Sample records for space geodetic observations

  1. Earth rotation excitation mechanisms derived from geodetic space observations (United States)

    Göttl, F.; Schmidt, M.


    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  2. Simulations of VLBI observations of a geodetic satellite providing co-location in space (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald


    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  3. The Global Geodetic Observing System: Space Geodesy Networks for the Future (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David


    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  4. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models (United States)

    Wińska, Małgorzata; Nastula, Jolanta


    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  5. Geodetic Survey Water Level Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one million images of National Coast & Geodetic Survey (now NOAA's National Geodetic Survey/NGS) forms captured from microfiche. Tabular forms and charts...

  6. Space geodetic observations of repeating slow slip events beneath the Bonin Islands (United States)

    Arisa, Deasy; Heki, Kosuke


    The Pacific Plate subducts beneath the Philippine Sea Plate along the Izu-Bonin Trench. We investigated crustal movements at the Bonin Islands, using Global Navigation Satellite System and geodetic Very Long Baseline Interferometry data to reveal how the two plates converge in this subduction zone. These islands are located ∼100 km from the trench, just at the middle between the volcanic arc and the trench, making these islands suitable for detecting signatures of episodic deformation such as slow slip events (SSEs). During 2007-2016, we found five SSEs repeating quasi-periodically with similar displacement patterns. In estimating their fault parameters, we assumed that the fault lies on the prescribed plate boundary, and optimized the size, shape and position of the fault and dislocation vectors. Average fault slip was ∼5 cm, and the average moment magnitude was ∼6.9. We also found one SSE occurred in 2008 updip of the repeating SSE in response to an M6 class interplate earthquake. In spite of the frequent occurrence of SSEs, there is no evidence for long-term strain accumulation in the Bonin Islands that may lead to future megathrust earthquakes. Plate convergence in Mariana-type subduction zones may occur, to a large extent, episodically as repeating SSEs.

  7. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)


    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  8. Integration of space geodesy: A US National Geodetic Observatory (United States)

    Yunck, Thomas P.; Neilan, Ruth E.


    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  9. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.


    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  10. Geodetic Space Weather Monitoring by means of Ionosphere Modelling (United States)

    Schmidt, Michael


    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  11. Space Geodetic Observations and Modeling of 2016 Mw 5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion

    Directory of Open Access Journals (Sweden)

    Yongsheng Li


    Full Text Available Determining the relationship between crustal movement and faulting in thrust belts is essential for understanding the growth of geological structures and addressing the proposed models of a potential earthquake hazard. A Mw 5.9 earthquake occurred on 21 January 2016 in Menyuan, NE Qinghai Tibetan plateau. We combined satellite interferometry from Sentinel-1A Terrain Observation with Progressive Scans (TOPS images, historical earthquake records, aftershock relocations and geological data to determine fault seismogenic structural geometry and its relationship with the Lenglongling faults. The results indicate that the reverse slip of the 2016 earthquake is distributed on a southwest dipping shovel-shaped fault segment. The main shock rupture was initiated at the deeper part of the fault plane. The focal mechanism of the 2016 earthquake is quite different from that of a previous Ms 6.5 earthquake which occurred in 1986. Both earthquakes occurred at the two ends of a secondary fault. Joint analysis of the 1986 and 2016 earthquakes and aftershocks distribution of the 2016 event reveals an intense connection with the tectonic deformation of the Lenglongling faults. Both earthquakes resulted from the left-lateral strike-slip of the Lenglongling fault zone and showed distinct focal mechanism characteristics. Under the shearing influence, the normal component is formed at the releasing bend of the western end of the secondary fault for the left-order alignment of the fault zone, while the thrust component is formed at the restraining bend of the east end for the right-order alignment of the fault zone. Seismic activity of this region suggests that the left-lateral strike-slip of the Lenglongling fault zone plays a significant role in adjustment of the tectonic deformation in the NE Tibetan plateau.

  12. Integration of space geodesy: a US National Geodetic Observatory (United States)

    Yunck, Thomas P.; Neilan, Ruth


    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  13. Land water storage from space and the geodetic infrastructure (United States)

    Cazenave, A.; Larson, K.; Wahr, J.


    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  14. The Australian Geodetic Observing Program. Current Status and Future Plans (United States)

    Johnston, G.; Dawson, J. H.


    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  15. The Global Geodetic Observing System: Recent Activities and Accomplishments (United States)

    Gross, R. S.


    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  16. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission (United States)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.


    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  17. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations (United States)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.


    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  18. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target (United States)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.


    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove

  19. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.


    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  20. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro


    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  1. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman


    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  2. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter


    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  3. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim


    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  4. Space-geodetic Constraints on GIA Models with 3D Viscosity (United States)

    Van Der Wal, W.; Xu, Z.


    Models for Glacial Isostatic Adjustment (GIA) are an important correction to observations of mass change in the polar regions. Inputs for GIA models include past ice thickness and deformation parameters of the Earth's mantle, both of which are imperfectly known. Here we focus on the latter by investigating GIA models with 3D viscosity and composite (linear and non-linear) flow laws. It was found recently that GIA models with a composite flow law result in a better fit to historic sea level data, but they predict too low present-day uplift rates and gravity rates. Here GIA models are fit to space-geodetic constraints in Fennoscandia and North America. The preferred models are used to calculate the magnitude of the GIA correction on mass change estimates in Greenland and Antarctica. The observations used are GRACE Release 4 solutions from CSR and GFZ and published GPS solutions for North America and Fennoscandia, as well as historic sea level data. The GIA simulations are performed with a finite element model of a spherical, self-gravitating, incompressible Earth with 2x2 degree elements. Parameters in the flow laws are taken from seismology, heatflow measurements and experimental constraints and the ice loading history is prescribed by ICE-5G. It was found that GRACE and GPS derived uplift rates agree at the level of 1 mm/year in North America and at a level of 0.5 mm/year in Fennoscandia, the difference between the two regions being due to larger GPS errors and under sampling in North America. It can be concluded that both GPS and GRACE see the same process and the effects of filtering, noise and non-GIA processes such as land hydrology are likely to be small. Two GIA models are found that bring present-day uplift rate close to observed values in North America and Fennoscandia. These models result in a GIA correction of -17 Gt/year and -26 Gt/year on Greenland mass balance estimates from GRACE.

  5. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy (United States)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo


    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.


    Directory of Open Access Journals (Sweden)

    S. Manneela


    Full Text Available Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS, starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting.

  7. Optimization of observation plan based on the stochastic characteristics of the geodetic network

    Directory of Open Access Journals (Sweden)

    Pachelski Wojciech


    Full Text Available Optimal design of geodetic network is a basic subject of many engineering projects. An observation plan is a concluding part of the process. Any particular observation within the network has through adjustment a different contribution and impact on values and accuracy characteristics of unknowns. The problem of optimal design can be solved by means of computer simulation. This paper presents a new method of simulation based on sequential estimation of individual observations in a step-by-step manner, by means of the so-called filtering equations. The algorithm aims at satisfying different criteria of accuracy according to various interpretations of the covariance matrix. Apart of them, the optimization criterion is also amount of effort, defined as the minimum number of observations required.

  8. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series (United States)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano


    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources

  9. Legacy and future of Kilauea's geodetic studies (United States)

    Montgomery-Brown, E. D.; Miklius, A.


    Because of its extensive and detailed history of geodetic measurements, Kilauea is one of the best-studied if not also best-understood volcanic systems in the world. Hawaiian volcanoes have a long history of deformation observations. These observations range from native legends of Pele's underground travels, through initial measurements made by the Hawaiian Volcano Observatory, and finally to current ground-based and satellite observations. Many questions still remain, relating to Kilauea's dynamics, where geodetic measurements could offer fundamental insights. For example, new geodetic experiments could lead to a better understanding of the degree of magmatic and tectonic interaction, the geometries of faults at depth, the extent of offshore deformation, and the magmatic plumbing system. While it is possible to design many experiments to address these issues, we focus on three deformation targets where geodetic improvements, including finer sampling in space and time, could yield significant advancements toward understanding Kilauea's dynamics. First, by scrutinizing spatially-dense space-borne geodetic data for signs of upper east rift zone deformation and incorporating gravity and seismic data in a high resolution tomographic model, the hydraulic connection between Kilauea's summit and the rift zone could be imaged, which would provide insight into the pathways that transport magma out to the rift zones. Second, a combination of geodetic and seismic data could be used to determine the nature of possible relationships and interactions between the Hilina fault system and Kilauea's basal decollement. Such a study would have important implications for assessments of future earthquake and sector collapse hazards. Lastly, by adding seafloor geodetic measurements and seismic data to the current geodetic network on Kilauea, we could delimit the offshore extent of transient and episodic decollement deformation. In addition to multidisciplinary approaches, future geodetic

  10. The potential role of real-time geodetic observations in tsunami early warning (United States)

    Tinti, Stefano; Armigliato, Alberto


    experimental or testing stage and haven't been implemented yet in any standard TWS operations. Nonetheless, this is seen to be the future and the natural TWS evolving enhancement. In this context, improvement of the real-time estimates of tsunamigenic earthquake focal mechanism is of fundamental importance to trigger the appropriate computational chain. Quick discrimination between strike-slip and thrust-fault earthquakes, and equally relevant, quick assessment of co-seismic on-fault slip distribution, are exemplary cases to which a real-time geodetic monitoring system can contribute significantly. Robust inversion of geodetic data can help to reconstruct the sea floor deformation pattern especially if two conditions are met: the source is not too far from network stations and is well covered azimuthally. These two conditions are sometimes hard to satisfy fully, but in certain regions, like the Mediterranean and the Caribbean sea, this is quite possible due to the limited size of the ocean basins. Close cooperation between the Global Geodetic Observing System (GGOS) community, seismologists, tsunami scientists and TWS operators is highly recommended to obtain significant progresses in the quick determination of the earthquake source, which can trigger a timely estimation of the ensuing tsunami and a more reliable and detailed assessment of the tsunami size at the coast.

  11. Evidences of Episodic Crustal Magmatic Diapir and Shallow Volcanic Activity at Uturuncu, Central Andes, from Geodetic Observations between 2014 - 2017 (United States)

    Lau, H. N.; Tymofyeyeva, E.; Fialko, Y. A.


    Previous space geodetic studies using ERS-1/2 and Envisat Interferometric Synthetic Aperture Radar (InSAR) data revealed a broad uplift of 10 mm/yr within the Altiplano-Puna Volcanic Complex (APVC), centered at the Uturuncu volcano, surrounded by a ring of subsidence at a rate of a few millimeters per year. This pattern was attributed to formation of a diapir in the middle of the Altiplano-Puna Magma Body (APMB), at depth of 15-19 km. We use new data from the Sentinel-1 InSAR mission, collected between 2014-2017, to produce high-resolution maps of surface displacements in the satellite's line of sight (LOS) from 4 satellite tracks. We estimated random propagation effects (e.g. due to atmospheric turbulence) using a common-point stacking method by Tymofyeyeva and Fialko [2015] and estimated temporally-correlated propagation effects (e.g. due to seasonal variations in atmospheric moisture) using a regression of the residual phase against topography. The estimated atmospheric artifacts were removed from the interferograms prior to computing the time series of the LOS displacements. The data indicate that the uplift above the APMB has considerably slowed down compared to the 1992-2010 epoch. The observed variations in the uplift rate suggest that the "ballooning" of the mid-crustal diapir is episodic on time scales of year to decades, possibly due to variations in melt supply from the partially molten APMB to the incipient diapir. We also find a previously undiscovered localized uplift 11 km south of Uturuncu's peak with maximum LOS velocities of 10 - 15 mm/yr. Joint inversions of data from different satellite tracks for a point source of inflation in an elastic half space constrain the source depth to be at 2 km, suggestive of a shallow magma chamber or a hydrothermal system.

  12. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.


    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  13. An accuracy assessment of realtime GNSS time series toward semi- real time seafloor geodetic observation (United States)

    Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.


    Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit

  14. An Investigation on the Use of Different Centroiding Algorithms and Star Catalogs in Astro-Geodetic Observations (United States)

    Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim


    In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.

  15. Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna

    Directory of Open Access Journals (Sweden)

    Dedi Atunggal


    Full Text Available GPS modules have been used for various applications in recent years. Its early development came in parallel with the advancement of Unmanned Aerial Vehicle (UAV technology. Nowadays, it is also used in in geographic information system (GIS data acquisition/census, mapping surveys, structure stability monitoring systems and many other applications. GPS modules generally have several positioning features, including standard positioning service (SPS, static positioning, precise point positioning (PPP, post processing kinematic (PPK and real time kinematic (RTK GPS. GPS modules in general are only equipped with a microstrip-type antenna or better known as patch antenna. Results from related research show that GPS module with this type of antenna has sub meter accuracy when used for PPK or RTK GPS method. The use of geodetic antennas is very potential to increase GPS position accuracy by up to centimeter level. This paper discusses the evaluation of GPS module measurements with geodetic type antennas for precise positioning using RTK GPS. This paper is focused on the resolution of GPS cycle ambiguity that is often expressed by the term fixing ratio and the accuracy of measurement results obtained. To provide a comprehensive description of the performance of GPS module, in this research two types of GPS module were used; single and dual frequency. Both types of GPS modules were used to conduct simultaneous observation on an open and obstructed observation location.

  16. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992 (United States)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.


    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  17. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations (United States)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir


    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  18. Geodetic Control Points - National Geodetic Survey Benchmarks (United States)

    NSGIC Local Govt | GIS Inventory — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  19. Observing Geohazards from Space

    Directory of Open Access Journals (Sweden)

    Francesca Cigna


    Full Text Available With a wide spectrum of imaging capabilities—from optical to radar sensors, low to very high resolution, continental to local scale, single-image to multi-temporal approaches, yearly to sub-daily acquisition repeat cycles—Earth Observation (EO offers several opportunities for the geoscience community to map and monitor natural and human-induced Earth hazards from space. The Special Issue “Observing Geohazards from Space” of Geosciences gathers 12 research articles on the development, validation, and implementation of satellite EO data, processing methods, and applications for mapping and monitoring of geohazards such as slow moving landslides, ground subsidence and uplift, and active and abandoned mining-induced ground movements. Papers published in this Special Issue provide novel case studies demonstrating how EO and remote sensing data can be used to detect and delineate land instability and geological hazards in different environmental contexts and using a range of spatial resolutions and image processing methods. Remote sensing datasets used in the Special Issue papers encompass satellite imagery from the ERS-1/2, ENVISAT, RADARSAT-1/2, and Sentinel-1 C-band, TerraSAR-X and COSMO-SkyMed X-band, and ALOS L-band SAR missions; Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2 multi-spectral data; UAV-derived RGB and near infrared aerial photographs; LiDAR surveying; and GNSS positioning data. Techniques that are showcased include, but are not limited to, differential Interferometric SAR (InSAR and its advanced approaches such as Persistent Scatterers (PS and Small Baseline Subset (SBAS methods to estimate ground deformation, Object-Based Image Analysis (OBIA to identify landslides in high resolution multi-spectral data, UAV and airborne photogrammetry, Structure-from-Motion (SfM for digital elevation model generation, aerial photo-interpretation, feature extraction, and time series analysis. Case studies presented in the papers focus on

  20. A preliminary geodetic data model for geographic information systems (United States)

    Kelly, K. M.


    Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing

  1. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    Energy Technology Data Exchange (ETDEWEB)

    Scherneck, H G; Johansson, J M; Elgered, G [Chalmers Univ. of Technology, Goeteborg (Sweden). Onsala Space Observatory


    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs.

  2. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    International Nuclear Information System (INIS)

    Scherneck, H.G.; Johansson, J.M.; Elgered, G.


    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs

  3. Robustness analysis of geodetic networks in the case of correlated observations

    Directory of Open Access Journals (Sweden)

    Mevlut Yetkin

    Full Text Available GPS (or GNSS networks are invaluable tools for monitoring natural hazards such as earthquakes. However, blunders in GPS observations may be mistakenly interpreted as deformation. Therefore, robust networks are needed in deformation monitoring using GPS networks. Robustness analysis is a natural merger of reliability and strain and defined as the ability to resist deformations caused by the maximum undetecle errors as determined from internal reliability analysis. However, to obtain rigorously correct results; the correlations among the observations must be considered while computing maximum undetectable errors. Therefore, we propose to use the normalized reliability numbers instead of redundancy numbers (Baarda's approach in robustness analysis of a GPS network. A simple mathematical relation showing the ratio between uncorrelated and correlated cases for maximum undetectable error is derived. The same ratio is also valid for the displacements. Numerical results show that if correlations among observations are ignored, dramatically different displacements can be obtained depending on the size of multiple correlation coefficients. Furthermore, when normalized reliability numbers are small, displacements get large, i.e., observations with low reliability numbers cause bigger displacements compared to observations with high reliability numbers.

  4. NASA Space Geodesy Program: GSFC data analysis, 1992. Crustal Dynamics Project VLBI geodetic results, 1979 - 1991 (United States)

    Ryan, J. W.; Ma, C.; Caprette, D. S.


    The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.

  5. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen


    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  6. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín


    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  7. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF) (United States)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.


    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  8. Observing the Anthropocene from Space (United States)

    Dittus, Hansjörg


    Influence of mankind on Earth's climate is evident. The growing population using the resources available, especially by burning goal, oil and gas, changes the composition of the Earth's atmosphere with the result of a continuously increasing temperature. Effects are not limited to the regional scale but are evident on the whole planet, meanwhile named Anthropocene. According to this global influence, it's necessary to also extend monitoring to the entire planet. Space-based observation systems are not limited by any artificial borders and are in principle able, to cover the whole Earth. In principle, two different ways of observation can be selected: Either a dedicated spacecraft will be send into low earth orbit (LEO) or existing platforms are used. Advantages of satellites are the more or less freely selectable orbit (with orbits covering also the polar regions) and the possible adaption of spacecraft platform for the dedicated instrument. On the other hand platforms like the ISS space station enable continuous long term coverage with different instruments. The drawback of an only limited coverage based on the orbit inclination is made up by the possibility to service systems on the station. Furthermore different generations of sensors can be run in parallel and therefore cross calibrated if needed. This paper reviews the currently available sensors types and discusses potential future needs. Included in this discussion is the international space station as an already available platform for earth observation. Furthermore, discussion should also take into account, that an increasing number of constellations with dozens or even thousand satellites are planned. Are these constellations also an option for an increased temporal and spatial monitoring of the Earth?

  9. Space Debris and Observational Astronomy (United States)

    Seitzer, Patrick


    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  10. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann


    Full Text Available In this study we demonstrate how energy and mass fluxes vary in space and time for Grey and Tyndall glaciers at the Southern Patagonia Icefield (SPI. Despite the overall glacier retreat of most Patagonian glaciers, a recent increase in mass loss has been observed, but individual glaciers respond differently in terms of spatial and temporal changes. In this context, the detailed investigation of the effect of mass balance processes on recent glacier response to climate forcing still needs refinement. We therefore quantify surface energy-fluxes and climatic mass balance of the two neighboring glaciers, Grey and Tyndall. The COupled Snow and Ice energy and MAss balance model COSIMA is applied to assess recent surface energy and climatic mass balance variability with a high temporal and spatial resolution for a 16-year period between April 2000 and March 2016. The model is driven by downscaled 6-hourly atmospheric data derived from ERA-Interim reanalysis and MODIS/Terra Snow Cover and validated against ablation measurements made in single years. High resolution precipitation fields are determined by using an analytical orographic precipitation model. Frontal ablation is estimated as residual of climatic mass balance and geodetic mass balance derived from TanDEM-X/SRTM between 2000 and 2014. We simulate a positive glacier-wide mean annual climatic mass balance of +1.02 ± 0.52 m w.e. a−1 for Grey Glacier and of +0.68 ± 0.54 m w.e. a−1 for Tyndall Glacier between 2000 and 2014. Climatic mass balance results show a high year to year variability. Comparing climatic mass balance results with previous studies underlines the high uncertainty in climatic mass balance modeling with respect to accumulation on the SPI. Due to the lack of observations accumulation estimates differ from previous studies based on the methodological approaches. Mean annual ice loss by frontal ablation is estimated to be 2.07 ± 0.70 m w.e. a−1 for Grey Glacier and 3.26 ± 0

  11. Space Observations for Global Change (United States)

    Rasool, S. I.


    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  12. Observing Tropospheric Ozone From Space (United States)

    Fishman, Jack


    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  13. Observing the Anthropocene from Space (United States)

    Burrows, John

    The industrial revolution, which began in the UK in the late 18th century, has been fuelled by the use of cheap energy from fossil fuel combustion. It has facilitated a dramatic rise in both the human population, now above 7 Billion with 50% now living in urban agglomerations, and its standard of living. It is anticipated that by 2050 there will be of the order of 8.3 to 10 billion people, 75% living in cities. Anthropogenic activity has resulted in pollution from the local to the global scale changes in land use, the destruction of stratospheric ozone, the modification of biogeochemical cycling, acid deposition, impacted on ecosystems and ecosystem services, destruction of biodiversity and climate change. The impact of man has moved the earth from the Holocene to the new geological epoch of the Anthropocene. To improve our understanding of the earth atmosphere system and the accuracy of the prediction of its future changes, knowledge of the amounts and distributions of trace atmospheric constituents are essential -“One cannot manage what is not measured”. An integrated observing system, comprising ground and space based segments is required to improve our science and to provide an evidence base needed for environmental policymakers. Passive remote sensing measurements made of the up-welling radiation at the top of the atmosphere from instrumentation on space borne platforms provide a unique opportunity to retrieve globally atmospheric composition. This presentation describes results from the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on ESA Envsiat 2002 to 2012) and its spin offs GOME (Global Ozone Monitoring Experiment ESA ERS-2 1995 to 2011) and GOME-2 (ESA/EUMETSAT Metop series). The potential of the SCIAMACHY successors Sentinel 5, CarbonSat, and SCIA-ISS will also be addressed.

  14. Geodezija od Mesopotamije do Globalnog geodetskog opažačkog sistema : Geodesy from Mesopotamie to Global Geodetic Observing System

    Directory of Open Access Journals (Sweden)

    Medžida Mulić


    works in Bosnia and Herzegovina, from the time of Ottoman Empire, through the Austro-Hungarian survey, to the modern achievements Global Geodetic Observing System-GGOS, the main component of the International Association of Geodesy described at the end.

  15. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.


    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  16. Global Geodetic Observing System: meeting the requirements of a global society on a changing planet in 2020

    National Research Council Canada - National Science Library

    Plag, Hans-Peter, 1952; Pearlman, Michael


    ..., Earth Observation on a global scale is at the heart of GGOS's activities, which contributes to Global Change research through the monitoring, as well as the modeling, of dynamic Earth processes such as, for example, mass and angular momentum exchanges, mass transport and ocean circulation, and changes in sea, land and ice surfaces. To achieve such a...

  17. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.


    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  18. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.


    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  19. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.


    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... on the centimeter level, station corrections regarding the Earth tides and the ocean tidal loading have to be applied. Models for global corrections esp. for the body tides are available and sufficient, but local corrections regarding the effect of the adjacent shelf area still have to be inferred from additional...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  20. Rapid Geodetic Shortening Across the Eastern Cordillera of NW Argentina Observed by the Puna-Andes GPS Array (United States)

    McFarland, Phillip K.; Bennett, Richard A.; Alvarado, Patricia; DeCelles, Peter G.


    We present crustal velocities for 29 continuously recording GPS stations from the southern central Andes across the Puna, Eastern Cordillera, and Santa Barbara system for the period between the 27 February 2010 Maule and 1 April 2014 Iquique earthquakes in a South American frame. The velocity field exhibits a systematic decrease in magnitude from 35 mm/yr near the trench to convergence accommodated at the subduction interface. Velocity residuals calculated for each model demonstrate that locking on the NZ-SA interface is insufficient to reproduce the observed velocities. We model deformation associated with a back-arc décollement using an edge dislocation, estimating model parameters from the velocity residuals for each forward model of the subduction interface ensemble using a Bayesian approach. We realize our best fit to the thrust-perpendicular velocity field with 70 ± 5% of NZ-SA convergence accommodated at the subduction interface and a slip rate of 9.1 ± 0.9 mm/yr on the fold-thrust belt décollement. We also estimate a locking depth of 14 ± 9 km, which places the downdip extent of the locked zone 135 ± 20 km from the thrust front. The thrust-parallel component of velocity is fit by a constant shear strain rate of -19 × 10-9 yr-1, equivalent to clockwise rigid block rotation of the back arc at a rate of 1.1°/Myr.

  1. Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA (United States)

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.; Poland, Michael P.; Endo, Elliot T.


    Tumescence at the Three Sisters volcanic center began sometime between summer 1996 and summer 1998 and was discovered in April 2001 using interferometric synthetic aperture radar (InSAR). Swelling is centered about 5 km west of the summit of South Sister, a composite basaltic-andesite to rhyolite volcano that last erupted between 2200 and 2000 yr ago, and it affects an area ˜20 km in diameter within the Three Sisters Wilderness. Yearly InSAR observations show that the average maximum displacement rate was 3-5 cm/yr through summer 2001, and the velocity of a continuous GPS station within the deforming area was essentially constant from June 2001 to June 2004. The background level of seismic activity has been low, suggesting that temperatures in the source region are high enough or the strain rate has been low enough to favor plastic deformation over brittle failure. A swarm of about 300 small earthquakes ( Mmax = 1.9) in the northeast quadrant of the deforming area on March 23-26, 2004, was the first notable seismicity in the area for at least two decades. The U.S. Geological Survey (USGS) established tilt-leveling and EDM networks at South Sister in 1985-1986, resurveyed them in 2001, the latter with GPS, and extended them to cover more of the deforming area. The 2001 tilt-leveling results are consistent with the inference drawn from InSAR that the current deformation episode did not start before 1996, i.e., the amount of deformation during 1995-2001 from InSAR fully accounts for the net tilt at South Sister during 1985-2001 from tilt-leveling. Subsequent InSAR, GPS, and leveling observations constrain the source location, geometry, and inflation rate as a function of time. A best-fit source model derived from simultaneous inversion of all three datasets is a dipping sill located 6.5 ± 2.5 km below the surface with a volume increase of 5.0 × 10 6 ± 1.5 × 10 6 m 3/yr (95% confidence limits). The most likely cause of tumescence is a pulse of basaltic magma

  2. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations (United States)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.


