WorldWideScience

Sample records for space hardware development

  1. Space station common module network topology and hardware development

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  2. Sterilization of space hardware.

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  3. Space station common module power system network topology and hardware development

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  4. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  5. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  6. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  7. NDAS Hardware Translation Layer Development

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  8. The Impact of Flight Hardware Scavenging on Space Logistics

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  9. Hardware Development Process for Human Research Facility Applications

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  10. Development of Hardware Dual Modality Tomography System

    R. M. Zain

    2009-06-01

    Full Text Available The paper describes the hardware development and performance of the Dual Modality Tomography (DMT system. DMT consists of optical and capacitance sensors. The optical sensors consist of 16 LEDs and 16 photodiodes. The Electrical Capacitance Tomography (ECT electrode design use eight electrode plates as the detecting sensor. The digital timing and the control unit have been developing in order to control the light projection of optical emitters, switching the capacitance electrodes and to synchronize the operation of data acquisition. As a result, the developed system is able to provide a maximum 529 set data per second received from the signal conditioning circuit to the computer.

  11. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  12. Space Network Devices Developed

    Jones, Robert E.

    2004-01-01

    The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis

  13. IDEAS and App Development Internship in Hardware and Software Design

    Alrayes, Rabab D.

    2016-01-01

    In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.

  14. Environmental Control System Software & Hardware Development

    Vargas, Daniel Eduardo

    2017-01-01

    ECS hardware: (1) Provides controlled purge to SLS Rocket and Orion spacecraft. (2) Provide mission-focused engineering products and services. ECS software: (1) NASA requires Compact Unique Identifiers (CUIs); fixed-length identifier used to identify information items. (2) CUI structure; composed of nine semantic fields that aid the user in recognizing its purpose.

  15. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  16. Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data Compression for Space

    Aranki, Nazeeh; Keymeulen, Didier; Bakhshi, Alireza; Klimesh, Matthew

    2009-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware. A modified form of the algorithm that is better suited for data from pushbroom instruments is generally appropriate for flight implementation. A scalable field programmable gate array (FPGA) hardware implementation was developed. The FPGA implementation achieves a throughput performance of 58 Msamples/sec, which can be increased to over 100 Msamples/sec in a parallel implementation that uses twice the hardware resources This paper describes the hardware implementation of the 'Modified Fast Lossless' compression algorithm on an FPGA. The FPGA implementation targets the current state-of-the-art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for space applications.

  17. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  18. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  19. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  20. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  1. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  2. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    2010-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title III...

  3. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  4. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  5. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  7. Parallel-Architecture Simulator Development Using Hardware Transactional Memory

    Armejach Sanosa, Adrià

    2009-01-01

    To address the need for a simpler parallel programming model, Transactional Memory (TM) has been developed and promises good parallel performance with easy-to-write parallel code. Unlike lock-based approaches, with TM, programmers do not need to explicitly specify and manage the synchronization among threads. However, programmers simply mark code segments as transactions, and the TM system manages the concurrency control for them. TM can be implemented either in software (STM) or hardware (HT...

  8. Development of Hardware and Software for Automated Ultrasonic Testing

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  9. Improvement of hardware basic testing : Identification and development of a scripted automation tool that will support hardware basic testing

    Rask, Ulf; Mannestig, Pontus

    2002-01-01

    In the ever-increasing development pace, circuits and hardware are no exception. Hardware designs grow and circuits gets more complex at the same time as the market pressure lowers the expected time-to-market. In this rush, verification methods often lag behind. Hardware manufacturers must be aware of the importance of total verification if they want to avoid quality flaws and broken deadlines which in the long run will lead to delayed time-to-market, bad publicity and a decreasing market sha...

  10. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  11. Development of the Sixty Watt Heat-Source hardware components

    McNeil, D.C.; Wyder, W.C.

    1995-01-01

    The Sixty Watt Heat Source is a nonvented heat source designed to provide 60 thermal watts of power. The unit incorporates a plutonium-238 fuel pellet encapsulated in a hot isostatically pressed General Purpose Heat Source (GPHS) iridium clad vent set. A molybdenum liner sleeve and support components isolate the fueled iridium clad from the T-111 strength member. This strength member serves as the pressure vessel and fulfills the impact and hydrostatic strength requirements. The shell is manufactured from Hastelloy S which prevents the internal components from being oxidized. Conventional drawing operations were used to simplify processing and utilize existing equipment. The deep drawing reqirements for the molybdenum, T-111, and Hastelloy S were developed from past heat source hardware fabrication experiences. This resulted in multiple step drawing processes with intermediate heat treatments between forming steps. The molybdenum processing included warm forming operations. This paper describes the fabrication of these components and the multiple draw tooling developed to produce hardware to the desired specifications. copyright 1995 American Institute of Physics

  12. Coupled Loads Analysis of the Modified NASA Barge Pegasus and Space Launch System Hardware

    Knight, J. Brent

    2015-01-01

    A Coupled Loads Analysis (CLA) has been performed for barge transport of Space Launch System hardware on the recently modified NASA barge Pegasus. The barge re-design was facilitated with detailed finite element analyses by the ARMY Corps of Engineers - Marine Design Center. The Finite Element Model (FEM) utilized in the design was also used in the subject CLA. The Pegasus FEM and CLA results are presented as well as a comparison of the analysis process to that of a payload being transported to space via the Space Shuttle. Discussion of the dynamic forcing functions is included as well. The process of performing a dynamic CLA of NASA hardware during marine transport is thought to be a first and can likely support minimization of undue conservatism.

  13. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  14. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  15. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  16. Architecture and development of the CDF hardware event builder

    Shaw, T.M.; Booth, A.W.; Bowden, M.

    1989-01-01

    A hardware Event Builder (EVB) has been developed for use at the Collider Detector experiment at Fermi National Accelerator (CDF). the Event builder presently consists of five FASTBUS modules and has the task of reading out the front end scanners, reformatting the data into YBOS bank structure, and transmitting the data to a Level 3 (L3) trigger system which is composed of multiple VME processing nodes. The Event Builder receives its instructions from a VAX based Buffer Manager (BFM) program via a Unibus Processor Interface (UPI). The Buffer Manager instructs the Event Builder to read out one of the four CDF front end buffers. The Event Builder then informs the Buffer Manager when the event has been formatted and then is instructed to push it up to the L3 trigger system. Once in the L3 system, a decision is made as to whether to write the event to tape

  17. Hardware in the loop platform development for hybrid vehicles

    Wilhelm, E. [ETH Zurich, Zurich (Switzerland); Fowler, E.; Stevens, M.B. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, M.W. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    This paper described a hardware-in-the-loop (HIL) validation simulation system designed to evaluate hybrid control strategies. The system was designed to reduce development costs and improve the safety of hybrid vehicle control systems. Model-based design processes for power trains typically include a series of processes to assess the real time and physical limitations of control systems prior to in-vehicle testing. The study used a 70 kW nickel metal hydride battery; a 67 kW 3-phase induction traction motor; and, a high voltage DC-DC converter within a fuel cell Chevrolet Equinox. Two physical vehicle controllers were used to interface with the virtual vehicle simulation in real time. System performance was monitored with a supervisory computer. A software in the loop (SIL) process was conducted to assess torque control and regenerative braking algorithm validation. An analysis of the controller code showed that a Simulink-native integrator block was updating too slowly. A custom integration term calculation was written. The charge control was then validated and tuned. It was concluded that use of the HIL system mitigated the risk of component damage through the identification and correction of unstable control logic. 10 refs., 2 tabs., 10 figs.

  18. Inexpensive, Low Power, Open-Source Data Logging hardware development

    Sandell, C. T.; Schulz, B.; Wickert, A. D.

    2017-12-01

    Over the past six years, we have developed a suite of open-source, low-cost, and lightweight data loggers for scientific research. These loggers employ the popular and easy-to-use Arduino programming environment, but consist of custom hardware optimized for field research. They may be connected to a broad and expanding range of off-the-shelf sensors, with software support built in directly to the "ALog" library. Three main models exist: The ALog (for Autonomous or Arduino Logger) is the extreme low-power model for years-long deployments with only primary AA or D batteries. The ALog shield is a stripped-down ALog that nests with a standard Arduino board for prototyping or education. The TLog (for Telemetering Logger) contains an embedded radio with 500 m range and a GPS for communications and precision timekeeping. This enables meshed networks of loggers that can send their data back to an internet-connected "home base" logger for near-real-time field data retrieval. All boards feature feature a high-precision clock, full size SD card slot for high-volume data storage, large screw terminals to connect sensors, interrupts, SPI and I2C communication capability, and 3.3V/5V power outputs. The ALog and TLog have fourteen 16-bit analog inputs with a precision voltage reference for precise analog measurements. Their components are rated -40 to +85 degrees C, and they have been tested in harsh field conditions. These low-cost and open-source data loggers have enabled our research group to collect field data across North and South America on a limited budget, support student projects, and build toward better future scientific data systems.

  19. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  20. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  1. Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware

    Weber, Thomas P., Jr.; Cox, Sarah B.

    2018-01-01

    The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.

  2. Hardware based technology assessment in support of near-term space fission missions

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger; Hrbud, Ivana; Carter, Robert

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones

  3. Hardware Based Technology Assessment in Support of Near-Term Space Fission Missions

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; BraggSitton, Shannon; Carter, Robert; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones.

  4. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  5. Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research

    Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.

    2005-08-01

    For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.

  6. Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σs-deficient mutant

    Matin, A. C.; Wang, J.-H.; Keyhan, Mimi; Singh, Rachna; Benoit, Michael; Parra, Macarena P.; Padgen, Michael R.; Ricco, Antonio J.; Chin, Matthew; Friedericks, Charlie R.; Chinn, Tori N.; Cohen, Aaron; Henschke, Michael B.; Snyder, Timothy V.; Lera, Matthew P.; Ross, Shannon S.; Mayberry, Christina M.; Choi, Sungshin; Wu, Diana T.; Tan, Ming X.; Boone, Travis D.; Beasley, Christopher C.; Piccini, Matthew E.; Spremo, Stevan M.

    2017-11-01

    Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG), stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm), and that this increase is dependent on the presence of σs (a transcription regulator encoded by the rpoS gene). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG findings can differ from MG, we report preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) as a free-flying "nanosatellite" in low Earth orbit. Within EcAMSat's payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported here for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes can assess the Gm effect on E. coli viability, permitting telemetric transfer of the spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its ΔrpoS strain to Gm. if σs plays the same role in space MG as in LSMMG and Earth gravity, countermeasures discovered in recent Earth studies (aimed at weakening the UPEC antioxidant defense) to control UPEC infections would prove useful also in space flights. Further, EcAMSat results should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity and other issues.

  7. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development and Initial Analysis of Experiments

    Grugel, Richard N.

    2004-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMI investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMI uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMI is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity Environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station. .

  8. Hardware and Software Integration in Project Development of Automated Controller System Using LABVIEW FPGA

    Mohd Khairulezwan Abd Manan; Mohd Sabri Minhat; Izhar Abu Hussin

    2014-01-01

    The Field-Programmable Gate Array (FPGA) is a semiconductor device that can be programmed after manufacturing. Instead of being restricted to any predetermined hardware function, an FPGA allows user to program product features and functions, adapt to new standards, and reconfigure hardware for specific applications even after the product has been installed in the field, hence the name field-programmable. This project developed a control system using LabVIEW FPGA. LabVIEW FPGA is easier where it is programmed by using drag and drop icon. Then it will be integrated with the hardware input and output. (author)

  9. Technical assessment of Mir-1 life support hardware for the international space station

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  10. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  11. Space Launch System Development Status

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  12. Space biology research development

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  13. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  14. Mammalian development in space

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  15. Review of hardware cost estimation methods, models and tools applied to early phases of space mission planning

    Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.

    2012-08-01

    The primary purpose of this paper is to review currently existing cost estimation methods, models, tools and resources applicable to the space sector. While key space sector methods are outlined, a specific focus is placed on hardware cost estimation on a system level, particularly for early mission phases during which specifications and requirements are not yet crystallised, and information is limited. For the space industry, cost engineering within the systems engineering framework is an integral discipline. The cost of any space program now constitutes a stringent design criterion, which must be considered and carefully controlled during the entire program life cycle. A first step to any program budget is a representative cost estimate which usually hinges on a particular estimation approach, or methodology. Therefore appropriate selection of specific cost models, methods and tools is paramount, a difficult task given the highly variable nature, scope as well as scientific and technical requirements applicable to each program. Numerous methods, models and tools exist. However new ways are needed to address very early, pre-Phase 0 cost estimation during the initial program research and establishment phase when system specifications are limited, but the available research budget needs to be established and defined. Due to their specificity, for vehicles such as reusable launchers with a manned capability, a lack of historical data implies that using either the classic heuristic approach such as parametric cost estimation based on underlying CERs, or the analogy approach, is therefore, by definition, limited. This review identifies prominent cost estimation models applied to the space sector, and their underlying cost driving parameters and factors. Strengths, weaknesses, and suitability to specific mission types and classes are also highlighted. Current approaches which strategically amalgamate various cost estimation strategies both for formulation and validation

  16. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  17. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  18. Towards the Development of a Model for Hardware Standards in Information Technology Procurement: Factors for Consideration

    Ryan, David L.

    2010-01-01

    While research in academic and professional information technology (IT) journals address the need for strategic alignment and defined IT processes, there is little research about what factors should be considered when implementing specific IT hardware standards in an organization. The purpose of this study was to develop a set of factors for…

  19. Software development minimum guidance system. Algorithm and specifications of realizing special hardware processor data prefilter program

    Baginyan, S.A.; Govorun, N.N.; Tkhang, T.L.; Shigaev, V.N.

    1982-01-01

    Software development minimum guidance system for measuring pictures of bubble chamber on the base of a scanner (HPD) and special hardware processor (SHP) is described. The algorithm of selective filter is proposed. The local software structure and functional specifications of its major parts are described. Some examples of processing picture from HBC-1 (JINR) are also presented

  20. Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.

    Towne, Douglas M.; Munro, Allen

    A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…

  1. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  2. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  3. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Dohee Kim

    2008-12-01

    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

  4. Space Structure Development

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  5. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  6. Close Range Photogrammetry in Space - Measuring the On-Orbit Clearance between Hardware on the International Space Station

    Liddle, Donn

    2017-01-01

    When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the

  7. Development of inspection techniques for quantitatively measuring surface contamination on SRM hardware

    Law, R. D.

    1989-01-01

    A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.

  8. Z-2 Prototype Space Suit Development

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  9. Electric air filtration: theory, laboratory studies, hardware development, and field evaluations

    Bergman, W.; Biermann, A.; Kuhl, W.

    1983-09-01

    We summarize the results of a seven-year research project for the US Department of Energy (DOE) to develop electric air filters that extend the service life of high-efficiency particulate air (HEPA) filters used in the nuclear industry. This project was unique to Lawrence Livermore National Laboratory (LLNL), and it entailed comprehensive theory, laboratory studies, and hardware development. We present our work in three major areas: (1) theory of and instrumentation for filter test methods, (2) theoretical and laboratory studies of electric air filters, and (3) development and evaluation of eight experimental electric air filters

  10. Interim Service ISDN Satellite (ISIS) hardware experiment development for advanced ISDN satellite designs and experiments

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Service Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Development for Advanced Satellite Designs describes the development of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into Time Division Multiple Access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the RS-499 interface for satellite uplink. The same ISTA converts in the opposite direction the RS-499 to U-interface data with a simple switch setting.

  11. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  12. SCA Waveform Development for Space Telemetry

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  13. Development of a software-hardware complex for studying the process of grinding by a pendulum deformer

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a software and hardware complex for investigating the grinding process on a pendulum deformer. The hardware part of this complex is the Raspberry Pi model 2B platform, to which a contactless angle sensor is connected, which allows to obtain data on the angle of deviation of the pendulum surface, usb-cameras, which allow to obtain grain images before and after grinding, and stepping motors allowing lifting of the pendulum surface and adjust the clearance between the pendulum and the supporting surfaces. The program part of the complex is written in C # and allows receiving data from the sensor and usb-cameras, processing the received data, and also controlling the synchronous-step motors in manual and automatic mode. The conducted studies show that the rational mode is the deviation of the pendulum surface by an angle of 400, and the location of the grain in the central zone of the support surface, regardless of the orientation of the grain in space. Also, due to the non-contact angle sensor, energy consumption for grinding, speed and acceleration of the pendulum surface, as well as vitreousness of grain and the energy consumption are calculated. With the help of photographs obtained from usb cameras, the work of a pendulum deformer based on the Rebinder formula and calculation of the grain area before and after grinding is determined.

  14. A Hardware-in-the-Loop Simulator for Software Development for a Mars Airplane

    Slagowski, Stefan E.; Vican, Justin E.; Kenney, P. Sean

    2007-01-01

    Draper Laboratory recently developed a Hardware-In-The-Loop Simulator (HILSIM) to provide a simulation of the Aerial Regional-scale Environmental Survey (ARES) airplane executing a mission in the Martian environment. The HILSIM was used to support risk mitigation activities under the Planetary Airplane Risk Reduction (PARR) program. PARR supported NASA Langley Research Center's (LaRC) ARES proposal efforts for the Mars Scout 2011 opportunity. The HILSIM software was a successful integration of two simulation frameworks, Draper's CSIM and NASA LaRC's Langley Standard Real-Time Simulation in C++ (LaSRS++).

  15. Embedded Systems Hardware Integration and Code Development for Maraia Capsule and E-MIST

    Carretero, Emmanuel S.

    2015-01-01

    The cost of sending large spacecraft to orbit makes them undesirable for carrying out smaller scientific missions. Small spacecraft are more economical and can be tailored for missions where specific tasks need to be carried out, the Maraia capsule is such a spacecraft. Maraia will allow for samples of experiments conducted on the International Space Station to be returned to earth. The use of balloons to conduct experiments at the edge of space is a practical approach to reducing the large expense of using rockets. E-MIST is a payload designed to fly on a high altitude balloon. It can maintain science experiments in a controlled manner at the edge of space. The work covered here entails the integration of hardware onto each of the mentioned systems and the code associated with such work. In particular, the resistance temperature detector, pressure transducers, cameras, and thrusters for Maraia are discussed. The integration of the resistance temperature detectors and motor controllers to E-MIST is described. Several issues associated with sensor accuracy, code lock-up, and in-flight reset issues are mentioned. The solutions and proposed solutions to these issues are explained.

  16. Hardware-in-the-loop-based development methods for mechatronic light control; Hardware-in-the-loop basierte Entwicklungsmethodik fuer eine mechatronische Leuchtweiteregelung

    Opgen-Rhein, P.

    2005-07-01

    A hardware-in-the-loop solution is presented which in the system integration phase takes account of the process of functional property validation of mechatronic light control systems. The method is not tested on the road but on a test rig with defined boundary conditions. This test stand, combined with objective assessment criteria developed for the specific requirements, helps to minimize the number of costly road tests still required. Using the example of an adaptive filter of a light control system, the author shows how filter paramaters are applied on the test stand, and how the subjective judgement of the driver is taken into account as well in the evaluations. (orig.)

