WorldWideScience

Sample records for space geodetic observations

  1. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  2. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  3. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Science.gov (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  4. Earth rotation excitation mechanisms derived from geodetic space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  5. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  6. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    Science.gov (United States)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  7. Land water storage from space and the geodetic infrastructure

    Science.gov (United States)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  8. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)

    2003-01-01

    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  9. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    Science.gov (United States)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove

  10. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  11. Geodetic Survey Water Level Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one million images of National Coast & Geodetic Survey (now NOAA's National Geodetic Survey/NGS) forms captured from microfiche. Tabular forms and charts...

  12. Integration of space geodesy: a US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  13. Legacy and future of Kilauea's geodetic studies

    Science.gov (United States)

    Montgomery-Brown, E. D.; Miklius, A.

    2011-12-01

    Because of its extensive and detailed history of geodetic measurements, Kilauea is one of the best-studied if not also best-understood volcanic systems in the world. Hawaiian volcanoes have a long history of deformation observations. These observations range from native legends of Pele's underground travels, through initial measurements made by the Hawaiian Volcano Observatory, and finally to current ground-based and satellite observations. Many questions still remain, relating to Kilauea's dynamics, where geodetic measurements could offer fundamental insights. For example, new geodetic experiments could lead to a better understanding of the degree of magmatic and tectonic interaction, the geometries of faults at depth, the extent of offshore deformation, and the magmatic plumbing system. While it is possible to design many experiments to address these issues, we focus on three deformation targets where geodetic improvements, including finer sampling in space and time, could yield significant advancements toward understanding Kilauea's dynamics. First, by scrutinizing spatially-dense space-borne geodetic data for signs of upper east rift zone deformation and incorporating gravity and seismic data in a high resolution tomographic model, the hydraulic connection between Kilauea's summit and the rift zone could be imaged, which would provide insight into the pathways that transport magma out to the rift zones. Second, a combination of geodetic and seismic data could be used to determine the nature of possible relationships and interactions between the Hilina fault system and Kilauea's basal decollement. Such a study would have important implications for assessments of future earthquake and sector collapse hazards. Lastly, by adding seafloor geodetic measurements and seismic data to the current geodetic network on Kilauea, we could delimit the offshore extent of transient and episodic decollement deformation. In addition to multidisciplinary approaches, future geodetic

  14. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  15. A preliminary geodetic data model for geographic information systems

    Science.gov (United States)

    Kelly, K. M.

    2009-12-01

    Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing

  16. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    Science.gov (United States)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.

    2013-12-01

    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  17. The Australian Geodetic Observing Program. Current Status and Future Plans

    Science.gov (United States)

    Johnston, G.; Dawson, J. H.

    2015-12-01

    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  18. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-12-01

    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  19. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro

    2008-01-01

    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  20. Geodetic Control Points - National Geodetic Survey Benchmarks

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  1. Geodetic refraction effects of electromagnetic wave propagation through the atmosphere

    CERN Document Server

    1984-01-01

    With very few exceptions, geodetic measurements use electro­ magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter­ restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow­ ing parameters of the electromagnetic wave are measured: ampli­ tude, phase, angle-of-arrival, polarisation and frequency. Ac­ curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at­ mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter­ restrial and space applications. Instrumental accuracies are al­ ready below the atmospherically i...

  2. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  3. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2013-12-01

    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  4. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France

    Science.gov (United States)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.

    2016-12-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  5. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  6. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  7. Seismology and space-based geodesy

    Science.gov (United States)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  8. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  9. Space geodetic observations of repeating slow slip events beneath the Bonin Islands

    Science.gov (United States)

    Arisa, Deasy; Heki, Kosuke

    2017-09-01

    The Pacific Plate subducts beneath the Philippine Sea Plate along the Izu-Bonin Trench. We investigated crustal movements at the Bonin Islands, using Global Navigation Satellite System and geodetic Very Long Baseline Interferometry data to reveal how the two plates converge in this subduction zone. These islands are located ∼100 km from the trench, just at the middle between the volcanic arc and the trench, making these islands suitable for detecting signatures of episodic deformation such as slow slip events (SSEs). During 2007-2016, we found five SSEs repeating quasi-periodically with similar displacement patterns. In estimating their fault parameters, we assumed that the fault lies on the prescribed plate boundary, and optimized the size, shape and position of the fault and dislocation vectors. Average fault slip was ∼5 cm, and the average moment magnitude was ∼6.9. We also found one SSE occurred in 2008 updip of the repeating SSE in response to an M6 class interplate earthquake. In spite of the frequent occurrence of SSEs, there is no evidence for long-term strain accumulation in the Bonin Islands that may lead to future megathrust earthquakes. Plate convergence in Mariana-type subduction zones may occur, to a large extent, episodically as repeating SSEs.

  10. Geodesy introduction to geodetic datum and geodetic systems

    CERN Document Server

    Lu, Zhiping; Qiao, Shubo

    2014-01-01

    A full introduction to geodetic data and systems written by well-known experts in their respective fields, this book is an ideal text for courses in geodesy and geomatics covering everything from coordinate and gravimetry data to geodetic systems of all types.

  11. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter

    2009-01-01

    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  12. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Mission Area (NHMA) engages in a variety of undertakings, both established and emergent, in order to provide high quality products that enable stakeholders to take action in advance of and in response to earthquakes. Examples include the National Seismic Hazard Model (NSHM), development of tools for improved situational awareness such as earthquake early warning (EEW) and operational earthquake forecasting (OEF), research about induced seismicity, and new efforts to advance comprehensive subduction zone science and monitoring. Geodetic observations provide unique and complementary information directly relevant to advancing many aspects of these efforts (fig. 1). EHP scientists have long leveraged geodetic data for a range of influential studies, and they continue to develop innovative observation and analysis methods that push the boundaries of the field of geodesy as applied to natural hazards research. Given the ongoing, rapid improvement in availability, variety, and precision of geodetic measurements, considering ways to fully utilize this observational resource for earthquake loss reduction is timely and essential. This report presents strategies, and the underlying scientific rationale, by which the EHP could achieve the following outcomes: The EHP is an authoritative source for the interpretation of geodetic data and its use for earthquake loss reduction throughout the United States and its territories.The USGS consistently provides timely, high quality geodetic data to stakeholders.Significant earthquakes are better characterized by incorporating geodetic data into USGS

  13. Exploring deformation scenarios in Timanfaya volcanic area (Lanzarote, Canary Islands) from GNSS and ground based geodetic observations

    Science.gov (United States)

    Riccardi, U.; Arnoso, J.; Benavent, M.; Vélez, E.; Tammaro, U.; Montesinos, F. G.