    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  3. Observing photons in space a guide to experimental space astronomy

    CERN Document Server

    Pauluhn, Anuschka; Culhane, J; Timothy, J; Wilhelm, Klaus; Zehnder, Alex


    An ideal resource for lecturers, this book provides a comprehensive review of experimental space astronomy. The number of astronomers whose knowledge and interest is concentrated on interpreting observations has grown substantially in the past decades; yet, the number of scientists who are familiar with and capable of dealing with instrumentation has dwindled.  All of the authors of this work are leading and experienced experts and practitioners who have designed, built, tested, calibrated, launched and operated advanced observing equipment for space astronomy. This book also contains concise information on the history of the field, supported by appropriate references. Moreover, scientists working in other fields will be able to get a quick overview of the salient issues of observing photons in any one of the various energy, wavelength and frequency ranges accessible in space. This book was written with the intention to make it accessible to advanced undergraduate and graduate students.

  4. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.


    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  5. Conformally compactified homogeneous spaces (Possible Observable Consequences)

    International Nuclear Information System (INIS)

    Budinich, P.


    Some arguments based on the possible spontaneous violation of the Cosmological Principles (represented by the observed large-scale structures of galaxies), the Cartan-geometry of simple spinors and on the Fock-formulation of hydrogen-atom wave-equation in momentum-space, are presented in favour of the hypothesis that space-time and momentum-space should be both conformally compactified and represented by the two four-dimensional homogeneous spaces of the conformal group, both isomorphic to (S 3 X S 1 )/Z 2 and correlated by conformal inversion. Within this framework, the possible common origin for the S0(4) symmetry underlying the geometrical structure of the Universe, of Kepler orbits and of the H-atom is discussed. On of the consequences of the proposed hypothesis could be that any quantum field theory should be naturally free from both infrared and ultraviolet divergences. But then physical spaces defined as those where physical phenomena may be best described, could be different from those homogeneous spaces. A simple, exactly soluble, toy model, valid for a two-dimensional space-time is presented where the conjecture conformally compactified space-time and momentum-space are both isomorphic to (S 1 X S 1 )/Z 2 , while the physical spaces are two finite lattice which are dual since Fourier transforms, represented by finite, discrete, sums may be well defined on them. Furthermore, a q-deformed SU q (1,1) may be represented on them if q is a root of unity. (author). 22 refs, 3 figs

  6. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat (United States)

    Gunn de Rosas, C. L.


    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  7. Seismology and space-based geodesy (United States)

    Tralli, David M.; Tajima, Fumiko


    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  8. Observation of Polarization Vortices in Momentum Space (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian


    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  9. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior (United States)

    Barnhart, W. D.; Briggs, R.


    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  10. Observing the Global Water Cycle from Space (United States)

    Hildebrand, P. H.


    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  11. Optimal observables and phase-space ambiguities

    International Nuclear Information System (INIS)

    Nachtmann, O.; Nagel, F.


    Optimal observables are known to lead to minimal statistical errors on parameters for a given normalised event distribution of a physics reaction. Thereby all statistical correlations are taken into account. Therefore, on the one hand they are a useful tool to extract values on a set of parameters from measured data. On the other hand one can calculate the minimal constraints on these parameters achievable by any data-analysis method for the specific reaction. In case the final states can be reconstructed without ambiguities optimal observables have a particularly simple form. We give explicit formulae for the optimal observables for generic reactions in case of ambiguities in the reconstruction of the final state and for general parameterisation of the final-state phase space. (orig.)

  12. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet) (United States)

    Geirsson, Halldor; d'Oreye, Nicolas; Mashagiro, Niche; Syauswa, Muhindo; Celli, Gilles; Kadufu, Benjamin; Smets, Benoît; Kervyn, François


    We present an overview of the installation, operation, and initial results of the 15-station KivuGNet (Kivu Geodetic Network) in the Kivu Region, Central Africa. The network serves primarily as a research and monitoring tool for active volcanic, earthquake, and plate boundary processes in the region. Continuous operation of in-situ measurement networks in naturally and politically harsh environments is challenging, but has proven fruitful in this case. During the operation of the network since 2009, KivuGNet has captured: co-eruptive deformation from two eruptions of Nyamulagira (in 2010 and 2011-2012); inter-eruptive deformation, which we interpret as a combination of plate motion across the Western - East Africa Rift, and decreasing deep-seated magma accumulation under the Nyiragongo-Nyamulagira region; co-seismic deformation from the Mw5.8 August 7, 2015 Lwiro earthquake at the western border of Lake Kivu. We hope that this study will serve as a motivation for further implementation of in-situ geodetic networks in under-monitored and under-studied sections of the East African Rift.

  13. Fifty Years of Lightning Observations from Space (United States)

    Christian, H. J., Jr.


    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  14. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data (United States)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.


    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  15. Geodetic refraction effects of electromagnetic wave propagation through the atmosphere

    CERN Document Server


    With very few exceptions, geodetic measurements use electro­ magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter­ restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow­ ing parameters of the electromagnetic wave are measured: ampli­ tude, phase, angle-of-arrival, polarisation and frequency. Ac­ curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at­ mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter­ restrial and space applications. Instrumental accuracies are al­ ready below the atmospherically i...

  16. International Space Station Earth Observations Working Group (United States)

    Stefanov, William L.; Oikawa, Koki


    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  17. Geodesy introduction to geodetic datum and geodetic systems

    CERN Document Server

    Lu, Zhiping; Qiao, Shubo


    A full introduction to geodetic data and systems written by well-known experts in their respective fields, this book is an ideal text for courses in geodesy and geomatics covering everything from coordinate and gravimetry data to geodetic systems of all types.

  18. Remote observing with NASA's Deep Space Network (United States)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.


    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  19. Observation and simulation of AGW in Space (United States)

    Kunitsyn, Vyacheslav; Kholodov, Alexander; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Vorontsov, Artem


    Examples are presented of satellite observations and imaging of AGW and related phenomena in space travelling ionospheric disturbances (TID). The structure of AGW perturbations was reconstructed by satellite radio tomography (RT) based on the signals of Global Navigation Satellite Systems (GNSS). The experiments use different GNSS, both low-orbiting (Russian Tsikada and American Transit) and high-orbiting (GPS, GLONASS, Galileo, Beidou). The examples of RT imaging of TIDs and AGWs from anthropogenic sources such as ground explosions, rocket launching, heating the ionosphere by high-power radio waves are presented. In the latter case, the corresponding AGWs and TIDs were generated in response to the modulation in the power of the heating wave. The natural AGW-like wave disturbances are frequently observed in the atmosphere and ionosphere in the form of variations in density and electron concentration. These phenomena are caused by the influence of the near-space environment, atmosphere, and surface phenomena including long-period vibrations of the Earth's surface, earthquakes, explosions, temperature heating, seisches, tsunami waves, etc. Examples of experimental RT reconstructions of wave disturbances associated with the earthquakes and tsunami waves are presented, and RT images of TIDs caused by the variations in the corpuscular ionization are demonstrated. The results of numerical modeling of AGW generation by some surface and volume sources are discussed. The milli-Hertz AGWs generated by these sources induce perturbations with a typical scale of a few hundred of kilometers at the heights of the middle atmosphere and ionosphere. The numerical modeling is based on the solution of equations of geophysical hydrodynamics. The results of the numerical simulations agree with the observations. The authors acknowledge the support of the Russian Foundation for Basic Research (grants 14-05-00855 and 13-05-01122), grant of the President of Russian Federation MK-2670

  20. First observations of iodine oxide from space (United States)

    Saiz-Lopez, Alfonso; Chance, Kelly; Liu, Xiong; Kurosu, Thomas P.; Sander, Stanley P.


    We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 × 1013 molecules cm-2 are observed around coastal Antarctica; by contrast during that time in the Artic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2-4 × 1012 molecules cm-2 for slant columns). The levels reported here are in reasonably good agreement with previous ground-based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea-ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica.

  1. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd


    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  2. Observation of Atmospheric Constituents From Space (United States)

    Burrows, J. P.

    Remote sensing of the atmosphere from space is a growing research field. Surprisingly but for good physical reasons, the mesosphere and stratosphere are easier to probe from space than the troposphere. GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (Scanning Imaging absorption spectroMeter for Atmospheric CHartographY) are related European instruments, which were proposed and been designed to measure atmospheric constituents (gases, aerosols and clouds) by passive remote sensing of the up-welling solar radiation leaving atmosphere. GOME is a smaller version of SCIAMACHY and was launched as part of the core payload of the second European research satellite (ERS-2) on the 20th April 1995. GOME comprises four spectral channels and measures simultaneously the earthshine radiance or solar extra terrestrial irradiance between 240 and 790 nm. Inversion of GOME measurements using the DOAS (Differential Optical Absorption Spectroscopy) yields the total column of trace gases (e.g. O3, NO2, HCHO, BrO and OClO). Application of the FURM (Full Retrieval Method) enables the profiles of O3 to be retrieved. One of the important achievements of GOME has been the separation of tropopsheirc columns of trace gases using TEM (Tropospheric Excess Method). SCIAMACHY has been developed as Germa n, Dutch and Belgian contribution to ENVISAT. It has significantly enhanced capability compared to GOME, measuring a larger spectral range, 220-2380 nm, and observing in alternate nadir and limb modes as well as solar and lunar occultation. ENVISAT is to be launched into a sun synchronous polar orbit, having an equator crossing time of 10.00 a.m. at the beginning of March 2002. SCIAMACHY is thereby able to measure many more species and vertical profiles than GOME. This facilitates improved tropospheric retrievals. Finally GeoTROPE (Geostationary TROPospheric Explorer) is a new mission, which is proposed for launch within the ESA Earth Explorer Opportunity Mission. It comprises two national

  3. Time biases in laser ranging observations: A concerning issue of Space Geodesy (United States)

    Exertier, Pierre; Belli, A.; Lemoine, J. M.


    Time transfer by Laser Ranging (LR) recently demonstrated a remarkable stability (a few ps over ∼1000 s) and accuracy (synchronizing both space and ground clocks over distances from a few thousands to tens of thousands kilometers. Given its potential role in navigation, fundamental physics and metrology, it is crucial that synergy between laser ranging and Time&Frequency (T/F) technologies improves to meet the present and future space geodesy requirements. In this article, we examine the behavior of T/F systems that are used in LR tracking stations of the international laser ranging service. The approach we investigate is to compute time synchronization between clocks used at LR stations using accurate data of the Time Transfer by Laser Link (T2L2) experiment onboard the satellite Jason-2 (Samain et al., 2014). Systematic time biases are estimated against the UTC time scale for a set of 22 observing stations in 2013, in the range of zero to a few μ s. Our results suggest that the ILRS network suffers from accuracy issues, due to time biases in the laser ranging observations. We discuss how these systematic effects impact the precise orbit determination of LAGEOS geodetic satellites over a 1-year analysis, and additionally give a measure of the local effect into station coordinates, regarding in particular the effect in the east-west component that is of 2-6 mm for a typical systematic time bias of one μ s.

  4. Plate motions and deformations from geologic and geodetic data (United States)

    Jordan, T. H.


    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  5. National Geodetic Survey (NGS) Geodetic Control Stations, (Horizontal and/or Vertical Control), March 2009 (United States)

    Earth Data Analysis Center, University of New Mexico — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  6. National Geodetic Control Stations, Geographic NAD83, NGS (2004) [geodetic_ctrl_point_la_NGS_2004 (United States)

    Louisiana Geographic Information Center — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  7. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects (United States)

    Chao, Benjamin F.; Boy, John-Paul


    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  8. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.


    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  9. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France (United States)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.


    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  10. National Geodetic Survey's Airport Aerial Photography (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), formerly part of the U.S. Coast and Geodetic Survey, has been performing Aeronautical surveys since the 1920's. NGS, in...

  11. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki


    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  12. Observing the Anthropocene from Space: Selected Megacities (United States)

    Burrows, John P.; Hilboll, Andreas; Richter, Andreas


    From the beginning of the Neolithic revolution around 10000 BC and 1800 A.D., the earth's human population is estimated to have risen from several million nomadic hunter gathers to 1 Billion rural settlement and city dwellers. This population increase and its related raising of the standard of living increase and life expectancy were fuelled by energy from the exploitation of biofuel and some use of coal. This rapid development is dwarfed by the impact of the industrial revolution over the past two centuries. There are no over 7 Billion people on earth with over half living in cities and urban areas, e.g. there are ~ 3 billion more citizens than when the author was born and 2 million more than when the project SCIAMACHY (SCanning Imaging and Absorption spectroMeter for Atmospheric ChartographY) was proposed! This industrialisation and urbanisation has been fuelled by the use of cheap energy from fossil fuel combustion. It has resulted in large scale changes in land use, air pollution, and the destruction of stratospheric ozone, the anthropogenic modification of biogeochemical cycling, the destruction of species, ecosystems and ecosystem services. In order to test our knowledge and understanding of the Earth system, accurate long term global measurements of atmospheric constituents and surface parameters are essential. The remote sounding of the atmosphere from instrumentation on satellite platforms provides a unique opportunity to retrieve regional and global observations of key trace atmospheric constituents (gases, aerosol and clouds) and surface parameters (ocean colour, ice extent, flora etc.). This talk describes results from the SCIAMACHY project and its spin offs, GOME (originally SCIA-mini - Global Ozone Monitoring Experiment), GOME-2, and their successors ESA Sentinel 4 (originally GeoSCIA), Sentinel 5, CarbonSat and SCIA-ISS. The interpretation of the data from these instruments has provided a paradigm shift in our understanding of global atmospheric

  13. Error Propagation in Geodetic Networks Studied by FEMLAB

    DEFF Research Database (Denmark)

    Borre, Kai


    Geodetic networks can be described by discrete models. The observations may be height differences, distances, and directions. Geodesists always make more observations than necessary and estimate the solution by using the principle of least squares. Contemporary networks often contain several thou...

  14. Current status of the EPOS WG4 - GNSS and Other Geodetic Data (United States)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu


    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  15. Global Space Weather Observational Network: Challenges and China's Contribution (United States)

    Wang, C.


    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  16. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited) (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.


    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  17. Geodetic Control Information on Passive Marks: Horizontal and Vertical Geodetic Control Data for the United States - National Geospatial Data Asset (NGDA) Geodetic Control Information on Passive Marks (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  18. Observations from Space and the Future of Meteorology (United States)

    Tepper, Morris


    Describes space-based observations and other aspects of meterology that will enable weather forecasters to lengthen the scale of predictability from the current day-to-day basis to one week or longer. (Author/GS)

  19. Leveraging geodetic data to reduce losses from earthquakes (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.


    Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Mission Area (NHMA) engages in a variety of undertakings, both established and emergent, in order to provide high quality products that enable stakeholders to take action in advance of and in response to earthquakes. Examples include the National Seismic Hazard Model (NSHM), development of tools for improved situational awareness such as earthquake early warning (EEW) and operational earthquake forecasting (OEF), research about induced seismicity, and new efforts to advance comprehensive subduction zone science and monitoring. Geodetic observations provide unique and complementary information directly relevant to advancing many aspects of these efforts (fig. 1). EHP scientists have long leveraged geodetic data for a range of influential studies, and they continue to develop innovative observation and analysis methods that push the boundaries of the field of geodesy as applied to natural hazards research. Given the ongoing, rapid improvement in availability, variety, and precision of geodetic measurements, considering ways to fully utilize this observational resource for earthquake loss reduction is timely and essential. This report presents strategies, and the underlying scientific rationale, by which the EHP could achieve the following outcomes: The EHP is an authoritative source for the interpretation of geodetic data and its use for earthquake loss reduction throughout the United States and its territories.The USGS consistently provides timely, high quality geodetic data to stakeholders.Significant earthquakes are better characterized by incorporating geodetic data into USGS

  20. Plane and geodetic surveying

    CERN Document Server

    Johnson, Aylmer


    IntroductionAim And ScopeClassification Of SurveysThe Structure Of This BookGeneral Principles Of SurveyingErrorsRedundancyStiffnessAdjustmentPlanning And Record KeepingPrincipal Surveying ActivitiesEstablishing Control NetworksMappingSetting OutResectioningDeformation MonitoringAngle MeasurementThe Surveyor's CompassThe ClinometerThe Total StationMaking ObservationsChecks On Permanent AdjustmentsDistance MeasurementGeneralTape MeasurementsOptical Methods (Tachymetry)Electromagnetic Distance Measurement (EDM)Ultrasonic MethodsGNSSLevellingTheoryThe InstrumentTechniqueBookingPermanent Adjustmen

  1. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.


    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  2. Comments on Current Space Systems Observing the Climate (United States)

    Fisk, L. A.


    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  3. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.


    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  4. An observational study of defensible space in the neighbourhood park (United States)

    Marzukhi, M. A.; Afiq, M. A.; Zaki, S. Ahmad; Ling, O. H. L.


    The planning of neighborhood park is important to provide space for interaction, leisure, and recreation among residents in any neighbourhood area. However, on an almost daily basis, newspapers report inappropriate incidents such as snatch theft, robbery and street attack that occurred in the neighborhood park. These cases reflect the significance of physical planning and design of neighborhood park that directly affect the safety and comfort of the users. Thus, this study attempts to engage with the defensible space concept in ensuring the security elements be applied in the planning of the recreational area. This study adopts a qualitative method form of research that is retrofitted to an observational study. The observational study is significant for revealing the condition of a neighbourhood park in the ‘real-world,’ in which direct observation is conducted on Taman Tasik Puchong Perdana. The observer focused on four elements or variables of defensible space concept including the provision of facilities in the neighborhood park, territoriality, surveillance, image and milieu. The findings revealed that the planning of Taman Tasik Puchong Perdana does not deliberate the defensible space elements, which may contribute to the crime activities in the park. In these circumstances, the planning of neighbourhood park needs to include proposals for the implementation of defensible space in response to the challenges underpinned by crime problems. Besides, the awareness among the residents needs to be emphasized with the support from local authorities and other organizations to manage and sustain the safety environment in the neighborhood park.

  5. Confined space ventilation by shipyard welders: observed use and effectiveness. (United States)

    Pouzou, Jane G; Warner, Chris; Neitzel, Richard L; Croteau, Gerry A; Yost, Michael G; Seixas, Noah S


    Shipbuilding involves intensive welding activities within enclosed and confined spaces, and although ventilation is commonly used in the industry, its use and effectiveness has not been adequately documented. Workers engaged in welding in enclosed or confined spaces in two shipyards were observed for their use of ventilation and monitored for their exposure to particulate matter. The type of ventilation in use, its placement and face velocity, the movement of air within the space, and other ventilation-related parameters were recorded, along with task characteristics such as the type of welding, the welder's position, and the configuration of the space. Mechanical ventilation was present in about two-thirds of the 65 welding scenarios observed, with exhaust ventilation used predominantly in one shipyard and supply blowers predominantly in the other. Welders were observed working in apparent dead-spaces within the room in 53% of the cases, even where ventilation was in use. Respiratory protection was common in the two shipyards, observed in use in 77 and 100% of the cases. Welding method, the proximity of the welder's head to the fume, and air mixing were found to be significantly associated with the welder's exposure, while other characteristics of dilution ventilation did not produce appreciable differences in exposure level. These parameters associated with exposure reduction can be assessed subjectively and are thus good candidates for training on effective ventilation use during hot work in confined spaces. Ventilation used in confined space welding is often inadequate for controlling exposure to welding fume. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. Determining Coastal Mean Dynamic Topography by Geodetic Methods (United States)

    Huang, Jianliang


    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  7. Earth Observation from Space - The Issue of Environmental Sustainability (United States)

    Durrieu, Sylvie; Nelson, Ross F.


    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  8. Solar System Observations with the James Webb Space Telescope


    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre


    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  9. Observer-dependent quantum vacua in curved space. II

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.


    An observer-dependent Hamiltonian is introduced in order to describe massless spin-1 particles in curved space-times. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which turns out to be equivalent criteria. This method works in an arbitrary geometry, although a condition on the fluid of observers is required. Computations give the vacua commonly accepted in the literature

  10. Quantum tomography, phase-space observables and generalized Markov kernels

    International Nuclear Information System (INIS)

    Pellonpaeae, Juha-Pekka


    We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.

  11. The First Simultaneous Microlensing Observations by Two Space telescopes

    DEFF Research Database (Denmark)

    Shvartzvald, Y.; Li, Z.; Udalski, A.


    study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift could not measure the microlens parallax with respect to ground-based observations for this event, it can be important for other events. Specifically, it is important for detecting nearby brown dwarfs...

  12. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server


    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  13. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.


    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  14. Space observations for global and regional studies of the biosphere (United States)

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.


    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  15. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  16. GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpN2O) contains zonal means and related...

  17. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  18. GOZCARDS Source Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpHNO3) contains zonal means and related...

  19. GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpN2O) contains zonal means and related...

  20. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  1. GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHCl) contains zonal means and related...

  2. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  3. GOZCARDS Merged Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01 (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHNO3) contains zonal means and related...

  4. Agile Big Data Analytics of High-Volume Geodetic Data Products for Improving Science and Hazard Response (United States)

    National Aeronautics and Space Administration — Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The...

  5. Optical observations on critical ionization velocity experiments in space

    International Nuclear Information System (INIS)

    Stenbaek-Nielsen, H.C.


    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O + . This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  6. Humanly space objects-Perception and connection with the observer (United States)

    Balint, Tibor S.; Hall, Ashley


    Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity

  7. Multi-satellite observations of magnetic fields in space plasmas

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.


    The most common method of detecting electric currents in space has been by virtue of the magnetic perturbations they produce. A satellite can pass through a field-aligned ''Birkeland'' current and measure the in-situ magnetic perturbations. Satellite-borne magnetic field experiments may also be used to observe characteristics of resonant oscillations of the Earth's magnetic field at ULF frequencies. Examples of such measurements with magnetic field experiments on the Viking, AMPTE/CCE, and DMSP-F7 satellites will be presented. The Viking satellite, launched in February, 1986, is Sweden's first satellite and is in a polar orbit with 3.1 R/sub e/ apogee. AMPTE/CCE was launched in August, 1984, with satellites from West Germany and the United Kingdom, for the purpose of creating artificial comets in space. It is in an equatorial orbit with a 8.8 R/sub e/ apogee. The Defense Meteorological Satellite Program (DMSP)-F7 satellite was launched in October, 1983 into an 800 km circular sun-synchronous orbit in the 0830-2030 magnetic local time plane. Viking and AMPTE/CCE observed harmonic ULF pulsations when they were near the same flux tube, but separated by about 10 R/sub e/. These unique observations are used to investigate the characteristics and sources of multiple field line resonances of Alfven waves. On another occasion, Viking and DMSP-F7 observed similar magnetic perturbations at widely separated locations. The authors interpret these perturbations as due to a complicated system of large-scale stable Birkeland currents in the morning sector. This multi-satellite data set is in the early stages of exploration, but already confirms the usefulness of coordinated multi-position observations of magnetic fields in space

  8. Stability of Global Geodetic Results (United States)

    Herring, T.

    The precision of global geodetic techniques has reached unprecedented levels. Sys- tems capable of millimeter level horizontal and several millimeter vertical precisions are now deployed. The Global Positioning System (GPS) has the most deployed continuously-operating receivers with several hundred providing data through the in- ternet for analysis. However, the satellite system used with GPS evolves with time as new generations of GPS satellites are launched. During the 1990's, the constellation evolved from Block I to Block II and IIA with the most recent generation being Block IIR. There are considerable differences in the size and antenna configurations in the different generations of satellites. The antenna configuration specifically could cause systematic changes in the terrestrial reference system. Results from the ITRF2000 combinations suggest that there are significant time variations in the scale of GPS system possibly due to phase center variations in GPS transmission antennas. These variations could result in height changes of up to 3 mm/yr. We will investigate the stability of the GPS system through combination of GPS results with results from VLBI and SLR. All components of the transformation between the systems, rotation, translation and scale will be investigated.

  9. Atmospheric Variability of CO2 impact on space observation Requirements (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.


    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  10. Next Generation NASA Initiative for Space Geodesy (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide


    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  11. Batman flies: a compact spectro-imager for space observation (United States)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane


    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and

  12. Ground and space observations of medium frequency auroral radio emissions (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  13. Solar System Observations with the James Webb Space Telescope (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide


    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  14. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font


    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  15. An Overview of Geodetic Volcano Research in the Canary Islands (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe


    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  16. Automated Detection of Small Bodies by Space Based Observation (United States)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  17. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission (United States)


    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  18. The impacts of source structure on geodetic parameters demonstrated by the radio source 3C371 (United States)

    Xu, Ming H.; Heinkelmann, Robert; Anderson, James M.; Mora-Diaz, Julian; Karbon, Maria; Schuh, Harald; Wang, Guang L.