  17. Development of a hardware-based AC microgrid for AC stability assessment

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  18. Enabling Sustainable Exploration through the Commercial Development of Space

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  19. Marshall Space Flight Center's Tower Vector Magnetograph: Upgrades, Hardware, and Operations for the HESSI Mission

    Adams, M. L.; Hagyard, M. J.; West, E. A.; Smith, J. E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center's (MSFC) solar group announces the successful upgrade of our tower vector magnetograph. In operation since 1973, the last major alterations to the system (which includes telescope, filter, polarizing optics, camera, and data acquisition computer) were made in 1982, when we upgraded from an SEC Vidicon camera to a CCD. In 1985, other changes were made which increased the field-of-view from 5 x 5 arc min (2.4 arc sec per pixel) to 6 x 6 arc min with a resolution of 2.81 arc sec. In 1989, the Apollo Telescope Mount H-alpha telescope was coaligned with the optics of the magnetograph. The most recent upgrades (year 2000), funded to support the High Energy Solar Spectroscopic Imager (HESSI) mission, have resulted in a pixel size of 0.64 arc sec over a 7 x 5.2 arc min field-of-view (binning 1x1). This poster describes the physical characteristics of the new system and compares spatial resolution, timing, and versatility with the old system. Finally, we provide a description of our Internet web site, which includes images of our most recent observations, and links to our data archives, as well as the history of magnetography at MSFC and education outreach pages.

  20. Development of a hardware-in- loop simulation platform for NPP main control systems

    Liu Pengfei

    2017-01-01

    Full Text Available The simulation technology of the nuclear power plant are gradually applying to the nuclear power industry. However, most of the research on nuclear power plant simulation system only focus on pure computerized simulation at present, and it is difficult to fully display the characteristics of the simulating objects. In order to simulate the response characteristics of control system more really, a hardware-in-loop simulation platform of main control systems in the nuclear power plant has been developed in this paper. This simulation platform consists of thermal-hydraulic model, control and protection system model, physical DCS system and real-time interactive database. A physical industrial DCS system has been coupled to this platform to simulate the main control systems in the NPP, which makes the simulation result much closer to the actual control systems. The devoloped simulation platform has been validated by some steady and transient cases in this paper. This hardware-in-loop simulation platform can be used in the simulation and optimal design of NPP control systems. Furthermore, it can be used in the failure mode and effect analysis of the instrumentation and control systems in the nuclear power plant.

  1. DEVELOPMENT OF CONCEPT OF HARDWARE-SOFTWARE COMPLEX OF MODULAR DESIGN FOR DETERMINATION OF ANTENNA SYSTEMS׳ CHARACTERISTICS BASED ON MEASUREMENTS IN THE NEAR FIELD

    A. G. Buday

    2017-01-01

    Full Text Available Measuring the amplitude-phase distribution of the radiation field of complex antenna systems on a certain surface close to the radiating aperture allows solving the problem of reconstructing the free-space diagram in the far field and also helps in determining the influence of various structural elements and defects of radiating surfaces on formation of directional diagram. The purpose of this work was to develop a universal hardware-software complex of a modular design aimed for determining the characteristics of wide range of antenna systems in respect of measurements of the amplitude-phase distribution of the radiation field in the near zone.The equations that connect the structure of radiation fields of the antenna system at various distances from it in planar, cylindrical and spherical coordinate systems as well as structural diagrams of the hardware part of measuring complexes have been analyzed.As a result, the concept of constructing a universal hardware-software complex for measuring the radiation field of various types of antenna systems with any type of measurement surface for solving a wide range of applied problems has been developed. A modular structure of hardware and software has been proposed; it allows reconfiguring the complex rapidly in order to measure the characteristics of any particular antenna system at all stages of product development and testing, and also makes the complex economically accessible even for small enterprises and organizations.

  2. Development and Validation of a Spike Detection and Classification Algorithm Aimed at Implementation on Hardware Devices

    E. Biffi

    2010-01-01

    Full Text Available Neurons cultured in vitro on MicroElectrode Array (MEA devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line and real time analysis, optimization of memory use and data transmission rate improvement become necessary. We developed an algorithm for amplitude-threshold spikes detection, whose performances were verified with (a statistical analysis on both simulated and real signal and (b Big O Notation. Moreover, we developed a PCA-hierarchical classifier, evaluated on simulated and real signal. Finally we proposed a spike detection hardware design on FPGA, whose feasibility was verified in terms of CLBs number, memory occupation and temporal requirements; once realized, it will be able to execute on-line detection and real time waveform analysis, reducing data storage problems.

  3. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  4. Development of Soft-Hardware Platform for Training System Design of Electrotechnical Complexes and Electric Drives

    Koltunova Ekaterina A.

    2017-01-01

    Full Text Available The article presents the results of the development of software and hardware platform as the equipment for the training of children and youth work skills with robotics, allowing in the future to apply this knowledge in practice, implementing automation system for home use. We consider the problems of existing solutions. The main difference is the integration of the proposed fees and extensions into a single set by connecting the connectors and the ability to connect third-party components from different manufacturers, without limiting users. As well as a simplified method using a visual object-oriented programming allows you to immediately engage in the work. Prepared lessons and tasks in the game style simplifies the information and allows you to understand how you can apply one or another technical solution.

  5. Systematic development of industrial control systems using Software/Hardware Engineering

    Voeten, J.P.M.; van der Putten, P.H.A.; Stevens, M.P.J.; Milligan, P.; Corr, P.

    1997-01-01

    SHE (Software/Hardware Engineering) is a new object-oriented analysis, specification and design method for complex reactive hardware/software systems. SHE is based on the formal specification language POOSL and a design framework guiding analysis and design activities. This paper reports on the

  6. Battery algorithm verification and development using hardware-in-the-loop testing

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  7. Battery algorithm verification and development using hardware-in-the-loop testing

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  8. NASA's Space Launch System Development Status

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  9. Continuing Development for Free-Piston Stirling Space Power Systems

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  10. Investigations on development of software and hardware for nuclear power plant training simulators

    He Sian.

    1987-01-01

    The requirements of a training simulator are discussed. The algorithms of the lumped and distributed parameter system and real time system are analysed on principle in software design. The assumed schemes of a hardware system are proposed, too

  11. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  12. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    OVERLY, TIMOTHY G. [Los Alamos National Laboratory; PARK, GYUHAE [Los Alamos National Laboratory; FARRAR, CHARLES R. [Los Alamos National Laboratory

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  13. Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGA Hardware-Software Toolset

    Tommaso Caldognetto

    2013-12-01

    Full Text Available In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications.The paper shows how this high level programming language,together with its target hardware platforms, including CompactRIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are

  14. Interplay between requirements, software architecture, and hardware constraints in the development of a home control user interface

    Loft, M.S.; Nielsen, S.S.; Nørskov, Kim

    2012-01-01

    is to propose the hardware platform as a third Twin Peaks element that must be given attention in projects such as the one described in this paper. Specifically, we discuss how the presence of severe hardware constraints exacerbates making trade-offs between requirements and architecture.......We have developed a new graphical user interface for a home control device for a large industrial customer. In this industrial case study, we first present our approaches to requirements engineering and to software architecture; we also describe the given hardware platform. Then we make two...... contributions. Our first contribution is to provide a specific example of a real-world project in which a Twin Peaks-compliant approach to software development has been used, and to describe and discuss three examples of interplay between requirements and software architecture decisions. Our second contribution...

  15. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    H. S. Liu

    2015-08-01

    Full Text Available Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data – a data processing system could be constructed.

  16. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  17. Technical overview of cogeneration: the hardware, the industries, the potential development

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  18. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  19. SpaceWire model development technology for satellite architecture.

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  20. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  1. Fine-grain reconfigurable platform: FPGA hardware design and software toolset development

    Pappas, I; Kalenteridis, V; Vassiliadis, N; Pournara, H; Siozios, K; Koutroumpezis, G; Tatas, K; Nikolaidis, S; Siskos, S; Soudris, D J; Thanailakis, A

    2005-01-01

    A complete system for the implementation of digital logic in a fine-grain reconfigurable platform is introduced. The system is composed of two parts. The fine-grain reconfigurable hardware platform (FPGA) on which the logic is implemented and the set of CAD tools for mapping logic to the FPGA platform. A novel energy-efficient FPGA architecture is presented (CLB, interconnect network, configuration hardware) and simulated in STM 0.18 μm CMOS technology. Concerning the tool flow, each tool can operate as a standalone program as well as part of a complete design framework, composed by existing and new tools

  2. Fine-grain reconfigurable platform: FPGA hardware design and software toolset development

    Pappas, I [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Kalenteridis, V [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Vassiliadis, N [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Pournara, H [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Siozios, K [VLSI Design and Testing Center, Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi (Greece); Koutroumpezis, G [VLSI Design and Testing Center, Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi (Greece); Tatas, K [VLSI Design and Testing Center, Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi (Greece); Nikolaidis, S [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Siskos, S [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece); Soudris, D J [VLSI Design and Testing Center, Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi (Greece); Thanailakis, A [Electronics and Computers Div., Department of Physics, Aristotle University of Thessaloniki, 54006 Thessaloniki (Greece)

    2005-01-01

    A complete system for the implementation of digital logic in a fine-grain reconfigurable platform is introduced. The system is composed of two parts. The fine-grain reconfigurable hardware platform (FPGA) on which the logic is implemented and the set of CAD tools for mapping logic to the FPGA platform. A novel energy-efficient FPGA architecture is presented (CLB, interconnect network, configuration hardware) and simulated in STM 0.18 {mu}m CMOS technology. Concerning the tool flow, each tool can operate as a standalone program as well as part of a complete design framework, composed by existing and new tools.

  3. Development of Hardware-in-the-Loop Simulation Based on Gazebo and Pixhawk for Unmanned Aerial Vehicles

    Nguyen, Khoa Dang; Ha, Cheolkeun

    2018-04-01

    Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.

  4. Outer space structure and development

    Zeldovich, J.; Novikov, I.

    1975-01-01

    A brief account is presented answering the question of what in fact the outer space we observe consists of. The principle of spatial homogeneity of the universe and the idea of non-stationary cosmology are discussed. The origin and the future development of the universe are explained using the two above mentioned and some other hypotheses. (J.K.)

  5. Outer space structure and development

    Zeldovich, J; Novikov, I

    1975-10-01

    A brief account is presented answering the question of what in fact the outer space we observe consists of. The principle of spatial homogeneity of the universe and the idea of non-stationary cosmology are discussed. The origin and the future development of the universe are explained using the two above mentioned and some other hypotheses.

  6. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  7. Foundations of hardware IP protection

    Torres, Lionel

    2017-01-01

    This book provides a comprehensive and up-to-date guide to the design of security-hardened, hardware intellectual property (IP). Readers will learn how IP can be threatened, as well as protected, by using means such as hardware obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking, remote activation, hidden transmission of data, hardware Trojan detection, protection against hardware Trojan, use of secure element, ultra-lightweight cryptography, and digital rights management. This book serves as a single-source reference to design space exploration of hardware security and IP protection. · Provides readers with a comprehensive overview of hardware intellectual property (IP) security, describing threat models and presenting means of protection, from integrated circuit layout to digital rights management of IP; · Enables readers to transpose techniques fundamental to digital rights management (DRM) to the realm of hardware IP security; · Introduce designers to the concept of salutar...

  8. Space storable propulsion components development

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  9. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  10. Devices development and techniques research for space life sciences

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  11. Hardware malware

    Krieg, Christian

    2013-01-01

    In our digital world, integrated circuits are present in nearly every moment of our daily life. Even when using the coffee machine in the morning, or driving our car to work, we interact with integrated circuits. The increasing spread of information technology in virtually all areas of life in the industrialized world offers a broad range of attack vectors. So far, mainly software-based attacks have been considered and investigated, while hardware-based attacks have attracted comparatively little interest. The design and production process of integrated circuits is mostly decentralized due to

  12. Hardware protection through obfuscation

    Bhunia, Swarup; Tehranipoor, Mark

    2017-01-01

    This book introduces readers to various threats faced during design and fabrication by today’s integrated circuits (ICs) and systems. The authors discuss key issues, including illegal manufacturing of ICs or “IC Overproduction,” insertion of malicious circuits, referred as “Hardware Trojans”, which cause in-field chip/system malfunction, and reverse engineering and piracy of hardware intellectual property (IP). The authors provide a timely discussion of these threats, along with techniques for IC protection based on hardware obfuscation, which makes reverse-engineering an IC design infeasible for adversaries and untrusted parties with any reasonable amount of resources. This exhaustive study includes a review of the hardware obfuscation methods developed at each level of abstraction (RTL, gate, and layout) for conventional IC manufacturing, new forms of obfuscation for emerging integration strategies (split manufacturing, 2.5D ICs, and 3D ICs), and on-chip infrastructure needed for secure exchange o...

  13. Open hardware for open science

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  14. Space Commercialization and the Development of Space Law

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  15. Flight Hardware Virtualization for On-Board Science Data Processing

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  16. Development and verification testing of automation and robotics for assembly of space structures

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1993-01-01

    A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.

  17. Development of a software and hardware system for monitoring the air cleaning process using a cyclone-separator

    Nicolaeva, B. K.; Borisov, A. P.; Zlochevskiy, V. L.

    2017-08-01

    The article is devoted to the development of a hardware-software complex for monitoring and controlling the process of air purification by means of a cyclone-separator. The hardware of this complex is the Arduino platform, to which are connected pressure sensors, air velocities, dustmeters, which allow monitoring of the main parameters of the cyclone-separator. Also, a frequency converter was developed to regulate the rotation speed of an asynchronous motor necessary to correct the flow rate, the control signals of which come with Arduino. The program part of the complex is written in the form of a web application in the programming language JavaScript and inserts into CSS and HTML for the user interface. This program allows you to receive data from sensors, build dependencies in real time and control the speed of rotation of an asynchronous electric drive. The conducted experiment shows that the cleaning efficiency is 95-99.9%, while the airflow at the cyclone inlet is 16-18 m/s, and at the exit 50-70 m/s.

  18. HARDWARE TROJAN IDENTIFICATION AND DETECTION

    Samer Moein; Fayez Gebali; T. Aaron Gulliver; Abdulrahman Alkandari

    2017-01-01

    ABSTRACT The majority of techniques developed to detect hardware trojans are based on specific attributes. Further, the ad hoc approaches employed to design methods for trojan detection are largely ineffective. Hardware trojans have a number of attributes which can be used to systematically develop detection techniques. Based on this concept, a detailed examination of current trojan detection techniques and the characteristics of existing hardware trojans is presented. This is used to dev...

  19. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  20. Space development and space science together, an historic opportunity

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  1. RRFC hardware operation manual

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.

    1996-05-01

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235 U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235 U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  2. Metaspace: Financial plan for development in space

    Odonnell, Declan Joseph

    There are no sources for private development monies in space. There are no laws to regulate development in space and protect private investment. In order to cure these basic business problems, we may create a new nation in space, called the Metanation, to provide political focus and financial capacity. It will assume jurisdiction in outer space after a convention in the year 2000 A.D. It would offer to combine with space agencies of earth nations to form a relevant governance and policy entity for mankind and help develop our common heritage aloft.

  3. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  4. Development of software-hardware complex for investigation of the vector field of speeds in the cyclone-separator

    Borisov, A.

    2018-05-01

    The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.

  5. Non-fuel bearing hardware melting technology

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  6. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    Hamilton, L.

    2001-01-01

    This paper covers the design, development and testing of the magazines (cylinders containing cans of plutonium-ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed robotic arm that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102mm) diameter canister throat

  7. A new hardware and software developed for copper alloy analyser type XRFA-5

    Lakatos, T.; Kovacs, P.; Szadai, J.; Szekely, G.

    1991-01-01

    In the production of copper alloys a large amount of waste of unknown origin and composition is melted, and rapid analysis of the melt is important. A copper alloy analyzer based on the energy-dispersive x-ray fluorescence was developed in ATOMKI earlier for copper smelting plants in Hungary. The equipment has recently been upgraded by its connection to IBM PC/AT computer. A digital signal processor and analyzer module, a new software tool for the automatic determination of eight elements, and a stand-alone analyzer program DISIP was developed. The upgraded analyzer type XRFA-5.01 is presented briefly. (R.P.) 3 refs

  8. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  9. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a join ted arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  10. Space - the essential dimension of sustainable development

    Buch-Hansen, Mogens

    , economic and social development and their impact on development of space. The structure of space or the territorial structure hereby plays an essential role in the options of further economic and social development and its sustainability. The focus is on support of livelihoods and enhancing human welfare...

  11. OpportunitiesandPerceptionofSpaceProgramsintheDevelopingCountries

    Abubakar, B.

    2007-05-01

    Although the space program as a whole is a true reflection of the level of achievement in human history in the field of Science and Technology, but it is also important to note that there are numbers of communities and societies on this earth that are ignorant about this great achievement, hence leading to the continuous diverting of Potential Astronomers, Aerospace Engineers and Astrologist to other disciplines, thereby undermining the development of the space program over time. It was in view of the above that this research was conducted and came up with the under listed Suggestions/Recommendations:- (1) The European Space Agency (ESA), National Aeronautic Space Agency (NASA) and the Russian Space Agency, should be organising and sponsoring public enlightenment conferences, seminars and workshops towards creating awareness and attracting Potential Astronomers and other Space Scientist mostly in the developing countries into the space program. (2) Esteemed organisations in space programs like NASA, ESA and others should be awarding scholarships to potential space scientist that lacks the financial capability to pursue studies in the field of space science from the developing countries. (3) The European Space Agency, National Aeronautic Space Agency and the Russian Space Agency, should open their offices for the development of the space program in the third world countries. I believe that if the above suggestions/recommendations are adopted and implemented it will lead to the development of the space program in general, otherwise the rate at which potential Astronomers, Aerospace Engineers and Astrologists will be diverting into other disciplines will ever remain on the increase. Thanks for listening.

  12. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

    Chao Guo

    2015-03-01

    Full Text Available Electron beam selective melting (EBSM is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

  13. Desenvolvimento de software e hardware para irrigação de precisão usando pivô central Development of software and hardware for precision irrigation using the center pivot

    Tadeu M. de Queiroz

    2008-03-01

    Full Text Available O presente trabalho teve por objetivo desenvolver softwares e hardwares para aplicação ao monitoramento e controle automático para a irrigação de precisão usando sistemas do tipo pivô central. O trabalho foi desenvolvido no Departamento de Engenharia Rural - LER, da Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, da Universidade de São Paulo - USP, em Piracicaba - SP. Foram utilizados componentes eletrônicos discretos, circuitos integrados diversos, módulos de radiofreqüência, microcontroladores da família Basic Step e um microcomputador. Foram utilizadas as linguagens Delphi e TBasic. O hardware é constituído de dois circuitos eletrônicos, sendo um deles para "interface" com o computador e o outro para monitoramento e transmissão da leitura de tensiômetros para o computador via radiofreqüência. Foram feitas avaliações do alcance e da eficiência na transmissão de dados dos módulos de radiofreqüência e do desempenho do software e do hardware. Os resultados mostraram que tanto os circuitos quanto os aplicativos desenvolvidos apresentaram funcionamento satisfatório. Os testes de comunicação dos rádios indicaram que esses possuem alcance máximo de 50 m. Concluiu-se que o sistema desenvolvido tem grande potencial para utilização em sistemas de irrigação de precisão usando pivô central, bastando para isso que o alcance dos rádios seja aumentado.The objective of this work was to develop softwares and hardwares applied to the management and automatic control for precision irrigation using center pivot systems. They were developed in the Rural Engineering Department - LER, at the "Luiz de Queiroz" College of Agriculture - ESALQ, of São Paulo University - USP, in Piracicaba, SP-Brazil. It was used discrete electronic components, several integrated circuits, radio frequency modules, microcontrollers from the Basic Step family and a microcomputer. The computer software was developed in Delphi language, and

  14. Physics development of web-based tools for use in hardware clusters doing lattice physics

    Dreher, P.; Akers, W.; Chen, J.; Chen, Y.; Watson, C.