    2018-05-01

    We report on a detailed geodetic continuous monitoring in Timanfaya volcanic area (TVA), where the most intense geothermal anomalies of Lanzarote Island are located. We analyze about three years of GNSS data collected on a small network of five permanent stations, one of which at TVA, deployed on the island, and nearly 20 years of tiltmeter and strainmeter records acquired at Los Camelleros site settled in the facilities of the Geodynamics Laboratory of Lanzarote within TVA. This study is intended to contribute to understanding the active tectonics on Lanzarote Island and its origin, mainly in TVA. After characterizing and filtering out the seasonal periodicities related to "non-tectonic" sources from the geodetic records, a tentative ground deformation field is reconstructed through the analysis of both tilt, strain records and the time evolution of the baselines ranging the GNSS stations. The joint interpretation of the collected geodetic data show that the area of the strongest geothermal anomaly in TVA is currently undergoing a SE trending relative displacement at a rate of about 3 mm/year. This area even experiences a significant subsidence with a maximum rate of about 6 mm/year. Moreover, we examine the possible relation between the observed deformations and atmospheric effects by modelling the response functions of temperature and rain recorded in the laboratory. Finally, from the retrieval of the deformation patterns and the joint analysis of geodetic and environmental observations, we propose a qualitative model of the interplaying role between the hydrological systems and the geothermal anomalies. Namely, we explain the detected time correlation between rainfall and ground deformation because of the enhancement of the thermal transfer from the underground heat source driven by the infiltration of meteoric water.

  14. Optimization of observation plan based on the stochastic characteristics of the geodetic network

    Directory of Open Access Journals (Sweden)

    Pachelski Wojciech

    2016-06-01

    Full Text Available Optimal design of geodetic network is a basic subject of many engineering projects. An observation plan is a concluding part of the process. Any particular observation within the network has through adjustment a different contribution and impact on values and accuracy characteristics of unknowns. The problem of optimal design can be solved by means of computer simulation. This paper presents a new method of simulation based on sequential estimation of individual observations in a step-by-step manner, by means of the so-called filtering equations. The algorithm aims at satisfying different criteria of accuracy according to various interpretations of the covariance matrix. Apart of them, the optimization criterion is also amount of effort, defined as the minimum number of observations required.

  15. Space-geodetic Constraints on GIA Models with 3D Viscosity

    Science.gov (United States)

    Van Der Wal, W.; Xu, Z.

    2012-12-01

    Models for Glacial Isostatic Adjustment (GIA) are an important correction to observations of mass change in the polar regions. Inputs for GIA models include past ice thickness and deformation parameters of the Earth's mantle, both of which are imperfectly known. Here we focus on the latter by investigating GIA models with 3D viscosity and composite (linear and non-linear) flow laws. It was found recently that GIA models with a composite flow law result in a better fit to historic sea level data, but they predict too low present-day uplift rates and gravity rates. Here GIA models are fit to space-geodetic constraints in Fennoscandia and North America. The preferred models are used to calculate the magnitude of the GIA correction on mass change estimates in Greenland and Antarctica. The observations used are GRACE Release 4 solutions from CSR and GFZ and published GPS solutions for North America and Fennoscandia, as well as historic sea level data. The GIA simulations are performed with a finite element model of a spherical, self-gravitating, incompressible Earth with 2x2 degree elements. Parameters in the flow laws are taken from seismology, heatflow measurements and experimental constraints and the ice loading history is prescribed by ICE-5G. It was found that GRACE and GPS derived uplift rates agree at the level of 1 mm/year in North America and at a level of 0.5 mm/year in Fennoscandia, the difference between the two regions being due to larger GPS errors and under sampling in North America. It can be concluded that both GPS and GRACE see the same process and the effects of filtering, noise and non-GIA processes such as land hydrology are likely to be small. Two GIA models are found that bring present-day uplift rate close to observed values in North America and Fennoscandia. These models result in a GIA correction of -17 Gt/year and -26 Gt/year on Greenland mass balance estimates from GRACE.

  16. NEAR REAL-TIME DETERMINATION OF EARTHQUAKE SOURCE PARAMETERS FOR TSUNAMI EARLY WARNING FROM GEODETIC OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    S. Manneela

    2016-06-01

    Full Text Available Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS, starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting.

  17. National Geodetic Survey (NGS) Geodetic Control Stations, (Horizontal and/or Vertical Control), March 2009

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  18. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  19. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín

    2012-01-01

    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  20. National Geodetic Control Stations, Geographic NAD83, NGS (2004) [geodetic_ctrl_point_la_NGS_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  1. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    Science.gov (United States)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2014-05-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  2. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data

    Science.gov (United States)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.

    2009-04-01

    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  3. Cansiglio Karst Plateau: 10 Years of Geodetic-Hydrological Observations in Seismically Active Northeast Italy

    Science.gov (United States)

    Grillo, Barbara; Braitenberg, Carla; Nagy, Ildikó; Devoti, Roberto; Zuliani, David; Fabris, Paolo

    2018-04-01

    Ten years' geodetic observations (2006-2016) in a natural cave of the Cansiglio Plateau (Bus de la Genziana), a limestone karstic area in northeastern Italy, are discussed. The area is of medium-high seismic risk: a strong earthquake in 1936 below the plateau (M m = 6.2) and the 1976 disastrous Friuli earthquake (M m = 6.5) are recent events. At the foothills of the karstic massif, three springs emerge, with average flow from 5 to 10 m3/s, and which are the sources of a river. The tiltmeter station is set in a natural cavity that is part of a karstic system. From March 2013, a multiparametric logger (temperature, stage, electrical conductivity) was installed in the siphon at the bottom of the cave to discover the underground hydrodynamics. The tilt records include signals induced by hydrologic and tectonic effects. The tiltmeter signals have a clear correlation to the rainfall, the discharge series of the river and the data recorded by multiparametric loggers. Additionally, the data of a permanent GPS station located on the southern slopes of the Cansiglio Massif (CANV) show also a clear correspondence with the river level. The fast water infiltration into the epikarst, closely related to daily rainfall, is distinguished in the tilt records from the characteristic time evolution of the karstic springs, which have an impulsive level increase with successive exponential decay. It demonstrates the usefulness of geodetic measurements to reveal the hydrological response of the karst. One outcome of the work is that the tiltmeters can be used as proxies for the presence of flow channels and the pressure that builds up due to the water flow. With 10 years of data, a new multidisciplinary frontier was opened between the geodetic studies and the karstic hydrogeology to obtain a more complete geologic description of the karst plateau.

  4. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  5. Geodetic Control Information on Passive Marks: Horizontal and Vertical Geodetic Control Data for the United States - National Geospatial Data Asset (NGDA) Geodetic Control Information on Passive Marks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  6. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  7. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  8. Error Propagation in Geodetic Networks Studied by FEMLAB

    DEFF Research Database (Denmark)

    Borre, Kai

    2009-01-01

    Geodetic networks can be described by discrete models. The observations may be height differences, distances, and directions. Geodesists always make more observations than necessary and estimate the solution by using the principle of least squares. Contemporary networks often contain several thou...

  9. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    Energy Technology Data Exchange (ETDEWEB)

    Scherneck, H G; Johansson, J M; Elgered, G [Chalmers Univ. of Technology, Goeteborg (Sweden). Onsala Space Observatory

    1996-04-01

    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs.

  10. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    International Nuclear Information System (INIS)

    Scherneck, H.G.; Johansson, J.M.; Elgered, G.