    Closure quantities measured by very-long-baseline interferometry (VLBI) observations are independent of instrumental and propagation instabilities and antenna gain factors, but are sensitive to source structure. A new method is proposed to calculate a structure index based on the median values of closure quantities rather than the brightness distribution of a source. The results are comparable to structure indices based on imaging observations at other epochs and demonstrate the flexibility of deriving structure indices from exactly the same observations as used for geodetic analysis and without imaging analysis. A three-component model for the structure of source 3C371 is developed by model-fitting closure phases. It provides a real case of tracing how the structure effect identified by closure phases in the same observations as the delay observables affects the geodetic analysis, and investigating which geodetic parameters are corrupted to what extent by the structure effect. Using the resulting structure correction based on the three-component model of source 3C371, two solutions, with and without correcting the structure effect, are made. With corrections, the overall rms of this source is reduced by 1 ps, and the impacts of the structure effect introduced by this single source are up to 1.4 mm on station positions and up to 4.4 microarcseconds on Earth orientation parameters. This study is considered as a starting point for handling the source structure effect on geodetic VLBI from geodetic sessions themselves.

  19. Explicitly computing geodetic coordinates from Cartesian coordinates (United States)

    Zeng, Huaien


    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  20. Earth observations from space: History, promise, and reality. Executive summary (United States)


    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  1. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H


    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  2. NASA's Next Generation Space Geodesy Network (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide


    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  3. GeoSEA: Geodetic Earthquake Observatory on the Seafloor (United States)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin


    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  4. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations (United States)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney


    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  5. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.


    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  6. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges (United States)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.


    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  7. Research in Application of Geodetic GPS Receivers in Time Synchronization (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.


    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least


    Directory of Open Access Journals (Sweden)

    Q. Zhang


    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  9. Estimation of Skin to Subarachnoid Space Depth: An Observational Study. (United States)

    Hazarika, Rajib; Choudhury, Dipika; Nath, Sangeeta; Parua, Samit


    In a patient, the skin to Subarachnoid Space Depth (SSD) varies considerably at different levels of the spinal cord. It also varies from patient to patient at the same vertebral level as per age, sex and Body Mass Index (BMI). Estimation of the skin to SSD reduces complications related to spinal anaesthesia. To measure the skin to SSD in the Indian population and to find a formula for predicting this depth. Three hundred adult patients belonging to American Society of Anaesthesiologist class I and II, undergoing surgery using spinal anaesthesia in various surgical specialities of Gauhati Medical College were selected by systemic sampling for this prospective, observational study. Patients were divided into three groups: Group M containing male patients, Group F containing non-pregnant female patients, and Group PF containing pregnant female's patients. SSD was measured after performing lumbar puncture. The relationship between SSD and patient characteristics were studied, correlated and statistical analysis was used to find a formula for predicting the skin to SSD. Statistical analysis was done using Statistical Package for Social Sciences (SPSS 21.0, Chicago, IL, USA). One-way ANOVA with post-hoc(Bonferroni correction factor) analysis was applied to compare the three groups. Multivariate analysis was done for the covariates followed by a multivariate regression analysis to evaluate the covariates influencing SSD for each group separately. Mean SSD was 4.37±0.31cm in the overall population. SSD in adult males was 4.49±0.19cm which was significantly longer than that observed in female's 4.18±0.39cm which was comparable with SSD in parturient 4.43±0.19 cm. The formula for predicting the skin to SSD in the male population was 1.718+0.077×BMI+0.632×Height, in nonpregnant female population was 1.828+0.077×BMI+0.018×Height+0.007×Age and 0.748+0.209×BMI+4.703×Height-0.054×weight in parturient females, respectively. Skin to SSD correlated with the BMI in all

  10. Observing the Anthropocene from Space: Challenges and Needs (United States)

    Burrows, John


    The rapid growth of human population since the industrial revolution has been coupled with a much increased standard of living and bountiful production of food. The dominant energy source sustaining this development has been fossil fuel combustion. However this has resulted in pollution which now spans all scales. There have significant impacts on air quality, water quality, stratospheric ozone and climate. The impacts can sudden and large and also slowly accumulate over time in the long term. The first decades of the space age resulted in pioneering efforts to establish adequate measurement capability. This process is continuing to evolve. Over the past two decades there have been a number of efforts to define the contribution and needs for a space segment which can separate anthropogenic form natural changes in the earth system. This talk introduces this topic of the use of the space segment to deconvolve change from anthropogenic activity and natural phenomena.

  11. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.


    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  12. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel


    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  13. Geodetic Imaging: Expanding the Boundaries of Geodesy in the 21st Century (United States)

    Fernandez Diaz, J. C.; Carter, W. E.; Shrestha, R. L.; Glennie, C. L.


    High resolution (sub-meter) geodetic images covering tens to thousands of square kilometers have extended the boundaries of geodesy into related areas of the earth sciences, such as geomorphology and geodynamics, during the past decade, to archaeological exploration and site mapping during the past few years, and are now poised to transform studies of flora and fauna in the more remote regions of the world. Geodetic images produced from airborne laser scanning (ALS), a.k.a. airborne light detection and ranging (LiDAR) have proven transformative to the modern practice of geomorphology where researchers have used decimeter resolution digital elevation models (DEMs) to determine the spatial frequencies of evenly spaced features in terrain, and developed models and mathematical equations to explain how the terrain evolved to its present state and how it is expected to change in the future (Perron et al., 2009). In geodynamics researchers have used ';before' and ';after' geodetic images of the terrain near earthquakes, such as the 2010 El Mayor-Cucapah Earthquake, to quantify surface displacements and suggest models to explain the observed deformations (Oskin et. al., 2012). In archaeology, the ability of ALS to produce ';bare earth' DEMs of terrain covered with dense vegetation, including even tropical rain forests, has revolutionized the study of archaeology in highly forested areas, finding ancient structures and human modifications of landscapes not discovered by archaeologists working at sites for decades (Chase et al., 2011 & Evans et al., 2013), and finding previously unknown ruins in areas that ground exploration has not been able to penetrate since the arrival of the conquistadors in the new world in the 17th century (Carter et al., 2012). The improved spatial resolution and ability of the third generation ALS units to obtain high resolution bare earth DEMs and canopy models in areas covered in dense forests, brush, and even shallow water (steams, lakes, and

  14. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.


    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  15. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project (United States)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.


    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at project, supported by the French Agence Nationale de la Recherche (ANR) for the period

  16. An Astrosocial Observation: The Nobel Connection to the Space Program (United States)

    Ng, Edward W.; Nash, Rebecca L.


    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  17. Observing power blackouts from space - A disaster related study (United States)

    Aubrecht, C.; Elvidge, C. D.; Ziskin, D.; Baugh, K. E.; Tuttle, B.; Erwin, E.; Kerle, N.


    In case of emergency disaster managers worldwide require immediate information on affected areas and estimations of the number of affected people. Natural disasters such as earthquakes, hurricanes, tornados, wind and ice storms often involve failures in the electrical power generation system and grid. Near real time identification of power blackouts gives a first impression of the area affected by the event (Elvidge et al. 2007), which can subsequently be linked to population estimations. Power blackouts disrupt societal activities and compound the difficulties associated with search and rescue, clean up, and the provision of food and other supplies following a disastrous event. Locations and spatial extents of power blackouts are key considerations in planning and execution of the primary disaster missions of emergency management organizations. To date only one satellite data source has been used successfully for the detection of power blackouts. Operated by NOAA's National Geophysical Data Center (NGDC) the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) offers a unique capability to observe lights present at the Earth's surface at night. Including a pair of visible and thermal spectral bands and originally designed to detect moonlit clouds, this sensor enables mapping of lights from cities and towns, gas flares and offshore platforms, fires, and heavily lit fishing boats. The low light imaging of the OLS is accomplished using a photomultiplier tube (PMT) which intensifies the visible band signal at night. With 14 orbits collected per day and a 3.000 km swath width, each OLS is capable of collecting a complete set of images of the Earth every 24 hours. NGDC runs the long-term archive for OLS data with the digital version extending back to 1992. OLS data is received by NGDC in near real time (1-2 hours from acquisition) and subscription based services for the near real time data are provided for users all over the

  18. Fermi Coordinates of an Observer Moving in a Circle in Minkowski Space: Apparent Behavior of Clocks

    National Research Council Canada - National Science Library

    Bahder, Thomas


    Space-time coordinate transformations valid for arbitrarily long coordinate time are derived from global Minkowski coordinates to the Fermi coordinates of an observer moving in a circle in three-dimensional space...

  19. Earth observations from space: the first 50 years of scientific achievements

    National Research Council Canada - National Science Library

    Committee on Scientific Accomplishments of Earth Observations from Space, National Research Council

    .... At the request of the National Aeronautics and Space Administration, the National Research Council convened a committee to examine the scientific accomplishments that have resulted from space-based observations...

  20. Observing the Ocean from Space: Emerging Capabilities in Europe


    Johannessen, Johnny A.; Le Provost, Christian; Drange, Helge; Srokosz, Meric; Woodworth, Philip; Sclüssel, Peter; Le Grand, Pascal; Kerr, Yann; Wingham, Duncan; Rebhan, Helge


    Chap. 2.7 of "Observing the Oceans in the 21st Century, Chester J. Koblinsky and Neville R. Smith (Eds.)" During the first decade of the 21st century Earth observation from satellites will be faced with two major demands: provision of continuity missions and launch of new exploratory missions. This paper addresses European plans for new Earth observations in the context of Ocean Observing System for Climate at the onset of this new millennium. It...

  1. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake (United States)

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,


    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  2. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones (United States)

    Williamson, A.; Newman, A. V.


    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  3. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products (United States)

    Driver, J. M.


    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  4. Observer-dependent quantum vacua in curved space

    International Nuclear Information System (INIS)

    Castagnino, M.; Ferraro, R.


    An observer-dependent Hamiltonian is introduced. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which result to be equivalent criteria. This method encompasses a great number of known vacuum definitions, and works in an arbitrary geometry if the observer's field satisfies certain properties

  5. Micro-satellite for space debris observation by optical sensors (United States)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry


    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  6. Stennis Space Center observes 2009 Safety and Health Day (United States)


    Sue Smith, a medical clinic employee at NASA's John C. Stennis Space Center, takes the temperature of colleague Karen Badon during 2009 Safety and Health Day activities Oct. 22. Safety Day activities included speakers, informational sessions and a number of displays on safety and health issues. Astronaut Dominic Gorie also visited the south Mississippi rocket engine testing facility during the day to address employees and present several Silver Snoopy awards for outstanding contributions to flight safety and mission success. The activities were part of an ongoing safety and health emphasis at Stennis.

  7. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (United States)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  8. Online POMDP Algorithms for Very Large Observation Spaces (United States)


    problems: a road network with some roads that may be blocked, as well as the reduction from optimal decision tree (ODT) problem that is used to show that...UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Partially Observable Markov Decision Process (POMDP) provides a mathematically elegant...Observable Markov Decision Process (POMDP) provides a mathematically elegant modeling tool for planning and control under uncertainty. Substantial progress

  9. An attempt to evaluate horizontal crustal movement by geodetic and geological approach in the Horonobe area, Northern Hokkaido, Japan

    International Nuclear Information System (INIS)

    Tokiwa, Tetsuya; Niizato, Tadafumi; Nohara, Tsuyoshi; Asamori, Koichi; Matsuura, Yuki; Kosaka, Hideki


    In this study, we present the preliminary results for the estimation of a horizontal crustal movement by using geodetic and geological approach in the Horonobe area, northern Hokkaido, Japan. The estimations have been carried out by using a GPS data and a geological cross section obtained by applying balanced-section method. As results of this study, both of the shortening rates estimated by GPS data and balanced-section method indicate several millimeters per year. Namely, there is no contradiction between geodetic and geological data, and it is considered that Horonobe area is still situated similar tendency and magnitude of a crustal movement. It is seemingly considered that geodetic data is unhelpful for estimating the long-term crustal movement, because period of geodetic observations is a very short. However, the result of this study indicates that geodetic data provide valuable information for estimating the long-term crustal movement in the area, and it is considered that geodetic approach play an important role in improvement of the credibility of evaluation for prediction of long-term stability. (author)

  10. "New Space Explosion" and Earth Observing System Capabilities (United States)

    Stensaas, G. L.; Casey, K.; Snyder, G. I.; Christopherson, J.


    This presentation will describe recent developments in spaceborne remote sensing, including introduction to some of the increasing number of new firms entering the market, along with new systems and successes from established players, as well as industry consolidation reactions to these developments from communities of users. The information in this presentation will include inputs from the results of the Joint Agency Commercial Imagery Evaluation (JACIE) 2017 Civil Commercial Imagery Evaluation Workshop and the use of the US Geological Survey's Requirements Capabilities and Analysis for Earth Observation (RCA-EO) centralized Earth observing systems database and how system performance parameters are used with user science applications requirements.

  11. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  12. Observing Storm Surges from Space: A New Opportunity (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy


    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  13. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain


    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  14. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations (United States)

    Fisher, G.; Jones, B.


    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  15. Midcourse Space Experiment Observations of Small Solar System Bodies (United States)

    Kraemer, Kathleen E.; Lisse, C. M.; Price, Stephan D.; Mizuno, D.; Walker, R. G.; Farnham, T. L.; Mäkinen, T.


    Eight comets, two transition objects (extinct comet candidates), and two near-Earth asteroids were imaged in four infrared bands with the SPIRIT III instrument on the Midcourse Space Experiment, namely, C/1996 B2 (Hyakutake), C/1995 O1 (Hale-Bopp), C/1996 Q1 (Tabur), 126P/IRAS, 22P/Kopff, 46P/Wirtanen, (3200) Phaethon, (4015) 107P/Wilson-Harrington, (4179) Toutatis, (4197) 1982 TA, 125P/Spacewatch, and 55P/Tempel-Tuttle. We present maps of each object detected and a description of their characteristics. Five of the comets had extended dust tails, all of which show evidence for silicate emission in the 8.3 μm band. The comet C/Hyakutake had a strong secondary dust tail along the direction of the comet's motion, which the dynamical models showed was consistent with emission from large particles. The dust trail from P/Kopff was detected more than 2° from the coma in three of the four bands and is probably composed of large particles emitted during the 1996 apparition.

  16. Contrail observations from space using NOAA-AVHRR data

    Energy Technology Data Exchange (ETDEWEB)

    Mannstein, H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere


    The infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) onboard of the weather satellites of the NOAA series allow the detection of contrails. An automated detection scheme is described and tested against computer aided visual classifications by two experts. The algorithm seems to identify contrails within the satellite data with a skill comparable to the human observers. Clusters of contrails within the satellite images are connected to outline regions where the atmospheric properties are favourable for the existence of observable contrails. Air traffic data shows that, over Middle Europe at least, in the main flight levels most of these regions should be marked by detectable contrails. The mean areal coverage of these regions is estimated to be in the range of 10% to 20%, the cloud coverage by detected contrails was 0.9% in 60 AVHRR scenes covering Central Europe. (author) 3 refs.

  17. Climate Trends in the Arctic as Observed from Space (United States)

    Comiso, Josefino C.; Hall, Dorothy K.


    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be approx. 0.60+/-0.07 C/decade in the Arctic (>64degN) compared to approx. 0.17 C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of approx. 3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of approx.11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of approx. 34.0Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of approx. 215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented.

  18. Climate trends in the Arctic as observed from space. (United States)

    Comiso, Josefino C; Hall, Dorothy K


    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article: WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277.

  19. Global Trends of Tropospheric NO2 Observed From Space (United States)

    Schneider, P.; van der A, R. J.


    Nitrogen Dioxide (NO2) is one of the major atmospheric pollutants and is primarily emitted by industrial activity and transport. While observations of NO2 are frequently being carried out at air quality stations, such measurements are not able to provide a global perspective of spatial patterns in NO2 concentrations and their associated trends due to the stations' limited spatial representativity and an extremely sparse and often completely non-existent station coverage in developing countries. Satellite observations of tropospheric NO2 are able to overcome this issue and provide an unprecedented global view of spatial patterns in NO2 levels and due to their homogeneity are well suited for studying trends. Here we present results of a global trend analysis from nearly a decade of NO2 observations made by the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) instrument onboard the Envisat satellite platform. Using only SCIAMACHY data allows for mapping global and regional trends at an unprecedented spatial resolution since no aggregation to the coarser resolution of other sensors is necessary. Monthly average tropospheric NO2 column data was acquired for the period between August 2002 and August 2011. A trend analysis was subsequently performed by fitting a statistical model including a seasonal cycle and linear trend to the time series extracted at each grid cell. The linear trend component and the trend uncertainty were then mapped spatially at both regional and global scales. The results show that spatially contiguous areas of significantly increasing NO2 levels are found primarily in Eastern China, with absolute trends of up to 4.05 (± 0.41) - 1015 molecules cm-2 yr-1 at the gridcell level and large areas showing rapid relative increases of 10-20 percent per year. In addition, many urban agglomerations in Asia and the Middle East similarly exhibit significantly increasing trends, with Dhaka in Bangladesh being the megacity with

  20. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.


    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  1. Earth Observations from Space: The First 50 Years of Scientific Achievements (United States)


    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  2. Geodetic achievement and avoidance games for graphs | Haynes ...

    African Journals Online (AJOL)

    Let G = (V,E) be a nontrivial connected graph. For a subset S ⊆ V, the geodesic closure (S) of S is the set of all vertices on geodesics (shortest paths) between two vertices of S. We study the geodetic achievement and avoidance games defined by Buckley and Harary (Geodetic games for graphs, Quaestiones Math.

  3. Linking water and carbon cycles through salinity observed from space (United States)

    Xie, X.; Liu, W. T.


    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  4. Establishment of 2000 National Geodetic Control Network of China and It’s Technological Progress

    Directory of Open Access Journals (Sweden)

    CHEN Junyong


    Full Text Available Objectives: 2000’ National Geodetic Control Network of China is an important fundamental scientific engineering project in China. It consists of three parts which are establishment of 2000 National GPS Geodetic Network, its combination adjustment with national astro-geodetic network and 2000 National Gravity Fundamental network. It provides the high precise coordinate reference and gravity reference for three dimensional geo-center national coordinates system and gravity system, respectively. Additionally, it provides precise unified geometric and physical geodesy information for the economic construction, the national defense and the scientific research. Methods: 1. The larger number of data are processed in triple networks adjustment of 2000 National GPS Geodetic Network, which are chosen from the GPS monitoring stations, such as grade A, B of national GPS network , grade 1st and 2nd of national GPS network, crustal movement observation network of China, and others crustal deformation monitoring stations. Finally, the data of 2666 GPS stations are used in the data processing of 2000 National GPS Geodetic Network, including 124 external stations and 2542 internal stations. In order to the results of triple networks adjustment are corresponding to that of three dimensional geo-center coordinates system, ITRF 97 and epoch 2000.0 are chosen as the coordinate reference frame and epoch reference, respectively. The methods of “strong reference” and “weak reference” are combined used in the control data selection of triple networks adjustment. The scale and rotation scales are adopted for each sub network. The least square adjustment is firstly adopted in each sub network adjustment. The data of obvious abnormal baselines are found and rejected firstly. And the method of double factor robust estimation is adopted in the data processing. 2. The combined adjustment of 2000 National GPS Geodetic Network and national astro-geodetic network is

  5. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Directory of Open Access Journals (Sweden)

    Wyszkowska Patrycja


    Full Text Available The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  6. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations (United States)

    Wyszkowska, Patrycja


    The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  7. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth (United States)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.


    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  8. Introducing a New Software for Geodetic Analysis (United States)

    Hjelle, Geir Arne; Dähnn, Michael; Fausk, Ingrid; Kirkvik, Ann-Silje; Mysen, Eirik


    At the Norwegian Mapping Authority, we are currently developing Where, a new software for geodetic analysis. Where is built on our experiences with the Geosat software, and will be able to analyse and combine data from VLBI, SLR, GNSS and DORIS. The software is mainly written in Python which has proved very fruitful. The code is quick to write and the architecture is easily extendable and maintainable, while at the same time taking advantage of well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where, including benchmarks against other software packages, and outline our plans for further progress. In addition we will report on some investigations we have done experimenting with alternative weighting strategies for VLBI.

  9. Geodetic antenna calibration test in the Antarctic environment (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.


    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  10. Analyzing the capability of a radio telescope in a bistatic space debris observation system

    International Nuclear Information System (INIS)

    Zhao Zhe; Zhao You; Gao Peng-Qi


    A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China

  11. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties (United States)

    Bagnardi, M.; Hooper, A. J.


    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform

  12. First Space VLBI Observations and Images Using the VLBA and VSOP (United States)

    Romney, J. D.; Benson, J. M.; Claussen, M. J.; Desai, K. M.; Flatters, C.; Mioduszewski, A. J.; Ulvestad, J. S.


    The National Radio Astronomy Observatory (NRAO) is a participant in the VSOP Space VLBI mission, an international collaboration led by Japan's Institute of Space and Astronautical Science. NRAO has committed up to 30% of scheduled observing time on the Very Long Baseline Array (VLBA), and corresponding correlation resources, to Space VLBI observations. The NRAO Space VLBI Project, funded by NASA, has been working for several years to complete the necessary enhancements to the VLBA correlator and the AIPS image processing system. These developments were completed by the time of the successful launch of the VSOP mission's Halca spacecraft on 1997 February 12. As part of the in-orbit checkout phase, the first Space VLBI fringes from a VLBA observation were detected on 1997 June 12, and the VSOP mission's first images, in both the 1.6- and 5-GHz bands, were obtained shortly thereafter. In-orbit test observations continued through early September, with the first General Observing Time (GOT) scientific observations beginning in July. Through mid-October, a total of 20 Space VLBI observations, comprising 190 hours, had been completed at the VLBA correlator. This paper reviews the unique features of correlation and imaging of Space VLBI observations. These include, for correlation, the ephemeris for an orbiting VLBI ``station'' which is not fixed on the surface of the earth, and the requirement to close the loop on the phase-transfer process from a frequency standard on the ground to the spacecraft. Images from a number of early tests and scientific observations are presented. NRAO's user-support program, providing expert assistance in data analysis to Space VLBI observers, is also described.

  13. Earth observation space programmes, SAFISY activities, strategies of international organisations, legal aspects. Volume 3

    International Nuclear Information System (INIS)


    This volume is separated in four sessions. First part is on earth observation space programmes (international earth observation projects and international collaboration, the ERS-1, SPOT and PRIRODA programmes, the first ESA earth observation polar platform and its payload, the future earth observation remote sensing techniques and concepts). The second part is on SAFISY activities (ISY programmes, education and applications, demonstrations and outreach projects). The third part is on programme and strategies of international organisations with respect to earth observation from space. The fourth part is on legal aspects of the use of satellite remote sensing data in Europe. (A.B.). refs., figs., tabs

  14. Using and Experiencing the Academic Library: A Multisite Observational Study of Space and Place (United States)

    May, Francine; Swabey, Alice


    This study examines how students are using academic library spaces and the role these spaces are playing in the campus community. Data were collected on five campuses (two community colleges, two undergraduate universities, and one technical institute) via observational seating sweeps and questionnaires. The study found remarkably similar usage…

  15. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic


    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  16. NASA's Next Generation Space Geodesy Program (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide


    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  17. Observing floods from space: Experience gained from COSMO-SkyMed observations (United States)

    Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L.


    The COSMO-SkyMed mission offers a unique opportunity to obtain all weather radar images characterized by short revisit time, thus being useful for flood evolution mapping. The COSMO-SkyMed system has been activated several times in the last few years in occasion of flood events all over the world in order to provide very high resolution X-band SAR images useful for flood detection purposes. This paper discusses the major outcomes of the experience gained, within the framework of the OPERA Pilot Project funded by the Italian Space Agency, from using COSMO-SkyMed data for the purpose of near real time generation of flood maps. A review of the mechanisms which determine the imprints of the inundation on the radar images and of the fundamental simulation tools able to predict these imprints and help image interpretation is provided. The approach developed to process the data and to generate the flood maps is also summarized. Then, the paper illustrates the experience gained with COSMO-SkyMed by describing and discussing a number of significant examples. These examples demonstrate the potential of the COSMO-SkyMed system and the suitability of the approach developed for generating the final products, but they also highlight some critical aspects that require further investigations to improve the reliability of the flood maps.

  18. Added-value joint source modelling of seismic and geodetic data (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank


    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  19. Aerosol and cloud observations from the Lidar In-space Technology Experiment (United States)

    Winker, D. M.


    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  20. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations (United States)

    Eckman, Richard S.


    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  1. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.


    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  2. Geodetic Control Points - Multi-State Control Point Database (United States)

    NSGIC State | GIS Inventory — The Multi-State Control Point Database (MCPD) is a database of geodetic and mapping control covering Idaho and Montana. The control were submitted by registered land...

  3. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations (United States)

    Kaufman, Y.


    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  4. Geodetic analysis of disputed accurate qibla direction (United States)

    Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah


    Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.

  5. Using the SPICE system to help plan and interpret space science observations (United States)

    Acton, Charles H., Jr.


    A portable multimission information system named SPICE is used to assemble, archive, and provide easy user access to viewing geometry and other ancillary information needed by space scientists to interpret observations of bodies within our solar system. The modular nature of this system lends it to use in planning such observations as well. With a successful proof of concept on Voyager, the SPICE system has been adapted to the Magellan, Galileo and Mars Observer missions, and to a variety of ground based operations. Adaptation of SPICE for Cassini and the Russian Mars 94/96 projects is underway, and work on Cassini will follow, SPICE has been used to support observation planning for moving targets on the Hubble Space Telescope Project. Applications for SPICE on earth science, space physics and other astrophysics missions are under consideration.

