equipments such as tanks and pumps are not present and are isolated and kept, corrosion of the equipments and the pipelines is suppressed and radioactive contamination is suppressed from prevailing by way of cruds. (I.S.)

  11. Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-11-01

    Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

  12. Combined heat and cold generation using vertical ground loops; Gekoppelte Kaelte- und Waermeerzeugung mit Erdwaermesonden: Handbuch zum Planungsvorgehen

    Energy Technology Data Exchange (ETDEWEB)

    Good, J.; Nussbaumer, T. [Ingenieurbuero Verenum, Zuerich (Switzerland); Huber, A.; Widmer, P. [Huber Energietechnik, Zuerich (Switzerland); Truessel, D. [Kaelte-Waerme-Technik AG, Belp (Switzerland); Schmid, Ch. [Buero fuer Energietechnik, Winterthur (Switzerland)

    2001-07-01

    This handbook produced for the Swiss Federal Office of Energy (SFOE) addresses the problem of designing systems that produce heat and cold using integrated systems. The idea of using a single heat pump system instead of separate heating and refrigeration systems is introduced. Typical applications such as bakeries, restaurants and grocery stores are discussed. The use of vertical bore-hole heat-exchangers as a source of heat in winter and as a source of cold in summer is recommended. The handbook shows how heating and cooling needs can be calculated and examines the energy balance of a ground-coupled heat pump system. The design and calculation of an integrated system is described. A practical example of a system realised in a motor way restaurant near Berne, Switzerland, is given. Here, a heat pump-based system produces cold for refrigeration and heat for space heating and hot water. To enable comparisons to be made between different systems, the notions of energy efficiency ratio for heating and cooling (GLZ) and performance efficiency ratio for heating and cooling (GAZ) are introduced. An appendix provides useful information on simulation tools, temperature characteristics, the calculation of hot water demands, heat recovery and details on the energy consumption of refrigeration and deep-freeze equipment.

  13. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  14. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    with the highest energy con-sumption. The reduction depends on the solar collector area, distribution of the insulation thickness, heat-ing demand and control strategy, but not on pipe spacing and layer thickness and material. Finally, it is shown that the system can also be used for comfort heating of tiled...

  15. Use of ice storage equipment in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H. de

    1984-01-01

    The manufacture of foods in its widest sense demands a 'balanced supply of cooling'. Whenever 'cold requirement' occurs in different ways during production, the ice storage equipment in particular for 'cooling supplies'. The cooling performance (amount of cold from horizontal tubes and slabs or from horizontal pipes given off to the water flowing past) that can be expected from modern ice storage equipment, is made clear numerically. The way the storage vessel is constructed and its design have particular influence on the energy-saving quality (stirring mechanism with high performance at low pump capacity). Optimisation results for a plate evaporator design combined with a heat exchange system are presented. These include running cost savings of up to 18% in a yoghurt factory, a maltery and an ice cream factory. By means of this heat pump compound, environmental energy can be used in cold storage.

  16. Evaluation of the efficiency face to the NO{sub x} emissions from European gas-fired heat process equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fourniguet, M.J.; Quinqueneau, A. [Gaz de France, Saint-Denis la Plaine (France); Karll, B. [Dansk Gasteknisk Center, Hoersholm (Denmark); Breithaupt, P. Gasunie [Gasunie, Groningue (Netherlands); Jonsson, O. [Svensk Gastekniskt Center AB, Malmoe (Sweden); Navarri, P. [CETIAT, Villeurbanne (France)