    1996-04-01

    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs

  11. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  12. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    Science.gov (United States)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  13. An Investigation on the Use of Different Centroiding Algorithms and Star Catalogs in Astro-Geodetic Observations

    Science.gov (United States)

    Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim

    2017-04-01

    In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.

  14. Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna

    Directory of Open Access Journals (Sweden)

    Dedi Atunggal

    2018-06-01

    Full Text Available GPS modules have been used for various applications in recent years. Its early development came in parallel with the advancement of Unmanned Aerial Vehicle (UAV technology. Nowadays, it is also used in in geographic information system (GIS data acquisition/census, mapping surveys, structure stability monitoring systems and many other applications. GPS modules generally have several positioning features, including standard positioning service (SPS, static positioning, precise point positioning (PPP, post processing kinematic (PPK and real time kinematic (RTK GPS. GPS modules in general are only equipped with a microstrip-type antenna or better known as patch antenna. Results from related research show that GPS module with this type of antenna has sub meter accuracy when used for PPK or RTK GPS method. The use of geodetic antennas is very potential to increase GPS position accuracy by up to centimeter level. This paper discusses the evaluation of GPS module measurements with geodetic type antennas for precise positioning using RTK GPS. This paper is focused on the resolution of GPS cycle ambiguity that is often expressed by the term fixing ratio and the accuracy of measurement results obtained. To provide a comprehensive description of the performance of GPS module, in this research two types of GPS module were used; single and dual frequency. Both types of GPS modules were used to conduct simultaneous observation on an open and obstructed observation location.

  15. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  16. National Geodetic Survey's Airport Aerial Photography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), formerly part of the U.S. Coast and Geodetic Survey, has been performing Aeronautical surveys since the 1920's. NGS, in...

  17. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  18. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  19. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    Science.gov (United States)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period

  20. The impacts of source structure on geodetic parameters demonstrated by the radio source 3C371

    Science.gov (United States)

    Xu, Ming H.; Heinkelmann, Robert; Anderson, James M.; Mora-Diaz, Julian; Karbon, Maria; Schuh, Harald; Wang, Guang L.

    2017-07-01

    Closure quantities measured by very-long-baseline interferometry (VLBI) observations are independent of instrumental and propagation instabilities and antenna gain factors, but are sensitive to source structure. A new method is proposed to calculate a structure index based on the median values of closure quantities rather than the brightness distribution of a source. The results are comparable to structure indices based on imaging observations at other epochs and demonstrate the flexibility of deriving structure indices from exactly the same observations as used for geodetic analysis and without imaging analysis. A three-component model for the structure of source 3C371 is developed by model-fitting closure phases. It provides a real case of tracing how the structure effect identified by closure phases in the same observations as the delay observables affects the geodetic analysis, and investigating which geodetic parameters are corrupted to what extent by the structure effect. Using the resulting structure correction based on the three-component model of source 3C371, two solutions, with and without correcting the structure effect, are made. With corrections, the overall rms of this source is reduced by 1 ps, and the impacts of the structure effect introduced by this single source are up to 1.4 mm on station positions and up to 4.4 microarcseconds on Earth orientation parameters. This study is considered as a starting point for handling the source structure effect on geodetic VLBI from geodetic sessions themselves.

  1. Agile Big Data Analytics of High-Volume Geodetic Data Products for Improving Science and Hazard Response

    Data.gov (United States)

    National Aeronautics and Space Administration — Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The...

  2. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.

    1988-01-01

    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  3. The potential role of real-time geodetic observations in tsunami early warning

    Science.gov (United States)

    Tinti, Stefano; Armigliato, Alberto

    2016-04-01

    experimental or testing stage and haven't been implemented yet in any standard TWS operations. Nonetheless, this is seen to be the future and the natural TWS evolving enhancement. In this context, improvement of the real-time estimates of tsunamigenic earthquake focal mechanism is of fundamental importance to trigger the appropriate computational chain. Quick discrimination between strike-slip and thrust-fault earthquakes, and equally relevant, quick assessment of co-seismic on-fault slip distribution, are exemplary cases to which a real-time geodetic monitoring system can contribute significantly. Robust inversion of geodetic data can help to reconstruct the sea floor deformation pattern especially if two conditions are met: the source is not too far from network stations and is well covered azimuthally. These two conditions are sometimes hard to satisfy fully, but in certain regions, like the Mediterranean and the Caribbean sea, this is quite possible due to the limited size of the ocean basins. Close cooperation between the Global Geodetic Observing System (GGOS) community, seismologists, tsunami scientists and TWS operators is highly recommended to obtain significant progresses in the quick determination of the earthquake source, which can trigger a timely estimation of the ensuing tsunami and a more reliable and detailed assessment of the tsunami size at the coast.

  4. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Directory of Open Access Journals (Sweden)

    Wyszkowska Patrycja

    2017-12-01

    Full Text Available The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  5. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Science.gov (United States)

    Wyszkowska, Patrycja

    2017-12-01

    The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  6. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    Science.gov (United States)

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  7. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    Science.gov (United States)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  8. Establishment of 2000 National Geodetic Control Network of China and It’s Technological Progress

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-02-01

    Full Text Available Objectives: 2000’ National Geodetic Control Network of China is an important fundamental scientific engineering project in China. It consists of three parts which are establishment of 2000 National GPS Geodetic Network, its combination adjustment with national astro-geodetic network and 2000 National Gravity Fundamental network. It provides the high precise coordinate reference and gravity reference for three dimensional geo-center national coordinates system and gravity system, respectively. Additionally, it provides precise unified geometric and physical geodesy information for the economic construction, the national defense and the scientific research. Methods: 1. The larger number of data are processed in triple networks adjustment of 2000 National GPS Geodetic Network, which are chosen from the GPS monitoring stations, such as grade A, B of national GPS network , grade 1st and 2nd of national GPS network, crustal movement observation network of China, and others crustal deformation monitoring stations. Finally, the data of 2666 GPS stations are used in the data processing of 2000 National GPS Geodetic Network, including 124 external stations and 2542 internal stations. In order to the results of triple networks adjustment are corresponding to that of three dimensional geo-center coordinates system, ITRF 97 and epoch 2000.0 are chosen as the coordinate reference frame and epoch reference, respectively. The methods of “strong reference” and “weak reference” are combined used in the control data selection of triple networks adjustment. The scale and rotation scales are adopted for each sub network. The least square adjustment is firstly adopted in each sub network adjustment. The data of obvious abnormal baselines are found and rejected firstly. And the method of double factor robust estimation is adopted in the data processing. 2. The combined adjustment of 2000 National GPS Geodetic Network and national astro-geodetic network is

  9. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2015-07-01

    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  10. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  11. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  12. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  13. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  14. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  15. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties

    Science.gov (United States)

    Bagnardi, M.; Hooper, A. J.