  6. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations (United States)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay


    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  7. Geodetic Measurements and Numerical Modeling of the Deformation Cycle for Okmok Volcano, Alaska: 1993-2008 (United States)

    Ohlendorf, S. J.; Feigl, K.; Thurber, C. H.; Lu, Z.; Masterlark, T.


    Okmok Volcano is an active caldera located on Umnak Island in the Aleutian Island arc. Okmok, having recently erupted in 1997 and 2008, is well suited for multidisciplinary studies of magma migration and storage because it hosts a good seismic network and has been the subject of synthetic aperture radar (SAR) images that span the recent eruption cycle. Interferometric SAR can characterize surface deformation in space and time, while data from the seismic network provides important information about the interior processes and structure of the volcano. We conduct a complete time series analysis of deformation of Okmok with images collected by the ERS and Envisat satellites on more than 100 distinct epochs between 1993 and 2008. We look for changes in inter-eruption inflation rates, which may indicate inelastic rheologic effects. For the time series analysis, we analyze the gradient of phase directly, without unwrapping, using the General Inversion of Phase Technique (GIPhT) [Feigl and Thurber, 2009]. This approach accounts for orbital and atmospheric effects and provides realistic estimates of the uncertainties of the model parameters. We consider several models for the source, including the prolate spheroid model and the Mogi model, to explain the observed deformation. Using a medium that is a homogeneous half space, we estimate the source depth to be centered at about 4 km below sea level, consistent with the findings of Masterlark et al. [2010]. As in several other geodetic studies, we find the source to be approximately centered beneath the caldera. To account for rheologic complexity, we next apply the Finite Element Method to simulate a pressurized cavity embedded in a medium with material properties derived from body wave seismic tomography. This approach allows us to address the problem of unreasonably large pressure values implied by a Mogi source with a radius of about 1 km by experimenting with larger sources. We also compare the time dependence of the

  8. A phase-space approach to atmospheric dynamics based on observational data. Theory and applications

    International Nuclear Information System (INIS)

    Wang Risheng.


    This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)

  9. Assimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters

    International Nuclear Information System (INIS)

    Brown, Kristen A.; Harlim, John


    In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable

  10. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.


    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  11. A telescope for observation from space of extreme lightnings in the upper atmosphere

    International Nuclear Information System (INIS)

    Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; Kim, Y.K.; Klimov, P.; Lee, J.; Lee, H.Y.; Na, G.W.; Oh, S.J.; Panasyuk, M.; Park, I.H.; Park, J.H.; Park, Y.-S.


    A new type of telescope with a wide field-of-view and functions of fast zoom-in has been introduced. Two kinds of MEMS (Micro-Electro-Mechanical Systems) micromirrors, digital and analog, are used for reflectors of the telescope, placed at different focal lengths. We apply this technology to the observation from space of TLE (Transient Luminous Events), extremely large transient sparks occurring at the upper atmosphere. TLE are one type of important backgrounds to be understood for future space observation of UHECR (Ultra-High Energy Cosmic Rays). The launch of the payload carried by a Russian microsatellite is foreseen in the middle of 2008

  12. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods

    Directory of Open Access Journals (Sweden)

    Inés Dussaillant


    Full Text Available We compare two independent estimates of the rate of elevation change and geodetic mass balance of the Northern Patagonian Icefield (NPI between 2000 (3,856 km2 and 2012 (3,740 km2 from space-borne data. The first is obtained by differencing the Shuttle Radar Topography Mission (SRTM digital elevation model (DEM from February 2000 and a Satellite pour l'Observation de la Terre 5 (SPOT5 DEM from March 2012. The second is deduced by fitting pixel-based linear elevation trends over 118 DEMs calculated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo images acquired between 2000 and 2012. Both methods lead to similar and strongly negative icefield-wide mass balance rates of −1.02 ± 0.21 and −1.06 ± 0.14 m w.e. yr−1 respectively, which is in agreement with earlier studies. Contrasting glacier responses are observed, with individual glacier mass balance rates ranging from −0.15 to −2.30 m w.e. yr−1 (standard deviation = 0.49 m w.e. yr−1; N = 38. For individual glaciers, the two methods agree within error bars, except for small glaciers poorly sampled in the SPOT5 DEM due to clouds. Importantly, our study confirms the lack of penetration of the C-band SRTM radar signal into the NPI snow and firn except for a region above 2,900 m a.s.l. covering <1% of the total area. Ignoring penetration would bias the mass balance by only 0.005 m w.e. yr−1. A strong advantage of the ASTER method is that it relies only on freely available data and can thus be extended to other glacierized areas.

  13. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.


    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  14. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush


    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  15. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.


    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  16. Time Biases in laser ranging measurements; impacts on geodetic products (Reference Frame and Orbitography) (United States)

    Belli, A.; Exertier, P.; Lemoine, F. G.; Chinn, D. S.; Zelensky, N. P.


    The GGOS objectives are to maintain a geodetic network with an accuracy of 1 mm and a stability of 0.1 mm per year. For years, the laser ranging technique, which provide very accurate absolute distances to geodetic targets enable to determine the scale factor as well as coordinates of the geocenter. In order to achieve this goal, systematic errors appearing in the laser ranging measurements must be considered and solved. In addition to Range Bias (RB), which is the primary source of uncertainty of the technique, Time Bias (TB) has been recently detected by using the Time Transfer by Laser Link (T2L2) space instrument capability on-board the satellite Jason-2. Instead of determining TB through the precise orbit determination that is applied to commonly used geodetic targets like LAGEOS to estimate global geodetic products, we have developed, independently, a dedicated method to transfer time between remote satellite laser ranging stations. As a result, the evolving clock phase shift to UTC of around 30 stations has been determined under the form of time series of time bias per station from 2008 to 2016 with an accuracy of 3-4 ns. It demonstrated the difficulty, in terms of Time & Frequency used technologies, to locally maintain accuracy and long term stability at least in the range of 100 ns that is the current requirement for time measurements (UTC) for the laser ranging technique. Because some laser ranging stations oftently exceed this limit (from 100 ns to a few μs) we have been studying these effects first on the precision orbit determination itself, second on the station positioning. We discuss the impact of TB on LAGEOS and Jason-2 orbits, which appears to affect the along-track component essentially. We also investigate the role of TB in global geodetic parameters as the station coordinates. Finally, we propose to provide the community with time series of time bias of laser ranging stations, under the form of a data- handling-file in order to be included in

  17. Cambridge observations at 38-115 MHz and their implications for space astronomy

    International Nuclear Information System (INIS)

    Saunders, R.


    The design and performance of the Cambridge LF telescopes are reviewed. Consideration is given to the 151-MHz 6C telescope, the 38-MHz and 151-MHz LF synthesis telescopes, 81.5-MHz interplanetary scintillation observations with the 3.6-hectare array, long-baseline interferometry at 81.5 MHz, and the use of the Jodrell Bank MERLIN for 151-MHz closure-phase observations of bright sources. The strict limitation on the field mappable at a given resolution in ground-based observations at these frequencies is pointed out, and some outstanding astronomical problems requiring 0.3-30-MHz space observations are listed. 7 references

  18. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models (United States)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  19. Approaching control for tethered space robot based on disturbance observer using super twisting law (United States)

    Hu, Yongxin; Huang, Panfeng; Meng, Zhongjie; Wang, Dongke; Lu, Yingbo


    Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.

  20. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide


    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  1. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela (United States)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.


    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  2. Observing at-surface irradiance and albedo from space : The Tibet experiment

    NARCIS (Netherlands)

    Roupioz, L.


    Monitoring the solar radiation budget on a daily basis is a prerequisite to study land surface processes, especially in climatology and hydrology, and in derived applications like drought early warning. Current space-born radiometers can provide daily observations to derive surface radiative fluxes

  3. VLBI Observations of Geostationary Satellites (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.


    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  4. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis (United States)

    Hofmeister, Armin; Böhm, Johannes


    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien., 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  5. Using observational methods to evaluate public open spaces and physical activity in Brazil. (United States)

    Hino A A, F; Reis, Rodrigo S; Ribeiro, Isabela C; Parra, Diana C; Brownson, Ross C; Fermino, Rogerio C


    Open public spaces have been identified as important facilities to promote physical activity (PA) at the community level. The main goals of this study are to describe open public spaces user's characteristics and to explore to what extent these characteristics are associated with PA behavior. A system of direct observation was used to evaluate the PA levels on parks and squares (smaller parks) and users's characteristics (gender and age). The 4 parks and 4 squares observed were selected from neighborhoods with different socioeconomic status and environmental characteristics. The settings were observed 3 times a day, 6 days per week, during 2 weeks. More men than women were observed in parks (63.1%) and squares (70.0%) as well as more adults and adolescents than older adults and children. Users were more physically active in parks (men = 34.1%, women = 36.1%) than in squares (men = 25.5%, women 22.8%). The characteristics of public open spaces may affect PA in the observed places. Initiatives to improve PA levels in community settings should consider users' characteristics and preferences to be more effective and reach a larger number of people.

  6. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy


    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  7. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari


    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  8. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari


    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  9. Learning characteristics of a space-time neural network as a tether skiprope observer (United States)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles


    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  10. Observation of Octupole Driven Resonance Phenomena with Space Charge at the CERN Proton Synchrotron

    CERN Document Server

    Métral, E; Martini, M; Steerenberg, R; Franchetti, Giuliano; Hofmann, I


    Several benchmarking space charge experiments have been performed during the last few years in the CERN Proton Synchrotron. These controlled experiments are of paramount importance to validate the present very powerful simulation codes. The observations of the combined effect of space charge and nonlinear resonance on beam loss and emittance, using a single controllable octupole during ~ 1 s at 1.4 GeV kinetic energy, are discussed in some detail in the present paper. By lowering the working point towards the octupolar resonance, a gradual transition from a regime of loss-free core emittance blow-up to a regime of continuous loss was found.

  11. Image processing improvement for optical observations of space debris with the TAROT telescopes (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.


    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  12. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state (United States)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey


    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  13. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva


    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  14. The magnetic field of the earth - Performance considerations for space-based observing systems (United States)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.


    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  15. Extreme covariant quantum observables in the case of an Abelian symmetry group and a transitive value space

    International Nuclear Information System (INIS)

    Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka


    We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.

  16. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station (United States)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.


    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  17. Prospects for Observing Ultracompact Binaries with Space-Based Gravitational Wave Interferometers and Optical Telescopes (United States)

    Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.


    Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.

  18. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite (United States)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave


    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  19. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory (United States)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia


    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  20. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo


    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)


    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai


    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  2. Hubble space telescope: The GO and GTO observing programs, version 3.0 (United States)

    Downes, Ron


    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  3. Verification of Positional Accuracy of ZVS3003 Geodetic Control ...

    African Journals Online (AJOL)

    The International GPS Service (IGS) has provided GPS orbit products to the scientific community with increased precision and timeliness. Many users interested in geodetic positioning have adopted the IGS precise orbits to achieve centimeter level accuracy and ensure long-term reference frame stability. Positioning with ...

  4. Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb

    Directory of Open Access Journals (Sweden)

    Slavomír Labant


    Full Text Available This article addresses the adjustment of a 3D geodetic network in the Dargovských Hrdinov suburbs using Global Navigation SatelliteSystems (GNSS for the purposes of deformation analysis. The advantage of using the GNSS compared to other terrestrial technology is thatit is not influenced by unpredictability in the ground level atmosphere and individual visibilities between points in the observed network arenot necessary. This article also includes the planning of GNSS observations using Planning Open Source software from Trimble as well assubsequent observations at individual network points. The geodetic network is processing on the basis of the Gauss-Markov model usingthe least square method and robust adjustment. From robust methods, Huber’s Robust M-estimation and Hampel’s Robust M-estimationwere used. Individual adjustments were tested and subsequently the results of analysis were graphically visualised using absolute confidenceellipsoids.

  5. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system. (United States)

    Liu, Z; Voelger, P; Sugimoto, N


    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  6. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves (United States)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.


    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  7. State of Art in space weather observational activities and data management in Europe (United States)

    Stanislawska, Iwona

    One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan

  8. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.


    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  9. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.


    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  10. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.


    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  11. Integrating Satellite, Radar and Surface Observation with Time and Space Matching (United States)

    Ho, Y.; Weber, J.


    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  12. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver


    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  13. Laboratory Observation of Electron Phase-Space Holes during Magnetic Reconnection

    International Nuclear Information System (INIS)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.


    We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth (∼2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size ∼2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release

  14. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S


    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  15. StreakDet data processing and analysis pipeline for space debris optical observations (United States)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the

  16. A new technique for observationally derived boundary conditions for space weather (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson


    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  17. Geodetic infrastructure at the Barcelona harbour for sea level monitoring (United States)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona


    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  18. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter (United States)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.


    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  19. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina


    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  20. Large earthquake rates from geologic, geodetic, and seismological perspectives (United States)

    Jackson, D. D.


    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  1. Monitoring of Volcanic Activity by Sub-mm Geodetic Analyses (United States)

    Miura, S.; Mare, Y.; Ichiki, M.; Demachi, T.; Tachibana, K.; Nishimura, T.


    Volcanic earthquakes have been occurring beneath Zao volcano in northern Honshu, Japan since 2013, following the increase of deep low frequency earthquakes from 2012. On account of a burst of seismicity initiated in April 2015, the JMA announced a warning of eruption, however, the seismicity gradually decreased for the next two months and the warning was canceled in June. In the same time period, minor expansive deformation was observed by GNSS. Small earthquakes are still occurring, and low-freq. earthquakes (LPE) occur sometimes accompanied by static tilt changes. In this study, we try to extract the sub-mm displacements from the LPE waveforms observed by broadband seismometers (BBS) and utilize them for geodetic inversion to monitor volcanic activities. Thun et al. (2015, 2016) devised an efficient method using a running median filter (RMF) to remove LP noises, which contaminate displacement waveforms. They demonstrated the reproducibility of the waveforms corresponding to the experimentally given sub-mm displacements in the laboratory. They also apply the method to the field LPE data obtained from several volcanoes to show static displacements. The procedure is outlined as follows: (1) Unfiltered removal of the instrument response, (2) LP noise estimate by LPF with a corner frequency of 5/M, where M (seconds) is the time window of the RMF and should be at least three times the length of the rise time. (3) Subtract the noise estimated from step (2). (4) Integrate to obtain displacement waveforms. We apply the method to the BBS waveform at a distance of about 1.5 km ESE from the summit crater of Zao Volcano associated with a LPE on April 1, 2017. Assuming the time window M as 300 seconds, we successfully obtained the displacement history: taking the rise time of about 2 minutes, the site was gradually uplifted with the amount of about 50-60 µm and then subsided with HF displacements in the next 2 minutes resulting about 20-30 µm static upheaval. Comparing the

  2. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.


    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  3. Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth (United States)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark


    The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

  4. Scoring sensor observations to facilitate the exchange of space surveillance data (United States)

    Weigel, M.; Fiedler, H.; Schildknecht, T.


    In this paper, a scoring metric for space surveillance sensor observations is introduced. A scoring metric allows for direct comparison of data quantity and data quality, and makes transparent the effort made by different sensor operators. The concept might be applied to various sensor types like tracking and surveillance radar, active optical laser tracking, or passive optical telescopes as well as combinations of different measurement types. For each measurement type, a polynomial least squares fit is performed on the measurement values contained in the track. The track score is the average sum over the polynomial coefficients uncertainties and scaled by reference measurement accuracy. Based on the newly developed scoring metric, an accounting model and a rating model are introduced. Both models facilitate the exchange of observation data within a network of space surveillance sensors operators. In this paper, optical observations are taken as an example for analysis purposes, but both models can also be utilized for any other type of observations. The rating model has the capability to distinguish between network participants with major and minor data contribution to the network. The level of sanction on data reception is defined by the participants themselves enabling a high flexibility. The more elaborated accounting model translates the track score to credit points earned for data provision and spend for data reception. In this model, data reception is automatically limited for participants with low contribution to the network. The introduced method for observation scoring is first applied for transparent data exchange within the Small Aperture Robotic Telescope Network (SMARTnet). Therefore a detailed mathematical description is presented for line of sight measurements from optical telescopes, as well as numerical simulations for different network setups.

  5. Geodetic monitoring of suspended particles in rivers (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan


    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  6. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks (United States)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza


    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a

  7. Aspects Regarding the Establishment of the Scale Coefficient in the Case of Distances Measurements in an Geodetic Network

    Directory of Open Access Journals (Sweden)

    Mircea Ortelecan


    Full Text Available The paper analyzes the possibility to establish the coefficient of scale towards the total station scale triangulation network in the conduct of geodetic and topographic observations in the points with known coordinates (old points or points whose coordinates we want to determine (new points. The purpose of the study is undertaken to simplify computing operations to reduce distances measured from the topographic surface to the Stereo 70 projection plan.

  8. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide


    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  9. Observations of electron phase-space holes driven during magnetic reconnection in a laboratory plasma (United States)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.


    This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.

  10. New algorithms for optical observations of space debris with the TAROT telescopes (United States)

    Laas-Bourez, Myrtille; Boer, Michel; Blanchet, Gwendoline; Ducrotte, Etienne; Klotz, Alain

    To preserve the space environment for the future, and to make space expedition safe, we have to improve our knowledge of the debris population in the vicinity of the geostationary orbit. Since 2004, CNES observes satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes. One is located in France and the second being in ESO La Silla, Chile. This system makes real time processing and its wide field of view is useful for detection, systematic survey and tracking both catalogued and uncatalogued objets. We are implementing new, more efficient, image processing algorithms. A new source extraction algorithm based on morphological mathematic, and a "matching-pursuit" algorithm allow to correlate the measurements of the same object on successive images and give an almost nil false detection rate. These new methods allow us to detect objects on the geostationary belt and on other orbits like MEO or GTO. We also improved the timing precision of individual images (few milliseconds) and the precision of the position restitution respective to the celestial frame. Our "delay card" provides an extremely precise date of objects in a picture and our new algorithm accurately extracts stars from background for calibration; Thanks to all these improvements, the overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like GTO orbit. In this paper we present our new methods and the work we have made for the detection of space debris: the images dating with a card of delay, the accuracy of astronomical calibration, and the robustness of the extracting space debris with different algorithms. The results obtained on the sky will be shown.

  11. High resolution solar observations in the context of space weather prediction (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  12. Progress at ROEN - Fortaleza Geodetic Station (United States)

    Kaufman, Pierre; Macilio Pereira de Lucena, A.; Tateyama, Claudio E.


    This report presents the works developed at ROEN: Radio-Observatorio Espacial do Nordeste, Eusebio near Fortaleza, CE, Brazil, in 1998. Activities were related to observing sessions, major maintenance items, and scientific results obtained.

  13. Geodetic data support trapping of ethane in Titan's polar crust (United States)

    Sotin, Christophe; Rambaux, Nicolas


    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  14. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space (United States)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.


    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  15. Determining the orientation of the observed object in threedimensional space using stereo vision methods

    International Nuclear Information System (INIS)

    Ponomarev, S


    The task of matching image of an object with its template is central for many optoelectronic systems. Solution of the matching problem in three-dimensional space in contrast to the structural alignment in the image plane allows using a larger amount of information about the object for determining its orientation, which may increase the probability of correct matching. In the case of stereo vision methods for constructing a three-dimensional image of the object, it becomes possible to achieve invariance w.r.t. background and distance to the observed object. Only three of the orientation angle of the object relative to the camera are uncertain and require measurements. This paper proposes a method for determining the orientation angles of the observed object in three-dimensional space, which is based on the processing of stereo image sequences. Disparity map segmentation method that allows one to ensure the invariance of the background is presented. Quantitative estimates of the effectiveness of the proposed method are presented and discussed.

  16. Deformation offshore Northern Chile monitored by a seafloor geodetic network (GeoSEA) (United States)

    Hannemann, Katrin; Lange, Dietrich; Kopp, Heidrun; Petersen, Florian; Contreras-Reyes, Eduardo


    The Nazca-South American plate boundary around 21°S has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of this segment is still unbroken. The geodetic monitoring of the Chilean subduction zone is crucial to understand the deformation processes in this area. Most geodetic measurements rely on GPS and are therefore limited to onshore campaigns. In December 2015, we installed the GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array around 21°S of the Nazca-South American plate boundary with RV SONNE to extend the geodetic observations to the offshore areas. The GeoSEA array consists of autonomous acoustic seafloor transponders mounted on 4 m high tripods. These transponders are able to continuously measure the two-way travel time of acoustic signals between station pairs (baselines) and the properties of the sea water (sound speed, temperature and pressure) at each transponder. These measurements are used to retrieve the distances between the transponders and give insights into the deformation of the seafloor. At the Chilean subduction zone, we installed in total 23 transponders in 3 subarrays with interstation distances of up to 2500 m. On the middle continental slope in 2300 m water depth, an array consisting of 8 transponders measures across crustal faults seen in AUV mapping. A second array of 5 stations located on the outer rise monitors extension across normal plate-bending faults. The deepest deployment in 5000 m water depth located on the lower continental slope with 10 stations is designed to measure diffuse strain build-up. The transponders are intended to monitor the seafloor deformation for 3.5 years. In November 2016 during a cruise of RV Langseth, the first 11 months of data were successfully uploaded via an acoustic modem. Furthermore, an additional component of the network, GeoSURF, a self-steering autonomous vehicle (wave glider), was

  17. Influence of bad measurements in properties of GeodeticNnetwork

    Directory of Open Access Journals (Sweden)

    Vincent Jakub


    Full Text Available In establishment of LGS (Local geodetic Net some given coordinated points from the relevant area are used, new points areestablished and the required distances and angles among the points are measured. If some measurements are defective, the netadjustment with the obtained values is depreciated, unacceptable. In the paper there is given an identification method of incorrectmeasurement results. The faulty results are eliminated in a new adjustment or the relevant defective measurements are repeated forobtaining correct values.

  18. Transferring Knowledge from a Bird's-Eye View - Earth Observation and Space Travels in Schools (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Voß, Kerstin


    In spring 2014, four commercial cameras will be transported by a Dragon spacecraft to the International Space Station (ISS) and mounted to the ESA Columbus laboratory. The cameras will deliver live earth observation data from different angles. The "Columbus-Eye"* project aims at distributing the video and image data produced by those cameras through a web portal. It should primary serve as learning portal for pupils comprising teaching material around the ISS earth observation imagery. The pupils should be motivated to work with the images in order to learn about curriculum relevant topics of natural sciences. The material will be prepared based on the experiences of the FIS* (German abbreviation for "Remote Sensing in Schools") project and its learning portal. Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 5 years since FIS' kickoff. The talk presents the educational valorization of remote sensing data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of remote sensing holds ready for teaching the regular curricula of Geography, Biology, Physics, Math and Informatics. Beside the sequenced implementation into digital and interactive teaching units, examples of a richly illustrated encyclopedia as well as easy-to-use image processing tools are given. The presentation finally addresses the question of how synergies of space travels can be used to enhance the fascination of earth observation imagery in the light of problem-based learning in everyday school lessons.

  19. OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Yee, J. C.; Jung, Y. K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Udalski, A.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4,00-478 Warszawa (Poland); Novati, S. Calchi [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Chung, S.-J.; Hwang, K.-H.; Ryu, Y.-H. [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-Gu, Daejeon 34055 (Korea, Republic of); Collaboration: OGLE Collaboration; KMTNet Group; Spitzer Team; and others


    The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.

  20. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers (United States)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.


    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  1. Automated and dynamic scheduling for geodetic VLBI - A simulation study for AuScope and global networks (United States)

    Iles, E. J.; McCallum, L.; Lovell, J. E. J.; McCallum, J. N.


    As we move into the next era of geodetic VLBI, the scheduling process is one focus for improvement in terms of increased flexibility and the ability to react with changing conditions. A range of simulations were conducted to ascertain the impact of scheduling on geodetic results such as Earth Orientation Parameters (EOPs) and station coordinates. The potential capabilities of new automated scheduling modes were also simulated, using the so-called 'dynamic scheduling' technique. The primary aim was to improve efficiency for both cost and time without losing geodetic precision, particularly to maximise the uses of the Australian AuScope VLBI array. We show that short breaks in observation will not significantly degrade the results of a typical 24 h experiment, whereas simply shortening observing time degrades precision exponentially. We also confirm the new automated, dynamic scheduling mode is capable of producing the same standard of result as a traditional schedule, with close to real-time flexibility. Further, it is possible to use the dynamic scheduler to augment the 3 station Australian AuScope array and thereby attain EOPs of the current global precision with only intermittent contribution from 2 additional stations. We thus confirm automated, dynamic scheduling bears great potential for flexibility and automation in line with aims for future continuous VLBI operations.


    Directory of Open Access Journals (Sweden)

    Ryszard MIELIMĄKA


    Full Text Available The article presents the problem of the usage of post‐processing services of the ASG‐EUPOS system on the example of GNSS network established for geodetic service of building of the inclined drift, to make coal deposit accessible, and also building associated objects. For the purpose of geodetic service of construction realization network was established outside the planned objects. The network consists of six new ground points and four control points belonging to ASG‐EUPOS network. Simultaneous, static measurements of the network were performed in three‐hour observation session, using multi‐frequency and multi‐system satellite receivers – Trimble R8. The paper presents three variants of post‐processing of the observation results. Calculations were performed using POZGEO‐D service and geodetic software package GEONET. The results of the calculation process revealed, that homogeneous vector networks should be adjusted on the ellipsoid or in the geocentric system. Model of adjustment of the vector network on the plane adopted in the GEONET software package should not be applied for elaboration of this type of network (long reference vectors more than 50km.