    1999-10-01

    In the frame of the project, tests have been performed by Gaz de France, CETIAT, DGC, GASUNIE and SGC on 35 European industrial sites in order to depict what the European industry using natural gas as an energy source actually looks like in 1997, the levels of efficiency and nitrogen oxides (NOx) emissions currently being achieved. These 35 industrial sites were chosen among the three following sectors: steam or water boilers, engines or turbines and industrial processes (food processing industry, metallurgy, ceramic, paper and textile industries). The partners focused on relatively new installations or newly retrofitted which were equipped with low NOx technologies. To create an open database between the Partners, a common EXCEL sheet has been defined and used to report the results for the three sectors concerned including principally the following items: General background on the site: it includes the description of the installation, technical characteristics of the furnace, the boiler or the engine, operating scenarios, gas total rating, and depending of the type of installation power density, rated electric power or production rate; Description of the equipment: it includes, if available, the control system of the heating equipment and the low NOx techniques identified; Description of the measurement techniques: In order to compensate for the lack of international standard, this part has been particularly detailed. It includes the description of flue gas analysers (CO, CO{sub 2}, O{sub 2}, NOx, CH{sub 4}, UHC, N{sub 2}O, VOC), metering and pressure and temperature probes in terms of measurement principle, supplier, measurement rang and accuracy and gas calibration. It precise the position of the sampling points and the type of the sampling line; Results: The operating conditions (atmospheric data, type of natural gas burnt during the test and measurement period) are given before the results themselves (complete flue gas analysis and determination of combustion

  17. Infrared astronomy seeing the heat : from William Herschel to the Herschel space observatory

    CERN Document Server

    Clements, David L

    2014-01-01

    Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical GazeWilliam Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy - Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major t

  18. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  19. Building America Case Study: Effect of Ducted HPWH on Space Conditioning and Water Heating Energy Use - Central Florida Lab Home, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    C. Colon, E. Martin, and D. Parker

    2017-04-01

    The purpose of this research is to investigate the impact of ducted heat pump water heaters (HPWH's) on space conditioning and water heating energy use in residential applications. Two identical HPWH's, each of 60 gallon capacity were tested side by side at the Flexible Residential Test facility (FRTF) laboratories of the Florida Solar Energy Center (FSEC) campus in Cocoa, Florida. The water heating experiments were run in each test house from July 2014 until February 2015.

  20. A tool for Load Modeling in Induction Hardening Equipment Driven by Power Semiconductor Systems

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Suarez Bagnasco, D.

    2006-01-01

    Kelvin effect (Skin effect) is used in surface hardening produced by induction heating of gears, camforms, camshafts and other work pieces of fairly complex geometries.The induction heating equipment for surface hardening of metals and alloys (using LF or medium frequencies in the jargon of induction heating) is composed by a coil or coil assembly and a power semiconductor driving system up to 50kHz. The load seen by the driving system is equivalent to a transformer. The primary corresponds to the excitation coil or coil assembly, and the work piece corresponds to a short-circuited secondary. To asses the electrical load it is necessary to determine the variations in skin depth from place to place due to local curvature effects in the work piece, and its variations in space and time due to variations in conductivity and magnetic properties coupled with thermal effects. In these and others technical applications of Kelvin effect it is often necessary to be able to relate local skin depths with local curvatures of the surface of electrically conductive bodies.The purpose of this paper is twofold. First, derive a closed form analytical formula that relates the local skin depth with the local mean curvature and the well known skin depth for a flat conductive body. The limits of applicability of this formula are discussed. The predicted skin depths are compared with available experimental results obtained in the framework of surface hardening processes. Second, apply the above mentioned formula to describe the electrical load of the induction heating equipment in the conditions used for surface hardening. In the choice or design of an induction heating system the parameters of the intended process (depth of Kelvin effect, temperatures to be reached and duration of the heating process, amongst others) put restrictions over the coils and the power driving system. To determine the best shape and size of induction coils or coil assemblies, the complex thermal and