    2017-12-01

    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform

  16. GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHCl) contains zonal means and related...

  17. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    Science.gov (United States)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  18. An attempt to evaluate horizontal crustal movement by geodetic and geological approach in the Horonobe area, Northern Hokkaido, Japan

    International Nuclear Information System (INIS)

    Tokiwa, Tetsuya; Niizato, Tadafumi; Nohara, Tsuyoshi; Asamori, Koichi; Matsuura, Yuki; Kosaka, Hideki

    2011-01-01

    In this study, we present the preliminary results for the estimation of a horizontal crustal movement by using geodetic and geological approach in the Horonobe area, northern Hokkaido, Japan. The estimations have been carried out by using a GPS data and a geological cross section obtained by applying balanced-section method. As results of this study, both of the shortening rates estimated by GPS data and balanced-section method indicate several millimeters per year. Namely, there is no contradiction between geodetic and geological data, and it is considered that Horonobe area is still situated similar tendency and magnitude of a crustal movement. It is seemingly considered that geodetic data is unhelpful for estimating the long-term crustal movement, because period of geodetic observations is a very short. However, the result of this study indicates that geodetic data provide valuable information for estimating the long-term crustal movement in the area, and it is considered that geodetic approach play an important role in improvement of the credibility of evaluation for prediction of long-term stability. (author)

  19. GOZCARDS Source Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpHNO3) contains zonal means and related...

  20. GOZCARDS Merged Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHNO3) contains zonal means and related...

  1. GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpN2O) contains zonal means and related...

  2. GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpN2O) contains zonal means and related...

  3. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  4. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series

    Science.gov (United States)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano

    2015-04-01

    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources

  5. Time biases in laser ranging observations: A concerning issue of Space Geodesy

    Science.gov (United States)

    Exertier, Pierre; Belli, A.; Lemoine, J. M.

    2017-09-01

    Time transfer by Laser Ranging (LR) recently demonstrated a remarkable stability (a few ps over ∼1000 s) and accuracy (synchronizing both space and ground clocks over distances from a few thousands to tens of thousands kilometers. Given its potential role in navigation, fundamental physics and metrology, it is crucial that synergy between laser ranging and Time&Frequency (T/F) technologies improves to meet the present and future space geodesy requirements. In this article, we examine the behavior of T/F systems that are used in LR tracking stations of the international laser ranging service. The approach we investigate is to compute time synchronization between clocks used at LR stations using accurate data of the Time Transfer by Laser Link (T2L2) experiment onboard the satellite Jason-2 (Samain et al., 2014). Systematic time biases are estimated against the UTC time scale for a set of 22 observing stations in 2013, in the range of zero to a few μ s. Our results suggest that the ILRS network suffers from accuracy issues, due to time biases in the laser ranging observations. We discuss how these systematic effects impact the precise orbit determination of LAGEOS geodetic satellites over a 1-year analysis, and additionally give a measure of the local effect into station coordinates, regarding in particular the effect in the east-west component that is of 2-6 mm for a typical systematic time bias of one μ s.

  6. Geodetic achievement and avoidance games for graphs | Haynes ...

    African Journals Online (AJOL)

    Let G = (V,E) be a nontrivial connected graph. For a subset S ⊆ V, the geodesic closure (S) of S is the set of all vertices on geodesics (shortest paths) between two vertices of S. We study the geodetic achievement and avoidance games defined by Buckley and Harary (Geodetic games for graphs, Quaestiones Math.

  7. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    Science.gov (United States)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  8. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  9. Dynamic rupture modeling of the M7.2 2010 El Mayor-Cucapah earthquake: Comparison with a geodetic model

    Science.gov (United States)

    Kyriakopoulos, Christos; Oglesby, David D.; Funning, Gareth J.; Ryan, Kenneth

    2017-01-01

    The 2010 Mw 7.2 El Mayor-Cucapah earthquake is the largest event recorded in the broader Southern California-Baja California region in the last 18 years. Here we try to analyze primary features of this type of event by using dynamic rupture simulations based on a multifault interface and later compare our results with space geodetic models. Our results show that starting from homogeneous prestress conditions, slip heterogeneity can be achieved as a result of variable dip angle along strike and the modulation imposed by step over segments. We also considered effects from a topographic free surface and find that although this does not produce significant first-order effects for this earthquake, even a low topographic dome such as the Cucapah range can affect the rupture front pattern and fault slip rate. Finally, we inverted available interferometric synthetic aperture radar data, using the same geometry as the dynamic rupture model, and retrieved the space geodetic slip distribution that serves to constrain the dynamic rupture models. The one to one comparison of the final fault slip pattern generated with dynamic rupture models and the space geodetic inversion show good agreement. Our results lead us to the following conclusion: in a possible multifault rupture scenario, and if we have first-order geometry constraints, dynamic rupture models can be very efficient in predicting large-scale slip heterogeneities that are important for the correct assessment of seismic hazard and the magnitude of future events. Our work contributes to understanding the complex nature of multifault systems.

  10. Evidences of Episodic Crustal Magmatic Diapir and Shallow Volcanic Activity at Uturuncu, Central Andes, from Geodetic Observations between 2014 - 2017

    Science.gov (United States)

    Lau, H. N.; Tymofyeyeva, E.; Fialko, Y. A.

    2017-12-01

    Previous space geodetic studies using ERS-1/2 and Envisat Interferometric Synthetic Aperture Radar (InSAR) data revealed a broad uplift of 10 mm/yr within the Altiplano-Puna Volcanic Complex (APVC), centered at the Uturuncu volcano, surrounded by a ring of subsidence at a rate of a few millimeters per year. This pattern was attributed to formation of a diapir in the middle of the Altiplano-Puna Magma Body (APMB), at depth of 15-19 km. We use new data from the Sentinel-1 InSAR mission, collected between 2014-2017, to produce high-resolution maps of surface displacements in the satellite's line of sight (LOS) from 4 satellite tracks. We estimated random propagation effects (e.g. due to atmospheric turbulence) using a common-point stacking method by Tymofyeyeva and Fialko [2015] and estimated temporally-correlated propagation effects (e.g. due to seasonal variations in atmospheric moisture) using a regression of the residual phase against topography. The estimated atmospheric artifacts were removed from the interferograms prior to computing the time series of the LOS displacements. The data indicate that the uplift above the APMB has considerably slowed down compared to the 1992-2010 epoch. The observed variations in the uplift rate suggest that the "ballooning" of the mid-crustal diapir is episodic on time scales of year to decades, possibly due to variations in melt supply from the partially molten APMB to the incipient diapir. We also find a previously undiscovered localized uplift 11 km south of Uturuncu's peak with maximum LOS velocities of 10 - 15 mm/yr. Joint inversions of data from different satellite tracks for a point source of inflation in an elastic half space constrain the source depth to be at 2 km, suggestive of a shallow magma chamber or a hydrothermal system.

  11. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects

    Science.gov (United States)

    Chao, Benjamin F.; Boy, John-Paul

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  12. Geodezija od Mesopotamije do Globalnog geodetskog opažačkog sistema : Geodesy from Mesopotamie to Global Geodetic Observing System

    Directory of Open Access Journals (Sweden)

    Medžida Mulić

    2015-12-01

    works in Bosnia and Herzegovina, from the time of Ottoman Empire, through the Austro-Hungarian survey, to the modern achievements Global Geodetic Observing System-GGOS, the main component of the International Association of Geodesy described at the end.