    2002-01-01

    Jefferson Lab and MIT are developing a set of web-based tools within the Lattice Hadron Physics Collaboration to allow lattice QCD theorists to treat the computational facilities located at the two sites as a single meta-facility. The prototype Lattice Portal provides researchers the ability to submit jobs to the cluster, browse data caches, and transfer files between cache and off-line storage. The user can view the configuration of the PBS servers and to monitor both the status of all batch queues as well as the jobs in each queue. Work is starting on expanding the present system to include job submissions at the meta-facility level (shared queue), as well as multi-site file transfers and enhanced policy-based data management capabilities

  15. Physics development of web-based tools for use in hardware clusters doing lattice physics

    Dreher, P.; Akers, Walt; Jian-ping Chen; Chen, Y.; William, A. Watson III

    2001-01-01

    Jefferson Lab and MIT are developing a set of web-based tools within the Lattice Hadron Physics Collaboration to allow lattice QCD theorists to treat the computational facilities located at the two sites as a single meta-facility. The prototype Lattice Portal provides researchers the ability to submit jobs to the cluster, browse data caches, and transfer files between cache and off-line storage. The user can view the configuration of the PBS servers and to monitor both the status of all batch queues as well as the jobs in each queue. Work is starting on expanding the present system to include job submissions at the meta-facility level (shared queue), as well as multi-site file transfers and enhanced policy-based data management capabilities

  16. Physics development of web-based tools for use in hardware clusters doing lattice physics

    Dreher, P.; Akers, W.; Chen, J.; Chen, Y.; Watson, C

    2002-03-01

    Jefferson Lab and MIT are developing a set of web-based tools within the Lattice Hadron Physics Collaboration to allow lattice QCD theorists to treat the computational facilities located at the two sites as a single meta-facility. The prototype Lattice Portal provides researchers the ability to submit jobs to the cluster, browse data caches, and transfer files between cache and off-line storage. The user can view the configuration of the PBS servers and to monitor both the status of all batch queues as well as the jobs in each queue. Work is starting on expanding the present system to include job submissions at the meta-facility level (shared queue), as well as multi-site file transfers and enhanced policy-based data management capabilities.

  17. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  18. Theory, Modeling, Software and Hardware Development for Analytical and Computational Materials Science

    Young, Gerald W.; Clemons, Curtis B.

    2004-01-01

    The focus of this Cooperative Agreement between the Computational Materials Laboratory (CML) of the Processing Science and Technology Branch of the NASA Glenn Research Center (GRC) and the Department of Theoretical and Applied Mathematics at The University of Akron was in the areas of system development of the CML workstation environment, modeling of microgravity and earth-based material processing systems, and joint activities in laboratory projects. These efforts complement each other as the majority of the modeling work involves numerical computations to support laboratory investigations. Coordination and interaction between the modelers, system analysts, and laboratory personnel are essential toward providing the most effective simulations and communication of the simulation results. Toward these means, The University of Akron personnel involved in the agreement worked at the Applied Mathematics Research Laboratory (AMRL) in the Department of Theoretical and Applied Mathematics while maintaining a close relationship with the personnel of the Computational Materials Laboratory at GRC. Network communication between both sites has been established. A summary of the projects we undertook during the time period 9/1/03 - 6/30/04 is included.

  19. Development of a hardware-based registration system for the multimodal medical images by USB cameras

    Iwata, Michiaki; Minato, Kotaro; Watabe, Hiroshi; Koshino, Kazuhiro; Yamamoto, Akihide; Iida, Hidehiro

    2009-01-01

    There are several medical imaging scanners and each modality has different aspect for visualizing inside of human body. By combining these images, diagnostic accuracy could be improved, and therefore, several attempts for multimodal image registration have been implemented. One popular approach is to use hybrid image scanners such as positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT. However, these hybrid scanners are expensive and not fully available. We developed multimodal image registration system with universal serial bus (USB) cameras, which is inexpensive and applicable to any combinations of existed conventional imaging scanners. The multiple USB cameras will determine the three dimensional positions of a patient while scanning. Using information of these positions and rigid body transformation, the acquired image is registered to the common coordinate which is shared with another scanner. For each scanner, reference marker is attached on gantry of the scanner. For observing the reference marker's position by the USB cameras, the location of the USB cameras can be arbitrary. In order to validate the system, we scanned a cardiac phantom with different positions by PET and MRI scanners. Using this system, images from PET and MRI were visually aligned, and good correlations between PET and MRI images were obtained after the registration. The results suggest this system can be inexpensively used for multimodal image registrations. (author)

  20. Boosted object hardware trigger development and testing for the Phase I upgrade of the ATLAS Experiment

    Stark, Giordon Holtsberg; The ATLAS collaboration

    2015-01-01

    The Global Feature Extraction (gFEX) module is a Level 1 jet trigger system planned for installation in ATLAS during the Phase 1 upgrade in 2018. The gFEX selects large-radius jets for capturing Lorentz-boosted objects by means of wide-area jet algorithms refined by subjet information. The architecture of the gFEX permits event-by-event local pile-up suppression for these jets using the same subtraction techniques developed for offline analyses. The gFEX architecture is also suitable for other global event algorithms such as missing transverse energy (MET), centrality for heavy ion collisions, and "jets without jets". The gFEX will use 4 processor FPGAs to perform calculations on the incoming data and a Hybrid APU-FPGA for slow control of the module. The gFEX is unique in both design and implementation and substantially enhance the selectivity of the L1 trigger and increases sensitivity to key physics channels.

  1. Space Debris Mitigation CONOPS Development

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  2. CASIS Fact Sheet: Hardware and Facilities

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  3. In-Space Manufacturing Baseline Property Development

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  4. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  5. Advanced Space Radiation Detector Technology Development

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Geopolitics, Transnational Spaces and Development

    Farah, Abdulkadir Osman

    2013-01-01

    Major global powers often utilize diverse bilateral and multilateral aid strategies in their relations with developing countries. Since World War II, development aid has been a necessary tool of the US to expand its global status and influence including on the African continent. Successive US gov...

  7. Environmental Development Plan (EDP): space applications

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  8. Some Hardware and Instrumentation Aspects of the Development of an Automation System for Jar Tests in Drinking Water Treatment.

    Calderón, Antonio José; González, Isaías

    2017-10-11

    The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported.

  9. Some Hardware and Instrumentation Aspects of the Development of an Automation System for Jar Tests in Drinking Water Treatment

    2017-01-01

    The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported. PMID:29019943

  10. Status of SPACE Safety Analysis Code Development

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  11. Configuring the development space for conceptualization

    Brønnum, Louise; Clausen, Christian

    2013-01-01

    This paper addresses issues of conceptualization in the early stages of concept development noted as the Front End of Innovation [FEI]. We examine this particular development space as a socio technical space where a diversity of technological knowledge, user perspectives and organizational agendas...... meet and interact. Based on a case study from an industrial medical company, the paper addresses and analyses the configuration of the development space in a number of projects aiming to take up user oriented perspectives in their activities. It presents insights on how the FEI was orchestrated...... and staged and how different elements and objects contributed to the configuration of the space in order to make it perform in a certain way. The analysis points at the importance of the configuration processes and indicate how these configurations often may act as more or less hidden limitations on concept...

  12. Role of the Space Station in Private Development of Space

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  13. Hardware for dynamic quantum computing.

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  14. Space reactor fuels performance and development issues

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  15. Analysis of Free-Space Optics Development

    Mikołajczyk Janusz

    2017-12-01

    Full Text Available The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO. Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

  16. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. The role of quality management, hardware certification and accredited training in PV programmes in developing countries

    Fitzgerald, M. C. [Institute for Sustainable Power, Highlands Ranch, CO (United States); Oldach, R.; Bates, J. [IT Power Ltd, The Manor house, Chineham (United Kingdom)

    2003-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the role of quality management, hardware certification and accredited training in PV programmes in developing countries. The objective of this document is to provide assistance to those project developers that are interested in implementing or improving support programmes for the deployment of PV systems for rural electrification. It is to enable them to address and implement quality assurance measures, with an emphasis on management, technical and training issues and other factors that should be considered for the sustainable implementation of rural electrification programmes. It is considered important that quality also addresses the socio-economic and the socio-technical aspects of a programme concept. The authors summarise that, for a PV programme, there are three important areas of quality control to be implemented: quality management, technical standards and quality of training.

  17. Introduction to Hardware Security

    Yier Jin

    2015-10-01

    Full Text Available Hardware security has become a hot topic recently with more and more researchers from related research domains joining this area. However, the understanding of hardware security is often mixed with cybersecurity and cryptography, especially cryptographic hardware. For the same reason, the research scope of hardware security has never been clearly defined. To help researchers who have recently joined in this area better understand the challenges and tasks within the hardware security domain and to help both academia and industry investigate countermeasures and solutions to solve hardware security problems, we will introduce the key concepts of hardware security as well as its relations to related research topics in this survey paper. Emerging hardware security topics will also be clearly depicted through which the future trend will be elaborated, making this survey paper a good reference for the continuing research efforts in this area.

  18. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  19. Technology transfer of military space microprocessor developments

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  20. Space Station galley design

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  1. Development of an automated checkout, service and maintenance system for a Space Station EVAS

    Abeles, Fred J.; Tri, Terry; Blaser, Robert

    1988-01-01

    The development of a new operational system for the Space Station will minimize the time normally spent on performing on-orbit checkout, servicing, and maintenance of an extravehicular activity system of the Space Station. This system, the Checkout, Servicing, and Maintenance System (COSM), is composed of interactive control software interfacing with software simulations of hardware components. The major elements covered in detail include the controller, the EMU simulator and the regenerative life support system. The operational requirements and interactions of the individual elements as well as the protocols are also discussed.

  2. Robotic and automatic welding development at the Marshall Space Flight Center

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  3. Plasma contactor development for Space Station

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  4. Flight Hardware Virtualization for On-Board Science Data Processing Project

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  5. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  6. Millimeterwave Space Power Grid architecture development 2012

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  7. Open Hardware Business Models

    Edy Ferreira

    2008-04-01

    Full Text Available In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  8. Open Hardware Business Models

    Edy Ferreira

    2008-01-01

    In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  9. Space Launch System Accelerated Booster Development Cycle

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  10. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  11. Development of space foods using radiation technology

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  12. Development of space foods using radiation technology

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  13. International Space Station USOS Waste and Hygiene Compartment Development

    Link, Dwight E., Jr.; Broyan, James Lee, Jr.; Gelmis, Karen; Philistine, Cynthia; Balistreri, Steven

    2007-01-01

    The International Space Station (ISS) currently provides human waste collection and hygiene facilities in the Russian Segment Service Module (SM) which supports a three person crew. Additional hardware is planned for the United States Operational Segment (USOS) to support expansion of the crew to six person capability. The additional hardware will be integrated in an ISS standard equipment rack structure that was planned to be installed in the Node 3 element; however, the ISS Program Office recently directed implementation of the rack, or Waste and Hygiene Compartment (WHC), into the U.S. Laboratory element to provide early operational capability. In this configuration, preserved urine from the WHC waste collection system can be processed by the Urine Processor Assembly (UPA) in either the U.S. Lab or Node 3 to recover water for crew consumption or oxygen production. The human waste collection hardware is derived from the Service Module system and is provided by RSC-Energia. This paper describes the concepts, design, and integration of the WHC waste collection hardware into the USOS including integration with U.S. Lab and Node 3 systems.

  14. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  15. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  16. Space Flight Software Development Software for Intelligent System Health Management

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  17. Clausewitz on Space: Developing Military Space Theory Through a Comparative Analysis

    Streland, Arnold

    1999-01-01

    .... Our commercial space industry has become a huge economic center of gravity for our nation. Our enemies are discovering the benefits of space by developing their own systems and purchasing commercial space services...

  18. Raspberry Pi hardware projects 1

    Robinson, Andrew

    2013-01-01

    Learn how to take full advantage of all of Raspberry Pi's amazing features and functions-and have a blast doing it! Congratulations on becoming a proud owner of a Raspberry Pi, the credit-card-sized computer! If you're ready to dive in and start finding out what this amazing little gizmo is really capable of, this ebook is for you. Taken from the forthcoming Raspberry Pi Projects, Raspberry Pi Hardware Projects 1 contains three cool hardware projects that let you have fun with the Raspberry Pi while developing your Raspberry Pi skills. The authors - PiFace inventor, Andrew Robinson and Rasp

  19. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  20. Automated subsystems control development. [for life support systems of space station

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  1. Vertebrate development in the environment of space: models, mechanisms, and use of the medaka

    Wolgemuth, D. J.; Herrada, G.; Kiss, S.; Cannon, T.; Forsstrom, C.; Pranger, L. A.; Weismann, W. P.; Pearce, L.; Whalon, B.; Phillips, C. R.

    1997-01-01

    With the advent of space travel, it is of immediate interest and importance to study the effects of exposure to various aspects of the altered environment of space, including microgravity, on Earth-based life forms. Initial studies of space travel have focused primarily on the short-term effects of radiation and microgravity on adult organisms. However, with the potential for increased lengths of time in space, it is critical to now address the effects of space on all phases of an organism's life cycle, from embryogenesis to post-natal development to reproduction. It is already possible for certain species to undergo multiple generations within the confines of the Mir Space Station. The possibility now exists for scientists to consider the consequences of even potentially subtle defects in development through multiple phases of an organism's life cycle, or even through multiple generations. In this discussion, we highlight a few of the salient observations on the effects of the space environment on vertebrate development and reproductive function. We discuss some of the many unanswered questions, in particular, in the context of the choice of appropriate models in which to address these questions, as well as an assessment of the availability of hardware already existing or under development which would be useful in addressing these questions.

  2. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  3. An evaluation of Skylab habitability hardware

    Stokes, J.

    1974-01-01

    For effective mission performance, participants in space missions lasting 30-60 days or longer must be provided with hardware to accommodate their personal needs. Such habitability hardware was provided on Skylab. Equipment defined as habitability hardware was that equipment composing the food system, water system, sleep system, waste management system, personal hygiene system, trash management system, and entertainment equipment. Equipment not specifically defined as habitability hardware but which served that function were the Wardroom window, the exercise equipment, and the intercom system, which was occasionally used for private communications. All Skylab habitability hardware generally functioned as intended for the three missions, and most items could be considered as adequate concepts for future flights of similar duration. Specific components were criticized for their shortcomings.

  4. Quantum Gravity Gradiometer Development for Space

    Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute

    2006-01-01

    Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.

  5. Optimization of space system development resources

    Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas

    2013-06-01

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key

  6. Simple supercapacitor charging scheme of an electric vehicle on small-scale hardware simulator: a prototype development for education purpose

    Adnan Rafi Al Tahtawi

    2016-12-01

    Full Text Available Supercapacitor is one of electrical energy sources that have faster charging-discharging times when compared to other power sources, such as battery and fuel cell. Therefore, it is often used as an additional power source in an electric vehicle. In this paper, a prototype of small-scale electric vehicle simulator (EVS is built and a simple charging scheme of supercapacitor is used for education purpose. EVS is an electric vehicle prototype which can show the vehicle’s powertrain on small-scale configuration. Main components of this device are two direct current motors (DCMs with a linked axis of rotation. Therefore one of them will be able to act as a generator. The supercapacitor charging scheme is employed by controlling the relays. The hardware experimental result shows that the averages of charging current are proportional to the maximum slope angle of the road profiles. This scheme is simple due to the EVS utility and it is useful for education purpose.

  7. The Development of an Open Hardware and Software System Onboard Unmanned Aerial Vehicles to Monitor Concentrated Solar Power Plants.

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Pérez Porras, Fernando; Meroño-Larriva, José Emilio; García-Ferrer, Alfonso

    2017-06-08

    Concentrated solar power (CSP) plants are increasingly gaining interest as a source of renewable energy. These plants face several technical problems and the inspection of components such as absorber tubes in parabolic trough concentrators (PTC), which are widely deployed, is necessary to guarantee plant efficiency. This article presents a system for real-time industrial inspection of CSP plants using low-cost, open-source components in conjunction with a thermographic sensor and an unmanned aerial vehicle (UAV). The system, available in open-source hardware and software, is designed to be employed independently of the type of device used for inspection (laptop, smartphone, tablet or smartglasses) and its operating system. Several UAV flight missions were programmed as follows: flight altitudes at 20, 40, 60, 80, 100 and 120 m above ground level; and three cruising speeds: 5, 7 and 10 m/s. These settings were chosen and analyzed in order to optimize inspection time. The results indicate that it is possible to perform inspections by an UAV in real time at CSP plants as a means of detecting anomalous absorber tubes and improving the effectiveness of methodologies currently being utilized. Moreover, aside from thermographic sensors, this contribution can be applied to other sensors and can be used in a broad range of applications where real-time georeferenced data visualization is necessary.

  8. Hardware-Accelerated Simulated Radiography

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S.; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester

  9. Hardware standardization for embedded systems

    Sharma, M.K.; Kalra, Mohit; Patil, M.B.; Mohanty, Ashutos; Ganesh, G.; Biswas, B.B.

    2010-01-01

    Reactor Control Division (RCnD) has been one of the main designers of safety and safety related systems for power reactors. These systems have been built using in-house developed hardware. Since the present set of hardware was designed long ago, a need was felt to design a new family of hardware boards. A Working Group on Electronics Hardware Standardization (WG-EHS) was formed with an objective to develop a family of boards, which is general purpose enough to meet the requirements of the system designers/end users. RCnD undertook the responsibility of design, fabrication and testing of boards for embedded systems. VME and a proprietary I/O bus were selected as the two system buses. The boards have been designed based on present day technology and components. The intelligence of these boards has been implemented on FPGA/CPLD using VHDL. This paper outlines the various boards that have been developed with a brief description. (author)

  10. NASA space radiation transport code development consortium

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  11. Constructing Hardware in a Scale Embedded Language

    2014-08-21

    Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.

  12. Open Hardware at CERN

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  13. Hardware description languages

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. ZEUS hardware control system

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  16. ZEUS hardware control system

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-01-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users. (orig.)

  17. Hardware demonstration of high-speed networks for satellite applications.

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  18. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  19. Energy Storage Technology Development for Space Exploration

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  20. Novel Photobioreactor Development for Space Applications

    National Aeronautics and Space Administration — Capability for controlled and efficient cultivation of microbial cells in microgravity environments opens the possibility for a plethora of applications. One such...

  1. Hardware Objects for Java

    Schoeberl, Martin; Thalinger, Christian; Korsholm, Stephan

    2008-01-01

    Java, as a safe and platform independent language, avoids access to low-level I/O devices or direct memory access. In standard Java, low-level I/O it not a concern; it is handled by the operating system. However, in the embedded domain resources are scarce and a Java virtual machine (JVM) without...... an underlying middleware is an attractive architecture. When running the JVM on bare metal, we need access to I/O devices from Java; therefore we investigate a safe and efficient mechanism to represent I/O devices as first class Java objects, where device registers are represented by object fields. Access...... to those registers is safe as Java’s type system regulates it. The access is also fast as it is directly performed by the bytecodes getfield and putfield. Hardware objects thus provide an object-oriented abstraction of low-level hardware devices. As a proof of concept, we have implemented hardware objects...

  2. ePHM System Development, Hardware-in-the-Loop Testing, Fault Tree, and FMECA Applied to and Integrated on NASA Hybrid Electric Testbeds, Phase II

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  3. Computer hardware fault administration

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  4. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local

  5. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-01-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN

  6. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    Antony, Joby; Mathuria, D. S.; Datta, T. S. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Maity, Tanmoy [Department of MME, Indian School of Mines (ISM), Dhanbad 826004 (India)

    2015-12-15

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN

  7. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup--The hardware, firmware, and software implementation.

    Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local

  8. An Introduction to iPhone Hardware, Operating System, Applications and Development of iPhone Applications

    Abdul Qadir, Yasir

    2010-01-01

    The aim of this thesis work is to discuss the newly popular mobile phone device named iPhone made by Apple Inc, iPhone operating system and iPhone Applications. Apple iPhone has recently become extremely popular and just within two years of its launch it has captured millions of customers around the world. Thousands of developers have been developing all kinds of mobile phone applications for iPhone and a new era of mobile phone applications development has started. Augmented reality applicat...

  9. Development of Test Protocols for International Space Station Particulate Filters

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  10. Advanced lightweight optics development for space applications

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  11. Space shuttle prototype check valve development

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  12. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  13. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  14. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  15. Travel Software using GPU Hardware

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  16. Developing Viable Financing Models for Space Tourism

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  17. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  18. The VMTG Hardware Description

    Puccio, B

    1998-01-01

    The document describes the hardware features of the CERN Master Timing Generator. This board is the common platform for the transmission of General Timing Machine required by the CERN accelerators. In addition, the paper shows the various jumper options to customise the card which is compliant to the VMEbus standard.

  19. The LASS hardware processor

    Kunz, P.F.

    1976-01-01

    The problems of data analysis with hardware processors are reviewed and a description is given of a programmable processor. This processor, the 168/E, has been designed for use in the LASS multi-processor system; it has an execution speed comparable to the IBM 370/168 and uses the subset of IBM 370 instructions appropriate to the LASS analysis task. (Auth.)

  20. CERN Neutrino Platform Hardware

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  1. The development of a cislunar space infrastructure

    Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.

    1989-01-01

    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.

  2. Mine shaft fire and smoke protection systems - an update on hardware development and in-mine testing

    Johnson, G.A.

    1982-01-01

    In 1976, The Bureau of Mines developed a prototype system to sense and extinguish fires in shafts and shaft stations in underground metal and nonmetal mines. Subsequent work modified this technology to include fueling areas, spontaneous combustion zones and coal mines. This paper updates IC-8783 ''In-mine Fire Tests of Mine Shaft Fire and Smoke Protection Systems'', which was published in 1978 and summarized the design and in-mine, actual fire testing of the first prototype mine shaft fire and smoke protection system. This paper also updates related work from IC-8775 ''Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines, (also published in 1978) and IC-8808 ''In-mine Evaluation of Underground Fire and Smoke Detectors'', (published in early 1979)

  3. Investigating Near Space Interaction Regions: Developing a Remote Observatory

    Gallant, M.; Mierkiewicz, E. J.; Oliversen, R. J.; Jaehnig, K.; Percival, J.; Harlander, J.; Englert, C. R.; Kallio, R.; Roesler, F. L.; Nossal, S. M.; Gardner, D.; Rosborough, S.

    2016-12-01

    The Investigating Near Space Interaction Regions (INSpIRe) effort will (1) establish an adaptable research station capable of contributing to terrestrial and planetary aeronomy; (2) integrate two state-of-the-art second generation Fabry-Perot (FP) and Spatial Heteorodyne Spectrometers (SHS) into a remotely operable configuration; (3) deploy this instrumentation to a clear-air site, establishing a stable, well-calibrated observatory; (4) embark on a series of observations designed to contribute to three major areas of geocoronal research: geocoronal physics, structure/coupling, and variability. This poster describes the development of the INSpIRe remote observatory. Based at Embry-Riddle Aeronautical University (ERAU), initiative INSpIRe provides a platform to encourage the next generation of researchers to apply knowledge gained in the classroom to real-world science and engineering. Students at ERAU contribute to the INSpIRe effort's hardware and software needs. Mechanical/optical systems are in design to bring light to any of four instruments. Control software is in development to allow remote users to control everything from dome and optical system operations to calibration and data collection. In April 2016, we also installed and tested our first science instrument in the INSpIRe trailer, the Redline DASH Demonstration Instrument (REDDI). REDDI uses Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, and its deployment as part of INSpIRe is a collaborative research effort between the Naval Research Lab, St Cloud State University, and ERAU. Similar to a stepped Michelson device, REDDI measures oxygen (630.0 nm) winds from the thermosphere. REDDI is currently mounted in a temporary location under INSpIRe's main siderostat until its entrance optical system can be modified. First light tests produced good signal-to-noise fringes in ten minute integrations, indicating that we will soon be able to measure thermospheric winds from our Daytona Beach testing site

  4. Parallel asynchronous hardware implementation of image processing algorithms

    Coon, Darryl D.; Perera, A. G. U.

    1990-01-01

    Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.

  5. Development of schizogenous intercellular spaces in plants

    Kimitsune eIshizaki

    2015-07-01

    Full Text Available Gas exchange is essential for multicellular organisms. In contrast to the circulatory systems of animals, land plants have tissues with intercellular spaces (ICSs, called aerenchyma, that are critical for efficient gas exchange. Plants form ICSs by two different mechanisms: schizogeny, where localized cell separation creates spaces; and lysogeny, where cells die to create intercellular spaces. In schizogenous ICS formation, specific molecular mechanisms regulate the sites of cell separation and coordinate extensive reorganization of cell walls. Emerging evidence suggests the involvement of extracellular signaling, mediated by peptide ligands and leucine-rich repeat receptor-like kinases, in the regulation of cell wall remodeling during cell separation. Recent work on the liverwort Marchantia polymorpha has demonstrated a critical role for a plasma membrane-associated plant U-box E3 ubiquitin ligase in ICS formation. In this review, I discuss the mechanism of schizogenous ICS formation, focusing on the potential role of extracellular signaling in the regulation of cell separation.

  6. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  7. Software for Managing Inventory of Flight Hardware

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  8. Recent developments in water quality monitoring for Space Station reclaimed wastewaters

    Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray

    1987-01-01

    This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.

  9. Hardware Accelerated Simulated Radiography

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists

  10. Organizational Metamorphosis in Space Research and Development.

    Tompkins, Phillip K.

    1978-01-01

    The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)

  11. Hardware characteristic and application

    Gu, Dong Hyeon

    1990-03-01

    The contents of this book are system board on memory, performance, system timer system click and specification, coprocessor such as programing interface and hardware interface, power supply on input and output, protection for DC output, Power Good signal, explanation on 84 keyboard and 101/102 keyboard,BIOS system, 80286 instruction set and 80287 coprocessor, characters, keystrokes and colors, communication and compatibility of IBM personal computer on application direction, multitasking and code for distinction of system.

  12. Green space development in shrinking cities – opportunities and constraints

    Stefanie Rößler

    2008-01-01

    Full Text Available Green space development means both a strategy and a need to cope with the spatial transformation of cities as a consequence of socio-demographic change. This paper focuses on the opportunities and challenges of planning and implementing green spaces in shrinking cities. Based on a doctoral thesis, empirical results regarding the relevance of green spaces and strategies in the process of urban restructuring will be discussed. Concerned cities develop specific framework concepts to face spatial transformation. It is assumed that in shrinking cities the influence of green spaces and as well as their significance for urban form will change. Results of case studies in shrinking cities of Eastern Germany will be discussed with regard to their strategies and the instruments facing the challenges of green space development. The presented findings might be also relevant for urban development in (partially growing cities, enhancing green space development as a part of sustainable cities.

  13. Commercial space development needs cheap launchers

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  14. Support for NUMA hardware in HelenOS

    Horký, Vojtěch

    2011-01-01

    The goal of this master thesis is to extend HelenOS operating system with the support for ccNUMA hardware. The text of the thesis contains a brief introduction to ccNUMA hardware, an overview of NUMA features and relevant features of HelenOS (memory management, scheduling, etc.). The thesis analyses various design decisions of the implementation of NUMA support -- introducing the hardware topology into the kernel data structures, propagating this information to user space, thread affinity to ...

  15. Development of a space-systems network testbed

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  16. Space Shuttle GN and C Development History and Evolution

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  17. Hardware Accelerated Sequence Alignment with Traceback

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  18. Human Centered Hardware Modeling and Collaboration

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  19. Health Maintenance System (HMS) Hardware Research, Design, and Collaboration

    Gonzalez, Stefanie M.

    2010-01-01

    The Space Life Sciences division (SLSD) concentrates on optimizing a crew member's health. Developments are translated into innovative engineering solutions, research growth, and community awareness. This internship incorporates all those areas by targeting various projects. The main project focuses on integrating clinical and biomedical engineering principles to design, develop, and test new medical kits scheduled for launch in the Spring of 2011. Additionally, items will be tagged with Radio Frequency Interference Devices (RFID) to keep track of the inventory. The tags will then be tested to optimize Radio Frequency feed and feed placement. Research growth will occur with ground based experiments designed to measure calcium encrusted deposits in the International Space Station (ISS). The tests will assess the urine calcium levels with Portable Clinical Blood Analyzer (PCBA) technology. If effective then a model for urine calcium will be developed and expanded to microgravity environments. To support collaboration amongst the subdivisions of SLSD the architecture of the Crew Healthcare Systems (CHeCS) SharePoint site has been redesigned for maximum efficiency. Community collaboration has also been established with the University of Southern California, Dept. of Aeronautical Engineering and the Food and Drug Administration (FDA). Hardware disbursements will transpire within these communities to support planetary surface exploration and to serve as an educational tool demonstrating how ground based medicine influenced the technological development of space hardware.

  20. High Speed, Low Cost Telemetry Access from Space Development Update on Programmable Ultra Lightweight System Adaptable Radio (PULSAR)

    Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric

    2014-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and

  1. Legal considerations for urban underground space development in Malaysia

    F. Zaini

    2017-12-01

    Full Text Available In 2008, the Malaysia land code, named the National Land Code 1965 (NLC 1965, was amended to add Part Five (A to deal with the disposal of underground space. In addition, the Circular of the Director General of Lands and Mines No. 1/2008 was issued to assist the application of Part Five (A of the NLC 1965. However, the legislation is still questionable and has instigated many arguments among numerous actors. Therefore, this research was undertaken to examine legal considerations for the development of underground space. The focus is on four legal considerations, namely underground space ownership, the bundle of rights, depth, and underground space utilization. Rooted in qualitative methods, interviews were conducted with respondents involved in the development of underground space in Malaysia. The obtained data were then analyzed descriptively. The findings differentiated the rights of landowners for surface land and underground space, and their liability for damages and the depth. It was indicated that the current legislation in Malaysia, namely Part Five (A of the NLC 1965 and the Circular of the Director General of Lands and Mines No. 1/2008, is adequate to facilitate the development of underground space in terms of legal considerations. However, to further facilitate the development of underground land in the future, based on the research, four enhancements are recommended for legal considerations pertaining to the development of underground space in Malaysia. Keywords: Underground space, Legal consideration, Land right, Urban development

  2. Commercialization is Required for Sustainable Space Exploration and Development

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  3. Leadership Development in Digital Spaces Through Mentoring, Coaching, and Advising.

    Guthrie, Kathy L; Meriwether, Jason L

    2018-06-01

    The increasing population of students engaging in online and digital spaces poses unique leadership development challenges in mentoring, coaching, and advising. This chapter discusses the importance of using digital spaces for leadership development and students' sense of belonging. © 2018 Wiley Periodicals, Inc.

  4. User community development for the space transportation system/Skylab

    Archer, J. L.; Beauchamp, N. A.

    1974-01-01

    The New User Function plan for identifying beneficial uses of space is described. Critical issues such as funding, manpower, and protection of user proprietary rights are discussed along with common barriers which impede the development of a user community. Studies for developing methodologies of identifying new users and uses of the space transportation system are included.

  5. Definition of technology development missions for early space stations: Large space structures

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  6. COMPUTER HARDWARE MARKING

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  7. Scientific, statistical, practical, and regulatory considerations in design space development.

    Debevec, Veronika; Srčič, Stanko; Horvat, Matej

    2018-03-01

    The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.

  8. The Status of Development of Electromagnetic Pumps for Space Application

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  9. Development of an Ion Thruster and Power Processor for New Millennium's Deep Space 1 Mission

    Sovey, James S.; Hamley, John A.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Peterson, Todd T.; Pinero, Luis R.; Power, John L.; Rawlin, Vincent K.; Sarmiento, Charles J.; hide

    1997-01-01

    The NASA Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) will provide a single-string primary propulsion system to NASA's New Millennium Deep Space 1 Mission which will perform comet and asteroid flybys in the years 1999 and 2000. The propulsion system includes a 30-cm diameter ion thruster, a xenon feed system, a power processing unit, and a digital control and interface unit. A total of four engineering model ion thrusters, three breadboard power processors, and a controller have been built, integrated, and tested. An extensive set of development tests has been completed along with thruster design verification tests of 2000 h and 1000 h. An 8000 h Life Demonstration Test is ongoing and has successfully demonstrated more than 6000 h of operation. In situ measurements of accelerator grid wear are consistent with grid lifetimes well in excess of the 12,000 h qualification test requirement. Flight hardware is now being assembled in preparation for integration, functional, and acceptance tests.

  10. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  11. Development and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications

    Maroteaux, Fadila; Saad, Charbel; Aubertin, Fabrice

    2015-01-01

    Highlights: • Modelling of Diesel engine combustion with multi-injection mode was conducted. • Double and single Wiebe correlations for pilot, main and post combustion processes were calibrated. • Ignition delay time correlations have been developed and calibrated using experimental data for each injection. • The complete in-cylinder model has been applied successfully to real time simulations on HiL test bed. - Abstract: The improvement of Diesel engine performances in terms of fuel consumption and pollutant emissions has a huge impact on management system and diagnostic procedure. Validation and testing of engine performances can benefit from the use of theoretical models, for the reduction of development time and costs. Hardware in the Loop (HiL) test bench is a suitable way to achieve these objectives. However, the increasing complexity of management systems rises challenges for the development of very reduced physical models able to run in real time applications. This paper presents an extension of a previously developed phenomenological Diesel combustion model suitable for real time applications on a HiL test bench. In the earlier study, the modelling efforts have been targeted at high engine speeds with a very short computational time window, and where the engine operates with single injection. In the present work, a modelling of in-cylinder processes at low and medium engine speeds with multi-injection is performed. In order to reach an adequate computational time, the combustion progress during the pilot and main injection periods has been treated through a double Wiebe function, while the post combustion period has required a single Wiebe function. This paper describes the basic system models and their calibration and validation against experimental data. The use of the developed correlations of Wiebe coefficients and ignition delay times for each combustion phase, included in the in-cylinder crank angle global model, is applied for the prediction

  12. Critical Technologies for the Development of Future Space Elevator Systems

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  13. VEG-01: Veggie Hardware Verification Testing

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  14. Hardware interface unit for control of shuttle RMS vibrations

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  15. Technology Development and Demonstration Concepts for the Space Elevator

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  16. Creating Fiscal Space for Social Sectors Development in Tanzania ...

    This paper discusses fiscal space creation and use in the context of development of social sectors in Tanzania. The paper observes that Tanzania is making good progress in creating and using her fiscal space. The priority being accorded to social sectors, especially in education and health is in the right direction. However ...

  17. Multi-User Hardware Solutions to Combustion Science ISS Research

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  18. Space Product Development: Bringing the Benefits of Space Down to Earth

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  19. SpaceWire: IP, Components, Development Support and Test Equipment

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  20. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  1. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  2. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  3. Approach to developing reliable space reactor power systems

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  4. Options for development of space fission propulsion systems

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  5. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  6. Hardware Support for Embedded Java

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  7. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  8. LISA Pathfinder: hardware tests and their input to the mission

    Audley, Heather

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for the first space-borne gravitational wave detector. LISA aims to detect sources in the 0.1mHz to 1Hz range, which include supermassive black holes and galactic binary stars. Core technologies required for the LISA mission, including drag-free test mass control, picometre interferometry and micro-Newton thrusters, cannot be tested on-ground. Therefore, a precursor satellite, LISA Pathfinder, has been developed as a technology demonstration mission. The preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently within in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MatLab based LTP data analysis toolbox. This contribution presents an overview of the test campaigns calibration, control and perfor-mance results, focusing on the implications for the Experimental Master Plan which provides the basis for the in-flight operations and procedures.

  9. Strategic Roadmap for the Development of an Interstellar Space Program

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  10. Seductive Atmospheres: Using tools to effectuate spaces for Leadership Development

    Elmholdt, Kasper Trolle; Clausen, Rune Thorbjørn; Madsen, Mona T

    2018-01-01

    Hospital, this study investigates how a business game is used as a tool to effectuate episodic spaces for leadership development. The study reveals three tool affordances and discusses how they enable and constrain episodic spaces for development and further develops the notion of seductive atmospheres......This study applies an affordance lens to understand the use of management tools and how atmospheres for change and development are created and exploited. Drawing on an ethnographic case study of a consultant-facilitated change intervention among a group of research leaders at a Danish Public...... as an important mechanism. The article suggests that a broader understanding of the use of tools and the role of atmospheres is essential for understanding how episodic spaces for development come to work in relation to organizational change and development....

  11. Hardware assisted hypervisor introspection.

    Shi, Jiangyong; Yang, Yuexiang; Tang, Chuan

    2016-01-01

    In this paper, we introduce hypervisor introspection, an out-of-box way to monitor the execution of hypervisors. Similar to virtual machine introspection which has been proposed to protect virtual machines in an out-of-box way over the past decade, hypervisor introspection can be used to protect hypervisors which are the basis of cloud security. Virtual machine introspection tools are usually deployed either in hypervisor or in privileged virtual machines, which might also be compromised. By utilizing hardware support including nested virtualization, EPT protection and #BP, we are able to monitor all hypercalls belongs to the virtual machines of one hypervisor, include that of privileged virtual machine and even when the hypervisor is compromised. What's more, hypercall injection method is used to simulate hypercall-based attacks and evaluate the performance of our method. Experiment results show that our method can effectively detect hypercall-based attacks with some performance cost. Lastly, we discuss our furture approaches of reducing the performance cost and preventing the compromised hypervisor from detecting the existence of our introspector, in addition with some new scenarios to apply our hypervisor introspection system.

  12. LHCb: Hardware Data Injector

    Delord, V; Neufeld, N

    2009-01-01

    The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb's raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, ...

  13. An approach to developing user interfaces for space systems

    Shackelford, Keith; McKinney, Karen

    1993-08-01

    Inherent weakness in the traditional waterfall model of software development has led to the definition of the spiral model. The spiral model software development lifecycle model, however, has not been applied to NASA projects. This paper describes its use in developing real time user interface software for an Environmental Control and Life Support System (ECLSS) Process Control Prototype at NASA's Marshall Space Flight Center.

  14. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  15. CAMAC high energy physics electronics hardware

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  16. ISS Logistics Hardware Disposition and Metrics Validation

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  17. Hardware for soft computing and soft computing for hardware

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  18. Developing and Testing SpaceWire Devices and Networks

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  19. Space technology transfer to developing countries: opportunities and difficulties

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  20. Advanced Engineering Environments for Space Transportation System Development

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  1. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  2. Robotics development for the enhancement of space endeavors

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  3. Tianshuishi space breeding current situation and developing trend

    Wang Fuquan; Song Jianrong; Zhang Zhongping; Guo Zhenfang

    2012-01-01

    Tianshuishi is located in Xi'an to lanzhou among two big cities, the five space launch, has vegetables, food, grasses, flowers, rape, melon and fruit, Chinese traditional medicine, amount of 8 categories of crops, such as the 22 new material after carrying the ground breeding work. Only vegetables on identified 23 aerospace new varieties. After ten years of space breeding, summarizes the present situation of Tianshuishi space breeding, development experience, characteristic, trends, and puts forward the development space breeding Tianshuishi organization and breeding of talent from the matching policy and grow up incentive mechanism, strengthen the cooperation and all over the country, establishing fiscal policy support from the aspects such as advice. (authors)

  4. Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions

    McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry

    2014-01-01

    The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.