  1. Report on an investigation into heat pumps in China in fiscal 1995; 1995 nendo Chugoku ni okeru heat pump system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper surveyed the present status, the status of spread, and the technical development of the technology of heat pumps for residential and industrial uses in China. Main examples of installation of heat pumps are cited below: steam drive absorption type refrigerators in Beijing; sea water heat source turbo heat pumps in Qingdao; hot water drive absorption type refrigerators in Beijing; oil-fueled absorption type water cooling and heating appliances in Beijing; ice latent heat storage airconditioning systems using electrically-driven screw chiller in Beijing; temperature rising systems using electrically-driven heat pump of the solar energy utilization warm water swimming pool in Guangdong Province; cooling water supply using waste heat utilization absorption type refrigerator of the alcohol plant in Shandong Province; timber drying systems using electrically-driven heat pump, and marine product cultivation systems in Quangdong Province; distillation systems using steam turbine heat pump in Jiangxi Province. The demand for heat pumps is expected to be 20 million units under the 9th 5-year plan, and the development of equipment is thought to go toward promotion of energy conservation, low noise, multi-type or multi-functional air conditioning equipment, and computer use. 137 figs., 40 tabs.

  2. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  3. Outline of sodium-water reaction test in case of large leak with SWAT-3 testing equipments

    International Nuclear Information System (INIS)

    Sato, Minoru

    1978-01-01

    The key component in sodium-cooled fast reactors in steam generators, and the sodium-water reaction owing to the break of heating tubes may cause serious damages in equipments and pipings. The main factor controlling this phenomenon is the rate of leak of water. When the rate of water leak is small, the propagation of heating tube breaking may occur owing to ''wastage phenomenon'', on the other hand, when the rate of water leak is large, the phenomena of explosive pressure and flow occur due to the reaction heat and a large quantity of hydrogen generated by the reaction. In PNC, the testing equipments of SWAT-2 for small water leak and SWAT-1 for large leak were constructed, and the development test has been carried out to establish the method of safety design experimentally. The synthetic test equipment for the safety of steam generators, SWAT-3, was constructed to carry out the large water leak test in the scale close to actual plants. The object of the test, the outline of the test equipment, the phenomena of pressure and flow in the water injection test, the confirmation of the occurrence of secondary breaking of adjacent heating tubes, and the disposal of reaction products are described in this paper. This test is till going on, and the final conclusion will be reported later. (Kako, I.)

  4. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  5. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  6. Feasibility of using the water from the abandoned and flooded coal mines as an energy resource for space heating

    OpenAIRE

    Athresh, AP

    2017-01-01

    This research project aims to study the feasibility of using the water from the abandoned and flooded coal mines for space heating applications using a Ground Source Heat Pump (GSHP) in open loop configuration and take a conceptual idea to a commercial deployment level. The flooded coal mines are the legacy that has been left behind after the three centuries of continuous operations by the coal mining industry. The closure of all coal mines in the UK has led to the flooding of all those aband...

  7. Co-operatives as heating entrepreneurs

    International Nuclear Information System (INIS)

    Honkasalo, M.

    2000-01-01

    The objective of heating entrepreneurship functioning in the form of a co operative is to make the use of the wood chips competitive primarily through district heating of municipal centres. When compared with the conventional heating mode the reliability of chip delivery and the remuneration paid to the co-operative for attending to the running of the heating centres are considered to be the competitive advantages. The system has proven to be a working one; one indication of this is its growing application in the country. In the spring of the year 2000 there were 26 chip-based energy co-operative active in Finland. The first time that the use of bioenergy underwent a powerful rise was in the 1970s as a consequence of the oilcrises. Subsequently the enthusiasm shown to this energy form subsided. Then in the early 1990s, biofuels once again became a subject of interest mainly due to environmental issues, the restructuring of rural areas and silvicultural reasons. With the past decades' experiences forming the basis, the development needs associated with the use of bioenergy were in fresh memory and they were addressed on a wide font. Boiler technology related to solid fuels evolved rapidly and the least successful manufacturers had been eliminated by the recession. In the case of co-operative heating entrepreneurship, the commonest form neither the district heating centre nor the system of heat-transfer pipes belong to co-operative society. The co-operative is responsible only for the delivery of the fuel and for looking after the heating plant. Remuneration is generally based on the amount of energy leaving the district heating plant. Thus the heat dissipated at the heating plant is the co-operative's problem and the heat dissipated during transfer are the energy buyer's problem. The investor in the equipments usually the local municipality or an energy utility. In some cases the co-operative owns the equipments well, in which case it is correct to speak of

  8. 46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...