  13. Explicitly computing geodetic coordinates from Cartesian coordinates

    Science.gov (United States)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  14. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    Science.gov (United States)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  15. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  16. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  17. Time Biases in laser ranging measurements; impacts on geodetic products (Reference Frame and Orbitography)

    Science.gov (United States)

    Belli, A.; Exertier, P.; Lemoine, F. G.; Chinn, D. S.; Zelensky, N. P.

    2017-12-01

    The GGOS objectives are to maintain a geodetic network with an accuracy of 1 mm and a stability of 0.1 mm per year. For years, the laser ranging technique, which provide very accurate absolute distances to geodetic targets enable to determine the scale factor as well as coordinates of the geocenter. In order to achieve this goal, systematic errors appearing in the laser ranging measurements must be considered and solved. In addition to Range Bias (RB), which is the primary source of uncertainty of the technique, Time Bias (TB) has been recently detected by using the Time Transfer by Laser Link (T2L2) space instrument capability on-board the satellite Jason-2. Instead of determining TB through the precise orbit determination that is applied to commonly used geodetic targets like LAGEOS to estimate global geodetic products, we have developed, independently, a dedicated method to transfer time between remote satellite laser ranging stations. As a result, the evolving clock phase shift to UTC of around 30 stations has been determined under the form of time series of time bias per station from 2008 to 2016 with an accuracy of 3-4 ns. It demonstrated the difficulty, in terms of Time & Frequency used technologies, to locally maintain accuracy and long term stability at least in the range of 100 ns that is the current requirement for time measurements (UTC) for the laser ranging technique. Because some laser ranging stations oftently exceed this limit (from 100 ns to a few μs) we have been studying these effects first on the precision orbit determination itself, second on the station positioning. We discuss the impact of TB on LAGEOS and Jason-2 orbits, which appears to affect the along-track component essentially. We also investigate the role of TB in global geodetic parameters as the station coordinates. Finally, we propose to provide the community with time series of time bias of laser ranging stations, under the form of a data- handling-file in order to be included in

  18. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    Science.gov (United States)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  19. Geodetic Imaging: Expanding the Boundaries of Geodesy in the 21st Century

    Science.gov (United States)

    Fernandez Diaz, J. C.; Carter, W. E.; Shrestha, R. L.; Glennie, C. L.

    2013-12-01

    High resolution (sub-meter) geodetic images covering tens to thousands of square kilometers have extended the boundaries of geodesy into related areas of the earth sciences, such as geomorphology and geodynamics, during the past decade, to archaeological exploration and site mapping during the past few years, and are now poised to transform studies of flora and fauna in the more remote regions of the world. Geodetic images produced from airborne laser scanning (ALS), a.k.a. airborne light detection and ranging (LiDAR) have proven transformative to the modern practice of geomorphology where researchers have used decimeter resolution digital elevation models (DEMs) to determine the spatial frequencies of evenly spaced features in terrain, and developed models and mathematical equations to explain how the terrain evolved to its present state and how it is expected to change in the future (Perron et al., 2009). In geodynamics researchers have used ';before' and ';after' geodetic images of the terrain near earthquakes, such as the 2010 El Mayor-Cucapah Earthquake, to quantify surface displacements and suggest models to explain the observed deformations (Oskin et. al., 2012). In archaeology, the ability of ALS to produce ';bare earth' DEMs of terrain covered with dense vegetation, including even tropical rain forests, has revolutionized the study of archaeology in highly forested areas, finding ancient structures and human modifications of landscapes not discovered by archaeologists working at sites for decades (Chase et al., 2011 & Evans et al., 2013), and finding previously unknown ruins in areas that ground exploration has not been able to penetrate since the arrival of the conquistadors in the new world in the 17th century (Carter et al., 2012). The improved spatial resolution and ability of the third generation ALS units to obtain high resolution bare earth DEMs and canopy models in areas covered in dense forests, brush, and even shallow water (steams, lakes, and

  20. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  1. Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2011-12-01

    Full Text Available This article addresses the adjustment of a 3D geodetic network in the Dargovských Hrdinov suburbs using Global Navigation SatelliteSystems (GNSS for the purposes of deformation analysis. The advantage of using the GNSS compared to other terrestrial technology is thatit is not influenced by unpredictability in the ground level atmosphere and individual visibilities between points in the observed network arenot necessary. This article also includes the planning of GNSS observations using Planning Open Source software from Trimble as well assubsequent observations at individual network points. The geodetic network is processing on the basis of the Gauss-Markov model usingthe least square method and robust adjustment. From robust methods, Huber’s Robust M-estimation and Hampel’s Robust M-estimationwere used. Individual adjustments were tested and subsequently the results of analysis were graphically visualised using absolute confidenceellipsoids.

  2. Automated and dynamic scheduling for geodetic VLBI - A simulation study for AuScope and global networks

    Science.gov (United States)

    Iles, E. J.; McCallum, L.; Lovell, J. E. J.; McCallum, J. N.

    2018-02-01

    As we move into the next era of geodetic VLBI, the scheduling process is one focus for improvement in terms of increased flexibility and the ability to react with changing conditions. A range of simulations were conducted to ascertain the impact of scheduling on geodetic results such as Earth Orientation Parameters (EOPs) and station coordinates. The potential capabilities of new automated scheduling modes were also simulated, using the so-called 'dynamic scheduling' technique. The primary aim was to improve efficiency for both cost and time without losing geodetic precision, particularly to maximise the uses of the Australian AuScope VLBI array. We show that short breaks in observation will not significantly degrade the results of a typical 24 h experiment, whereas simply shortening observing time degrades precision exponentially. We also confirm the new automated, dynamic scheduling mode is capable of producing the same standard of result as a traditional schedule, with close to real-time flexibility. Further, it is possible to use the dynamic scheduler to augment the 3 station Australian AuScope array and thereby attain EOPs of the current global precision with only intermittent contribution from 2 additional stations. We thus confirm automated, dynamic scheduling bears great potential for flexibility and automation in line with aims for future continuous VLBI operations.

  3. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  4. VLBI Observations of Geostationary Satellites

    Science.gov (United States)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  5. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    Science.gov (United States)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  6. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  7. Comparison of direct and geodetic mass balances on a multi-annual time scale

    Directory of Open Access Journals (Sweden)

    A. Fischer

    2011-02-01

    Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.

  8. Operational production of Geodetic Excitation Functions from EOP estimated values at ASI-CGS

    Science.gov (United States)

    Sciarretta, C.; Luceri, V.; Bianco, G.