  5. Development of laser weld monitoring system for PWR space grid

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  6. Joint Curriculum Developments in the Field of Virtual Space Design

    Mullins, Michael; Zupancic, Tadeja; Juvancic, Matevz

    2006-01-01

    initiates a discussion-forum to raise and discuss open questions of joint curriculum development in the field of virtual space design, especially where CVE-s take the key role within the educational process. The starting points of the discussion can be found in the ongoing endeavours of the e......The topic of joint degrees is high on the higher education policy agenda. The eCAADe 2006 theme offers the opportunity to investigate the topic from the aspect of virtual space design, especially within the second conference topic: communicating within mediated spaces (CVE-s). The paper proposed...

  7. Secure coupling of hardware components

    Hoepman, J.H.; Joosten, H.J.M.; Knobbe, J.W.

    2011-01-01

    A method and a system for securing communication between at least a first and a second hardware components of a mobile device is described. The method includes establishing a first shared secret between the first and the second hardware components during an initialization of the mobile device and,

  8. White space communication advances, developments and engineering challenges

    Johnson, David

    2015-01-01

    This monograph presents a collection of major developments leading toward the implementation of white space technology - an emerging wireless standard for using wireless spectrum in locations where it is unused by licensed users. Some of the key research areas in the field are covered. These include emerging standards, technical insights from early pilots and simulations, software defined radio platforms, geo-location spectrum databases and current white space spectrum usage in India and South Africa.

  9. Ecology and Space – Backbone Directions of Human Civilization Development

    Evgenii P. Prokopiev

    2013-01-01

    Full Text Available The article briefly describes the features and possible ways of space technologies development (special attention is attached to the problematic issues of physics, chemistry and antimatter technology; the problem of positron annihilation in matter (positronium, including positron processes, positron states and annihilation process, which is the component of fundamental and practical important problem of antimatter. The space technologies of the future – the most important problems of antimatter application are considered on the basis of Internet data.

  10. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware

    Pippin, Gary; Finckenor, Miria M.

    2009-01-01

    Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.

  12. Space-based societal applications—Relevance in developing countries

    Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.

    2009-11-01

    Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal. With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world. Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses. Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme. Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation

  13. A Hardware Abstraction Layer in Java

    Schoeberl, Martin; Korsholm, Stephan; Kalibera, Tomas

    2011-01-01

    Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform-independent language, delegates access...... to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this article is a proposal...... for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path...

  14. Hardware Acceleration of Adaptive Neural Algorithms.

    James, Conrad D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - world conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.

  15. Heuristics Applied in the Development of Advanced Space Mission Concepts

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  16. Quantum neuromorphic hardware for quantum artificial intelligence

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  17. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    Williamson, D.A.

    1991-01-01

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  18. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  19. A Practical Introduction to HardwareSoftware Codesign

    Schaumont, Patrick R

    2013-01-01

    This textbook provides an introduction to embedded systems design, with emphasis on integration of custom hardware components with software. The key problem addressed in the book is the following: how can an embedded systems designer strike a balance between flexibility and efficiency? The book describes how combining hardware design with software design leads to a solution to this important computer engineering problem. The book covers four topics in hardware/software codesign: fundamentals, the design space of custom architectures, the hardware/software interface and application examples. The book comes with an associated design environment that helps the reader to perform experiments in hardware/software codesign. Each chapter also includes exercises and further reading suggestions. Improvements in this second edition include labs and examples using modern FPGA environments from Xilinx and Altera, which make the material applicable to a greater number of courses where these tools are already in use.  Mo...

  20. Enabling Open Hardware through FOSS tools

    CERN. Geneva

    2016-01-01

    Software developers often take open file formats and tools for granted. When you publish code on github, you do not ask yourself if somebody will be able to open it and modify it. We need the same freedom in the open hardware world, to make it truly accessible for everyone.

  1. Design of hardware accelerators for demanding applications.

    Jozwiak, L.; Jan, Y.

    2010-01-01

    This paper focuses on mastering the architecture development of hardware accelerators. It presents the results of our analysis of the main issues that have to be addressed when designing accelerators for modern demanding applications, when using as an example the accelerator design for LDPC decoding

  2. Transformational Technologies to Expedite Space Access and Development

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  3. Report of the committee on a commercially developed space facility

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  4. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  5. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  6. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  7. Hardware descriptions of the I and C systems for NPP

    Lee, Cheol Kwon; Oh, In Suk; Park, Joo Hyun; Kim, Dong Hoon; Han, Jae Bok; Shin, Jae Whal; Kim, Young Bak

    2003-09-01

    The hardware specifications for I and C Systems of SNPP(Standard Nuclear Power Plant) are reviewed in order to acquire the hardware requirement and specification of KNICS (Korea Nuclear Instrumentation and Control System). In the study, we investigated hardware requirements, hardware configuration, hardware specifications, man-machine hardware requirements, interface requirements with the other system, and data communication requirements that are applicable to SNP. We reviewed those things of control systems, protection systems, monitoring systems, information systems, and process instrumentation systems. Through the study, we described the requirements and specifications of digital systems focusing on a microprocessor and a communication interface, and repeated it for analog systems focusing on the manufacturing companies. It is expected that the experience acquired from this research will provide vital input for the development of the KNICS

  8. DEVELOPMENT OF INNOVATIVE PROCESSES IN THE COMPANIES OF SPACE INDUSTRY

    Katrina B. Dobrova

    2016-01-01

    Full Text Available In this article, the proposals to improve the theoretical and methodological base for the development of innovative technologies aerospace industry are made based on an analysis of its current state and the study of the factors influencing this process at every stage, as well as the goals and objectives of the modernization of the Russian economy. The relevance of the study due to the fact that the rocket and space industry is regarded as an important component of sustainable socio-economic development and a guarantee of national security. Having our own space rocket means significantly promotes sound public policy in accordance with the doctrines, strategies, concepts and programs in the political, economic, social, military, environmental, scientific, technological, information and other fields. It was noted that the study of features of the commercialization of innovative technologies of the Russian Federation, the space industry is crucial to determine the factors and conditions for successful implementation of the development industry, the search of promising directions of development of the space industry and the economy as a whole. Emphasis is placed on the formation of the basic elements of innovation infrastructure and the creation of effective mechanisms of commercialization, creation of actual operating business on their basis, investment in the development of the aerospace industry, including using the tools of public-private partnerships and venture financing.

  9. Impact of Anthropogenic Factor on Urboecological Space Development

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  10. Development and application of a model for the analysis of trades between space launch system operations and acquisition costs

    Nix, Michael B.

    2005-12-01

    Early design decisions in the development of space launch systems determine the costs to acquire and operate launch systems. Some sources indicate that as much as 90% of life cycle costs are fixed by the end of the critical design review phase. System characteristics determined by these early decisions are major factors in the acquisition cost of flight hardware elements and facilities and influence operations costs through the amount of maintenance and support labor required to sustain system function. Operations costs are also dependent on post-development management decisions regarding how much labor will be deployed to meet requirements of market demand and ownership profit. The ability to perform early trade-offs between these costs is vital to the development of systems that have the necessary capacity to provide service and are profitable to operate. An Excel-based prototype model was developed for making early analyses of trade-offs between the costs to operate a space launch system and to acquire the necessary assets to meet a given set of operational requirements. The model, integrating input from existing models and adding missing capability, allows the user to make such trade-offs across a range of operations concepts (required flight rates, staffing levels, shifts per workday, workdays per week and per year, unreliability, wearout and depot maintenance) and the number, type and capability of assets (flight hardware elements, processing and supporting facilities and infrastructure). The costs and capabilities of hypothetical launch systems can be modeled as a function of interrelated turnaround times and labor resource levels, and asset loss and retirement. The number of flight components and facilities required can be calculated and the operations and acquisition costs compared for a specified scenario. Findings, based on the analysis of a hypothetical two stage to orbit, reusable, unmanned launch system, indicate that the model is suitable for the

  11. Development of Countermeasure and Application technologies to Space Radiation

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-01

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  12. Development of Countermeasure and Application technologies to Space Radiation

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-15

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  13. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  14. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  15. Three-dimensional studies on resorption spaces and developing osteons.

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  16. Green product development : What does the country product space imply?

    Fraccascia, Luca; Giannoccaro, Ilaria; Albino, Vito

    This paper contributes to green product development by identifying the green products with the highest potential for growth in a country. To address our aim, we use the concept of product proximity and product space and, borrowing from the results of recent studies on complexity economics, we

  17. Space station high gain antenna concept definition and technology development

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  18. Design and Development of the Space Shuttle Tail Service Masts

    Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.

    1977-01-01

    The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.

  19. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  20. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  1. Developing hybrid near-space technologies for affordable access to suborbital space

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  2. Development of a Space Station Operations Management System

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  3. Development of a Space Station Operations Management System

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  4. Cognitive Processing Hardware Elements

    Widrow, Bernard; Eliashberg, Victor; Kamenetsky, Max

    2005-01-01

    The purpose of this research is to identify and develop cognitive information processing systems and algorithms that can be implemented with novel architectures and devices with the goal of achieving...

  5. Americium-241 radioisotope thermoelectric generator development for space applications

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  6. Americium-241 radioisotope thermoelectric generator development for space applications

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  7. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  8. Evaluation of Private Sector Roles in Space Resource Development

    Lamassoure, Elisabeth S.; Blair, Brad R.; Diaz, Javier; Oderman, Mark; Duke, Michael B.; Vaucher, Marc; Manvi, Ramachandra; Easter, Robert W.

    2003-01-01

    An integrated engineering and financial modeling approach has been developed and used to evaluate the potential for private sector investment in space resource development, and to assess possible roles of the public sector in fostering private interest. This paper presents the modeling approach and its results for a transportation service using propellant extracted from lunar regolith. The analysis starts with careful case study definition, including an analysis of the customer base and market requirements, which are the basis for design of a modular, scalable space architecture. The derived non-recurring, recurring and operations costs become inputs for a `standard' financial model, as used in any commercial business plan. This model generates pro forma financial statements, calculates the amount of capitalization required, and generates return on equity calculations using two valuation metrics of direct interest to private investors: market enterprise value and multiples of key financial measures. Use of this model on an architecture to sell transportation services in Earth orbit based on lunar propellants shows how to rapidly test various assumptions and identify interesting architectural options, key areas for investment in exploration and technology, or innovative business approaches that could produce an economically viable industry. The same approach can be used to evaluate any other possible private ventures in space, and conclude on the respective roles of NASA and the private sector in space resource development and solar system exploration.

  9. Lunar Station: The Next Logical Step in Space Development

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  10. Health Physics Innovations Developed During Cassini for Future Space Applications

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  11. Transforming knowledge across domains in the temporary development spaces

    Brønnum, Louise

    This paper addresses transformation of knowledge across different knowledge domains and competencies in the Front End of Innovation (FEI) [Koen 2002].We examine the temporary spaces [Clausen, Yoshinaka 2007] that emerge when different knowledge domains are brought into play (implicit or explicit......) in staging innovative concept development. FEI appears as temporary spaces for innovative processes; and studies have pointed out the limited uptake of user knowledge (Elgaard Jensen 2012). This paper will discuss the possibilities and barriers for uptake of user knowledge in FEI in relation...... to the constitutions of these temporary spaces. There seems to be a limited understanding of: how knowledge is transferred and transformed into design objects facilitating a process where knowledge enables innovative thinking across knowledge boundaries. The paper is based on empirical data primarily from case studies...

  12. Hardware and software for image acquisition in nuclear medicine

    Fideles, E.L.; Vilar, G.; Silva, H.S.

    1992-01-01

    A system for image acquisition and processing in nuclear medicine is presented, including the hardware and software referring to acquisition. The hardware is consisted of an analog-digital conversion card, developed in wire-wape. Its function is digitate the analogic signs provided by gamma camera. The acquisitions are made in list or frame mode. (C.G.C.)

  13. Use of a Lunar Outpost for Developing Space Settlement Technologies

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  14. Space facilities: Meeting future needs for research, development, and operations

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  15. Developments of space station; Uchu station no kaihatsu

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  16. PHARAO space atomic clock: new developments on the laser source

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  17. COLD-WORKED HARDWARE

    N. M. Strizhak

    2007-01-01

    Full Text Available The different types of cold-worked accessory are examined in the article. The necessity of development of such type of accessory in the Republic of Belarus due to requirements of market is shown. High emphasis is placed on the methods of increase of plasticity of cold-worked accessory from usual mill of RUP and CIS countries.

  18. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  19. Development of magnetostrictive active members for control of space structures

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  20. Managing Programmatic Risk for Complex Space System Developments

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  1. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  2. Development of space simulation / net-laboratory system

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  3. Flight Avionics Hardware Roadmap

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  4. Hardware independence checkout software

    Cameron, Barry W.; Helbig, H. R.

    1990-01-01

    ACSI has developed a program utilizing CLIPS to assess compliance with various programming standards. Essentially the program parses C code to extract the names of all function calls. These are asserted as CLIPS facts which also include information about line numbers, source file names, and called functions. Rules have been devised to establish functions called that have not been defined in any of the source parsed. These are compared against lists of standards (represented as facts) using rules that check intersections and/or unions of these. By piping the output into other processes the source is appropriately commented by generating and executing parsed scripts.

  5. The Design Space of Multi-Language Development Environments

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  6. Fiber Laser Component Testing for Space Qualification Protocol Development

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  7. Trends in computer hardware and software.

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware.

  8. Fuel cell hardware-in-loop

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  9. Particle Transport Simulation on Heterogeneous Hardware

    CERN. Geneva

    2014-01-01

    CPUs and GPGPUs. About the speaker Vladimir Koylazov is CTO and founder of Chaos Software and one of the original developers of the V-Ray raytracing software. Passionate about 3D graphics and programming, Vlado is the driving force behind Chaos Group's software solutions. He participated in the implementation of algorithms for accurate light simulations and support for different hardware platforms, including CPU and GPGPU, as well as distributed calculat...

  10. Marshall Space Flight Center Ground Systems Development and Integration

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  11. HiCAT Software Infrastructure: Safe hardware control with object oriented Python

    Moriarty, Christopher; Brooks, Keira; Soummer, Remi

    2018-01-01

    High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.

  12. Development of Advanced Robotic Hand System for space application

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  13. Development of an efficient Procedure for Resist Wall Space Experiment

    Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki

    The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.

  14. Seeding Event: Creating and Developing Spaces of Entrepreneurial Freedom

    Gaëtan Mourmant

    2012-12-01

    Full Text Available This paper addresses the question of initiating, fostering and growing a vibrant economy by developing Spaces of Entrepreneurial Freedom (SoEF. Establishing and developing the SoEF is explained by a seeding event which is the core category of this grounded theory. In short, a seeding event leads to the patching of a potential, structural “hole”, which may prove valuable to an entrepreneurial network. Seeding events are started by an initiator who will recognize a network opportunity and exploit it. After event designing, the initiators implement the event through bold experimentation and using an adaptive structure. If the event is considered successful, the next stages are refining, growing, templating and finally replicating; these stages may occur one after the other or simultaneously. Through the development of SoEF, we suggest that entrepreneurs, governments, universities, large companies, and other players in the business world can improve the development of entrepreneurship at their respective levels.

  15. Commodity hardware and software summary

    Wolbers, S.

    1997-04-01

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC's for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given

  16. Time development of electric fields and currents in space plasmas

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  17. Development of a hardware-in-the-loop-test rig to verify the reliability of oil burner pumps. Application by the use of biocide in domestic heating oil; Entwicklung eines Hardware-in-the-loop Pruefstands zum Nachweis der Betriebssicherheit von Oelbrennerpumpen. Anwendungen bei Einsatz von Biozidadditiven

    Rheinberg, Oliver van; Lukito, Jayadi; Liska, Martin [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

    2009-09-15

    Within this project, a hardware-in-the-loop test rig has been developed to investigate the influence of different fuels on the reliability of oil burner pumps. The test rig is constructed with commercial burner components. One test rig consists of four pump cycles, where the fuel recirculates for max. 2000 h. Low powered electric motors of 90 Watts have been used deliberately, so that the apparatus is more sensitive to failure due to an increase in pump load. A practise relevant intermittent operating mode has been implemented for the simulation of real operation characteristics. The measured variable and evaluation parameters are start-up torque, intake pressure, fuel pump pressure and temperature. Operation failures of oil burner pumps in the field, due to an over-additisation of biocides, have been observed. These failures could be reproducibly simulated on the pump test stands. The results of the project are a redefinition of limits of biocide concentration and the development of new biocides, which are suitable for use in domestic heating oil with a content of up to 20 % Fatty-Acid-Methyl-Ester. (orig.)

  18. Development of Pulse Tube Cryocoolers at SITP for Space Application

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Yu, Huiqin; Yang, Baoyu

    2018-05-01

    Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

  19. Developments in the Multilingual and Multicultural Learning Space

    Lauridsen, Karen M.; Cozart, Stacey Marie; Kling, Joyce

    Uni project (2012-15) recommends that higher education institutions (HEI) provide ‘the necessary professional development and teacher training programmes that will allow HE teachers to appropriately develop (…) their professional and pedagogical knowledge, skills and competences and thereby empower them...... to ensure the quality of their teaching – and their students’ learning – in the multilingual and multicultural learning space’ (www.intluni.eu; Carroll 2015; Leask 2015). For many universities and other HEIs around the world, the multilingual and multicultural classroom is the new – or no longer quite so...... platform with resources targeted at EDs responsible for advancing faculty development in this area. In this session, the presenters will report on the first outcomes of EQUiiP. Participants will then be invited to interact and explore best practices in the multilingual and multicultural learning space...

  20. Developments in the Multilingual and Multicultural Learning Space

    Lauridsen, Karen M.; Cozart, Stacey Marie; Kling, Joyce

    Uni project (2012-15) recommends that higher education institutions (HEI) provide ‘the necessary professional development and teacher training programmes that will allow HE teachers to appropriately develop (…) their professional and pedagogical knowledge, skills and competences and thereby empower them...... platform with resources targeted at EDs responsible for advancing faculty development in this area. In this session, the presenters will report on the first outcomes of EQUiiP. Participants will then be invited to interact and explore best practices in the multilingual and multicultural learning space......Internationalization of higher education, and the often accompanying shift from what previously were relatively homogenous national student populations, to more blended, culturally and linguistically heterogeneous group of students, impacts teaching and learning in a number of ways. The Intl...

  1. Virtual Reality: Developing a VR space for Academic activities

    Kaimaris, D.; Stylianidis, E.; Karanikolas, N.

    2014-05-01

    Virtual reality (VR) is extensively used in various applications; in industry, in academia, in business, and is becoming more and more affordable for end users from the financial point of view. At the same time, in academia and higher education more and more applications are developed, like in medicine, engineering, etc. and students are inquiring to be well-prepared for their professional life after their educational life cycle. Moreover, VR is providing the benefits having the possibility to improve skills but also to understand space as well. This paper presents the methodology used during a course, namely "Geoinformatics applications" at the School of Spatial Planning and Development (Eng.), Aristotle University of Thessaloniki, to create a virtual School space. The course design focuses on the methods and techniques to be used in order to develop the virtual environment. In addition the project aspires to become more and more effective for the students and provide a real virtual environment with useful information not only for the students but also for any citizen interested in the academic life at the School.