  3. Microscopy Observations of Habitable Space in Biochar for Colonization by Fungal Hyphae From Soil

    Institute of Scientific and Technical Information of China (English)

    Noraini M. Jaafar; Peta L. Clode; Lynette K. Abbott


    Biochar is a potential micro-environment for soil microorganisms but evidence to support this suggestion is limited. We explored imaging techniques to visualize and quantify fungal colonization of habitable spaces in a biochar made from a woody feedstock. In addition to characterization of the biochar, it was necessary to optimize preparation and observation methodologies for examining fungal colonization of the biochar. Biochar surfaces and pores were investigated using several microscopy techniques. Biochar particles were compared in soilless media and after deposition in soil. Scanning electron microscopy (SEM) observations and characterization of the biochar demonstrated structural heterogeneity within and among biochar particles. Fungal colonization in and on biochar particles was observed using light, fluorescence and electron microscopy. Fluorescent brightener RR 2200 was more effective than Calcolfuor White as a hyphal stain. Biochar retrieved from soil and observed using lfuorescence microscopy exhibited distinct hyphal networks on external biochar surfaces. The extent of hyphal colonization of biochar incubated in soil was much less than for biochar artiifcially inoculated with fungi in a soilless medium. The location of fungal hyphae was more clearly visible using SEM than with lfuorescence microscopy. Observations of biochar particles colonized by hyphae from soil posed a range of dififculties including obstruction by the presence of soil particles on biochar surfaces and inside pores. Extensive hyphal colonization of the surface of the biochar in the soilless medium contrasted with limited hyphal colonization of pores within the biochar. Both visualization and quantiifcation of hyphal colonization of surfaces and pores of biochar were restricted by two-dimensional imaging associated with uneven biochar surfaces and variable biochar pore structure. There was very little colonization of biochar from hyphae in the agricultural soil used in this study.

  4. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew


    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  5. All-sky-imaging capabilities for ionospheric space weather research using geomagnetic conjugate point observing sites (United States)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.


    Optical signatures of ionospheric disturbances exist at all latitudes on Earth-the most well known case being visible aurora at high latitudes. Sub-visual emissions occur equatorward of the auroral zones that also indicate periods and locations of severe Space Weather effects. These fall into three magnetic latitude domains in each hemisphere: (1) sub-auroral latitudes ∼40-60°, (2) mid-latitudes (20-40°) and (3) equatorial-to-low latitudes (0-20°). Boston University has established a network of all-sky-imagers (ASIs) with sites at opposite ends of the same geomagnetic field lines in each hemisphere-called geomagnetic conjugate points. Our ASIs are autonomous instruments that operate in mini-observatories situated at four conjugate pairs in North and South America, plus one pair linking Europe and South Africa. In this paper, we describe instrument design, data-taking protocols, data transfer and archiving issues, image processing, science objectives and early results for each latitude domain. This unique capability addresses how a single source of disturbance is transformed into similar or different effects based on the unique "receptor" conditions (seasonal effects) found in each hemisphere. Applying optical conjugate point observations to Space Weather problems offers a new diagnostic approach for understanding the global system response functions operating in the Earth's upper atmosphere.

  6. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.


    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  7. Learning of state-space models with highly informative observations: A tempered sequential Monte Carlo solution (United States)

    Svensson, Andreas; Schön, Thomas B.; Lindsten, Fredrik


    Probabilistic (or Bayesian) modeling and learning offers interesting possibilities for systematic representation of uncertainty using probability theory. However, probabilistic learning often leads to computationally challenging problems. Some problems of this type that were previously intractable can now be solved on standard personal computers thanks to recent advances in Monte Carlo methods. In particular, for learning of unknown parameters in nonlinear state-space models, methods based on the particle filter (a Monte Carlo method) have proven very useful. A notoriously challenging problem, however, still occurs when the observations in the state-space model are highly informative, i.e. when there is very little or no measurement noise present, relative to the amount of process noise. The particle filter will then struggle in estimating one of the basic components for probabilistic learning, namely the likelihood p (data | parameters). To this end we suggest an algorithm which initially assumes that there is substantial amount of artificial measurement noise present. The variance of this noise is sequentially decreased in an adaptive fashion such that we, in the end, recover the original problem or possibly a very close approximation of it. The main component in our algorithm is a sequential Monte Carlo (SMC) sampler, which gives our proposed method a clear resemblance to the SMC2 method. Another natural link is also made to the ideas underlying the approximate Bayesian computation (ABC). We illustrate it with numerical examples, and in particular show promising results for a challenging Wiener-Hammerstein benchmark problem.

  8. The Latest Space-Borne Observations of TGFs from Fermi-GBM (United States)

    Fishman, Gerald J.


    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is detecting about two TGFs per week. This rate has increased by a factor of approx.eight since launch when flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Weaker, un-triggered TGFs are now also being observed about once per day over selected low-latitude regions Americas. The high efficiency and time resolution (2 s) of GBM allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. TGFs are observed to be shorter than previously thought, with an average duration of approx.100 micro-s. The absolute times of TGFs are known to approx.10 micro-s, allowing accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The events are observed in the thick bismuth germanate (BGO) scintillation detectors of GBM with photon energies above 40 MeV. Other new results on the temporal and spectral characteristics of TGFs will be presented, along with properties of several electron-positron TGF events that have been identified.

  9. Real space channelization for generic DBT system image quality evaluation with channelized Hotelling observer (United States)

    Petrov, Dimitar; Cockmartin, Lesley; Marshall, Nicholas; Vancoillie, Liesbeth; Young, Kenneth; Bosmans, Hilde


    Digital breast tomosynthesis (DBT) is a relatively new 3D mammography technique that promises better detection of low contrast masses than conventional 2D mammography. The parameter space for DBT is large however and finding an optimal balance between dose and image quality remains challenging. Given the large number of conditions and images required in optimization studies, the use of human observers (HO) is time consuming and certainly not feasible for the tuning of all degrees of freedom. Our goal was to develop a model observer (MO) that could predict human detectability for clinically relevant details embedded within a newly developed structured phantom for DBT applications. DBT series were acquired on GE SenoClaire 3D, Giotto Class, Fujifilm AMULET Innovality and Philips MicroDose systems at different dose levels, Siemens Inspiration DBT acquisitions were reconstructed with different algorithms, while a larger set of DBT series was acquired on Hologic Dimensions system for first reproducibility testing. A channelized Hotelling observer (CHO) with Gabor channels was developed The parameters of the Gabor channels were tuned on all systems at standard scanning conditions and the candidate that produced the best fit for all systems was chosen. After tuning, the MO was applied to all systems and conditions. Linear regression lines between MO and HO scores were calculated, giving correlation coefficients between 0.87 and 0.99 for all tested conditions.


    International Nuclear Information System (INIS)

    Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen; Agarwal, Jessica


    We present Hubble Space Telescope Observations of (596) Scheila during its recent dust outburst. The nucleus remained point-like with absolute magnitude H V = 8.85 ± 0.02 in our data, equal to the pre-outburst value, with no secondary fragments of diameter ≥100 m (for assumed albedos 0.04). We find a coma having a peak scattering cross section ∼2.2x10 4 km 2 , corresponding to a mass in micron-sized particles of ∼4x10 7 kg. The particles are deflected by solar radiation pressure on projected spatial scales ∼2x10 4 km, in the sunward direction, and swept from the vicinity of the nucleus on timescales of weeks. The coma fades by ∼30% between observations on UT 2010 December 27 and 2011 January 4. The observed mass loss is inconsistent with an origin either by rotational instability of the nucleus or by electrostatic ejection of regolith charged by sunlight. Dust ejection could be caused by the sudden but unexplained exposure of buried ice. However, the data are most simply explained by the impact, at ∼5 km s -1 , of a previously unknown asteroid ∼35 m in diameter.

  11. Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations

    Directory of Open Access Journals (Sweden)

    Dali Zhang


    Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

  12. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey


    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  13. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt (United States)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.


    Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed

  14. Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations (United States)

    Niemeier, Wolfgang; Tengen, Dieter


    In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis. In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy. The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well. This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation. As practical example the local tie network in "Metsähovi Fundamental Station", Finland is used, where classical geodetic observations are combined with GNSS data.

  15. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System (United States)

    Argus, Donald F.; Heflin, Michael B.


    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  16. Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria (United States)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg


    This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.

  17. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements (United States)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; hide


    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  18. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station (United States)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.


    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  19. Geodetic deformation monitoring at Pendidikan Diponegoro Dam (United States)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki


    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  20. Mathematics in narratives of Geodetic expeditions. (United States)

    Terrall, Mary


    In eighteenth-century France, geodesy (the measure of the earth's shape) became an arena where mathematics and narrative intersected productively. Mathematics played a crucial role not only in the measurements and analysis necessary to geodesy but also in the narrative accounts that presented the results of elaborate and expensive expeditions to the reading public. When they returned to France to write these accounts after their travels, mathematician-observers developed a variety of ways to display numbers and mathematical arguments and techniques. The numbers, equations, and diagrams they produced could not be separated from the story of their acquisition. Reading these accounts for the interplay of these two aspects--the mathematical and the narrative--shows how travelers articulated the intellectual and physical difficulties of their work to enhance the value of their results for specialist and lay readers alike.

  1. Results from the Geodetic Observatory TIGO due to the Mw 8.8 Earthquake (United States)

    Hase, H.; Böer, A.; Sierk, B.; Ihde, J.; Weber, G.; Wilmes, H.; Falk, R.; Hessels, U.; Neumaier, P.; Söhne, W.; Wziontek, H.; Engelhard, G.; Sobarzo, S.; Cifuentes, O.; Guaitiao, C.; Cona, I.; Avendaño, M.; Herrera, C.; Mora, V.; Fernandez, A.; Oñate, E.; Zaror, P.; Pedreros, F.; Zapata, O.


    The Geodetic Observatory TIGO is unique in Latin America. With its sensors and instruments it defines a reference point in the time, space and gravity field domain. Its operation started in 2002, for which reason data series documented the preseismic situation very well. With the Mw 8.8 earthquake on February 27, 2010, the entire observatory was exposed to strong motions due to its closeness to the epicenter. Since then the postseismic behaviour of the subduction zone can be studied and compared with the preseismic situation. TIGO provided continuous GPS/GLONASS data with 1s samples which give an insight to the mechanism of the decoupling of the Nazca and the South-American plate. The displacement of more than 3m had a duration of 30s at the beginning of the 147s duration of the earthquake. The displacement could be confirmed afterwards with VLBI and SLR methods. TIGO used its absolute gravity meter in an unusual way with weekly measurements on the same monument. These data show an irregularity during the last 3 weeks before the earthquake. Finally the postseismic movement to the west triggered by the earthquake and registered by geodetic space techniques indicate that the western expansion of the South-American plate did not stop yet. The pre- and post-seismic displacement vectors differ by less than 180° which might be explained by a fractional strike slip in the mega thrust. The coincidence of the epicenter with one of the keystations for global reference frames showed deficiencies by the linear modelling of tectonical movements in terrestial reference frames. This problem calls for near-real time reference frames.

  2. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors? (United States)

    Dolan, James F.; Meade, Brendan J.


    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  3. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.


    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  4. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    Directory of Open Access Journals (Sweden)

    K. C. Wells


    Full Text Available Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2 provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.

  5. A prospective observational study of skin to subarachnoid space depth in the Indian population

    Directory of Open Access Journals (Sweden)

    Smita Prakash


    Full Text Available Background and Aims: A pre-puncture estimate of skin to subarachnoid space depth (SSD may guide spinal needle placement and reduce complications associated with lumbar puncture. Our aim was to determine (1 The SSD in Indian males, females, parturients and the overall population; (2 To derive formulae for predicting SSD and (3 To determine which previously suggested formula best suited our population. Methods: In this prospective, observational study, 800 adult Indian patients undergoing surgery under spinal anaesthesia were divided into three groups: Males (Group M, females (Group F and parturients (Group PF. SSD was measured after lumbar puncture. The relationship between SSD and patient characteristics was studied and statistical models were used to derive formula for predicting SSD. Statistical analysis included One-way ANOVA with post hoc analysis, forward stepwise multivariate regression analysis and paired t-tests. Results: Mean SSD was 4.71 ± 0.70 cm in the overall population. SSD in adult males (4.81 ± 0.68 cm was significantly longer than that observed in females (4.55 ± 0.66 cm but was comparable with SSD in parturients (4.73 ± 0.73 cm. Formula for predicting SSD in the overall population was 2.71 + 0.09 × Body Mass Index (BMI. Stocker′s formula when applied correlated best with the observed SSD. Formulae were derived for the three groups. Conclusions: We found gender-based differences in SSD, with SSD in males being significantly greater than that observed in the female population. SSD correlated with BMI in the parturient and the overall population. Amongst the previously proposed formulae, Stocker′s formula was most accurate in predicting SSD in our population.

  6. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A


    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  7. Dynamic rupture modeling of the M7.2 2010 El Mayor-Cucapah earthquake: Comparison with a geodetic model (United States)

    Kyriakopoulos, Christos; Oglesby, David D.; Funning, Gareth J.; Ryan, Kenneth


    The 2010 Mw 7.2 El Mayor-Cucapah earthquake is the largest event recorded in the broader Southern California-Baja California region in the last 18 years. Here we try to analyze primary features of this type of event by using dynamic rupture simulations based on a multifault interface and later compare our results with space geodetic models. Our results show that starting from homogeneous prestress conditions, slip heterogeneity can be achieved as a result of variable dip angle along strike and the modulation imposed by step over segments. We also considered effects from a topographic free surface and find that although this does not produce significant first-order effects for this earthquake, even a low topographic dome such as the Cucapah range can affect the rupture front pattern and fault slip rate. Finally, we inverted available interferometric synthetic aperture radar data, using the same geometry as the dynamic rupture model, and retrieved the space geodetic slip distribution that serves to constrain the dynamic rupture models. The one to one comparison of the final fault slip pattern generated with dynamic rupture models and the space geodetic inversion show good agreement. Our results lead us to the following conclusion: in a possible multifault rupture scenario, and if we have first-order geometry constraints, dynamic rupture models can be very efficient in predicting large-scale slip heterogeneities that are important for the correct assessment of seismic hazard and the magnitude of future events. Our work contributes to understanding the complex nature of multifault systems.

  8. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements (United States)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James


    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  9. 'The End of Sitting' in a public space: observations of spontaneous visitors. (United States)

    Renaud, Lidewij R; Huysmans, Maaike A; Speklé, Erwin M; van der Beek, Allard J; van der Ploeg, Hidde P


    Sitting too much has been associated with negative health outcomes. 'The End of Sitting' is a newly developed office landscape that moves away from the traditional chair-desk setup. The landscape aims to reduce sitting time by offering a variety of (supported) standing positions. The aim of this study was to determine the usage of the landscape after being placed in the main entrance hall of the VU University in Amsterdam. We observed the number of spontaneous visitors as well as the duration of visits, changes to another location within the landscape, and adopted postures. Using questionnaires reasons (not) to visit the landscape, perceived affordances of the landscape and associations with long-term use were determined. Observed numbers of visitors were relatively low and duration of visits were short, which seemed to indicate visitors were trying out the landscape. The majority of visitors were in an upright position, reflecting the designers' intentions. Visitors indicated that long-term use would be pleasant to them. 'The End of Sitting' landscape received positive reactions but number of visits were limited in the few months that it was placed in the university main entrance hall. The landscape might be better suited for designated working or study spaces, for which it was originally intended. It might also be worth to explore the landscapes suitability for short stay environments, such as waiting rooms.

  10. Real-space observation of nanojet-induced modes in a chain of microspheres

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang; Wang, Po-Kai


    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  11. Hand gesture recognition in confined spaces with partial observability and occultation constraints (United States)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen


    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  12. Relative-locality distant observers and the phenomenology of momentum-space geometry

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Rosati, Giacomo; Trevisan, Gabriele; Arzano, Michele; Kowalski-Glikman, Jerzy


    We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincare-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincare connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source. (paper)

  13. Relative-locality distant observers and the phenomenology of momentum-space geometry (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele; Kowalski-Glikman, Jerzy; Rosati, Giacomo; Trevisan, Gabriele


    We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincaré-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincaré connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source.

  14. Real-space observation of nanojet-induced modes in a chain of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Yang, E-mail:; Wang, Po-Kai


    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  15. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt (United States)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu


    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  16. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    Directory of Open Access Journals (Sweden)

    Doskocz Adam


    Full Text Available All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI, including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  17. Earth Observation from the International Space Station -Remote Sensing in Schools- (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter


    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS ( Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal ( Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  18. The University, the Market, and the Geodetic Engineer or

    DEFF Research Database (Denmark)

    Stubkjær, Erik


    In Europe, universities have existed for more than 800 years. The university is the place in society for higher learning and related research. Through the ages, the universities have enjoyed a remarkably freedom relative to religious and secular powers. In recent years, the objectives and practises...... project, which concerned the education of geodetic engineers in Slovenia. The body of the paper presents a selection of ideas that shaped the university through the centuries, with a view to balance the present interest in advancing market-directed behaviour....

  19. Cosmological observations with a wide field telescope in space: Pixel simulations of EUCLID spectrometer

    International Nuclear Information System (INIS)

    Zoubian, Julien


    The observations of the supernovae, the cosmic microwave background, and more recently the measurement of baryon acoustic oscillations and the weak lensing effects, converge to a Lambda CDM model, with an accelerating expansion of the today Universe. This model need two dark components to fit the observations, the dark matter and the dark energy. Two approaches seem particularly promising to measure both geometry of the Universe and growth of dark matter structures, the analysis of the weak distortions of distant galaxies by gravitational lensing and the study of the baryon acoustic oscillations. Both methods required a very large sky surveys of several thousand square degrees. In the context of the spectroscopic survey of the space mission EUCLID, dedicated to the study of the dark side of the universe, I developed a pixel simulation tool for analyzing instrumental performances. The proposed method can be summarized in three steps. The first step is to simulate the observables, i.e. mainly the sources of the sky. I work up a new method, adapted for spectroscopic simulations, which allows to mock an existing survey of galaxies in ensuring that the distribution of the spectral properties of galaxies are representative of current observations, in particular the distribution of the emission lines. The second step is to simulate the instrument and produce images which are equivalent to the expected real images. Based on the pixel simulator of the HST, I developed a new tool to compute the images of the spectroscopic channel of EUCLID. The new simulator have the particularity to be able to simulate PSF with various energy distributions and detectors which have different pixels. The last step is the estimation of the performances of the instrument. Based on existing tools, I set up a pipeline of image processing and performances measurement. My main results were: 1) to validate the method by simulating an existing survey of galaxies, the WISP survey, 2) to determine the

  20. Sentinel-2: next generation satellites for optical land observation from space (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.


    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  1. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations (United States)

    Garnett, D. R.; Skillman, E. D.; Dufour, R. J.; Peimbert, M.; Torres-Peimbert, S.; Terlevich, R.; Terlevich, E.; Shields, G. A.


    We present UV observations of seven H II regions in low-luminosity dwarf irregular galaxies and the Magellanic Clouds obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) in order to measure the C/O abundance ratio in the interstellar medium (ISM) of those galaxies. We measure both O III 1666 A and C III 1909 A in our spectra, enabling us to determine C(+2)/O(+2) with relatively small uncertainties. The results from our HST observations show a continuous increase in C/O with increasing O/H, consistent with a power law having an index of 0.43 +/- 0.09 over the range -4.7 to -3.6 in log (O/H). One possible interpretation of this trend is that the most metal-poor galaxies are the youngest and dominated by the products of early enrichment by massive stars, while more metal-rich galaxies show increasing, delayed contributions of carbon from intermediate-mass stars. Our results also suggest that it may not be appropiate to combine abundances in irregular galaxies with those in spiral galaxies to study the evolution of chemical abundances. Our measured C/O ratios in the most metal-poor galaxies are consistent with predictions of nucleosynthesis from massive stars for Weaver & Woosley's best estimate for the 12C(alpha, gamma) 16O nuclear reaction rate, assuming negligible contanmination from carbon produced in intermediate-mass stars in these galaxies. We detect a weak N III 1750 A multiplet in SMC N88A and obtain interesting upper limits for two other objects. Our 2 sigma uppr limits on the 1750 A feature indicate that the N(+2)/O(+2) ratios in these objects are not significantly larger than the N(+)/O(+) ratios measured from optical spectra. This behavior is consistent with predictions of photionization models, although better detections of N III are needed to confirm the results.

  2. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier


    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science

  3. Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL

    International Nuclear Information System (INIS)

    Schanne, Stephane


    The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In particular results on point source searches are presented, followed by results on nuclear astrophysics, exemplified by the study of the 1809 keV gamma-ray line from radioactive 26 Al nuclei produced by the ongoing stellar nucleosynthesis in the Galaxy. Finally a review on the study of the positron-electron annihilation in the Galactic center region, producing 511 keV gamma-rays, is presented

  4. Using Citizen Science Observations to Model Species Distributions Over Space, Through Time, and Across Scales (United States)

    Kelling, S.


    The goal of Biodiversity research is to identify, explain, and predict why a species' distribution and abundance vary through time, space, and with features of the environment. Measuring these patterns and predicting their responses to change are not exercises in curiosity. Today, they are essential tasks for understanding the profound effects that humans have on earth's natural systems, and for developing science-based environmental policies. To gain insight about species' distribution patterns requires studying natural systems at appropriate scales, yet studies of ecological processes continue to be compromised by inadequate attention to scale issues. How spatial and temporal patterns in nature change with scale often reflects fundamental laws of physics, chemistry, or biology, and we can identify such basic, governing laws only by comparing patterns over a wide range of scales. This presentation will provide several examples that integrate bird observations made by volunteers, with NASA Earth Imagery using Big Data analysis techniques to analyze the temporal patterns of bird occurrence across scales—from hemisphere-wide views of bird distributions to the impact of powerful city lights on bird migration.

  5. TanDEM-X the Earth surface observation project from space level - basis and mission status

    Directory of Open Access Journals (Sweden)

    Jerzy Wiśniowski


    Full Text Available TanDEM-X is DLR (Deutsches Zentrum für Luft- und Raumfahrt the Earth surface observation project using high-resolution SAR interferometry. It opens a new era in space borne radar remote sensing. The system is based on two satellites: TerraSAR-X (TSX and TanDEM-X (TDX flying on the very close, strictly controlled orbits. This paper gives an overview of the radar technology and overview of the TanDEM-X mission concept which is based on several innovative technologies. The primary objective of the mission is to deliver a global digital elevation model (DEM with an unprecedented accuracy, which is equal to or surpass the HRTI-3 specifications (12 m posting, relative height accuracy ±2 m for slope < 20% and ±4 m for slope > 20% [8]. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications.[b]Keywords[/b]: remote sensing, Bistatic SAR, digital elevation model (DEM, Helix formation, SAR interferomery, HRTI-3, synchronization

  6. Thermal Analysis of MIRIS Space Observation Camera for Verification of Passive Cooling

    Directory of Open Access Journals (Sweden)

    Duk-Hang Lee


    Full Text Available We conducted thermal analyses and cooling tests of the space observation camera (SOC of the multi-purpose infrared imaging system (MIRIS to verify passive cooling. The thermal analyses were conducted with NX 7.0 TMG for two cases of attitude of the MIRIS: for the worst hot case and normal case. Through the thermal analyses of the flight model, it was found that even in the worst case the telescope could be cooled to less than 206°K. This is similar to the results of the passive cooling test (~200.2°K. For the normal attitude case of the analysis, on the other hand, the SOC telescope was cooled to about 160°K in 10 days. Based on the results of these analyses and the test, it was determined that the telescope of the MIRIS SOC could be successfully cooled to below 200°K with passive cooling. The SOC is, therefore, expected to have optimal performance under cooled conditions in orbit.

  7. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.


    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  8. Facilitating open global data use in earthquake source modelling to improve geodetic and seismological approaches (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Isken, Marius; Vasyura-Bathke, Hannes


    In the last few years impressive achievements have been made in improving inferences about earthquake sources by using InSAR (Interferometric Synthetic Aperture Radar) data. Several factors aided these developments. The open data basis of earthquake observations has expanded vastly with the two powerful Sentinel-1 SAR sensors up in space. Increasing computer power allows processing of large data sets for more detailed source models. Moreover, data inversion approaches for earthquake source inferences are becoming more advanced. By now data error propagation is widely implemented and the estimation of model uncertainties is a regular feature of reported optimum earthquake source models. Also, more regularly InSAR-derived surface displacements and seismological waveforms are combined, which requires finite rupture models instead of point-source approximations and layered medium models instead of homogeneous half-spaces. In other words the disciplinary differences in geodetic and seismological earthquake source modelling shrink towards common source-medium descriptions and a source near-field/far-field data point of view. We explore and facilitate the combination of InSAR-derived near-field static surface displacement maps and dynamic far-field seismological waveform data for global earthquake source inferences. We join in the community efforts with the particular goal to improve crustal earthquake source inferences in generally not well instrumented areas, where often only the global backbone observations of earthquakes are available provided by seismological broadband sensor networks and, since recently, by Sentinel-1 SAR acquisitions. We present our work on modelling standards for the combination of static and dynamic surface displacements in the source's near-field and far-field, e.g. on data and prediction error estimations as well as model uncertainty estimation. Rectangular dislocations and moment-tensor point sources are exchanged by simple planar finite


    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David; Li, Jing [Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States); Agarwal, Jessica [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Weaver, Harold [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723 (United States); Mutchler, Max [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larson, Stephen, E-mail: [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721-0092 (United States)


    Hubble Space Telescope observations of active asteroid 324P/La Sagra near perihelion show continued mass loss consistent with the sublimation of near-surface ice. Isophotes of the coma measured from a vantage point below the orbital plane are best matched by steady emission of particles having a nominal size  of  a  ∼ 100 μ m. The inferred rate of mass loss, dM{sub d} / dt  ∼ 0.2 kg s{sup −1}, can be supplied by sublimation of water ice in thermal equilibrium with sunlight from an area as small as 930 m{sup 2}, corresponding to about 0.2% of the nucleus surface. Observations taken from a vantage point only 0.°6 from the orbital plane of 324P set a limit to the velocity of ejection of dust in the direction perpendicular to the plane, V {sub ⊥} < 1 m s{sup −1}. Short-term photometric variations of the near-nucleus region, if related to rotation of the underlying nucleus, rule-out periods ≤3.8 hr and suggest that rotation probably does not play a central role in driving the observed mass loss. We estimate that, in the previous orbit, 324P lost about 4 × 10{sup 7} kg in dust particles, corresponding to 6 × 10{sup −5} of the mass of a 550 m spherical nucleus of assumed density ρ  = 1000 kg m{sup −3}. If continued, mass loss at this rate would limit the lifetime of 324P to ∼1.6 × 10{sup 4} orbits (about 10{sup 5} years). To survive for the 100–400 Myr timescales corresponding to dynamical and collisional stability requires a duty cycle of 2 × 10{sup −4} ≤  f{sub d}  ≤ 8 × 10{sup −4}. Unless its time in orbit is overestimated by many orders of magnitude, 324P is revealed as a briefly active member of a vast population of otherwise dormant ice-containing asteroids.