  9. Heat kernel analysis for Bessel operators on symmetric cones

    DEFF Research Database (Denmark)

    Möllers, Jan

    2014-01-01

    . The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $Ω$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergmann space...

  10. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  11. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    Science.gov (United States)

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  12. 14 CFR 25.1445 - Equipment standards for the oxygen distributing system.

    Science.gov (United States)

    2010-01-01

    ... distributing system. 25.1445 Section 25.1445 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Miscellaneous Equipment § 25.1445 Equipment standards for the oxygen distributing system. (a) When oxygen is supplied to both crew and passengers, the distribution system must be designed for either— (1) A source of...

  13. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  14. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  15. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  16. Diagnosis of Equipment Failures by Pattern Recognition

    DEFF Research Database (Denmark)

    Pau, L. F.

    1974-01-01

    The main problems in relation to automatic fault finding and diagnosis in equipments or production systems are discussed: 1) compression of the syndrome and observation spaces for better discrimination between failure modes; 2) simultaneous display of the failure patterns and the failure instants...

  17. Chapter 5: Residential Furnaces and Boilers Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jacobson, David [Jacobson Energy Research, Providence, RI (United States)

    2017-09-01

    The high-efficiency boiler and furnace measure produces gas heating savings resulting from installation of more energy-efficient heating equipment in a residence. Such equipment, which ranges in size from 60 kBtu/hr to 300 kBtu/hr, is installed primarily in single-family homes and multifamily buildings with individual heating systems for each dwelling unit. This protocol does not cover integrated heating and water heating units which can be used in lieu of space heating only equipment.

  18. Passive heat removal from containment

    International Nuclear Information System (INIS)

    Gou, P.F.; Townsend, H.E.

    1990-01-01

    This patent describes a heat removal system for removing heat from a containment of a nuclear reactor. It comprises: a sealed suppression chamber in the containment; means for venting steam from the nuclear reactor into the suppression chamber upon occurrence of an event requiring dissipation of heat from the nuclear reactor. The suppression chamber containing a quantity of water; the suppression chamber having a gas-containing space above the water; a heat exchanger disposed within the gas-containing space of the suppression chamber; the heat exchanger including an enclosed structure for holding a heat-exchange fluid; means for metering a supply of heat-exchange fluid to the heat exchanger to maintain a predetermined level thereof in the enclosed structure. The heat-exchange fluid boiling in the heat exchanger in consequence of heat transfer thereto from steam present in the suppression chamber; means for separating a heat-exchange fluid vapor in the heat exchanger from the heat-exchange fluid; and means for discharging the vapor immediately following its separation from heat-exchange fluid directly from the heat exchanger to a location exterior of the containment, whereby heat is discharged from the suppression chamber, and the containment is maintained at a temperature and pressure below its design value

  19. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  20. Equipment of Thomson scattering measurement on DIVA plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Funahashi, Akimasa; Matoba, Thoru; Sengoku, Seio

    1980-02-01

    Equipment of Thomson scattering measurement using ruby-laser light is explained. DIVA device was shut down in September 1979; it gave numerous fruitful experimental results during its five years operation. We measured the profiles of electron temperature and density with the Thomson scattering equipment, which played an important role in research of the energy confinement and heating characteristics. In Thomson scattering measurements on DIVA, studies and improvements were made for reduction of stray light, increase of measuring points and data processing. The profile of electron temperature and density were thus measured successful. In this report is given an over-all view of the Thomson scattering equipment together with the above improvements. As two representative examples, the measured results of electron temperature profiles on DIVA plasma under divertor operation and low-q discharge respectively are described. (author)