  2. Creating pedagogical spaces for developing doctor professional identity.

    Clandinin, D Jean; Cave, Marie-Therese

    2008-08-01

    Working with doctors to develop their identities as technically skilled as well as caring, compassionate and ethical practitioners is a challenge in medical education. One way of resolving this derives from a narrative reflective practice approach to working with residents. We examine the use of such an approach. This paper draws on a 2006 study carried out with four family medicine residents into the potential of writing, sharing and inquiring into parallel charts in order to help develop doctor identity. Each resident wrote 10 parallel charts over 10 weeks. All residents met bi-weekly as a group with two researchers to narratively inquire into the stories told in their charts. One parallel chart and the ensuing group inquiry about the chart are described. In the narrative reflective practice process, one resident tells of working with a patient and, through writing, sharing and inquiry, integrates her practice and how she learned to be a doctor in one cultural setting into another cultural setting; another resident affirms her relational way of practising medicine, and a third resident begins to see the complexity of attending to patients' experiences. The process shows the importance of creating pedagogical spaces to allow doctors to tell and retell, through narrative inquiry, their stories of their experiences. This pedagogical approach creates spaces for doctors to individually develop their own stories by which to live as doctors through narrative reflection on their interwoven personal, professional and cultural stories as they are shaped by, and enacted within, their professional contexts.

  3. Space Environmental Effects on Materials and Processes

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  4. Space-DRUMS trade mark sign experimental development using parabolic reduced gravity flights

    Guigne, J.Y.; Millan, D.; Davidson, R.

    2000-01-01

    Space-DRUMS trade mark sign is a microgravity containerless-processing facility that uses acoustic beams to position large diameter liquid or solid samples within a gas-filled chamber. Its capacity to control the position of large diameter (6 cm) low density solid materials was successfully demonstrated on NASA's DC-9 parabolic aircraft in July 1996; two subsequent flights occurred in 1998 using the KC-135 and A-300 aircraft to further refine the technology used in the system. The working environment for the Space-DRUMS trade mark sign facility is the Space Shuttle/Space Station where long duration microgravity experimentation can take place. Since the reduced gravity environment of an A-300 or a KC-135 parabolic flight is much harsher than that of the Space Shuttle in terms of residual acceleration magnitudes experienced by the samples to be held in position; this more extreme environment allows for most Space-DRUMS trade mark sign technical payload functionality tests to be conducted. In addition to flight hardware shakedowns, parabolic flights continue to be extensively used to study and evaluate the behavior of candidate-advanced materials proposed for ISS Space-DRUMS trade mark sign campaigns. The first samples to be processed in 2001 involve combustion synthesis (also known as SHS - Self-propagating High Temperature Synthesis) of large glass-ceramic and of porous ceramic spheres. Upmassing Space-DRUMS trade mark sign for the International Space Station is scheduled for early 2001

  5. Software error masking effect on hardware faults

    Choi, Jong Gyun; Seong, Poong Hyun

    1999-01-01

    Based on the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), in this work, a simulation model for fault injection is developed to estimate the dependability of the digital system in operational phase. We investigated the software masking effect on hardware faults through the single bit-flip and stuck-at-x fault injection into the internal registers of the processor and memory cells. The fault location reaches all registers and memory cells. Fault distribution over locations is randomly chosen based on a uniform probability distribution. Using this model, we have predicted the reliability and masking effect of an application software in a digital system-Interposing Logic System (ILS) in a nuclear power plant. We have considered four the software operational profiles. From the results it was found that the software masking effect on hardware faults should be properly considered for predicting the system dependability accurately in operation phase. It is because the masking effect was formed to have different values according to the operational profile

  6. Instrument hardware and software upgrades at IPNS

    Worlton, Thomas; Hammonds, John; Mikkelson, D.; Mikkelson, Ruth; Porter, Rodney; Tao, Julian; Chatterjee, Alok

    2006-01-01

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started

  7. Space Station thermal storage/refrigeration system research and development

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  8. Interval Management: Development and Implementation of an Airborne Spacing Concept

    Barmore, Bryan E.; Penhallegon, William J.; Weitz, Lesley A.; Bone, Randall S.; Levitt, Ian; Flores Kriegsfeld, Julia A.; Arbuckle, Doug; Johnson, William C.

    2016-01-01

    Interval Management is a suite of ADS-B-enabled applications that allows the air traffic controller to instruct a flight crew to achieve and maintain a desired spacing relative to another aircraft. The flight crew, assisted by automation, manages the speed of their aircraft to deliver more precise inter-aircraft spacing than is otherwise possible, which increases traffic throughput at the same or higher levels of safety. Interval Management has evolved from a long history of research and is now seen as a core NextGen capability. With avionics standards recently published, completion of an Investment Analysis Readiness Decision by the FAA, and multiple flight tests planned, Interval Management will soon be part of everyday use in the National Airspace System. Second generation, Advanced Interval Management capabilities are being planned to provide a wider range of operations and improved performance and benefits. This paper briefly reviews the evolution of Interval Management and describes current development and deployment plans. It also reviews concepts under development as the next generation of applications.

  9. Does petroleum development affect burrowing owl nocturnal space-use?

    Scobie, Corey; Wellicome, Troy; Bayne, Erin [Department of Biological Sciences, University of Alberta (Canada)], email: cscobie@ualberta.ca, email: tiw@ualberta.ca, email: bayne@ualberta.ca

    2011-07-01

    Decline all over Canada in the population of burrowing owls, a federally listed endangered species, has raised concerns about the possible influence of petroleum infrastructure development on owl nocturnal space-use while foraging. Roads, wells, pipelines and sound-producing facilities related to petroleum development change the landscape and can influence the owls' mortality risk. For 3 years, 27 breeding adult male burrowing owls with nests close to different petroleum infrastructures were captured and fitted with a miniature GPS datalogger in order to track their nocturnal foraging. Data from these GPS devices were fed into a geographical information system and showed that pipelines and wells did not alter the foraging habits of the owls. Dirt and gravel roads, with little traffic, were preferentially selected by the owls, conceivably because of higher owl mortality risk along paved roads. Sound-producing facilities did not change owls' foraging behaviour, implying that sound may not affect their nocturnal space-use. Traffic data and sound power measurements will be used in further studies in an effort to better understand burrowing owls' nocturnal foraging habits.

  10. Technology development for nuclear power generation for space application

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M.

    2015-01-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  11. Technology development for nuclear power generation for space application

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  12. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  13. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  14. The principles of computer hardware

    Clements, Alan

    2000-01-01

    Principles of Computer Hardware, now in its third edition, provides a first course in computer architecture or computer organization for undergraduates. The book covers the core topics of such a course, including Boolean algebra and logic design; number bases and binary arithmetic; the CPU; assembly language; memory systems; and input/output methods and devices. It then goes on to cover the related topics of computer peripherals such as printers; the hardware aspects of the operating system; and data communications, and hence provides a broader overview of the subject. Its readable, tutorial-based approach makes it an accessible introduction to the subject. The book has extensive in-depth coverage of two microprocessors, one of which (the 68000) is widely used in education. All chapters in the new edition have been updated. Major updates include: powerful software simulations of digital systems to accompany the chapters on digital design; a tutorial-based introduction to assembly language, including many exam...

  15. Thermal Stir Welding Development at Marshall Space Flight Center

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  16. Open Hardware for CERN's accelerator control systems

    Bij, E van der; Serrano, J; Wlostowski, T; Cattin, M; Gousiou, E; Sanchez, P Alvarez; Boccardi, A; Voumard, N; Penacoba, G

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an 'Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  17. Hunting for hardware changes in data centres

    Coelho dos Santos, M; Steers, I; Szebenyi, I; Xafi, A; Barring, O; Bonfillou, E

    2012-01-01

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  18. Development priorities for in-space propulsion technologies

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  19. Wicked problems in space technology development at NASA

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  20. Large Energy Development Projects: Lessons Learned from Space and Politics

    Schmitt, Harrison H.

    2005-01-01

    The challenge to global energy future lies in meeting the needs and aspirations of the ten to twelve billion earthlings that will be on this planet by 2050. At least an eight-fold increase in annual production will be required by the middle of this century. The energy sources that can be considered developed and 'in the box' for consideration as sources for major increases in supply over the next half century are fossil fuels, nuclear fission, and, to a lesser degree, various forms of direct and stored solar energy and conservation. None of these near-term sources of energy will provide an eight-fold or more increase in energy supply for various technical, environmental and political reasons.Only a few potential energy sources that fall 'out of the box' appear worthy of additional consideration as possible contributors to energy demand in 2050 and beyond. These particular candidates are deuterium-tritium fusion, space solar energy, and lunar helium-3 fusion. The primary advantage that lunar helium-3 fusion will have over other 'out of the box' energy sources in the pre-2050 timeframe is a clear path into the private capital markets. The development and demonstration of new energy sources will require several development paths, each of Apollo-like complexity and each with sub-paths of parallel development for critical functions and components

  1. Development of III-V/Si Multijunction Space Photovoltaics

    National Aeronautics and Space Administration — High substrate costs, as well as weight, typically play a major role in the high costs of multijunction space solar cell production and deployment. III-V/Si...

  2. Communication Estimation for Hardware/Software Codesign

    Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    This paper presents a general high level estimation model of communication throughput for the implementation of a given communication protocol. The model, which is part of a larger model that includes component price, software driver object code size and hardware driver area, is intended...... to be general enough to be able to capture the characteristics of a wide range of communication protocols and yet to be sufficiently detailed as to allow the designer or design tool to efficiently explore tradeoffs between throughput, bus widths, burst/non-burst transfers and data packing strategies. Thus...... it provides a basis for decision making with respect to communication protocols/components and communication driver design in the initial design space exploration phase of a co-synthesis process where a large number of possibilities must be examined and where fast estimators are therefore necessary. The fill...

  3. CiteSpace II: Idiom Studies Development Trends

    Wenyu Liu Ph.D.

    2013-06-01

    Full Text Available Idioms, frequently used in daily language, are a typical metaphorical language and may be a cue to uncover the universal language processing mechanism. For the purpose of better mastery of the trends and front of idioms studies, CiteSpace II, an application designed to detect and visualize the development process within a scientific field, is adopted for comprehensive literature review. It is found that (1 idioms studies have thrived since 1990s with American scholars contributing the most, especially those from University of California; (2 suppositions on idiom comprehension mechanism have been inspired by different scholars including Lakoff, Swinney and Gibbs; (3 the exploration of the neurological bases for idiom comprehension has become the pursuit of researchers across different domains.

  4. Development of the CELSS emulator at NASA. Johnson Space Center

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  5. The development of the Australian Space Forecast Centre (ASFC)

    Wilkinson, Phil; Kennewell, John A.; Cole, David

    2018-05-01

    The Ionospheric Prediction Service (IPS) was formed in 1947 to provide monthly prediction services for high frequency (HF) radio, in particular to support HF communications with the United Kingdom. It was quickly recognized that to be effective such a service also had to provide advice when ionospheric storms prevented HF communications from taking place. With the advent of the International Geophysical Year (IGY), short-term forecasts were also required for research programmes and the task of supplying the Australian input to these was given to Frank Cook, of the IPS, while Jack Turner, also of the IPS, supervised the generation of ionospheric maps to support high latitude HF communications. These two important IGY activities formed the platform on which all future IPS services would be built. This paper reviews the development of the Australian Space Forecast Centre (ASFC), which arose from these early origins.

  6. The Neglected Educative Function of Public Space on Preadolescent Development

    Giardiello, Mauro

    2017-01-01

    The crisis of public spaces implies a closure to the private sphere and, as a consequence, the inanity of the education processes. Space privatization involves the supremacy of the "?????" (house) on the "a???a" (public space), so that the house assumes the role of an enclosed community. The effect of this closure is a…

  7. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  8. Hardware control system using modular software under RSX-11D

    Kittell, R.S.; Helland, J.A.

    1978-01-01

    A modular software system used to control extensive hardware is described. The development, operation, and experience with this software are discussed. Included are the methods employed to implement this system while taking advantage of the Real-Time features of RSX-11D. Comparisons are made between this system and an earlier nonmodular system. The controlled hardware includes magnet power supplies, stepping motors, DVM's, and multiplexors, and is interfaced through CAMAC. 4 figures

  9. Advanced Mirror Technology Development for Very Large Space Telescopes

    Stahl, H. P.

    2014-01-01

    Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness

  10. New 5 Kilowatt Free-Piston Stirling Space Converter Developments

    Brandhorst, Henry W.

    2007-01-01

    NASA has recently funded development of a 5 kW (or greater) free-piston Stirling conversion system for reactor power systems. A nominal 5 kW converter allows two of these units to be dynamically balanced. A group of three dual-convertor combinations would yield the desired 30 kW. The status of this program will be presented. Goals include a specific power in excess of 140 W/kg at the converter level, lifetime in excess of five years and AC output. The initial step is the design and development of a nominal 5 kW per cylinder Stirling converter assembly (SCA) which will serve as a prototype of one or more SCAs that will make up the final 30 kW Stirling Converter Power System. Assumed requirements for this new converter for lunar fission power systems will be presented. The primary objective of this development effort will be to demonstrate a 5 kW SCA that can be tested to validate the viability of Stirling technology for space fission surface power systems.

  11. Smart Grid Development Issues for Terrestrial and Space Applications

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  12. Space Mission Concept Development Using Concept Maturity Levels

    Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny

    2013-01-01

    Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.

  13. List search hardware for interpretive software

    Altaber, Jacques; Mears, B; Rausch, R

    1979-01-01

    Interpreted languages, e.g. BASIC, are simple to learn, easy to use, quick to modify and in general 'user-friendly'. However, a critically time consuming process during interpretation is that of list searching. A special microprogrammed device for fast list searching has therefore been developed at the SPS Division of CERN. It uses bit- sliced hardware. Fast algorithms perform search, insert and delete of a six-character name and its value in a list of up to 1000 pairs. The prototype shows retrieval times of the order of 10-30 microseconds. (11 refs).

  14. Hardware trigger processor for the MDT system

    AUTHOR|(SzGeCERN)757787; The ATLAS collaboration; Hazen, Eric; Butler, John; Black, Kevin; Gastler, Daniel Edward; Ntekas, Konstantinos; Taffard, Anyes; Martinez Outschoorn, Verena; Ishino, Masaya; Okumura, Yasuyuki

    2017-01-01

    We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit candidate Muon tracks in the drift tubes in real time, improving significantly the momentum resolution provided by the dedicated trigger chambers. We present a novel pure-FPGA implementation of a Legendre transform segment finder, an associative-memory alternative implementation, an ARM (Zynq) processor-based track fitter, and compact ATCA carrier board architecture. The ATCA architecture is designed to allow a modular, staged approach to deployment of the system and exploration of alternative technologies.

  15. Open source hardware solutions for low-cost, do-it-yourself environmental monitoring, citizen science, and STEM education

    Hicks, S. D.; Aufdenkampe, A. K.; Horsburgh, J. S.; Arscott, D. B.; Muenz, T.; Bressler, D. W.

    2016-12-01

    The explosion in DIY open-source hardware and software has resulted in the development of affordable and accessible technologies, like drones and weather stations, that can greatly assist the general public in monitoring environmental health and its degradation. It is widely recognized that education and support of audiences in pursuit of STEM literacy and the application of emerging technologies is a challenge for the future of citizen science and for preparing high school graduates to be actively engaged in environmental stewardship. It is also clear that detecting environmental change/degradation over time and space will be greatly enhanced with expanded use of networked, remote monitoring technologies by watershed organizations and citizen scientists if data collection and reporting are properly carried out and curated. However, there are few focused efforts to link citizen scientists and school programs with these emerging tools. We have started a multi-year program to develop hardware and teaching materials for training students and citizen scientists about the use of open source hardware in environmental monitoring. Scientists and educators around the world have started building their own dataloggers and devices using a variety of boards based on open source electronics. This new hardware is now providing researchers with an inexpensive alternative to commercial data logging and transmission hardware. We will present a variety of hardware solutions using the Arduino-compatible EnviroDIY Mayfly board (http://envirodiy.org/mayfly) that can be used to build and deploy a rugged environmental monitoring station using a wide variety of sensors and options, giving the users a fully customizable device for making measurements almost anywhere. A database and visualization system is being developed that will allow the users to view and manage the data their devices are collecting. We will also present our plan for developing curricula and leading workshops to various

  16. Qualification of software and hardware

    Gossner, S.; Schueller, H.; Gloee, G.

    1987-01-01

    The qualification of on-line process control equipment is subdivided into three areas: 1) materials and structural elements; 2) on-line process-control components and devices; 3) electrical systems (reactor protection and confinement system). Microprocessor-aided process-control equipment are difficult to verify for failure-free function owing to the complexity of the functional structures of the hardware and to the variety of the software feasible for microprocessors. Hence, qualification will make great demands on the inspecting expert. (DG) [de

  17. Door Hardware and Installations; Carpentry: 901894.

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in the selection, preparation, and installation of hardware for door assemblies. The course is divided into five blocks of instruction (introduction to doors and hardware, door hardware, exterior doors and jambs, interior doors and jambs, and a quinmester post-test) totaling…

  18. Hardware Implementation Of Line Clipping A lgorithm By Using FPGA

    Amar Dawod

    2013-04-01

    Full Text Available The computer graphics system performance is increasing faster than any other computing application. Algorithms for line clipping against convex polygons and lines have been studied for a long time and many research papers have been published so far. In spite of the latest graphical hardware development and significant increase of performance the clipping is still a bottleneck of any graphical system. So its implementation in hardware is essential for real time applications. In this paper clipping operation is discussed and a hardware implementation of the line clipping algorithm is presented and finally formulated and tested using Field Programmable Gate Arrays (FPGA. The designed hardware unit consists of two parts : the first is positional code generator unit and the second is the clipping unit. Finally it is worth mentioning that the  designed unit is capable of clipping (232524 line segments per second.       

  19. Development of a Fan for Future Space Suit Applications

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  20. Performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) and other hardware in the microgravity environment

    Hogan, Robert P.; Dalton, Bonnie P.

    1991-01-01

    This paper discusses the performance of the Research Animal Holding Facility (RAHF) and General Purpose Work Station (GPWS) plus other associated hardware during the recent flight of Spacelab Life Sciences 1 (SLS-1). The RAHF was developed to provide proper housing (food, water, temperature control, lighting and waste management) for up to 24 rodents during flights on the Spacelab. The GPWS was designed to contain particulates and toxic chemicals generated during plant and animal handling and dissection/fixation activities during space flights. A history of the hardware development involves as well as the redesign activities prior to the actual flight are discussed.

  1. The development of test beds to support the definition and evolution of the Space Station Freedom power system

    Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.

    1991-01-01

    Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.

  2. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  3. Development of Harpoon System for Capturing Space Debris

    Reed, Jame; Barraclough, Simon

    2013-08-01

    Active removal of large space debris has been identified as a key activity to control the growth in the debris population and to limit the risk to active satellites. Astrium is developing technologies to enable such a mission, including a harpoon capture system. The harpoon is simple, compact and lightweight. Since the capture is fast (typically barbs to robustly hold the target, a crushable section to absorb excess impact energy, and a tether to connect to the chaser vehicle. The baseline firing system uses compressed gas, although a simpler one-shot system has also been designed. To understand how a harpoon could be applicable to active debris removal an on-ground prototype and test-rig has been developed for trials with real structural elements of satellites and rocket bodies. Testing has demonstrated the feasibility of the concept and this paper describes the results as well as the next steps. A number of design variants are also proposed which could simplify the system design of an ADR mission.

  4. Development of a Refined Space Vehicle Rollout Forcing Function

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  5. Phase 1 space fission propulsion system testing and development progress

    Van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans

  6. Space stress and genome shock in developing plant cells

    Krikorian, A. D.