  10. Adjustment of positional geodetic networks by unconventional estimations

    Directory of Open Access Journals (Sweden)

    Silvia Gašincová


    Full Text Available The content of this paper is the adjustment of positional geodetic networks by robust estimations. The techniques (basedon the unconventional estimations of repeated least-square method which have turned out to be suitable and applicable in the practisehave been demonstrated on the example of the local geodetic network, which was founded to compose this thesis. In the thesisthe following techniques have been chosen to compare the Method of least-squares with those many published in foreign literature:M-estimation of Biweight,M-estimation of Welsch and Danish method. All presented methods are based on the repeated least-squaremethod principle with gradual changing of weight of individual measurements. In the first stage a standard least-square method wascarried out in the following steps – iterations we gradually change individual weights according to the relevant instructions/ regulation(so-called weight function. Iteration process will be stopped when no deviated measurements are found in the file of measured data.MatLab programme version 5.2 T was used to implement mathematical adjustment.

  11. Geodetic and seismological investigation in the Ionian area

    Directory of Open Access Journals (Sweden)

    F. Riguzzi


    Full Text Available Geodetic and seismic evidence of crustal deformations in the Ionian area are shown in this paper. The Ionian GPS network, composed of nine sites crossing the Ionian Sea from Calabria, Southern Italy, to Northwestern Greece, was established and surveyed in 1991, 1994, 1995 within the framework of the TYRGEONET project (Anzidei et al., 1996. In 1996 a return campaign was carried out after the occurrence of seismic activity in 1995. The displacement pattern obtained for the Greek side of the network agrees well with those previously displayed, both in magnitude and direction, confirming a mean displacement rate of about 1-2 cm1/yr. The same agreement is not found for the Italian side of the network, where no significant deformations were detected between 1994 and 1996. Seismic deformation was also studied for the same area, starting from the moment tensors of events which occurred in the last 20 years with magnitude greater than 5.0; evident similarity with the displacement field exhibited by the Greek side of the Ionian Sea by geodetic surveys was inferred. On the contrary, the motion detected for the Italian area cannot be simply related to seismic activity.

  12. Geodetic contributions to IWRM-projects in middle Java, Indonesia (United States)

    Schmitt, Günter


    The district of Gunung Kidul in middle Java is one of the poorest regions in Indonesia. The essential reason is the acute water scarcity in this karst region during the months of the dry season. As a consequence of the poor living conditions many people have migrated away and therefore the development of the region is stagnating. During the last few years two projects have been initiated under the theme “Integrated Water Resources Management” in order to improve the water supply situation, both funded by the German Federal Ministry of Education and Research, and realized essentially by institutes of the University of Karlsruhe. Geodetic sub-projects are integrated into both projects. Special surveying activities had been, and have still to be, carried out to realise the geometrical basis for several other sub-projects. The particular contributions are 3D cave measurements for visualisation and planning, staking out of drilling points and construction axes, the definition of a common reference system, the surveying of the water distribution network and its technical facilities, the setting up and the management of a geographical information system (GIS), as well as special measurements such as dam monitoring or controlling of a vertical drilling machine. The paper reviews these projects and describes the geodetic activities.

  13. Geodetic Control Points, Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level elevations have been determined., Published in 1995, 1:24000 (1in=2000ft) scale, Rhode Island and Providence Plantations. (United States)

    NSGIC State | GIS Inventory — Geodetic Control Points dataset current as of 1995. Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level...

  14. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune (United States)


    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  15. Gender-sensitive observations in public spaces as a teaching tool

    NARCIS (Netherlands)

    Droogleever Fortuijn, J.


    Public spaces can be seen as arenas where gendered social roles, relations and identities are (re)produced, represented and contested. Because of their (assumed) public character - crowded, open, accessible and visible - these spaces are extremely useful as «observatories» for teaching and learning

  16. Using Mobile Technology to Observe Student Study Behaviors and Track Library Space Usage (United States)

    Thompson, Susan


    Libraries have become increasingly interested in studying the use of spaces within their buildings. Traditional methods for tracking library building use, such as gate counts, provide little information on what patrons do once they are in the library; therefore, new methods for studying space usage are being developed. Particularly promising are…

  17. Processing of a geodetic network determined in ETRS-89 with application of different cofactors

    Directory of Open Access Journals (Sweden)

    Slavomír Labant


    Full Text Available At present, manufacturers characterize the accuracy of vectors measured by the static method of GNSS technology usingrelationship 5 mm + 1⋅ D ppm . The advantage of the GNSS system over other terrestrial technologies is that it is not affectedby uncertainties in the ground layers of the atmosphere. The paper presents experimental measurement of the 3D geodetic network usingthe technology of global navigation satellite systems, processing and analysis of measurements taken at the Čierny Váh pumping hydropowerstation. Observations were carried out in July 2008. The aim of the paper is to assess parameters used in the model to estimateparameters of the first and second order of the network structures.

  18. Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution

    Directory of Open Access Journals (Sweden)

    M. Rihaoui


    Full Text Available We report on an experimental study of space-charge effects in a radio-frequency (rf photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  19. Digital Levelling in Subterranean Spaces

    Directory of Open Access Journals (Sweden)

    Tomáš Jiřikovský


    Full Text Available For precision levelling works are now more often used digital levels and code-scale staffs. Advantages in (and problems with their application to the regular line-levelling are well known and described. However, when using the digital levelling for measurements in specific local geodetic networks, monitoring networks and inside of buildings and underground spaces, new problems appear with the signalisation of the observed points, readability of the code (non-uniform illumination, temperature changes etc. The article informs about the application of two types of digital levels (Sokkia SDL-2, Trimble Zeiss DiNi 12T in the experimental subterranean levelling network for the basement settlement monitoring of a ten-floor building; the solution of marking of the points, field calibration and the system calibration of digital levels.


    Energy Technology Data Exchange (ETDEWEB)

    Szkody, Paula; Mukadam, Anjum S.; Brown, Justin; Funkhouser, Kelsey [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Gänsicke, Boris T. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Henden, Arne [AAVSO, 49 Bay State Road, Cambridge, MA 02138 (United States); Sion, Edward M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Christian, Damian [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States); Falcon, Ross E. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Pyrzas, Stylianos, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Astronomia, Universidad Catolica del Norte, Avenida Angamos 0619, Antofagasta (Chile)


    Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible in the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.

  1. The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations (United States)

    Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.


    Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.

  2. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang


    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  3. Storm time dynamics of auroral electrojets: CHAMP observation and the Space Weather Modeling Framework comparison

    Directory of Open Access Journals (Sweden)

    H. Wang


    Full Text Available We investigate variations of the location and intensity of auroral currents during two magnetic storm periods based on magnetic field measurements from CHAMP separately for both hemispheres, as well as for the dayside and nightside. The corresponding auroral electrojet current densities are on average enhanced by about a factor of 7 compared to the quiet time current strengths. The nightside westward current densities are on average 1.8 (2.2 times larger than the dayside eastward current densities in the Northern (Southern Hemisphere. Both eastward and westward currents are present during the storm periods with the most intense electrojets appearing during the main phase of the storm, before the ring current maximizes in strength. The eastward and westward electrojet centers can expand to 55° MLat during intense storms, as is observed on 31 March 2001 with Dst=−387 nT. The equatorward shift of auroral currents on the dayside is closely controlled by the southward IMF, while the latitudinal variations on the nightside are better described by the variations of the Dst index. However, the equatorward and poleward motion of the nightside auroral currents occur earlier than the Dst variations. The Space Weather Modeling Framework (SWMF can capture the general dynamics of the storm time current variations. Both the model and the actual data show that the currents tend to saturate when the merging electric field is larger than 10 mV/m. However, the exact prediction of the temporal development of the currents is still not satisfactory.

  4. Observations of Pulsars with the Fermi Gamma-ray Space Telescope

    International Nuclear Information System (INIS)

    Parent, D.


    The Large Area Telescope (LAT) on Fermi, launched on 2008 June 11, is a space telescope to explore the high energy γ-ray universe. The instrument covers the energy range from 20 MeV to 300 GeV with greatly improved sensitivity and ability to localize γ-ray point sources. It detects γ-rays through conversion to electron-positron pairs and measurement of their direction in a tracker and their energy in a calorimeter. This thesis presents the γ-ray light curves and the phase-resolved spectral measurements of radio-loud gamma-ray pulsars detected by the LAT. The measurement of pulsar spectral parameters (i.e. integrated flux, spectral index, and energy cut-off) depends on the instrument response functions (IRFs). A method developed for the on-orbit validation of the effective area is presented using the Vela pulsar. The cut efficiencies between the real data and the simulated data are compared at each stage of the background rejection. The results are then propagated to the IRFs, allowing the systematic uncertainties of the spectral parameters to be estimated. The last part of this thesis presents the discoveries, using both the LAT observations and the radio and X ephemeris, of new individual γ-ray pulsars such as PSR J0205+6449, and the Vela-like pulsars J2229+6114 and J1048-5832. Timing and spectral analysis are investigated in order to constrain the γ-ray emission model. In addition, we discuss the properties of a large population of γ-ray pulsars detected by the LAT, including normal pulsars, and millisecond pulsars. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaofeng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Wang Lifan [Physics and Astronomy Department, Texas A and M University, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Baron, Eddie [Department of Physics, University of Oklahoma, Norman, OK 73019 (United States); Kromer, Markus [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Jack, Dennis [Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg (Germany); Zhang Tianmeng [National Astronomical Observatory of China, Chinese Academy of Sciences, Beijing 100012 (China); Aldering, Greg [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Antilogus, Pierre [Laboratoire de Physique Nucleaire des Hautes Energies, Paris (France); Arnett, W. David [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Baade, Dietrich [European Southern Observatory, 85748 Garching (Germany); Barris, Brian J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Benetti, Stefano; Cappellaro, Enrico [Osservatorio Astronomico di Padova, 35122 Padova (Italy); Bouchet, Patrice [CEA/DSM/DAPNIA/Service d' Astrophysique, 91191 Gif-sur-Yvette Cedex (France); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Canal, Ramon [Department d' Astronomia i Meterorologia, Universidad de Barcelona, Barcelona 8007 (Spain); Carlberg, Raymond G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3J3 (Canada); Di Carlo, Elisa [INAF, Osservatorio Astronomico di Teramo, 64100 Teramo (Italy); Challis, Peter J., E-mail: [Harvard/Smithsonian Center Astrophysics, Cambridge, MA 02138 (United States); and others


    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra ({approx}2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter {Delta}m{sub 15}(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., {approx}0.4 mag versus {approx}0.2 mag for those with 0.8 mag < {Delta}m{sub 15}(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3{sigma}), being brighter than normal SNe Ia such as SN 2005cf by {approx}0.9 mag and {approx}2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.

  6. Spots and activity of Pleiades stars from observations with the Kepler Space Telescope (K2) (United States)

    Savanov, I. S.; Dmitrienko, E. S.


    Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity ( S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V -Ks)0 color index remains approximately the same over the entire ( V- K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1 M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.


    International Nuclear Information System (INIS)

    Straughn, Amber N.; Gardner, Jonathan P.; Kuntschner, Harald; Kuemmel, Martin; Walsh, Jeremy R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; O'Connell, Robert W.; Pirzkal, Norbert; Bond, Howard E.; Meurer, Gerhardt; McCarthy, Patrick J.; Hathi, Nimish P.; Balick, Bruce; Calzetti, Daniela; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.


    We present grism spectra of emission-line galaxies (ELGs) from 0.6 to 1.6 μm from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope. These new infrared grism data augment previous optical Advanced Camera for Surveys G800L 0.6-0.95 μm grism data in GOODS-South from the PEARS program, extending the wavelength coverage well past the G800L red cutoff. The Early Release Science (ERS) grism field was observed at a depth of two orbits per grism, yielding spectra of hundreds of faint objects, a subset of which is presented here. ELGs are studied via the Hα, [O III], and [O II] emission lines detected in the redshift ranges 0.2 ∼ B(F098M) ≅ 25 mag. Seventeen GOODS-South galaxies that previously only had photometric redshifts now have new grism-spectroscopic redshifts, in some cases with large corrections to the photometric redshifts (Δz ≅ 0.3-0.5). Additionally, one galaxy had no previously measured redshift but now has a secure grism-spectroscopic redshift, for a total of 18 new GOODS-South spectroscopic redshifts. The faintest source in our sample has a magnitude m AB(F098M) = 26.9 mag. The ERS grism data also reflect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample as a function of redshift, consistent with downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes and redshifts to z ∼> 2.


    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Beichman, C. [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Novati, S. Calchi [Dipartimento di Fisica “E. R. Caianiello,” Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Bryden, C. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Collaboration: OGLE Collaboration; Spitzer Microlensing Team; and others


    In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u {sub 0} < 0 and u {sub 0} > 0, solutions caused by the well-known “ecliptic” degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M {sub 1} = 0.38 ± 0.04 M {sub ⊙} (0.50 ± 0.05 M {sub ⊙}) and M {sub 2} = 0.38 ± 0.04 M {sub ⊙} (0.55 ± 0.06 M {sub ⊙}), and the distance to the lens is D {sub L} = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u {sub 0} < 0 and u {sub 0} > 0 solutions, respectively.

  9. Magnetospheric Multiscale (MMS) Observation of Plasma Velocity-Space Cascade Processes (United States)

    Parashar, T. N.; Servidio, S.; Matthaeus, W. H.; Chasapis, A.; Perrone, D.; Valentini, F.; Veltri, P.; Gershman, D. J.; Schwartz, S. J.; Giles, B. L.; Fuselier, S. A.; Phan, T.; Burch, J.


    Plasma turbulence is investigated using high-resolution ion velocity distributions, measured by theMagnetospheric Multiscale Mission (MMS) in the Earth's magnetosheath. The particle distributionmanifests large fluctuations, suggesting a cascade-like process in velocity space, invoked by theoristsfor many years. This complex velocity space structure is investigated using a three-dimensional Hermitetransform that reveals a power law distribution of moments. A Kolmogorov approach leads directlyto a range of predictions for this phase-space cascade. The scaling theory is in agreement withobservations, suggesting a new path for the study of plasma turbulence in weakly collisional spaceand astrophysical plasmas.

  10. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    Directory of Open Access Journals (Sweden)

    T Nagatsuma


    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  11. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means (United States)

    Besutiu, Lucian; Zlagnean, Luminita


    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  12. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations (United States)

    Barth, Janet L.; Xapsos, Michael


    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  13. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako


    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  14. A geodetic matched-filter search for slow slip with application to the Mexico subduction zone (United States)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.


    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low frequency earthquakes and repeating earthquakes provide evidence of low amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here, we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent datasets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with post-processed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modelling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T and Mw of events larger than Mw 6.0 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the down dip edges of the Mw > 7.5 SSEs.

  15. A geodetic matched filter search for slow slip with application to the Mexico subduction zone (United States)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W. B.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.


    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low-frequency earthquakes and repeating earthquakes provide evidence of low-amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent data sets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with postprocessed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modeling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T, and Mw of events larger than Mw 6 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the downdip edges of the Mw>7.5 slow slip events.

  16. Encouraging Deep Approach to Learning in Civil and Geodetic Engineering

    Directory of Open Access Journals (Sweden)

    Gašper Mrak


    Full Text Available This paper presents activities and changes applied to the teaching process within selected courses offered by Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia. Theoretical background, evaluated from the point of the technical education needs, is presented. It can be seen that special focus has to be made to the students' motivation for deep learning which guarantees optimal balance between acquisition of concepts and skills, information processing and integration of fragmented pieces of knowledge into complex structures. Three case studies used to test theoretical points of departure are presented. Results of the introduced novelties and changes have been evaluated through the assessment of knowledge, students' satisfaction and teaching staff evaluations. For conclusive results, monitoring over a longer period of time should be conducted.

  17. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin


    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  18. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients (United States)

    Novák, Pavel; Šprlák, Michal


    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.


    Directory of Open Access Journals (Sweden)

    A. Sabuncu


    Full Text Available The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection–usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS. Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be

  20. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.


    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  1. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples (United States)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David


    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  2. Space weather and human deaths distribution: 25 years' observation (Lithuania, 1989-2013). (United States)

    Stoupel, Eliyahu G; Petrauskiene, Jadvyga; Kalediene, Ramune; Sauliune, Skirmante; Abramson, Evgeny; Shochat, Tzippy


    Human health is affected by space weather component [solar (SA), geomagnetic (GMA), cosmic ray (CRA) - neutrons, space proton flux] activity levels. The aim of this study was to check possible links between timing of human (both genders) monthly deaths distribution and space weather activity. Human deaths distribution in the Republic of Lithuania from 1989 to 2013 (25 years, i.e., 300 consecutive months) was studied, which included 1,050,503 deaths (549,764 male, 500,739 female). Pearson correlation coefficients (r) and their probabilities (p) were obtained for years: months 1-12, sunspot number, smoothed sunspot number, solar flux (2800 MGH, 10.7 cm), adjusted solar flux for SA; A, C indices of GMA; neutron activity at the earth's surface (imp/min) for CRA. The cosmophysical data were obtained from space science institutions in the USA, Russia and Finland. The mentioned physical parameters were compared with the total number of deaths, deaths from ischemic heart disease (n=376,074), stroke (n=132,020), non-cardiovascular causes (n=542,409), accidents (n=98,805), traffic accidents (n=21,261), oncology (n=193,017), diabetes mellitus (n=6631) and suicide (n=33,072). Space factors were interrelated as follows for the considered period: CRA was inversely related to SA and GMA, CRA/SA (r=-0.86, p>0.0001), CRA/GMA (r=-0.70, pweather component activity. Extreme levels of activities of both groups (SA, GMA, and opposite CRA - neutron) are related to some health risks. In the considered period, there were relatively few GMA storms and low GMA was dominating, accompanied by higher CRA (neutron) activity. The ways of action of the components of space weather on the human body need additional studies. There is a special need for the prevention of rising cerebral vascular accidents and oncology malignancies as the causes of death.

  3. Improvements in Space Geodesy Data Discovery at the CDDIS (United States)

    Noll, C.; Pollack, N.; Michael, P.


    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.

  4. Observations of the Hubble Deep Field with the Infrared Space Observatory .2. Source detection and photometry

    DEFF Research Database (Denmark)

    Goldschmidt, P.; Oliver, S.J.; Serjeant, S.B.G.


    We present positions and fluxes of point sources found in the Infrared Space Observatory (ISO) images of the Hubble Deep Field (HDF) at 6.7 and 15 mu m. We have constructed algorithmically selected 'complete' flux-limited samples of 19 sources in the 15-mu m image, and seven sources in the 6.7-mu m...

  5. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem

    Directory of Open Access Journals (Sweden)

    C. A. B. Quintero

    Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.


    Directory of Open Access Journals (Sweden)

    M. Martini


    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  7. Dynamics of macro-observables and space-time inhomogeneous Gibbs ensembles

    International Nuclear Information System (INIS)

    Lanz, L.; Lupieri, G.


    The relationship between the classical description of a macro-system and quantum mechanics of its particles is considered within the framework recently developed by Ludwig. A procedure is given to define probability measures on the trajectory space of a macrosystem which yields a statistical description of the dynamics of a macrosystem. The basic tool in this treatment is a new concept of space-time inhomogeneous Gibbs ensemble, defined in N-body quantum mechanics. In the Gaussian approximation of the probabilities the results of Zubarev's theory based on the ''nonequilibrium statistical operator'' are recovered. The present ''embedding'' of the description of a macrosystem inside the N-body theory allows for a joint description of a macrosystem and a microsubsystem of it, and a ''macroscopical'' calculation of the statistical operator of the microsystem is indicated. (author)

  8. Observations of star-forming regions with the Midcourse Space Experiment

    NARCIS (Netherlands)

    Kraemer, KE; Shipman, RF; Price, SD; Mizuno, DR; Kuchar, T; Carey, SJ

    We have imaged seven nearby star-forming regions, the Rosette Nebula, the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5, with the Spatial Infrared Imaging Telescope on the Midcourse Space Experiment (MSX) satellite at 1800 resolution at 8.3, 12.1, 14.7, and 21.3 mum. The large

  9. The space station window observational research facility; a high altitude imaging laboratory

    International Nuclear Information System (INIS)

    Runco, Susan K.; Eppler, Dean B.; Scott, Karen P.


    Earth Science will be one of the major research areas to be conducted on the International Space Station. The facilities from which this research will be accomplished are currently being constructed and will be described in this paper. By April 1999, the International Space Station nadir viewing research window fabrication will be completed and ready for installation. The window will provide a 20 inch (51 cm) diameter clear aperture. The three fused silica panes, which make up the window are fabricated such that the total peak-to-valley wavefront error in transmission through the three panes over any six inch diameter aperture does not exceed λ/7 where the reference wavelength is 632.8 nm. The window will have over 90% transmission between about 400 and 750, above 50% transmission between about 310 nm and 1375 nm and 40% transmission between 1386 nm and 2000 nm. The Window Operational Research Facility (WORF) is designed to accommodate payloads using this research window. The WORF will provide access to the International Space Station utilities such as data links, temperature cooling loops and power. Emphasis has been placed on the factors which will make this facility an optimum platform for conducting Earth science research

  10. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025 (United States)

    Fellous, Jean-Louis


    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  11. Speech-based recognition of self-reported and observed emotion in a dimensional space

    NARCIS (Netherlands)

    Truong, Khiet Phuong; van Leeuwen, David A.; de Jong, Franciska M.G.


    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two

  12. Space monitoring of temperature regime of Semipalatinsk nuclear test site: 10 years of observations

    International Nuclear Information System (INIS)

    Spivak, L.F.; Arkhipkin, O.P.; Vitkovskaya, I.S.; Batyrbaeva, M.Zh.; Sagatdinova, G.N.


    A brief description of the results of temperature anomaly routine research by specialists from Space Research Institute of Ministry of Education and Science of the Republic of Kazakhstan, revealed in 1997 within Semipalatinsk Test Site in the process of remote sounding of Kazakhstani territory, is given. Results of map analysis for snow cover, day and night temperatures and vegetation (during vegetation season) for the period since 1997 till 2006 testify a hypothesis on natural temperature anomaly, though there is a number of questions to be answered for further complex investigation. (author)

  13. Space-Air Co-Observation in Watershed Management: the Establishment of System (United States)

    Zhong, L.; Yu, J.; Tang, X.; Pan, S.


    To realize real-time, detailed, and standardized watershed monitoring and management, a dynamic monitoring system is proposed, at all levels (space, air, and ground), by comprehensively utilizing advanced satellite and low-altitude unmanned aerial vehicle (UAV) technologies The system can be used to monitor and manage all kinds of sensitive water targets. This study takes water administration enforcement as an example for proving it feasibility by selecting typical study areas. This study shows that the proposed system is a promising information acquisition means, contributing to the development of watershed management.

  14. Theory and Observations of Plasma Waves Excited Space Shuttle OMS Burns in the Ionosphere (United States)

    Bernhardt, P. A.; Pfaff, R. F.; Schuck, P. W.; Hunton, D. E.; Hairston, M. R.


    Measurements of artificial plasma turbulence were obtained during two Shuttle Exhaust Ionospheric Turbulence Experiments (SEITE) conducted during the flights of the Space Shuttle (STS-127 and STS-129). Based on computer modeling at the NRL PPD and Laboratory for Computational Physics & Fluid Dynamics (LCP), two dedicated burns of the Space Shuttle Orbital Maneuver Subsystem (OMS) engines were scheduled to produce 200 to 240 kg exhaust clouds that passed over the Air Force Research Laboratory (AFRL) Communications, Navigation, and Outage Forecast System (C/NOFS) satellite. This operation required the coordination by the DoD Space Test Program (STP), the NASA Flight Dynamics Officer (FDO), the C/NOFS payload operations, and the C/NOFS instrument principal investigators. The first SEITE mission used exhaust from a 12 Second OMS burn to deposit 1 Giga-Joules of energy into the upper atmosphere at a range of 230 km from C/NOFS. The burn was timed so C/NOFS could fly though the center of the exhaust cloud at a range of 87 km above the orbit of the Space Shuttle. The first SEITE experiment is important because is provided plume detection by ionospheric plasma and electric field probes for direct sampling of irregularities that can scatter radar signals. Three types of waves were detected by C/NOFS during and after the first SEITE burn. With the ignition and termination of the pair of OMS engines, whistler mode signals were recorded at C/NOFS. Six seconds after ignition, a large amplitude electromagnetic pulse reached the satellite. This has been identified as a fast magnetosonic wave propagating across magnetic field lines to reach the electric field (VEFI) sensors on the satellite. Thirty seconds after the burn, the exhaust cloud reach C/NOFS and engulfed the satellite providing very strong electric field turbulence along with enhancements in electron and ion densities. Kinetic modeling has been used to track the electric field turbulence to an unstable velocity

  15. Accounting for correlated observations in an age-based state-space stock assessment model

    DEFF Research Database (Denmark)

    Berg, Casper Willestofte; Nielsen, Anders


    Fish stock assessment models often relyon size- or age-specific observations that are assumed to be statistically independent of each other. In reality, these observations are not raw observations, but rather they are estimates from a catch-standardization model or similar summary statistics base...... the independence assumption is rejected. Less fluctuating estimates of the fishing mortality is obtained due to a reduced process error. The improved model does not suffer from correlated residuals unlike the independent model, and the variance of forecasts is decreased....