    2009-04-01

    ASI-CGS is routinely providing geodetic excitation functions from its own estimated EOP values (at present SLR and VLBI; the current use of GPS EOP's is also planned as soon as this product will be fully operational) on the ASI geodetic web site (http://geodaf.mt.asi.it). This product has been generated and monitored (for ASI internal use only) in a long pre-operational phase (more than two years), including validation and testing. The daily geodetic excitation functions are now weekly updated along with the operational ASI SLR and VLBI EOP solutions and compared, whenever possible, with the atmospheric excitation functions available at the IERS SBAAM, under the IB and not-IB assumption, including the "wind" term. The work will present the available estimated geodetic function time series and its comparison with the relevant atmospheric excitation functions, deriving quantitative indicators on the quality of the estimates. The similarities as well as the discrepancies among the atmospheric and geodetic series will be analysed and commented, evaluating in particular the degree of correlation among the two estimated time series and the likelihood of a linear dependence hypothesis.

  9. ALGORITHMS VARIANTS OF ELABORATION OF THE PRECISE GNSS NETWORK ESTABLISHED FOR GEODETIC SERVICE OF BUILDING OF THE MINING FACILITY

    Directory of Open Access Journals (Sweden)

    Ryszard MIELIMĄKA

    2014-10-01

    Full Text Available The article presents the problem of the usage of post‐processing services of the ASG‐EUPOS system on the example of GNSS network established for geodetic service of building of the inclined drift, to make coal deposit accessible, and also building associated objects. For the purpose of geodetic service of construction realization network was established outside the planned objects. The network consists of six new ground points and four control points belonging to ASG‐EUPOS network. Simultaneous, static measurements of the network were performed in three‐hour observation session, using multi‐frequency and multi‐system satellite receivers – Trimble R8. The paper presents three variants of post‐processing of the observation results. Calculations were performed using POZGEO‐D service and geodetic software package GEONET. The results of the calculation process revealed, that homogeneous vector networks should be adjusted on the ellipsoid or in the geocentric system. Model of adjustment of the vector network on the plane adopted in the GEONET software package should not be applied for elaboration of this type of network (long reference vectors more than 50km.

  10. Determination of Geometric Parameters of Space Steel Constructions

    Directory of Open Access Journals (Sweden)

    Jitka Suchá

    2005-06-01

    Full Text Available The paper contains conclusions of the PhD thesis „Accuracy of determination of geometric parameters of space steel construction using geodetic methods“. Generally it is a difficult task with high requirements for the accuracy and reliability of results, i.e. space coordinates of assessed points on a steel construction. A solution of this task is complicated by the effects of atmospheric influences to begin with the temperature, which strongly affects steel constructions. It is desirable to eliminate the influence of the temperature for the evaluation of the geometric parameters. A choice of an efficient geodetic method, which fulfils demanding requirements, is often affected with a constrained place in an immediate neighbourhood of the measured construction. These conditions disable the choice of efficient points configuration of a geodetic micro network, e.g. the for forward intersection. In addition, points of a construction are often hardly accessible and therefore marking is difficult. The space polar method appears efficient owing to the mentioned reasons and its advantages were increased with the implementation of self-adhesive reflex targets for the distance measurement which enable the ermanent marking of measured points already in the course of placing the construction.

  11. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    Science.gov (United States)

    Del Potro, R.; Muller, C.

    2009-12-01

    Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this

  12. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  13. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  14. Geodetic Control Points - Multi-State Control Point Database

    Data.gov (United States)

    NSGIC State | GIS Inventory — The Multi-State Control Point Database (MCPD) is a database of geodetic and mapping control covering Idaho and Montana. The control were submitted by registered land...

  15. Improvements in Space Geodesy Data Discovery at the CDDIS

    Science.gov (United States)

    Noll, C.; Pollack, N.; Michael, P.

    2011-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.

  16. Geodetic reanalysis of annual glaciological mass balances (2001-2011) of Hintereisferner, Austria

    Science.gov (United States)

    Klug, Christoph; Bollmann, Erik; Galos, Stephan Peter; Nicholson, Lindsey; Prinz, Rainer; Rieg, Lorenzo; Sailer, Rudolf; Stötter, Johann; Kaser, Georg

    2018-03-01

    This study presents a reanalysis of the glaciologically obtained annual glacier mass balances at Hintereisferner, Ötztal Alps, Austria, for the period 2001-2011. The reanalysis is accomplished through a comparison with geodetically derived mass changes, using annual high-resolution airborne laser scanning (ALS). The grid-based adjustments for the method-inherent differences are discussed along with associated uncertainties and discrepancies of the two methods of mass balance measurements. A statistical comparison of the two datasets shows no significant difference for seven annual, as well as the cumulative, mass changes over the 10-year record. Yet, the statistical view hides significant differences in the mass balance years 2002/03 (glaciological minus geodetic records = +0.92 m w.e.), 2005/06 (+0.60 m w.e.), and 2006/07 (-0.45 m w.e.). We conclude that exceptional meteorological conditions can render the usual glaciological observational network inadequate. Furthermore, we consider that ALS data reliably reproduce the annual mass balance and can be seen as validation or calibration tools for the glaciological method.

  17. Results from the Geodetic Observatory TIGO due to the Mw 8.8 Earthquake

    Science.gov (United States)

    Hase, H.; Böer, A.; Sierk, B.; Ihde, J.; Weber, G.; Wilmes, H.; Falk, R.; Hessels, U.; Neumaier, P.; Söhne, W.; Wziontek, H.; Engelhard, G.; Sobarzo, S.; Cifuentes, O.; Guaitiao, C.; Cona, I.; Avendaño, M.; Herrera, C.; Mora, V.; Fernandez, A.; Oñate, E.; Zaror, P.; Pedreros, F.; Zapata, O.

    2010-12-01

    The Geodetic Observatory TIGO is unique in Latin America. With its sensors and instruments it defines a reference point in the time, space and gravity field domain. Its operation started in 2002, for which reason data series documented the preseismic situation very well. With the Mw 8.8 earthquake on February 27, 2010, the entire observatory was exposed to strong motions due to its closeness to the epicenter. Since then the postseismic behaviour of the subduction zone can be studied and compared with the preseismic situation. TIGO provided continuous GPS/GLONASS data with 1s samples which give an insight to the mechanism of the decoupling of the Nazca and the South-American plate. The displacement of more than 3m had a duration of 30s at the beginning of the 147s duration of the earthquake. The displacement could be confirmed afterwards with VLBI and SLR methods. TIGO used its absolute gravity meter in an unusual way with weekly measurements on the same monument. These data show an irregularity during the last 3 weeks before the earthquake. Finally the postseismic movement to the west triggered by the earthquake and registered by geodetic space techniques indicate that the western expansion of the South-American plate did not stop yet. The pre- and post-seismic displacement vectors differ by less than 180° which might be explained by a fractional strike slip in the mega thrust. The coincidence of the epicenter with one of the keystations for global reference frames showed deficiencies by the linear modelling of tectonical movements in terrestial reference frames. This problem calls for near-real time reference frames.