    1996-01-01

    In the present paper I review symptoms of stress at the level of the nucleus in cells of plants grown in space under nonoptimized conditions. It remains to be disclosed to what extent gravity "unloading" in the space environment directly contributes to the low mitotic index and the chromosomal anomalies and damage that is frequently, but not invariably, demonstrable in space-grown plants. Evaluation of the available facts indicates that indirect effects play a major role and that there is a significant biological component to the susceptibility to stress damage equation as well. Much remains to be learned on how to provide strictly controlled, optimal environments for plant growth in space. Only after optimized controls become possible will one be able to attribute any observed space effects to lowered gravity or to other significant but more indirect effects of the space environment.

  7. Hardware Development of a Laboratory-Scale Microgrid Phase 1--Single Inverter in Island Mode Operation: Base Year Report, December 2000 -- November 2001

    Venkataramanan, G.; Illindala, M. S.; Houle, C.; Lasseter, R. H.

    2002-11-01

    This report summarizes the activities of the first year of a three-year project to develop control software for micro-source distributed generation systems. The focus of this phase was on internal energy storage requirements, the modification of an off-the-shelf motor drive system inverter to supply utility-grade ac power, and a single inverter system operating in island mode. The report provides a methodology for determining battery energy storage requirements, a method for converting a motor drive inverter into a utility-grade inverter, and typical characteristics and test results of using such an inverter in a complex load environment.

  8. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  9. Autonomous Operations Design Guidelines for Flight Hardware

    National Aeronautics and Space Administration — SSC experimentally modified an autonomous operations flexible system suite developed for a ground application for a flight system under development by JSC. The...

  10. Development and application of a labmade apparatus using open-source “arduino” hardware for the electrochemical pretreatment of boron-doped diamond electrodes

    Rosa, Thalles Ramon; Betim, Fernando Silva; Ferreira, Rafael de Queiroz

    2017-01-01

    Highlights: • BDD electrodes use an electrochemical pretreatment (anodic and/or cathodic) to restore their original characteristics and promote the reproduction of previous voltammograms; • Automatic system can carefully reproduce the electrochemical pretreatment of BDD electrode quickly and efficiently; • Open source platform “Arduino” can be used to developed a labmade apparatus to control a BDD electrode pretreatment system for analytical purposes; • The main advantages of this labmade apparatus are: low supporting electrolyte consumption (20 mL), a total time for each pretreatment of 80 seconds and an average cost of production below US$ 200. - Abstract: Every day, new electroanalytical methodologies are developed to supplant the established spectrometric and chromatographic methods due to their versatility, low cost and ability to perform measurements without sample treatment. Electroanalytical techniques have provided an alternative to quantify substances due to the direct relationship between the analyte concentration and some electrical property of the system. However, this ratio between the concentration and peak current is valid only if the electrochemically active area of the working electrode is constant in each electrochemical test. For years, classic polarography ensured the reproducibility of the mercury electrode surface due to its liquid state at room temperature. However, this metal has a high toxicity, driving the search for new inert materials for their replacement, most notably boron-doped diamond (BDD) electrodes. This electrode material has, among other attractive advantages for electroanalysis, a potential range higher than that of the mercury working electrode under the same conditions. Solid electrodes are, in general, polished to promote the reproducibility of their electrochemical performance. For BDD, the use of an electrochemical pretreatment (anodic and/or cathodic) has been sufficient to restore their original

  11. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    1999-01-01

    This photo shows two X-38 Crew Return Vehicle technology demonstrators under development at NASA's Johnson Space Flight Center, Houston, Texas. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle

  12. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  13. DEVELOPMENT OF THE UNDERGROUND SPACE OF CITIES IN TERMS OF THEIR SUSTAINABLE DEVELOPMENT

    Belyaev Valeriy L’vovich

    2014-02-01

    Full Text Available The article shows that the negative trends in the cities development, especially their territorial "sprawling" contributes to the onset of the global environmental crisis. This call requires setting the city planners mind on noosphere thinking and establishing an adequate system of spatial development of the cities. The formation of compact city models "new urbanism", "smart development" can be considered a progressive response and a world trend. It fully meets the course of integrated urban development of the underground space.In order to overcome the significant gap on this issue between Russia and many foreign countries the urban policy needs to be updated (disclosure of the fundamental principle of sustainable development, methodologies and tools of developing underground urbanity should be developed. The authors propose such a change of the underground space as an integrated spatial and geoenergy resource with the commitment to the strategic evaluation of its development during the entire life cycle of underground construction projects.The co-authors take into account the environmental effects of the proposed development under the direction of modern paradigms of the biosphere compatible, viable and growing cities, as well as the capacity to organize their own groups. As a base model, we take a city as a complex system of natural and man-caused, containing a fiber space where underground space and underground structures is one of the layers. The instrument for this approach implementation may be a biotechnospherical humanitarian balance of the city, including the parameters of underground layers. In addition, the calculations of the information flow (Entropy between the layers is of great importance. The sustainable development of the city is dominated by a stream of negative entropy.On this basis, for the conditions of Moscow the device tools "physical planning" should be used in respect of the characteristics of underground space

  14. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  15. Development and Deployment of Robonaut 2 to the International Space Station

    Ambrose, Robert O.

    2011-01-01

    The development of the Robonaut 2 (R2) system was a joint endeavor with NASA and General Motors, producing robots strong enough to do work, yet safe enough to be trusted to work near humans. To date two R2 units have been produced, designated as R2A and R2B. This follows more than a decade of work on the Robonaut 1 units that produced advances in dexterity, tele-presence, remote supervision across time delay, combining mobility with manipulation, human-robot interaction, force control and autonomous grasping. Design challenges for the R2 included higher speed, smaller packaging, more dexterous fingers, more sensitive perception, soft drivetrain design, and the overall implementation of a system software approach for human safety, At the time of this writing the R2B unit was poised for launch to the International Space Station (ISS) aboard STS-133. R2 will be the first humanoid robot in space, and is arguably the most sophisticated robot in the world, bringing NASA into the 21st century as the world's leader in this field. Joining the other robots already on ISS, the station is now an exciting lab for robot experiments and utilization. A particular challenge for this project has been the design and certification of the robot and its software for work near humans. The 3 layer software systems will be described, and the path to ISS certification will be reviewed. R2 will go through a series of ISS checkout tests during 2011. A taskboard was shipped with the robot that will be used to compare R2B's dexterous manipulation in zero gravity with the ground robot s ability to handle similar objects in Earth s gravity. R2's taskboard has panels with increasingly difficult tasks, starting with switches, progressing to connectors and eventually handling softgoods. The taskboard is modular, and new interfaces and experiments will be built up using equipment already on ISS. Since the objective is to test R2 performing tasks with human interfaces, hardware abounds on ISS and the

  16. The FLUKA code for space applications Recent developments

    Andersen, V; Battistoni, G; Campanella, M; Carboni, M; Cerutti, F; Empl, A; Fassò, A; Ferrari, A; Gadioli, E; Garzelli, M V; Lee, K; Ottolenghi, A; Pelliccioni, M; Pinsky, L S; Ranft, J; Roesler, S; Sala, P R; Wilson, T L

    2004-01-01

    The FLUKA Monte Carlo transport code is widely used for fundamental research, radioprotection and dosimetry, hybrid nuclear energy system and cosmic ray calculations. The validity of its physical models has been benchmarked against a variety of experimental data over a wide range of energies, ranging from accelerator data to cosmic ray showers in the earth atmosphere. The code is presently undergoing several developments in order to better fit the needs of space applications. The generation of particle spectra according to up-to- date cosmic ray data as well as the effect of the solar and geomagnetic modulation have been implemented and already successfully applied to a variety of problems. The implementation of suitable models for heavy ion nuclear interactions has reached an operational stage. At medium/high energy FLUKA is using the DPMJET model. The major task of incorporating heavy ion interactions from a few GeV/n down to the threshold for inelastic collisions is also progressing and promising results h...

  17. International Space Station (ISS) Emergency Mask (EM) Development

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  18. Reconfigurable Hardware for Compressing Hyperspectral Image Data

    Aranki, Nazeeh; Namkung, Jeffrey; Villapando, Carlos; Kiely, Aaron; Klimesh, Matthew; Xie, Hua

    2010-01-01

    High-speed, low-power, reconfigurable electronic hardware has been developed to implement ICER-3D, an algorithm for compressing hyperspectral-image data. The algorithm and parts thereof have been the topics of several NASA Tech Briefs articles, including Context Modeler for Wavelet Compression of Hyperspectral Images (NPO-43239) and ICER-3D Hyperspectral Image Compression Software (NPO-43238), which appear elsewhere in this issue of NASA Tech Briefs. As described in more detail in those articles, the algorithm includes three main subalgorithms: one for computing wavelet transforms, one for context modeling, and one for entropy encoding. For the purpose of designing the hardware, these subalgorithms are treated as modules to be implemented efficiently in field-programmable gate arrays (FPGAs). The design takes advantage of industry- standard, commercially available FPGAs. The implementation targets the Xilinx Virtex II pro architecture, which has embedded PowerPC processor cores with flexible on-chip bus architecture. It incorporates an efficient parallel and pipelined architecture to compress the three-dimensional image data. The design provides for internal buffering to minimize intensive input/output operations while making efficient use of offchip memory. The design is scalable in that the subalgorithms are implemented as independent hardware modules that can be combined in parallel to increase throughput. The on-chip processor manages the overall operation of the compression system, including execution of the top-level control functions as well as scheduling, initiating, and monitoring processes. The design prototype has been demonstrated to be capable of compressing hyperspectral data at a rate of 4.5 megasamples per second at a conservative clock frequency of 50 MHz, with a potential for substantially greater throughput at a higher clock frequency. The power consumption of the prototype is less than 6.5 W. The reconfigurability (by means of reprogramming) of

  19. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  20. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    Bärring, O; Bonfillou, E; Clement, B; Santos, M Coelho Dos; Dore, V; Gentit, A; Grossir, A; Salter, W; Valsan, L; Xafi, A

    2014-01-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  1. Hardware Support for Dynamic Languages

    Schleuniger, Pascal; Karlsson, Sven; Probst, Christian W.

    2011-01-01

    In recent years, dynamic programming languages have enjoyed increasing popularity. For example, JavaScript has become one of the most popular programming languages on the web. As the complexity of web applications is growing, compute-intensive workloads are increasingly handed off to the client...... side. While a lot of effort is put in increasing the performance of web browsers, we aim for multicore systems with dedicated cores to effectively support dynamic languages. We have designed Tinuso, a highly flexible core for experimentation that is optimized for high performance when implemented...... on FPGA. We composed a scalable multicore configuration where we study how hardware support for software speculation can be used to increase the performance of dynamic languages....

  2. Hardware realization of an SVM algorithm implemented in FPGAs

    Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł

    2017-08-01

    The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.

  3. Hardware and software improvements to a low-cost horizontal parallax holographic video monitor.

    Henrie, Andrew; Codling, Jesse R; Gneiting, Scott; Christensen, Justin B; Awerkamp, Parker; Burdette, Mark J; Smalley, Daniel E

    2018-01-01

    Displays capable of true holographic video have been prohibitively expensive and difficult to build. With this paper, we present a suite of modularized hardware components and software tools needed to build a HoloMonitor with basic "hacker-space" equipment, highlighting improvements that have enabled the total materials cost to fall to $820, well below that of other holographic displays. It is our hope that the current level of simplicity, development, design flexibility, and documentation will enable the lay engineer, programmer, and scientist to relatively easily replicate, modify, and build upon our designs, bringing true holographic video to the masses.

  4. Development of the ''space AFM'' for interplanetary missions

    Howald, L.; Mueller, D. [Nanosurf AG, Liestal (Switzerland); Akiyama, T.; Gautsch, S.; Staufer, U. [Inst. of Microtechnology, Univ. of Neuchatel (Switzerland); Hidber, H.R.; Tonin, A. [Inst. of Physics, Univ. of Basel (Switzerland); Niedermann, P. [CSEM Neuchatel (Switzerland); Pike, T. [Jet Propulsion Lab., Pasadena, CA (United States)

    2000-01-01

    One of the next Mars missions of NASA will fly a project that aims to characterize the Martian dust and soil, identifying its potential undesirable and harmful effects on with human explorers and associated hardware systems. Optical microscopy will be used to measure the size, shape and size distribution of Martian dust particles. Particle sizes between 10 nm and a few micrometers are expected. A second goal of the microscopy experiment is to determine the hardness of the dust particles by scratching them against substrates of different hardness. The hardware development comprises of a microfabricated array of 8 cantilevers that are addressed sequentially, a small electromagnetic scanner with large scan range, compact and robust control electronics, all of which can withstand radiation exposure, low temperatures, and the shocks and vibrations of the journey to Mars. (orig.)

  5. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  6. Strategies for broadening public involvement in space developments

    Harris, Philip R.

    1992-01-01

    There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.

  7. Foam Protection of Flight Hardware From Impact Loads Due To Drops

    National Aeronautics and Space Administration — In response to several instances of flight hardware being dropped during shipment with expensive hits to cost and schedule, a methodology to normalize foam data was...

  8. Aplicación de las técnicas de hardware reconfigurable en un sistema digital de control dinámico. Aplicación práctica Parte II; Application of Programmable Hardware Techniques of Digital Control System Development. Workable Application. Second Part

    Dennis Arce López

    2011-02-01

    Full Text Available Se presenta la aplicación práctica del diseño electrónico en el desarrollo de un sistema de control dinámicode un servomotor lo cual es una novedad científico-técnica en el campo de la energética y en la defensanacional. En el trabajo se expone la funcionalidad y estructura del hardware programable, así como losresultados parciales de la simulación. This paper describes the design of a dynamic control system for servomotor making use of new electronicdevelopment techniques, and represents a novelty on energetic field and national defence. Also describesstructure and functionality of programmable hardware, and partial results of simulation.

  9. ARM assembly language with hardware experiments

    Elahi, Ata

    2015-01-01

    This book provides a hands-on approach to learning ARM assembly language with the use of a TI microcontroller. The book starts with an introduction to computer architecture and then discusses number systems and digital logic. The text covers ARM Assembly Language, ARM Cortex Architecture and its components, and Hardware Experiments using TILM3S1968. Written for those interested in learning embedded programming using an ARM Microcontroller. ·         Introduces number systems and signal transmission methods   ·         Reviews logic gates, registers, multiplexers, decoders and memory   ·         Provides an overview and examples of ARM instruction set   ·         Uses using Keil development tools for writing and debugging ARM assembly language Programs   ·         Hardware experiments using a Mbed NXP LPC1768 microcontroller; including General Purpose Input/Output (GPIO) configuration, real time clock configuration, binary input to 7-segment display, creating ...

  10. Fast image processing on parallel hardware

    Bittner, U.

    1988-01-01

    Current digital imaging modalities in the medical field incorporate parallel hardware which is heavily used in the stage of image formation like the CT/MR image reconstruction or in the DSA real time subtraction. In order to image post-processing as efficient as image acquisition, new software approaches have to be found which take full advantage of the parallel hardware architecture. This paper describes the implementation of two-dimensional median filter which can serve as an example for the development of such an algorithm. The algorithm is analyzed by viewing it as a complete parallel sort of the k pixel values in the chosen window which leads to a generalization to rank order operators and other closely related filters reported in literature. A section about the theoretical base of the algorithm gives hints for how to characterize operations suitable for implementations on pipeline processors and the way to find the appropriate algorithms. Finally some results that computation time and usefulness of medial filtering in radiographic imaging are given

  11. In-Space Manufacturing Project (prior to FY15: Additive Manufacturing Technology Development)

    National Aeronautics and Space Administration — The In-Space Manufacturing (ISM) project is responsible for developing the manufacturing capabilities that will provide on-demand, sustainable operations during NASA...

  12. Developing Earth and Space Scientists for the Future

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  13. Space station operations task force. Panel 3 report: User development and integration

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  14. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  15. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  16. Open-source hardware for medical devices.

    Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold

    2016-04-01

    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.

  17. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search.......This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...

  18. Space Station flight telerobotic servicer functional requirements development

    Oberright, John; Mccain, Harry; Whitman, Ruth I.

    1987-01-01

    The Space Station flight telerobotic servicer (FTS), a flight robotic system for use on the first Space Station launch, is described. The objectives of the FTS program include: (1) the provision of an alternative crew EVA by supporting the crew in assembly, maintenance, and servicing activities, and (2) the improvement of crew safety by performing hazardous tasks such as spacecraft refueling or thermal and power system maintenance. The NASA/NBS Standard Reference Model provides the generic, hierarchical, structured functional control definition for the system. It is capable of accommodating additional degrees of machine intelligence in the future.

  19. BioSentinel: Developing a Space Radiation Biosensor

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  20. Automating an EXAFS facility: hardware and software considerations

    Georgopoulos, P.; Sayers, D.E.; Bunker, B.; Elam, T.; Grote, W.A.

    1981-01-01

    The basic design considerations for computer hardware and software, applicable not only to laboratory EXAFS facilities, but also to synchrotron installations, are reviewed. Uniformity and standardization of both hardware configurations and program packages for data collection and analysis are heavily emphasized. Specific recommendations are made with respect to choice of computers, peripherals, and interfaces, and guidelines for the development of software packages are set forth. A description of two working computer-interfaced EXAFS facilities is presented which can serve as prototypes for future developments. 3 figures

  1. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  2. Space Station Freedom - Approaching the critical design phase

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  3. A commercial space technology testbed on ISS

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  4. GIS oriented analysis of tourist time-space patterns to support sustainable tourism development

    Knaap, van der W.G.M.

    1999-01-01

    Tourism and tourism development create major changes in the environment. To determine their impact on environmental sustainability, it is necessary to understand tourist behaviour. Time, space and context are important components in describing tourist time-space behaviour. Tourist time-space

  5. Desenvolvimento de hardware reconfigurável de criptografia assimétrica

    Otávio Souza Martins Gomes

    2015-01-01

    Full Text Available Este artigo apresenta o resultado parcial do desenvolvimento de uma interface de hardware reconfigurável para criptografia assimétrica que permite a troca segura de dados. Hardwares reconfiguráveis permitem o desenvolvimento deste tipo de dispositivo com segurança e flexibilidade e possibilitam a mudança de características no projeto com baixo custo e de forma rápida.Palavras-chave: Criptografia. Hardware. ElGamal. FPGA. Segurança. Development of an asymmetric cryptography reconfigurable harwadre ABSTRACTThis paper presents some conclusions and choices about the development of an asymmetric cryptography reconfigurable hardware interface to allow a safe data communication. Reconfigurable hardwares allows the development of this kind of device with safety and flexibility, and offer the possibility to change some features with low cost and in a fast way.Keywords: Cryptography. Hardware. ElGamal. FPGAs. Security.

  6. TreeBASIS Feature Descriptor and Its Hardware Implementation

    Spencer Fowers

    2014-01-01

    Full Text Available This paper presents a novel feature descriptor called TreeBASIS that provides improvements in descriptor size, computation time, matching speed, and accuracy. This new descriptor uses a binary vocabulary tree that is computed using basis dictionary images and a test set of feature region images. To facilitate real-time implementation, a feature region image is binary quantized and the resulting quantized vector is passed into the BASIS vocabulary tree. A Hamming distance is then computed between the feature region image and the effectively descriptive basis dictionary image at a node to determine the branch taken and the path the feature region image takes is saved as a descriptor. The TreeBASIS feature descriptor is an excellent candidate for hardware implementation because of its reduced descriptor size and the fact that descriptors can be created and features matched without the use of floating point operations. The TreeBASIS descriptor is more computationally and space efficient than other descriptors such as BASIS, SIFT, and SURF. Moreover, it can be computed entirely in hardware without the support of a CPU for additional software-based computations. Experimental results and a hardware implementation show that the TreeBASIS descriptor compares well with other descriptors for frame-to-frame homography computation while requiring fewer hardware resources.