  16. Stress coupling in the seismic cycle indicated from geodetic measurements (United States)

    Wang, L.; Hainzl, S.; Zoeller, G.; Holschneider, M.


    The seismic cycle includes several phases, the interseismic, coseismic and postseismic phase. In the interseismic phase, strain gradually builds up around the overall locked fault in tens to thousands of years, while it is coseismically released in seconds. In the postseismic interval, stress relaxation lasts months to years, indicated by evident aseismic deformations which have been indicated to release comparable or even higher strain energy than the main shocks themselves. Benefiting from the development of geodetic observatory, e.g., Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) in the last two decades, the measurements of surface deformation have been significantly improved and become valuable information for understanding the stress evolution on the large fault plane. In this study, we utilize the GPS/InSAR data to investigate the slip deficit during the interseismic phase, the coseismic slip and the early postseismic creep on the fault plane. However, it is already well-known that slip inversions based only on the surface measurements are typically non-unique and subject to large uncertainties. To reduce the ambiguity, we utilize the assumption of stress coupling between interseismic and coseismic phases, and between coseismic and postseismic phases. We use a stress constrained joint inversion in Bayesian approach (Wang et al., 2012) to invert simultaneously for (1) interseismic slip deficit and coseismic slip, and (2) coseismic slip and postseismic creep. As case studies, we analyze earthquakes occurred in well-instrumented regions such as the 2004 M6.0 Parkfield earthquake, the 2010 M8.7 earthquake and the 2011 M9.1 Tohoku-Oki earthquake. We show that the inversion with the stress-coupling constraint leads to better constrained slip distributions. Meanwhile, the results also indicate that the assumed stress coupling is reasonable and can be well reflected from the available geodetic measurements. Reference: Lifeng

  17. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal) (United States)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3zz 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this highly qualified balloon team together for a second flight. FIREBall-2 will test key technologies and science strategies for a future space mission to map emission from CGM and IGM baryons. Its flights will continue to provide important training for the next generation of space astrophysicists working in UV and other wavelength instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the density and kinematics of this material for low z galaxies and open-ing a new field of CGM science.

  18. Earth observations from space: the first 50 years of scientific achievements

    National Research Council Canada - National Science Library

    Committee on Scientific Accomplishments of Earth Observations from Space; National Research Council; Division on Earth and Life Studies; National Research Council

    .... This book describes how the ability to view the entire globe at once, uniquely available from satellite observations, has revolutionized Earth studies and ushered in a new era of multidisciplinary Earth sciences...

  19. A comparative study for the estimation of geodetic point velocity by ...

    Indian Academy of Sciences (India)

    Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.

  20. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study (United States)

    Fergason, R. L.; Weller, L.


    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  1. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas. (United States)

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara


    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992 (United States)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.


    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  3. Acceleration of H, He, and heavy ions observed in the magnetosheath, magnetotail, and near-by interplanetary space

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.; Hovestadt, D.


    Pulses of electrons and ions composed of H, He, and heavier elements were observed in the magnetosheath, magnetotail, and near-by interplanetary space. From the spatial positions where these particles were detected and the ion flow directions we conclude that they were accelerated at the bow shock near the sub-solar point and in the near-earth region of the neutral sheet of the magnetotail. (orig.) [de

  4. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.


    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  5. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.


    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  6. Observations of the Hubble Deep Field with the Infrared Space Observatory .1. Data reduction, maps and sky coverage

    DEFF Research Database (Denmark)

    Serjeant, S.B.G.; Eaton, N.; Oliver, S.J.


    We present deep imaging at 6.7 and 15 mu m from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observational strategy and the data...... reduction. The observed source density appears to approach the CAM confusion limit at 15 mu m, and fluctuations in the 6.7-mu m sky background may be identifiable with similar spatial fluctuations in the HDF galaxy counts. ISO appears to be detecting comparable field galaxy populations to the HDF, and our...

  7. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.


    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy...... Telescope images appear to lie on the stellar field of a host galaxy, and as the large H I column density measured here and in later ground-based observations is unlikely on a random line of sight, we believe we are probably seeing absorption from H I in the host galaxy. In any case, this represents...

  8. Time and space resolved observation of hot spots in a plasma focus

    International Nuclear Information System (INIS)

    Choi, P.; Aliaga, R.; Herold, H.


    The authors report some recent results on the time and space evolution of hot spots on the DPF-78 plasma focus at the University of Stuttgart. The experiments were carried out in mixtures of deuterium and krypton at a bank voltage of 60 kV and a stored energy of 28 kJ. A modification of the ADRRM streak technique carried out in the soft x-ray region allowed us to directly examine some characteristics of the hot spots. Simultaneous measurements were carried out on the hard x-ray radiation (80 keV), the spatially resolved optical emissions, the neutron yield rate with TOF information and the plasma and bank currents

  9. Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space

    International Nuclear Information System (INIS)

    Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.


    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast

  10. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration (United States)

    Chelton, Dudley B.; Schlax, Michael G.


    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  11. Visual astronomy under dark skies a new approach to observing deep space

    CERN Document Server

    Cooke, Antony


    Modern astronomical telescopes, along with other advances in technology, have brought the deep sky - star clusters, nebulae and the galaxies - within reach of amateur astronomers. And it isn't even necessary to image many of these deep-sky objects in order to see them; they are within reach of visual observers using modern techniques and enhancement technology. The first requirement is truly dark skies; if you are observing from a light-polluted environment you need Tony Cooke's book, Visual Astronomy in the Suburbs. Given a site with clear, dark night skies everything else follows… this book will provide the reader with everything he needs to know about what to observe, and using some of today's state-of-the-art technique and commercial equipment, how to get superb views of faint and distant astronomical objects.

  12. Squeezed bispectrum in the δ N formalism: local observer effect in field space

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yuichiro [Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Vennin, Vincent, E-mail:, E-mail: [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)


    The prospects of future galaxy surveys for non-Gaussianity measurements call for the development of robust techniques for computing the bispectrum of primordial cosmological perturbations. In this paper, we propose a novel approach to the calculation of the squeezed bispectrum in multiple-field inflation. With use of the δ N formalism, our framework sheds new light on the recently pointed out difference between the squeezed bispectrum for global observers and that for local observers, while allowing one to calculate both. For local observers in particular, the squeezed bispectrum is found to vanish in single-field inflation. Furthermore, our framework allows one to go beyond the near-equilateral ('small hierarchy') limit, and to automatically include intrinsic non-Gaussianities that do not need to be calculated separately. The explicit computational programme of our method is given and illustrated with a few examples.

  13. Geodetic determinations for the NuMI project at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.


    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  14. Thin-plate spline quadrature of geodetic integrals (United States)

    Vangysen, Herman


    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  15. Azimuth selection for sea level measurements using geodetic GPS receivers (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng


    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.


    Directory of Open Access Journals (Sweden)

    D. Costantino


    Full Text Available Monitoring buildings for moving elements has been always a problem of great importance for their conservation and preservation, as well as for risk mitigation. In particular, topographic surveying allows, through the use of the principles and instruments of the geodetic survey, to control moving points which have been identified and measured. In this study case, twelve survey campaigns were done for monitoring a building located in the city of Lecce. The condominium was built five years ago on an old quarry filled with debris to allow construction. Later in time, obviously, cracks started to appear on walls within the property, and for this legal actions were taken. The survey schema adopted has been that of triangulation/trilateration, from two vertices with known coordinates. With this methodologies four cornerstones have been identified, established with forced centering on pillars with anchor plates, connected to same number of framework points, considered stable. From these, 23 control points located on the structure with rotating prisms anchored at the same manner have been surveyed. The elaboration has been carried out by generating redundancy of the measures and compensating the values with least mean squares. The results obtained by the activity of survey and elaboration have confirmed the existence of ongoing phenomena. The causes that have generated the phenomenon have been, subsequently, investigated and have been considered attributable to the existence of a sewer pipeline and a water pipeline not properly put in place and consequently broke down due to the geological characteristics of the site.

  17. Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake (United States)

    Hutchinson, Ian H.; Malaspina, David M.


    Recent theory and numerical simulation predicts that the wake of the solar wind flow past the Moon should be the site of electrostatic instabilities that give rise to electron holes. These play an important role in the eventual merging of the wake with the background solar wind. Analysis of measurements from the ARTEMIS satellites, orbiting the Moon at distances from 1.2 to 11 RM, detects holes highly concentrated in the wake, in agreement with prediction. The theory also predicts that the hole flux density observed should be hollow, peaking away from the wake axis. Observation statistics qualitatively confirm this hollowness, lending extra supporting evidence for the identification of their generation mechanism.

  18. Geodetic Measurements and Mechanical Models of Cyclic Deformation at Okmok Volcano, Alaska (United States)

    Feigl, K.; Masterlark, T.; Lu, Z.; Ohlendorf, S. J.; Thurber, C. H.; Sigmundsson, F.


    The 1997 and 2008 eruptions of Okmok volcano, Alaska, provide a rare opportunity for conducting a rheological experiment to unravel the complex processes associated with magma migration, storage, and eruption in an active volcano. In this experiment, the magma flux during the eruption provides the “impulse” and the subsequent, transient deformation, the “response”. By simulating the impulse, measuring the response, and interpreting the constitutive relations between the two, one can infer the rheology. Okmok is an excellent natural laboratory for such an experiment because a complete cycle of deformation has been monitored using geodetic and seismic means, including: (a) geodetic time series from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS), (b) earthquake locations; and (c) seismic tomography. We are developing quantitative models using the Finite Element Method (FEM) to simulate the timing and location of the observed seismicity and deformation by accounting for: (a) the geometry and loading of the magma chamber and lava flow, (b) the spatial distribution of material properties; and (c) the constitutive (rheological) relations between stress and strain. Here, we test the hypothesis that the deformation following the 1997 eruption did not reach a steady state before the eruption in 2008. To do so, we iteratively confront the FEM models with the InSAR measurements using the General Inversion of Phase Technique (GIPhT). This approach models the InSAR phase data directly, without unwrapping, as developed, validated, and applied by Feigl and Thurber [Geophys. J. Int., 2009]. By minimizing a cost function that quantifies the misfit between observed and modeled values in terms of “wrapped” phase (with values ranging from -1/2 to +1/2 cycles), GIPhT can estimate parameters in a geophysical model. By avoiding the pitfalls of phase-unwrapping approaches, GIPhT allows the analysis, interpretation and modeling of more

  19. Remote sensing of refractivity from space for global observations of atmospheric parameters

    International Nuclear Information System (INIS)

    Gorbunov, M.E.; Sokolovskiy, S.V.


    This report presents the first results of computational simulations on the retrieval of meteorological parameters from space refractometric data on the basis of the ECHAM 3 model developed at the Max Planck Institute for Meteorology (Roeckner et al. 1992). For this purpose the grid fields of temperature, geopotential and humidity available from the model were interpolated and a continuous spatial field of refractivity (together with its first derivative) was generated. This field was used for calculating the trajectories of electromagnetic rays for the given orbits of transmitting and receiving satellites and for the determination of the quantities (incident angles or Doppler frequency shifts) being measured at receiving satellite during occultation. These quantities were then used for solving the inverse problem - retrieving the distribution of refractivity in the vicinity of the ray perigees. The retrieved refractivity was used to calculate pressure and temperature (using the hydrostatic equation and the equation of state). The results were compared with initial data, and the retrieval errors were evaluated. The study shows that the refractivity can be retrieved with very high accuracy in particular if a tomographic reconstruction is applied. Effects of humidity and temperature are not separable. Stratospheric temperatures globally and upper tropospheric temperatures at middle and high latitudes can be accurately retrieved, other areas require humidity data. Alternatively humidity data can be retrieved if the temperature fields are known. (orig.)

  20. Irradiation and accretion of solids in space based on observations of lunar rocks and grains

    International Nuclear Information System (INIS)

    Lal, D.


    Clues to a wide range of questions relating to the origin and evolution of the solar system and dynamic physical and electromagnetic processes occurring concurrently and in the past in our galaxy have been provided by a study of the lunar samples. This information is deduced from a variety of complementary physical and chemical evidence. In this presentation greatest emphasis is laid on information based on effects arising from interactions of low energy cosmic rays with lunar surface materials. The present discussions concern the nature of experimental data to date and implications thereof to the charged particle environment of the Moon, ancient magnetic fields and the nature of time scales involved in the irradiation and accretion of solids in space, based on lunar regolith dynamics. It becomes clear that there does not yet exist any consensus on the absolute values of charged particle or the meteorite fluxes, and also about the details of the evolution of the lunar regolith. The complex history of evolution of lunar material is slowly being understood and it is hoped that a great deal of quantitative information will soon be available which will in turn allow discussion of evolution of solid bodies in the solar system. (author)

  1. Observation of dynamic atom-atom correlation in liquid helium in real space. (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T


    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  2. Momentum-space resummation for transverse observables and the Higgs p ⊥ at N3LL+NNLO (United States)

    Bizoń, Wojciech; Monni, Pier Francesco; Re, Emanuele; Rottoli, Luca; Torrielli, Paolo


    We present an approach to the momentum-space resummation of global, recursively infrared and collinear safe observables that can vanish away from the Sudakov region. We focus on the hadro-production of a generic colour singlet, and we consider the class of observables that depend only upon the total transverse momentum of the radiation, prime examples being the transverse momentum of the singlet, and ϕ ∗ in Drell-Yan pair production. We derive a resummation formula valid up to next-to-next-to-next-to-leading-logarithmic accuracy for the considered class of observables. We use this result to compute state-of-the-art predictions for the Higgs-boson transverse-momentum spectrum at the LHC at next-to-next-to-next-to-leading-logarithmic accuracy matched to fixed next-to-next-to-leading order. Our resummation formula reduces exactly to the customary resummation performed in impact-parameter space in the known cases, and it also predicts the correct power-behaved scaling of the cross section in the limit of small value of the observable. We show how this formalism is efficiently implemented by means of Monte Carlo techniques in a fully exclusive generator that allows one to apply arbitrary cuts on the Born variables for any colour singlet, as well as to automatically match the resummed results to fixed-order calculations.

  3. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context


    Julie Transon; Raphaël d’Andrimont; Alexandre Maugnard; Pierre Defourny


    In the last few decades, researchers have developed a plethora of hyperspectral Earth Observation (EO) remote sensing techniques, analysis and applications. While hyperspectral exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing is now providing free, open, global and systematic high resolution visible and infrared imagery at a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral data. This st...

  4. Towards soil property retrieval from space: Proof of concept using in situ observations (United States)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph


    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  5. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission (United States)

    McCarty, Will


    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  6. Observations of Earth space by self-powered stations in Antarctica. (United States)

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T


    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  7. The astro-geodetic use of CCD for gravity field refinement (United States)

    Gerstbach, G.


    The paper starts with a review of geoid projects, where vertical deflections are more effective than gravimetry. In alpine regions the economy of astrogeoids is at least 10 times higher, but many countries do not make use of this fact - presumably because the measurements are not fully automated up to now. Based upon the experiences of astrometry of high satellites and own tests the author analyses the use of CCD for astro-geodetic measurements. Automation and speeding up will be possible in a few years, the latter depending on the observation scheme. Sensor characteristics, cooling and reading out of the devices should be harmonized. Using line sensors in small prism astrolabes, the CCD accuracy will reach the visual one (±0.2″) within 5-10 years. Astrogeoids can be combined ideally with geological data, because vertical variation of rock densities does not cause systematic effects (contrary to gravimetry). So a geoid of ±5 cm accuracy (achieved in Austria and other alpine countries by 5-10 points per 1000 km 2) can be improved to ±2 cm without additional observations and border effects.

  8. Application of median-equation approach for outlier detection in geodetic networks

    Directory of Open Access Journals (Sweden)

    Serif Hekimoglu

    Full Text Available In geodetic measurements some outliers may occur sometimes in data sets, depending on different reasons. There are two main approaches to detect outliers as Tests for outliers (Baarda's and Pope's Tests and robust methods (Danish method, Huber method etc.. These methods use the Least Squares Estimation (LSE. The outliers affect the LSE results, especially it smears the effects of the outliers on the good observations and sometimes wrong results may be obtained. To avoid these effects, a method that does not use LSE should be preferred. The median is a high breakdown point estimator and if it is applied for the outlier detection, reliable results can be obtained. In this study, a robust method which uses median with or as a treshould value on median residuals that are obtained from median equations is proposed. If the a priori variance of the observations is known, the reliability of the new approch is greater than the one in the case where the a priori variance is unknown.

  9. Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake (United States)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.


    On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.

  10. Probing Very Bright End of Galaxy Luminosity Function at z >~ 7 Using Hubble Space Telescope Pure Parallel Observations (United States)

    Yan, Haojing; Yan, Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan, Xiaohui; Röttgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Davé, Romeel; Cai, Zheng


    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin2 in total area. We have found three bright Y 098-dropouts, which are candidate galaxies at z >~ 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ~ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by "cosmic variance" than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ≈ 7.4 is not well explained by the current luminosity function (LF) estimates at z ≈ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ≈ 7 if it belongs to the high-redshift tail of the galaxy population at z ≈ 7. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11700 and 11702.

  11. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen


    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  12. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.


    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  13. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others


    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.


    International Nuclear Information System (INIS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Cotera, Angela S.; Hines, Dean C.; Whitney, Barbara A.


    Massive young stellar objects (YSOs), like low-mass YSOs, appear to be surrounded by optically thick envelopes and/or disks and have regions, often bipolar, that are seen in polarized scattered light at near-infrared wavelengths. We are using the 0.''2 spatial resolution of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on Hubble Space Telescope to examine the structure of the disks and outflow regions of massive YSOs in star-forming regions within a few kpc of the Sun. Here we report on 2 μm polarimetry of NGC 6334 V and S255 IRS1. NGC 6334 V consists of a double-lobed bright reflection nebula seen against a dark region, probably an optically thick molecular cloud. Our polarization measurements show that the illuminating star lies ∼2'' south of the line connecting the two lobes; we do not detect this star at 2 μm, but there are a small radio source and a mid-infrared source at this location. S255 IRS1 consists of two YSOs (NIRS1 and NIRS3) with overlapping scattered light lobes and luminosities corresponding to early B stars. Included in IRS1 is a cluster of stars from whose polarization we determine the local magnetic field direction. Neither of the YSOs has its scattered light lobes aligned with this magnetic field. The line connecting the scattered light lobes of NIRS1 is twisted symmetrically around the star; the best explanation is that the star is part of a close binary and the outflow axis of NIRS1 is precessing as a result of non-coplanar disk and orbit. The star NIRS3 is also offset from the line connecting its two scattered light lobes. We suggest that all three YSOs show evidence of episodic ejection of material as they accrete from dense, optically thick envelopes.

  15. Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags (United States)

    Cackett, Edward M.; Chiang, Chia-Ying; McHardy, Ian; Edelson, Rick; Goad, Michael R.; Horne, Keith; Korista, Kirk T.


    The Seyfert 1 galaxy NGC 4593 was monitored spectroscopically with the Hubble Space Telescope as part of a reverberation mapping campaign that also included Swift, Kepler, and ground-based photometric monitoring. During 2016 July 12–August 6, we obtained 26 spectra across a nearly continuous wavelength range of ∼1150–10000 Å. These were combined with Swift data to produce a UV/optical “lag spectrum,” which shows the interband lag relative to the Swift UVW2 band as a function of wavelength. The broad shape of the lag spectrum appears to follow the τ ∝ λ 4/3 relation seen previously in photometric interband lag measurements of other active galactic nuclei (AGNs). This shape is consistent with the standard thin disk model, but the magnitude of the lags implies a disk that is a factor of ∼3 larger than predicted, again consistent with what has been previously seen in other AGNs. In all cases these large disk sizes, which are also implied by independent gravitational microlensing of higher-mass AGNs, cannot be simply reconciled with the standard model. However, the most striking feature in this higher-resolution lag spectrum is a clear excess around the 3646 Å Balmer jump. This strongly suggests that diffuse emission from gas in the much larger broad-line region (BLR) must also contribute significantly to the interband lags. While the relative contributions of the disk and BLR cannot be uniquely determined in these initial measurements, it is clear that both will need to be considered to comprehensively model and understand AGN lag spectra.

  16. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka


    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.


    International Nuclear Information System (INIS)

    Ojha, Roopesh; Zacharias, Norbert; Hennessy, Gregory S.; Gaume, Ralph A.; Johnston, Kenneth J.


    Photometric observations of 235 extragalactic objects that are potential targets for the Space Interferometry Mission (SIM) are presented. Mean B, V, R, I magnitudes at the 5% level are obtained at 1-4 epochs between 2005 and 2007 using the 1 m telescopes at Cerro Tololo Inter-American Observatory and the Naval Observatory Flagstaff Station. Of the 134 sources that have V magnitudes in the Veron and Veron-Cetty catalog, a difference of over 1.0 mag is found for the observed-catalog magnitudes for about 36% of the common sources, and 10 sources show over 3 mag difference. Our first set of observations presented here form the basis of a long-term photometric variability study of the selected reference frame sources to assist in mission target selection and to support QSO multicolor photometric variability studies in general.

  18. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina


    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  19. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space (United States)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.


    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  20. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations (United States)

    Bolen, Steve; Chandrasekar, V.


    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  1. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context

    Directory of Open Access Journals (Sweden)

    Julie Transon


    Full Text Available In the last few decades, researchers have developed a plethora of hyperspectral Earth Observation (EO remote sensing techniques, analysis and applications. While hyperspectral exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing is now providing free, open, global and systematic high resolution visible and infrared imagery at a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral data. This study, therefore, reviews 20 years of research and applications in satellite hyperspectral remote sensing through the analysis of Earth observation hyperspectral sensors’ publications that cover the Sentinel-2 spectrum range: Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, Shalom, HyspIRI and HypXIM. More specifically, this study (i brings face to face past and future hyperspectral sensors’ applications with Sentinel-2’s and (ii analyzes the applications’ requirements in terms of spatial and temporal resolutions. Eight main application topics were analyzed including vegetation, agriculture, soil, geology, urban, land use, water resources and disaster. Medium spatial resolution, long revisit time and low signal-to-noise ratio in the short-wave infrared of some hyperspectral sensors were highlighted as major limitations for some applications compared to the Sentinel-2 system. However, these constraints mainly concerned past hyperspectral sensors, while they will probably be overcome by forthcoming instruments. Therefore, this study is putting forward the compatibility of hyperspectral sensors and Sentinel-2 systems for resolution enhancement techniques in order to increase the panel of hyperspectral uses.

  2. Latitudinal structure of Pc 5 waves in space: Magnetic and electric field observations

    International Nuclear Information System (INIS)

    Singer, H.J.; Kivelson, M.G.


    The occurrence frequency and spatial structure of Pc 5 magnetic pulsations in the dawnside of the plasma trough have been studied using data from the Ogo 5 satellite. The wave magnetic fields were obtained from the University of California, Los Angeles, flux-gate magnetometer measurements, and one component of the wave electric field was inferred from oscillations of the ion flux measured by the Lockheed light ion mass spectrometer. During portions of seven of the 19 passes comprising the survey, Pc 5 oscillations were observed in the ion flux but not in the magnetic field, and in each case the satellite was within 10 0 of the geomagnetic equator. Above 10 0 latitude, transverse magnetic and electric oscillations were both observed. The results are consistent with the model of a standing Alfven wave along a resonant field line with the geomagnetic equator as a node of the magnetic perturbation, that is, and odd mode. The wave periods are generally consistent with the fundamental resonant period. In this study, Pc 5 oscillations were identified 3 or 4 times more frequently (per orbit) than in previous spacecraft studies which relied only on magnetic data

  3. In situ observations from STEREO/PLASTIC: a test for L5 space weather monitors

    Directory of Open Access Journals (Sweden)

    K. D. C. Simunac


    Full Text Available Stream interaction regions (SIRs that corotate with the Sun (corotating interaction regions, or CIRs are known to cause recurrent geomagnetic storms. The Earth's L5 Lagrange point, separated from the Earth by 60 degrees in heliographic longitude, is a logical location for a solar wind monitor – nearly all SIRs/CIRs will be observed at L5 several days prior to their arrival at Earth. Because the Sun's heliographic equator is tilted about 7 degrees with respect to the ecliptic plane, the separation in heliographic latitude between L5 and Earth can be more than 5 degrees. In July 2008, during the period of minimal solar activity at the end of solar cycle 23, the two STEREO observatories were separated by about 60 degrees in longitude and more than 4 degrees in heliographic latitude. This time period affords a timely test for the practical application of a solar wind monitor at L5. We compare in situ observations from PLASTIC/AHEAD and PLASTIC/BEHIND, and report on how well the BEHIND data can be used as a forecasting tool for in situ conditions at the AHEAD spacecraft with the assumptions of ideal corotation and minimal source evolution. Preliminary results show the bulk proton parameters (density and bulk speed are not in quantitative agreement from one observatory to the next, but the qualitative profiles are similar.