  18. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-01-01

    Full Text Available All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI, including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  19. Deformation offshore Northern Chile monitored by a seafloor geodetic network (GeoSEA)

    Science.gov (United States)

    Hannemann, Katrin; Lange, Dietrich; Kopp, Heidrun; Petersen, Florian; Contreras-Reyes, Eduardo

    2017-04-01

    The Nazca-South American plate boundary around 21°S has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique earthquake (Mw=8.1). The southern portion of this segment is still unbroken. The geodetic monitoring of the Chilean subduction zone is crucial to understand the deformation processes in this area. Most geodetic measurements rely on GPS and are therefore limited to onshore campaigns. In December 2015, we installed the GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array around 21°S of the Nazca-South American plate boundary with RV SONNE to extend the geodetic observations to the offshore areas. The GeoSEA array consists of autonomous acoustic seafloor transponders mounted on 4 m high tripods. These transponders are able to continuously measure the two-way travel time of acoustic signals between station pairs (baselines) and the properties of the sea water (sound speed, temperature and pressure) at each transponder. These measurements are used to retrieve the distances between the transponders and give insights into the deformation of the seafloor. At the Chilean subduction zone, we installed in total 23 transponders in 3 subarrays with interstation distances of up to 2500 m. On the middle continental slope in 2300 m water depth, an array consisting of 8 transponders measures across crustal faults seen in AUV mapping. A second array of 5 stations located on the outer rise monitors extension across normal plate-bending faults. The deepest deployment in 5000 m water depth located on the lower continental slope with 10 stations is designed to measure diffuse strain build-up. The transponders are intended to monitor the seafloor deformation for 3.5 years. In November 2016 during a cruise of RV Langseth, the first 11 months of data were successfully uploaded via an acoustic modem. Furthermore, an additional component of the network, GeoSURF, a self-steering autonomous vehicle (wave glider), was

  20. Geodetic Control Points, Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level elevations have been determined., Published in 1995, 1:24000 (1in=2000ft) scale, Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geodetic Control Points dataset current as of 1995. Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level...

  1. An accuracy assessment of realtime GNSS time series toward semi- real time seafloor geodetic observation

    Science.gov (United States)

    Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.

    2013-12-01

    Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit

  2. First-order design of geodetic networks using the simulated annealing method

    Science.gov (United States)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  3. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products

    Science.gov (United States)

    Driver, J. M.

    1982-01-01

    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  4. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  5. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    Science.gov (United States)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  6. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992

    Science.gov (United States)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.

    1994-01-01

    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  7. Observing photons in space a guide to experimental space astronomy

    CERN Document Server

    Pauluhn, Anuschka; Culhane, J; Timothy, J; Wilhelm, Klaus; Zehnder, Alex

    2013-01-01

    An ideal resource for lecturers, this book provides a comprehensive review of experimental space astronomy. The number of astronomers whose knowledge and interest is concentrated on interpreting observations has grown substantially in the past decades; yet, the number of scientists who are familiar with and capable of dealing with instrumentation has dwindled.  All of the authors of this work are leading and experienced experts and practitioners who have designed, built, tested, calibrated, launched and operated advanced observing equipment for space astronomy. This book also contains concise information on the history of the field, supported by appropriate references. Moreover, scientists working in other fields will be able to get a quick overview of the salient issues of observing photons in any one of the various energy, wavelength and frequency ranges accessible in space. This book was written with the intention to make it accessible to advanced undergraduate and graduate students.

  8. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  9. Adjustment of positional geodetic networks by unconventional estimations

    Directory of Open Access Journals (Sweden)

    Silvia Gašincová

    2010-06-01

    Full Text Available The content of this paper is the adjustment of positional geodetic networks by robust estimations. The techniques (basedon the unconventional estimations of repeated least-square method which have turned out to be suitable and applicable in the practisehave been demonstrated on the example of the local geodetic network, which was founded to compose this thesis. In the thesisthe following techniques have been chosen to compare the Method of least-squares with those many published in foreign literature:M-estimation of Biweight,M-estimation of Welsch and Danish method. All presented methods are based on the repeated least-squaremethod principle with gradual changing of weight of individual measurements. In the first stage a standard least-square method wascarried out in the following steps – iterations we gradually change individual weights according to the relevant instructions/ regulation(so-called weight function. Iteration process will be stopped when no deviated measurements are found in the file of measured data.MatLab programme version 5.2 T was used to implement mathematical adjustment.

  10. CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS

    Science.gov (United States)

    Noll, Carey; Michael, Patrick

    2016-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.

  11. Verification of Positional Accuracy of ZVS3003 Geodetic Control ...

    African Journals Online (AJOL)

    The International GPS Service (IGS) has provided GPS orbit products to the scientific community with increased precision and timeliness. Many users interested in geodetic positioning have adopted the IGS precise orbits to achieve centimeter level accuracy and ensure long-term reference frame stability. Positioning with ...

  12. Volcano-tectonic deformation in the Kivu Region, Central Africa: Results from six years of continuous GNSS observations of the Kivu Geodetic Network (KivuGNet)

    Science.gov (United States)

    Geirsson, Halldor; d'Oreye, Nicolas; Mashagiro, Niche; Syauswa, Muhindo; Celli, Gilles; Kadufu, Benjamin; Smets, Benoît; Kervyn, François

    2017-10-01

    We present an overview of the installation, operation, and initial results of the 15-station KivuGNet (Kivu Geodetic Network) in the Kivu Region, Central Africa. The network serves primarily as a research and monitoring tool for active volcanic, earthquake, and plate boundary processes in the region. Continuous operation of in-situ measurement networks in naturally and politically harsh environments is challenging, but has proven fruitful in this case. During the operation of the network since 2009, KivuGNet has captured: co-eruptive deformation from two eruptions of Nyamulagira (in 2010 and 2011-2012); inter-eruptive deformation, which we interpret as a combination of plate motion across the Western - East Africa Rift, and decreasing deep-seated magma accumulation under the Nyiragongo-Nyamulagira region; co-seismic deformation from the Mw5.8 August 7, 2015 Lwiro earthquake at the western border of Lake Kivu. We hope that this study will serve as a motivation for further implementation of in-situ geodetic networks in under-monitored and under-studied sections of the East African Rift.

  13. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

    Directory of Open Access Journals (Sweden)

    M. Martini

    2013-12-01

    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  14. Discoveries and Controversies in Geodetic Imaging of Deformation Before and After the M=9 Tohoku-oki Earthquake

    Science.gov (United States)

    Wang, K.; Sun, T.; Hino, R.; Iinuma, T.; Tomita, F.; Kido, M.

    2017-12-01

    Numerous observations pertaining to the M=9.0 2011 Tohoku-oki earthquake have led to new understanding of subduction zone earthquakes. By synthesizing published research results and our own findings, we explore what has been learned about fault behavior and Earth rheology from geodetic imaging of crustal deformation before and after the earthquake. Before the earthquake, megathrust locking models based on land-based geodetic observations correctly outlined the along-strike location of the future rupture zone, showing that land-based observations are capable of resolving along-strike variations in locking and creep at wavelengths comparable to distances from the network. But they predicted a locked zone that was much deeper than the actual rupture in 2011. The incorrect definition of the locking pattern in the dip direction demonstrates not only the need for seafloor geodesy but also the importance of modeling interseismic viscoelastic stress relaxation and stress shadowing. The discovery of decade-long accelerated slip downdip of the future rupture zone raises new questions on fault mechanics. After the earthquake, seafloor geodetic discovery of opposing motion offshore provided unambiguous evidence for the dominance of viscoelastic relaxation in short-term postseismic deformation. There is little deep afterslip in the fault area where the decade-long pre-earthquake slip acceleration is observed. The complementary spatial distribution of pre-slip and afterslip calls for new scientific research. However, the near absence of deep afterslip directly downdip of the main rupture is perceived to be controversial because some viscoelastic models do predict large afterslip here, although less than predicted by purely elastic models. We show that the large afterslip in these models is largely an artefact due to the use of a layered Earth model without a subducting slab. The slab acts as an "anchor" in the mantle and retards landward motion following a subduction earthquake

  15. A comparative study for the estimation of geodetic point velocity by ...

    Indian Academy of Sciences (India)

    Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.