  7. Hardware Design Considerations for Edge-Accelerated Stereo Correspondence Algorithms

    Christos Ttofis

    2012-01-01

    Full Text Available Stereo correspondence is a popular algorithm for the extraction of depth information from a pair of rectified 2D images. Hence, it has been used in many computer vision applications that require knowledge about depth. However, stereo correspondence is a computationally intensive algorithm and requires high-end hardware resources in order to achieve real-time processing speed in embedded computer vision systems. This paper presents an overview of the use of edge information as a means to accelerate hardware implementations of stereo correspondence algorithms. The presented approach restricts the stereo correspondence algorithm only to the edges of the input images rather than to all image points, thus resulting in a considerable reduction of the search space. The paper highlights the benefits of the edge-directed approach by applying it to two stereo correspondence algorithms: an SAD-based fixed-support algorithm and a more complex adaptive support weight algorithm. Furthermore, we present design considerations about the implementation of these algorithms on reconfigurable hardware and also discuss issues related to the memory structures needed, the amount of parallelism that can be exploited, the organization of the processing blocks, and so forth. The two architectures (fixed-support based versus adaptive-support weight based are compared in terms of processing speed, disparity map accuracy, and hardware overheads, when both are implemented on a Virtex-5 FPGA platform.

  8. Current status and future of space development; Uchu kaihatsu no genjo to shorai

    Matokawa, Y. [Institute of the Space and Astronautical Science, Tokyo (Japan)

    1998-05-01

    Space development has an aspect of contributing to livelihoods. Various types of satellites, such as those for weather forecasting, TV broadcasting, international communication (telephone and internet systems), and GPS-aided car navigation, have been already launched. Space science of the 20th century roughly tells the history of some 15 billion years from the big bang to birth of mankind as a spectacular story. The international space station, construction of which is to be started in 1998, should drastically enlarge man`s experiences in the universe. The space activity plans for the future draw various dreams, such as spaceplane, lunar base, solar generator satellite, Mars base, space colony, skyhook, and so on. Dreams of mankind have been eventually realized in the past history. It is time to deliberately assess what are meant by the space development of the 20th century, and to review ideal directions of the space development for the next 100 or 1000 years. 6 figs.

  9. Computer hardware description languages - A tutorial

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  10. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  11. Optimized hardware design for the divertor remote handling control system

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  12. Comparative Modal Analysis of Sieve Hardware Designs

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  13. Hardware controls for the STAR experiment at RHIC

    Reichhold, D.; Bieser, F.; Bordua, M.; Cherney, M.; Chrin, J.; Dunlop, J.C.; Ferguson, M.I.; Ghazikhanian, V.; Gross, J.; Harper, G.; Howe, M.; Jacobson, S.; Klein, S.R.; Kravtsov, P.; Lewis, S.; Lin, J.; Lionberger, C.; LoCurto, G.; McParland, C.; McShane, T.; Meier, J.; Sakrejda, I.; Sandler, Z.; Schambach, J.; Shi, Y.; Willson, R.; Yamamoto, E.; Zhang, W.

    2003-01-01

    The STAR detector sits in a high radiation area when operating normally; therefore it was necessary to develop a robust system to remotely control all hardware. The STAR hardware controls system monitors and controls approximately 14,000 parameters in the STAR detector. Voltages, currents, temperatures, and other parameters are monitored. Effort has been minimized by the adoption of experiment-wide standards and the use of pre-packaged software tools. The system is based on the Experimental Physics and Industrial Control System (EPICS) . VME processors communicate with subsystem-based sensors over a variety of field busses, with High-level Data Link Control (HDLC) being the most prevalent. Other features of the system include interfaces to accelerator and magnet control systems, a web-based archiver, and C++-based communication between STAR online, run control and hardware controls and their associated databases. The system has been designed for easy expansion as new detector elements are installed in STAR

  14. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found

  15. Surface moisture measurement system hardware acceptance test report

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  16. Integrated circuit authentication hardware Trojans and counterfeit detection

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  17. A Hybrid Hardware and Software Component Architecture for Embedded System Design

    Marcondes, Hugo; Fröhlich, Antônio Augusto

    Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A component-based design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

  18. Space and Missile Systems Center Standard: Software Development

    2015-01-16

    waterfall development lifecycle models . Source: Adapted from (IEEE 610.12) See (IEEE 1074) for more information. Software ...spiral, and waterfall lifecycle models .) 2. The developer shall record the selected software development lifecycle model (s) in the Software ...through i.e., waterfall , lifecycle model , the following requirements apply with the interpretation that the software is developed as a single build.

  19. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  20. Television White Space (TVWS) Access Framework for Developing Regions

    Masonta, MT

    2013-09-01

    Full Text Available stream_source_info Masonta2_2013.pdf.txt stream_content_type text/plain stream_size 29237 Content-Encoding UTF-8 stream_name Masonta2_2013.pdf.txt Content-Type text/plain; charset=UTF-8 Television White Space (TVWS... have been promoted by leading ICT regulators in the United States and Europe over the past decade. For instance, the US Federal Communications Commission (FCC) [4] and the Office of Communications (Ofcom) in the United Kingdom (UK) [5] went through...

  1. Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm

    Andrej Zemva

    2007-01-01

    Full Text Available We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation. In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane using the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In our solution, a bandpass filter is used for ECG signal prefiltering and an improved method for detection threshold-level calculation is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82% and positive predictivity of 99.82% and tested it on the long-term ST database (sensitivity of 99.72% and positive predictivity of 99.37%. Our algorithm outperforms several well-known QRS complex detection algorithms, including the original algorithm.

  2. Electrical, Electronic, and Electromechanical (EEE) Parts Management and Control Requirements for Space Flight Hardware and Critical Ground Support Equipment...aka... The NASA EEE Parts Standard, NASA-STD 8739.10

    Majewicz, Peter; Sampson, Michael

    2016-01-01

    Describes development and content of a new NASA Standard for Electrical Electronic and Electromechanical (EEE) parts. This Standard reflects current practices, instead of changing them. Most NASA Centers utilize local documents, but there is minimal consistency across the Agency. A gap analysis clearly shows the differences that exist among the different centers and with respect to the NASA Parts Policy. Once approved, the new standard can be referenced in contracts and agreements with organizations outside of NASA.

  3. Developing Instrumentation for Ground and Balloon-Borne Observing Platforms

    National Aeronautics and Space Administration — In my research I will focus on developing hardware and software technology for two instruments searching for polarization in the Cosmic Microwave Background (CMB)....

  4. Hardware Algorithms For Tile-Based Real-Time Rendering

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance

  5. Hardware and software techniques for boiler operation and management

    Kobayashi, Hiroshi (Hirakawa Iron Works, Ltd., Osaka (Japan))

    1989-04-01

    A study was conducted on the requirements for easy-operable boiler from the view points of hardware and software technologies. Relation among efficiency, energy-saving, and economics, and control of total emission regarding low NOx operation, were explained, with suggestion of orientation to developed necessary hard- and soft- ware for the realization. 8 figs.

  6. Hardware, Languages, and Architectures for Defense Against Hostile Operating Systems

    2015-05-14

    complex instruction sets. The scale of this problem is multiplied by the diversity of hardware platforms in deployment today. We developed a novel approach...www.seclab.cs.sunysb.edu/seclab/lbc/. Professor King has been invited to and has given lectures at the NSA, Sandia, DARPA, Intel, Microsoft, Samsung

  7. Hardware Descriptive Languages: An Efficient Approach to Device ...

    Contemporarily, owing to astronomical advancements in the very large scale integration (VLSI) market segments, hardware engineers are now focusing on how to develop their new digital system designs in programmable languages like very high speed integrated circuit hardwaredescription language (VHDL) and Verilog ...

  8. Lab at Home: Hardware Kits for a Digital Design Lab

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  9. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  10. Definition of technology development missions for early space station satellite servicing, volume 1

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  11. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  12. The LISA Pathfinder interferometry-hardware and system testing

    Audley, H; Danzmann, K; MarIn, A Garcia; Heinzel, G; Monsky, A; Nofrarias, M; Steier, F; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Gerardi, D; Gerndt, R; Hechenblaikner, G; Johann, U; Luetzow-Wentzky, P; Wand, V [EADS Astrium GmbH, Friedrichshafen (Germany); Antonucci, F [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C, E-mail: antonio.garcia@aei.mpg.de [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France)

    2011-05-07

    Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

  13. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  14. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  15. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  16. Space shuttle OMS helium regulator design and development

    Wichmann, H.; Kelly, T. L.; Lynch, R.

    1974-01-01

    Analysis, design, fabrication and design verification testing was conducted on the technological feasiblity of the helium pressurization regulator for the space shuttle orbital maneuvering system application. A prototype regulator was fabricated which was a single-stage design featuring the most reliable and lowest cost concept. A tradeoff study on regulator concepts indicated that a single-stage regulator with a lever arm between the valve and the actuator section would offer significant weight savings. Damping concepts were tested to determine the amount of damping required to restrict actuator travel during vibration. Component design parameters such as spring rates, effective area, contamination cutting, and damping were determined by test prior to regulator final assembly. The unit was subjected to performance testing at widely ranging flow rates, temperatures, inlet pressures, and random vibration levels. A test plan for propellant compatibility and extended life tests is included.

  17. Transmission delays in hardware clock synchronization

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  18. Space technology, sustainable development and community applications: Internet as a facilitator

    Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed

    2006-07-01

    Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.

  19. Experiments as Liminal Learning Spaces in Leadership Development

    Kjærgaard, Annemette; Meier, Frank; Tangkjær, Christian

    In this paper we address the question of what professional practitioner students learn from experiments in leadership development programs. Drawing from our own design and teaching in a leadership programme, we explore how certain models and frameworks become threshold concepts for students’ lear...... practical implications for using threshold concepts in designing experiments in leadership development education for professional practitioners....

  20. Ethernet for Space Flight Applications

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  1. PERANCANGAN APLIKASI SISTEM PAKAR DIAGNOSA KERUSAKAN HARDWARE KOMPUTER METODE FORWARD CHAINING

    Ali Akbar Rismayadi

    2016-09-01

    Full Text Available Abstract Damage to computer hardware, not a big disaster, because not all damage to computer hardware can not be repaired, nearly all computer users, whether public or institutions often suffer various kinds of damage that occurred in the computer hardware it has, and the damage can be caused by various factors that are basically as the user does not know the cause of what makes the computer hardware used damaged. Therefore, it is necessary to build an application that can help users to mendiganosa damage to computer hardware. So that everyone can diagnose the type of hardware damage his computer. Development of expert system diagnosis of damage to computer hardware uses forward chaining method by promoting alisisis descriptive of various damage data obtained from several experts and other sources of literature to reach a conclusion on the diagnosis of damage. As well as using the waterfall model as a model system development, starting from the analysis stage to stage software needs support. This application is built using a programming language tools Eclipse ADT as well as SQLite as its database. diagnosis expert system damage computer hardware is expected to be used as a tool to help find the causes of damage to computer hardware independently without the help of a computer technician.

  2. Considerations in development of expert systems for real-time space applications

    Murugesan, S.

    1988-01-01

    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.

  3. Hardware-in-the-Loop Testing

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  4. Hardware device binding and mutual authentication

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  5. Implementation of Hardware Accelerators on Zynq

    Toft, Jakob Kenn

    of the ARM Cortex-9 processor featured on the Zynq SoC, with regard to execution time, power dissipation and energy consumption. The implementation of the hardware accelerators were successful. Use of the Monte Carlo processor resulted in a significant increase in performance. The Telco hardware accelerator......In the recent years it has become obvious that the performance of general purpose processors are having trouble meeting the requirements of high performance computing applications of today. This is partly due to the relatively high power consumption, compared to the performance, of general purpose...... processors, which has made hardware accelerators an essential part of several datacentres and the worlds fastest super-computers. In this work, two different hardware accelerators were implemented on a Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two accelerators are based on two different...

  6. Space-based Communications Infrastructure for Developing Countries

    Barker, Keith; Barnes, Carl; Price, K. M.

    1995-01-01

    This study examines the potential use of satellites to augment the telecommunications infrastructure of developing countries with advanced satellites. The study investigated the potential market for using satellites in developing countries, the role of satellites in national information infractructures (NII), the technical feasibility of augmenting NIIs with satellites, and a nation's financial conditions necessary for procuring satellite systems. In addition, the study examined several technical areas including onboard processing, intersatellite links, frequency of operation, multibeam and active antennas, and advanced satellite technologies. The marketing portion of this study focused on three case studies: China, Brazil, and Mexico. These cases represent countries in various stages of telecommunication infrastructure development. The study concludes by defining the needs of developing countries for satellites, and recommends steps that both industry and NASA can take to improve the competitiveness of U.S. satellite manufacturing.

  7. The Forgetful Professor and the Space Biology Adventure

    Massa, Gioia D.; Jones, Wanda; Munoz, Angela; Santora, Joshua

    2014-01-01

    This video was created as one of the products of the 2013 ISS Faculty Fellows Summer Program. Our High School science teacher faculty fellows developed this video as an elementary/middle school education component. The video shows a forgetful professor who is trying to remember something, and along the journey she learns more about the space station, space station related plant science, and the Kennedy Space Center. She learns about the Veggie hardware, LED lighting for plant growth, the rotating garden concept, and generally about space exploration and the space station. Lastly she learns about the space shuttle Atlantis.

  8. Nanorobot Hardware Architecture for Medical Defense

    Luiz C. Kretly

    2008-05-01

    Full Text Available This work presents a new approach with details on the integrated platform and hardware architecture for nanorobots application in epidemic control, which should enable real time in vivo prognosis of biohazard infection. The recent developments in the field of nanoelectronics, with transducers progressively shrinking down to smaller sizes through nanotechnology and carbon nanotubes, are expected to result in innovative biomedical instrumentation possibilities, with new therapies and efficient diagnosis methodologies. The use of integrated systems, smart biosensors, and programmable nanodevices are advancing nanoelectronics, enabling the progressive research and development of molecular machines. It should provide high precision pervasive biomedical monitoring with real time data transmission. The use of nanobioelectronics as embedded systems is the natural pathway towards manufacturing methodology to achieve nanorobot applications out of laboratories sooner as possible. To demonstrate the practical application of medical nanorobotics, a 3D simulation based on clinical data addresses how to integrate communication with nanorobots using RFID, mobile phones, and satellites, applied to long distance ubiquitous surveillance and health monitoring for troops in conflict zones. Therefore, the current model can also be used to prevent and save a population against the case of some targeted epidemic disease.

  9. Adaptation of a software development methodology to the implementation of a large-scale data acquisition and control system. [for Deep Space Network

    Madrid, G. A.; Westmoreland, P. T.

    1983-01-01

    A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.

  10. Cooperative communications hardware, channel and PHY

    Dohler, Mischa

    2010-01-01

    Facilitating Cooperation for Wireless Systems Cooperative Communications: Hardware, Channel & PHY focuses on issues pertaining to the PHY layer of wireless communication networks, offering a rigorous taxonomy of this dispersed field, along with a range of application scenarios for cooperative and distributed schemes, demonstrating how these techniques can be employed. The authors discuss hardware, complexity and power consumption issues, which are vital for understanding what can be realized at the PHY layer, showing how wireless channel models differ from more traditional

  11. Designing Secure Systems on Reconfigurable Hardware

    Huffmire, Ted; Brotherton, Brett; Callegari, Nick; Valamehr, Jonathan; White, Jeff; Kastner, Ryan; Sherwood, Ted

    2008-01-01

    The extremely high cost of custom ASIC fabrication makes FPGAs an attractive alternative for deployment of custom hardware. Embedded systems based on reconfigurable hardware integrate many functions onto a single device. Since embedded designers often have no choice but to use soft IP cores obtained from third parties, the cores operate at different trust levels, resulting in mixed trust designs. The goal of this project is to evaluate recently proposed security primitives for reconfigurab...

  12. IDD Archival Hardware Architecture and Workflow

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  13. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  14. THE ROLE OF VENEZUELAN SPACE TECHNOLOGY IN PROMOTING DEVELOPMENT IN LATIN AMERICA

    J. A. Pena

    2017-09-01

    Full Text Available Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela’s rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  15. Space Applications in Support of Future Urban Development in Armenia

    Alhaddad, Bahaaeddin; Reppucci, Antonio; Moreno, Laura

    2016-08-01

    The fast growing of some cities has produced important changes in the urban sectors not always following sustainability criteria. As results, most urban growth falls outside formal planning controls and many cities suffer poor urban services management, traffic, and congestion, loss of green areas, poor air quality, and noise. The main advantages of satellite-based EO products are to support the decision-making process, and the development and operation of smart services. Satellite-based urban morphology analysis can help to identify the transformation of the urban development and evolution. The pilot presented here is a demonstration in the framework of the collaboration between ESA and ADB, called EOTAP "Earth Observation for a Transforming Asia Pacific". Aim of the pilot is to exploit satellite Earth observation data for sustainable growth and help preparing a series of city development and investment plans.

  16. Surviving the space environment - An overview of advanced materials and structures development at the CWRU CCDS

    Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.

    1991-01-01

    The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.

  17. Recent developments in low cost stable structures for space

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  18. Water Reclamation Technology Development at Johnson Space Center

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  19. Satellite Hardware: Stow-and-Go for Space Travel

    Pellegrino, Sergio

    2012-01-01

    Man-made satellites have to fit a lot into a compact package. Protected inside a rocket while blasted through the atmosphere, a satellite is launched into Earth orbit, or beyond, to continue its unmanned mission alone. It uses gyroscopes, altitude thrusters, and magnets to regulate sun exposure and stay pointed in the right direction. Once stable, the satellite depends on solar panels to recharge its internal batteries, mirrors, and lenses for data capture, and antennas for communication back...

  20. Application of the French Space Operation Act and the Development of Space Activities in the Field of Launchers

    Cahuzac, F.; Biard, A.

    2012-01-01

    The development of space activities has led France to define a new legal framework: French Space Operation Act (FSOA). The aim of this act, is to define the conditions according to which the French government authorizes and checks the spatial operations under its jurisdiction or its international responsibility as State of launch, according to the international treaties of the UN on space, in particular the Treaty (1967) on Principles Governing the Activities of States in the Exploration and Use of Outer Space, the Convention ( 1972 ) on International Liability for Damage Caused by Space Objects, and the Convention (1975) on Registration of Objects Launched into Outer Space. The main European space centre is the Guiana Space Centre (CSG), settled in France. A clarification of the French legal framework was compulsory to allow the arrival of new launchers (Soyuz and Vega). This act defines the competent authority, the procedure of authorization and licenses, the regime for operations led from foreign countries, the control of spatial objects, the enabling of inspectors, the delegation of monitoring to CNES, the procedure for urgent measures necessary for the safety, the registration of spatial objects. In this framework, the operator is fully responsible of the operation that he leads. He is subjected to a regime of authorization and to governmental technical monitoring delegated to CNES. In case of litigation, the operator gets the State guarantee above a certain level of damage to third party. The introduction of FSOA has led to issue a Technical Regulation set forth, in particular for the safety of persons and property, the protection of public health and the environment. This general regulation is completed by a specific regulation applicable to CSG that covers the preparation phase of the launch, and all specificities of the launch range, as regards the beginning of the launch. The Technical Regulation is based on 30 years of Ariane's activities and on the