  4. In situ observations from STEREO/PLASTIC: a test for L5 space weather monitors

    Directory of Open Access Journals (Sweden)

    K. D. C. Simunac


    Full Text Available Stream interaction regions (SIRs that corotate with the Sun (corotating interaction regions, or CIRs are known to cause recurrent geomagnetic storms. The Earth's L5 Lagrange point, separated from the Earth by 60 degrees in heliographic longitude, is a logical location for a solar wind monitor – nearly all SIRs/CIRs will be observed at L5 several days prior to their arrival at Earth. Because the Sun's heliographic equator is tilted about 7 degrees with respect to the ecliptic plane, the separation in heliographic latitude between L5 and Earth can be more than 5 degrees. In July 2008, during the period of minimal solar activity at the end of solar cycle 23, the two STEREO observatories were separated by about 60 degrees in longitude and more than 4 degrees in heliographic latitude. This time period affords a timely test for the practical application of a solar wind monitor at L5. We compare in situ observations from PLASTIC/AHEAD and PLASTIC/BEHIND, and report on how well the BEHIND data can be used as a forecasting tool for in situ conditions at the AHEAD spacecraft with the assumptions of ideal corotation and minimal source evolution. Preliminary results show the bulk proton parameters (density and bulk speed are not in quantitative agreement from one observatory to the next, but the qualitative profiles are similar.


    International Nuclear Information System (INIS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Plavchan, P.; Stauffer, J. R.; Gorlova, N. I.


    We present Spitzer MIPS observations at 24 μm of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% ± 6.8%, have excesses at 24 μm at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity on the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.


    Energy Technology Data Exchange (ETDEWEB)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Kaplan, D. L. [University of Wisconsin-Milwaukee, Milwaukee (United States); McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Sydney (Australia); Smith, C. [Electro Optic Systems Pty Ltd, Canberra (Australia); Zhang, K. [RMIT University, Melbourne (Australia); Barnes, D. G., E-mail: [Monash e-Research Centre, Monash University, Clayton (Australia); and others


    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  7. On the Detection and Tracking of Space Debris Using the Murchison Widefield Array. I. Simulations and Test Observations Demonstrate Feasibility (United States)

    Tingay, S. J.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Smith, C.; Zhang, K.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Barnes, D. G.; Bell, M.; Gaensler, B. M.; Lenc, E.; Bernardi, G.; Greenhill, L. J.; Kasper, J. C.; Bowman, J. D.; Jacobs, D.; Bunton, J. D.; deSouza, L.; Koenig, R.; Pathikulangara, J.; Stevens, J.; Cappallo, R. J.; Corey, B. E.; Kincaid, B. B.; Kratzenberg, E.; Lonsdale, C. J.; McWhirter, S. R.; Rogers, A. E. E.; Salah, J. E.; Whitney, A. R.; Deshpande, A.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Morgan, E.; Remillard, R. A.; Williams, C. L.; Hazelton, B. J.; Morales, M. F.; Johnston-Hollitt, M.; Mitchell, D. A.; Procopio, P.; Riding, J.; Webster, R. L.; Wyithe, J. S. B.; Oberoi, D.; Roshi, A.; Sault, R. J.; Williams, A.


    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ~1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some


    International Nuclear Information System (INIS)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M.; Smith, C.; Zhang, K.; Barnes, D. G.


    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  9. Magentic resonance imaging and characterization of normal and abnormal intracranial cerebrospinal fluid (CSF) spaces: Initial observations

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Kelly, W.; Kjos, B.; Newton, T.H.; Norman, D.; Dillon, W.; Sobel, D.


    A retrospective review of twenty-five normal MRI brain studies performed with the spin-echo technique focused special attention on the ventricular and extraventricular cerebrospinal fluid (CSF) and revealed unique signal intensity characteristics in the two locations. In addition, MRI studies of ten patients with abnormal extraaxial fluid collections either missed with CT or indistinguishable from CSF on CT images were also analyzed. MRI is more sensitive when compared to CT in evaluating the composition of CSF. Unique signal intensity characterizes the two major CSF compartments and presumably reflects their known but subtle difference in protein concentration (10-15 mg%). Normal variant or abnormal developmental fluid collections can be better characterized with MRI than with CT. These preliminary observations are offered in view of their implications for patient management and suggest further investigation. (orig.)

  10. Anthropogenic emissions and space-borne observations of carbon monoxide over South Asia (United States)

    Ul-Haq, Zia; Tariq, Salman; Ali, Muhammad


    The focus of this study is to understand anthropogenic emissions, spatiotemporal variability and trends of carbon monoxide (CO) over South Asia by using datasets from MACCity (Monitoring Atmospheric Composition and Climate, MACC and megaCITY - Zoom for the Environment, CityZEN), REAS (Regional Emission inventory in Asia), AIRS (Atmospheric Infrared Sounder) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY). MACCity anthropogenic emissions show an overall increase of 16.5% during 2000-2010. Elevated levels of MACCity CO are found in Indo-Gangetic Basin (IGB), eastern mining region of India, Bangladesh and large urban areas. Some of the major contributors of these emissions have been identified as agricultural waste burning, land transport, industrial production, and energy generation and distribution. An area averaged mean value of AIRS CO at 600 hPa is found to be 114 ± 2 ppbv (slope -0.48 ± 0.2 ppbv yr-1, y-intercept 117 ± 1 ppbv and r = 0.68) with a minor declining trend at -0.41 ± 0.18% yr-1 over the region during 2003-2015. A strong seasonality in AIRS CO concentration is observed with spring season peak in March 129 ± 1.9 ppbv, whereas low values have been observed in summer monsoon with sturdy dip in July 99.6 ± 1.94 ppbv. AIRS CO and SCIAMACHY CO Total Column (CO TC) over the study region show spatial patterns similar to MACCity and REAS emissions. An analysis of SCIAMACHY CO TC tendencies has been performed which indicates minor rising trends over some parts of the region. Background CO, Recent Emissions (RE), and spatial anomalies in RE over high anthropogenic activity zones of Indus Basin, Ganges Basin and Eastern Region were analyzed using AIRS and SCIAMACHY CO data.


    International Nuclear Information System (INIS)

    Vincent, Frederic E.; Ben-Jaffel, Lotfi; Harris, Walter M.


    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the incoming ISM-ionized component deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. While current models of the heliospheric interface predict the observed IPH velocity for solar maximum, they are not consistent with data covering solar minimum. With updates to the HST data points, we now find that all data can be fit by the existing models to within 1σ, with the exception of SWAN observations taken at solar minimum (1997/1998). We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed characteristics of the solar cycle dependence. Hence, new observations are merited.

  12. Comparison of direct and geodetic mass balances on a multi-annual time scale

    Directory of Open Access Journals (Sweden)

    A. Fischer


    Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.

  13. UBAT of UFFO/Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    DEFF Research Database (Denmark)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.


    . To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device’s imaging algorithms. The UFFO/Lomonosov satellite...... was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT’s design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space....

  14. Sensorless State-Space Control of Elastic Two-Inertia Drive System Using a Minimum State Order Observer

    Directory of Open Access Journals (Sweden)

    V. Comnac


    Full Text Available The paper presents sensorless state-space control of two-inertia drive system with resilient coupling. The control structure contains an I+PI controller for load speed regulation and a state feedback controller for effective vibration suppression of the elastic coupling. Mechanical state variable of two-inertia drive are obtained by using a linear minimum-order (Gopinath state observer. The design of the combined (I+PI and state feedback controller is achieved with the extended version of the modulus criterion [5]. The dynamic behavior of presented control structure has been examined, for different conditions, using MATLAB/SIMULINK simulation.

  15. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.


    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  16. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Saavedra, R.; Wyndham, E.


    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 μm. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs

  17. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy (United States)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.


    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  18. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui, H; Favre, M; Saavedra, R; Wyndham, E [Universidad Catolica de Chile, Santiago (Chile). Facultad de Fisica; Choi, P; Dumitrescu-Zoita, C [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises; Soto, L [Comision Chilena de Energia Nuclear, Santiago (Chile)


    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 {mu}m. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs.

  19. Discoveries and Controversies in Geodetic Imaging of Deformation Before and After the M=9 Tohoku-oki Earthquake (United States)

    Wang, K.; Sun, T.; Hino, R.; Iinuma, T.; Tomita, F.; Kido, M.


    Numerous observations pertaining to the M=9.0 2011 Tohoku-oki earthquake have led to new understanding of subduction zone earthquakes. By synthesizing published research results and our own findings, we explore what has been learned about fault behavior and Earth rheology from geodetic imaging of crustal deformation before and after the earthquake. Before the earthquake, megathrust locking models based on land-based geodetic observations correctly outlined the along-strike location of the future rupture zone, showing that land-based observations are capable of resolving along-strike variations in locking and creep at wavelengths comparable to distances from the network. But they predicted a locked zone that was much deeper than the actual rupture in 2011. The incorrect definition of the locking pattern in the dip direction demonstrates not only the need for seafloor geodesy but also the importance of modeling interseismic viscoelastic stress relaxation and stress shadowing. The discovery of decade-long accelerated slip downdip of the future rupture zone raises new questions on fault mechanics. After the earthquake, seafloor geodetic discovery of opposing motion offshore provided unambiguous evidence for the dominance of viscoelastic relaxation in short-term postseismic deformation. There is little deep afterslip in the fault area where the decade-long pre-earthquake slip acceleration is observed. The complementary spatial distribution of pre-slip and afterslip calls for new scientific research. However, the near absence of deep afterslip directly downdip of the main rupture is perceived to be controversial because some viscoelastic models do predict large afterslip here, although less than predicted by purely elastic models. We show that the large afterslip in these models is largely an artefact due to the use of a layered Earth model without a subducting slab. The slab acts as an "anchor" in the mantle and retards landward motion following a subduction earthquake

  20. Laboratory Studies of Solid CO2 Ices at Different Temperatures and Annealing Times in Support of Spitzer Space Telescope Observations (United States)

    White, Douglas; Gerakines, P. A.


    The infrared absorption features of solid carbon dioxide have been detected by space observatories in nearly all lines of sight probing the dense interstellar medium (ISM). It has also been shown that the absorption feature of solid CO2 near 658 cm-1 (15.2 μm) should be a sensitive indicator of the physical conditions of the ice (e.g., temperature and composition). However, the profile structure of this feature is not well understood, and previous laboratory studies have concentrated on a limited range of temperatures and compositions for comparisons to observed spectra from both the Infrared Space Observatory and the Spitzer Space Telescope. In the laboratory study described here, the infrared spectra of ices bearing H2O, CH3OH, and CO2 have been measured with systematically varying compositions and temperatures that span the range of the values expected in the interstellar medium. The mid-infrared spectra (λ = 2.5-25 µm) were measured for 47 different ice compositions at temperatures ranging from 5 K to evaporation (at 5 K intervals). Additionally, annealing experiments of some of these ice compositions have been investigated. These data may be used to determine thermal histories of interstellar ices. This research was supported by NASA award NNG05GE44G under the Astronomy and Physics Research & Analysis Program (APRA).

  1. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide (United States)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.


    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  2. Congruence analysis of geodetic networks - hypothesis tests versus model selection by information criteria (United States)

    Lehmann, Rüdiger; Lösler, Michael


    Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.

  3. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging. (United States)

    Thompson, T. B.; Meade, B. J.


    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  4. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions (United States)

    Atlas, R. M.


    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  5. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools (United States)

    Birk, R. J.; Frederick, M.


    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  6. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations (United States)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.


    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to model data.

  7. Effectiveness of media awareness campaigns on the proportion of vehicles that give space to ambulances on roads: An observational study. (United States)

    Shaikh, Shiraz; Baig, Lubna A; Polkowski, Maciej


    The findings of the Health Care in Danger project in Karachi suggests that there is presence of behavioral negligence among vehicle operators on roads in regards to giving way to ambulances. A mass media campaign was conducted to raise people's awareness on the importance of giving way to ambulances. The main objective of this study was to determine the effectiveness of the campaign on increasing the proportion of vehicles that give way to ambulances. This was a quasi-experimental study that was based on before and after design. Three observation surveys were carried out in different areas of the city in Karachi, Pakistan before, during and after the campaign by trained observers who recorded their findings on a checklist. Each observation was carried out at three different times of the day for at least two days on each road. The relationship of the media campaign with regards to a vehicle giving space to an ambulance was calculated by means of odds ratios and 95% confidence intervals using multivariate logistic regression. Overall, 245 observations were included in the analysis. Traffic congestion and negligence/resistance, by vehicles operators who were in front of the ambulance, were the two main reasons why ambulances were not given way. Other reasons include: sudden stops by minibuses and in the process causing obstruction, ambulances not rushing through to alert vehicle operators to give way and traffic interruption by VIP movement. After adjustment for site, time of day, type of ambulance and number of cars in front of the ambulance, vehicles during (OR=2.13, 95% CI=1.22-3.71, p=0.007) and after the campaign (OR=1.73, 95% CI=1.02-2.95, p=0.042) were significantly more likely give space to ambulances. Mass media campaigns can play a significant role in changing the negligent behavior of people, especially when the campaign conveys a humanitarian message such as: giving way to ambulances can save lives.

  8. Spots and the Activity of Stars in the Hyades Cluster from Observations with the Kepler Space Telescope (K2) (United States)

    Savanov, I. S.; Dmitrienko, E. S.


    Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by Δ S 0.05-0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars ( S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades ( S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun ( = 8.6 d ), but slower than similar Pleiades stars.

  9. Operational production of Geodetic Excitation Functions from EOP estimated values at ASI-CGS (United States)

    Sciarretta, C.; Luceri, V.; Bianco, G.


    ASI-CGS is routinely providing geodetic excitation functions from its own estimated EOP values (at present SLR and VLBI; the current use of GPS EOP's is also planned as soon as this product will be fully operational) on the ASI geodetic web site ( This product has been generated and monitored (for ASI internal use only) in a long pre-operational phase (more than two years), including validation and testing. The daily geodetic excitation functions are now weekly updated along with the operational ASI SLR and VLBI EOP solutions and compared, whenever possible, with the atmospheric excitation functions available at the IERS SBAAM, under the IB and not-IB assumption, including the "wind" term. The work will present the available estimated geodetic function time series and its comparison with the relevant atmospheric excitation functions, deriving quantitative indicators on the quality of the estimates. The similarities as well as the discrepancies among the atmospheric and geodetic series will be analysed and commented, evaluating in particular the degree of correlation among the two estimated time series and the likelihood of a linear dependence hypothesis.

  10. Establishing a Modern Ground Network for Space Geodesy Applications (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.


    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  11. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education (United States)


    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  12. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio


    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  13. Geodetic constraints on continental rifting along the Red Sea (United States)

    Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.


    We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that

  14. Space shuttle charging or beam-plasma discharge: What can electron spectrometer observations contribute to solving the question?

    International Nuclear Information System (INIS)

    Watermann, J.; Wilhelm, K.; Torkar, K.M.; Riedler, W.


    Several cooperative plasma experiments were carried out on board Spacelab-1, the ninth payload of the Space Transportation System (STS-9). Among them, the electron spectrometer 1ES019A was designed to observe 01.-12.5 keV electron fluxes with high temporal and spatial resolution, while the SEPAC electron beam accelerator emitted electron beams with currents up to 280 mA and maximum energies of 5 keV. Since the question of orbiter charging to high voltages has controversially been discussed in several publications on STS-3 and STS-9 electron beam experiments, an attempt is made to relate information from the return electron flux observed during the SEPAC operations to the vehicle charging interpretation. A close examination reveals that most of our observations can be understood if the occurrence of a beam-plasma discharge is assumed at least for electron beam intensities above 100 mA. This would provide a substantial return current capability. High orbiter charging effects during electron beam accelerator electron emissions are consequently not supported by the observations

  15. NASA's Contribution to Global Space Geodesy Networks (United States)

    Bosworth, John M.


    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  16. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle (United States)

    Avouac, Jean-Philippe


    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  17. Evaluation of a New Prototype Geodetic Astrolabe for Measuring Deflections of the Vertical (United States)

    Slater, J. A.; Thompson, N.; Angell, L. E.; Belenkii, M. S.; Bruns, D. G.; Johnson, D. O.


    During the last three years, the National Geospatial-Intelligence Agency (NGA), with assistance from the U.S. Naval Observatory (USNO), sponsored the development of a new electronic geodetic astrolabe for measuring deflections of the vertical (DoV). NGA’s current operational astrolabes, built in 1995, have a number of undesirable features including the need for a pool of liquid mercury as a reflecting surface. The new state-of-the-art prototype instrument, completed by Trex Enterprises in early 2009, was designed to meet a 0.2 arcsec accuracy requirement. It reduces the weight, eliminates the mercury, and dramatically reduces observation times. The new astrolabe consists of a 101 mm aperture telescope with a 1.5° field of view and an inclinometer mounted inside a 92-cm high, 30-cm diameter tube, an external GPS receiver for timing, and a laptop computer that controls and monitors the instrument and performs the computations. Star images are recorded by an astronomical-grade camera with a 2,048 x 2,048 pixel CCD sensor that is externally triggered by time pulses from the GPS receiver. The prototype was designed for nighttime observation of visible stars equal to or brighter than magnitude 10.0. The inclinometer is a system of two orthogonal pendula that define the local gravitational vertical, each consisting of a brass plumb bob suspended from an aluminized polymer ribbon set between two electrodes. An internal reference collimator is rigidly tied to the inclinometer and projects an array of reference points of light onto the CCD sensor. After the astrolabe is coarsely leveled to within 20 arcsec, voice coil actuators automatically adjust and maintain the inclinometer vertical to within 0.02 arcsec. Independent images are collected at 6 second intervals using a 200 msec exposure time. The CCD coordinates are determined for each star and a collimator reference point on each image. Stars are identified by referencing a customized star catalog produced by USNO. A

  18. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions (United States)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.


    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  19. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao


    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  20. A method of camera calibration in the measurement process with reference mark for approaching observation space target (United States)

    Zhang, Hua; Zeng, Luan


    Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.

  1. First-order design of geodetic networks using the simulated annealing method (United States)

    Berné, J. L.; Baselga, S.


    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  2. OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations (United States)

    Han, C.; Calchi Novati, S.; Udalski, A.; Lee, C.-U.; Gould, A.; Bozza, V.; Mróz, P.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Poleski, R.; Soszyński, I.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zang, W.; Zhu, W.; Cha, S.-M.; Kim, D.-J.; Kim, H.-W.; Kim, S.-L.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; Kim, W.-T.; The KMTNet Collaboration; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; The Spitzer Team; Dominik, M.; Helling, C.; Hundertmark, M.; Jørgensen, U. G.; Longa-Peña, P.; Lowry, S.; Sajadian, S.; Burgdorf, M. J.; Campbell-White, J.; Ciceri, S.; Evans, D. F.; Haikala, L. K.; Hinse, T. C.; Rahvar, S.; Rabus, M.; Snodgrass, C.; The MiNDSTEp Collaboration


    Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector {{\\boldsymbol{π }}}{{E}} by factors ∼18 and ∼4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M 1, M 2) ∼ (1.1, 0.8) M ⊙ or ∼(0.4, 0.3) M ⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ∼10 years after the event.

  3. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks (United States)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl


    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  4. NChina16: A stable geodetic reference frame for geological hazard studies in North China (United States)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.


    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  5. New insights into the magma chamber activity under Mauna Loa inferred from SBAS-InSAR and geodetic inversion modelling (United States)

    Varugu, B. K.; Amelung, F.


    Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.

  6. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.


    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  7. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope (United States)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar


    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.


    International Nuclear Information System (INIS)

    Yan Haojing; Yan Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan Xiaohui; Dave, Romeel; Roettgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Cai Zheng


    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin 2 in total area. We have found three bright Y 098 -dropouts, which are candidate galaxies at z ∼> 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ∼ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by 'cosmic variance' than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ∼ 7.4 is not well explained by the current luminosity function (LF) estimates at z ∼ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ∼ 7 if it belongs to the high-redshift tail of the galaxy population at z ∼ 7.

  9. NASA's Carbon Cycle OSSE Initiative - Informing future space-based observing strategies through advanced modeling and data assimilation (United States)

    Ott, L.; Sellers, P. J.; Schimel, D.; Moore, B., III; O'Dell, C.; Crowell, S.; Kawa, S. R.; Pawson, S.; Chatterjee, A.; Baker, D. F.; Schuh, A. E.


    Satellite observations of carbon dioxide (CO2) and methane (CH4) are critically needed to improve understanding of the contemporary carbon budget and carbon-climate feedbacks. Though current carbon observing satellites have provided valuable data in regions not covered by surface in situ measurements, limited sampling of key regions and small but spatially coherent biases have limited the ability to estimate fluxes at the time and space scales needed for improved process-level understanding and informed decision-making. Next generation satellites will improve coverage in data sparse regions, either through use of active remote sensing, a geostationary vantage point, or increased swath width, but all techniques have limitations. The relative strengths and weaknesses of these approaches and their synergism have not previously been examined. To address these needs, a significant subset of the US carbon modeling community has come together with support from NASA to conduct a series of coordinated observing system simulation experiments (OSSEs), with close collaboration in framing the experiments and in analyzing the results. Here, we report on the initial phase of this initiative, which focused on creating realistic, physically consistent synthetic CO2 and CH4 observational datasets for use in inversion and signal detection experiments. These datasets have been created using NASA's Goddard Earth Observing System Model (GEOS) to represent the current state of atmospheric carbon as well as best available estimates of expected flux changes. Scenarios represented include changes in urban emissions, release of permafrost soil carbon, changes in carbon uptake in tropical and mid-latitude forests, changes in the Southern Ocean sink, and changes in both anthropogenic and natural methane emissions. This GEOS carbon `nature run' was sampled by instrument simulators representing the most prominent observing strategies with a focus on consistently representing the impacts of

  10. CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS (United States)

    Noll, Carey; Michael, Patrick


    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.

  11. Early-type galaxies at intermediate redshift observed with Hubble space telescope WFC3: perspectives on recent star formation

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Michael J. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Jeong, Hyunjin; Yi, Sukyoung K. [Department of Astronomy, Yonsei University 134, Shinchon-dong, Sudaemun-gu, Seoul 120-179 (Korea, Republic of); Cohen, Seth H.; Windhorst, Rogier A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kaviraj, Sugata [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Ryan, Russell E. Jr.; Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM, UMR 7326, F-13388, Marseille (France); Dopita, Michael A. [Research School of Physics and Astronomy, The Australian National University, Canberra, ACT 2611 (Australia)


    We present an analysis of the stellar populations of 102 visually selected early-type galaxies (ETGs) with spectroscopic redshifts (0.35 ≲ z ≲ 1.5) from observations in the Early Release Science program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We fit one- and two-component synthetic stellar models to the ETGs UV-optical-near-IR spectral energy distributions and find that a large fraction (∼40%) are likely to have experienced a minor (f{sub YC} ≲ 10% of stellar mass) burst of recent (t{sub YC} ≲ 1 Gyr) star formation. The measured age and mass fraction of the young stellar populations do not strongly trend with measurements of galaxy morphology. We note that massive (M > 10{sup 10.5} M {sub ☉}) recent star-forming ETGs appear to have larger sizes. Furthermore, high-mass, quiescent ETGs identified with likely companions populate a distinct region in the size-mass parameter space, in comparison with the distribution of massive ETGs with evidence of recent star formation (RSF). We conclude that both mechanisms of quenching star formation in disk-like ETGs and (gas-rich, minor) merger activity contribute to the formation of young stars and the size-mass evolution of intermediate redshift ETGs. The number of ETGs for which we have both HST WFC3 panchromatic (especially UV) imaging and spectroscopically confirmed redshifts is relatively small, therefore, a conclusion about the relative roles of both of these mechanisms remains an open question.

  12. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents (United States)

    Le, Guan


    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  13. Characterizing the observational properties of δ Sct stars in the era of space photometry from the Kepler mission (United States)

    Bowman, Dominic M.; Kurtz, Donald W.


    The δ Sct stars are a diverse group of intermediate-mass pulsating stars located on and near the main sequence within the classical instability strip in the Hertzsprung-Russell diagram. Many of these stars are hybrid stars pulsating simultaneously with pressure and gravity modes that probe the physics at different depths within a star's interior. Using two large ensembles of δ Sct stars observed by the Kepler Space Telescope, the instrumental biases inherent to Kepler mission data and the statistical properties of these stars are investigated. An important focus of this work is an analysis of the relationships between the pulsational and stellar parameters, and their distribution within the classical instability strip. It is found that a non-negligible fraction of main-sequence δ Sct stars exist outside theoretical predictions of the classical instability boundaries, which indicates the necessity of a mass-dependent mixing length parameter to simultaneously explain low and high radial order pressure modes in δ Sct stars within the Hertzsprung-Russell diagram. Furthermore, a search for regularities in the amplitude spectra of these stars is also presented, specifically the frequency difference between pressure modes of consecutive radial order. In this work, it is demonstrated that an ensemble-based approach using space photometry from the Kepler mission is not only plausible for δ Sct stars, but that it is a valuable method for identifying the most promising stars for mode identification and asteroseismic modelling. The full scientific potential of studying δ Sct stars is as yet unrealized. The ensembles discussed in this paper represent a high-quality data set for future studies of rotation and angular momentum transport inside A and F stars using asteroseismology.

  14. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide


    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  15. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)


    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the i