  16. Geodetic and seismological investigation in the Ionian area

    Directory of Open Access Journals (Sweden)

    F. Riguzzi

    1997-06-01

    Full Text Available Geodetic and seismic evidence of crustal deformations in the Ionian area are shown in this paper. The Ionian GPS network, composed of nine sites crossing the Ionian Sea from Calabria, Southern Italy, to Northwestern Greece, was established and surveyed in 1991, 1994, 1995 within the framework of the TYRGEONET project (Anzidei et al., 1996. In 1996 a return campaign was carried out after the occurrence of seismic activity in 1995. The displacement pattern obtained for the Greek side of the network agrees well with those previously displayed, both in magnitude and direction, confirming a mean displacement rate of about 1-2 cm1/yr. The same agreement is not found for the Italian side of the network, where no significant deformations were detected between 1994 and 1996. Seismic deformation was also studied for the same area, starting from the moment tensors of events which occurred in the last 20 years with magnitude greater than 5.0; evident similarity with the displacement field exhibited by the Greek side of the Ionian Sea by geodetic surveys was inferred. On the contrary, the motion detected for the Italian area cannot be simply related to seismic activity.

  17. The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia

    Science.gov (United States)

    Din, A. H. M.; Abazu, I. C.; Pa'suya, M. F.; Omar, K. M.; Hamid, A. I. A.

    2016-09-01

    Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015) for tidal data and 23 years (from 1993 to 2015) for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD) is evaluated in this study. the difference between MSL computed from 10 years (1984 - 1993) and 32 years (1984 - 2015) tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  18. THE IMPACT OF SEA LEVEL RISE ON GEODETIC VERTICAL DATUM OF PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. H. M. Din

    2016-09-01

    Full Text Available Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015 for tidal data and 23 years (from 1993 to 2015 for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD is evaluated in this study. the difference between MSL computed from 10 years (1984 – 1993 and 32 years (1984 – 2015 tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  19. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  20. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  1. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    Science.gov (United States)

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  2. Observing APOD with the AuScope VLBI Array

    Science.gov (United States)

    Sun, Jing; Cao, Jianfeng

    2018-01-01

    The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype—suitable for practical observation tests—combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission. PMID:29772732

  3. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  4. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  5. Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations

    Science.gov (United States)

    Niemeier, Wolfgang; Tengen, Dieter

    2017-06-01

    In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis. In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy. The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well. This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation. As practical example the local tie network in "Metsähovi Fundamental Station", Finland is used, where classical geodetic observations are combined with GNSS data.

  6. Digital Levelling in Subterranean Spaces

    Directory of Open Access Journals (Sweden)

    Tomáš Jiřikovský

    2007-06-01

    Full Text Available For precision levelling works are now more often used digital levels and code-scale staffs. Advantages in (and problems with their application to the regular line-levelling are well known and described. However, when using the digital levelling for measurements in specific local geodetic networks, monitoring networks and inside of buildings and underground spaces, new problems appear with the signalisation of the observed points, readability of the code (non-uniform illumination, temperature changes etc. The article informs about the application of two types of digital levels (Sokkia SDL-2, Trimble Zeiss DiNi 12T in the experimental subterranean levelling network for the basement settlement monitoring of a ten-floor building; the solution of marking of the points, field calibration and the system calibration of digital levels.

  7. Observing the Anthropocene from Space

    Science.gov (United States)

    Dittus, Hansjörg

    2016-07-01

    Influence of mankind on Earth's climate is evident. The growing population using the resources available, especially by burning goal, oil and gas, changes the composition of the Earth's atmosphere with the result of a continuously increasing temperature. Effects are not limited to the regional scale but are evident on the whole planet, meanwhile named Anthropocene. According to this global influence, it's necessary to also extend monitoring to the entire planet. Space-based observation systems are not limited by any artificial borders and are in principle able, to cover the whole Earth. In principle, two different ways of observation can be selected: Either a dedicated spacecraft will be send into low earth orbit (LEO) or existing platforms are used. Advantages of satellites are the more or less freely selectable orbit (with orbits covering also the polar regions) and the possible adaption of spacecraft platform for the dedicated instrument. On the other hand platforms like the ISS space station enable continuous long term coverage with different instruments. The drawback of an only limited coverage based on the orbit inclination is made up by the possibility to service systems on the station. Furthermore different generations of sensors can be run in parallel and therefore cross calibrated if needed. This paper reviews the currently available sensors types and discusses potential future needs. Included in this discussion is the international space station as an already available platform for earth observation. Furthermore, discussion should also take into account, that an increasing number of constellations with dozens or even thousand satellites are planned. Are these constellations also an option for an increased temporal and spatial monitoring of the Earth?

  8. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  9. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  10. Aspects Regarding the Establishment of the Scale Coefficient in the Case of Distances Measurements in an Geodetic Network

    Directory of Open Access Journals (Sweden)

    Mircea Ortelecan

    2016-11-01

    Full Text Available The paper analyzes the possibility to establish the coefficient of scale towards the total station scale triangulation network in the conduct of geodetic and topographic observations in the points with known coordinates (old points or points whose coordinates we want to determine (new points. The purpose of the study is undertaken to simplify computing operations to reduce distances measured from the topographic surface to the Stereo 70 projection plan.

  11. First Space VLBI Observations and Images Using the VLBA and VSOP

    Science.gov (United States)

    Romney, J. D.; Benson, J. M.; Claussen, M. J.; Desai, K. M.; Flatters, C.; Mioduszewski, A. J.; Ulvestad, J. S.

    1997-12-01

    The National Radio Astronomy Observatory (NRAO) is a participant in the VSOP Space VLBI mission, an international collaboration led by Japan's Institute of Space and Astronautical Science. NRAO has committed up to 30% of scheduled observing time on the Very Long Baseline Array (VLBA), and corresponding correlation resources, to Space VLBI observations. The NRAO Space VLBI Project, funded by NASA, has been working for several years to complete the necessary enhancements to the VLBA correlator and the AIPS image processing system. These developments were completed by the time of the successful launch of the VSOP mission's Halca spacecraft on 1997 February 12. As part of the in-orbit checkout phase, the first Space VLBI fringes from a VLBA observation were detected on 1997 June 12, and the VSOP mission's first images, in both the 1.6- and 5-GHz bands, were obtained shortly thereafter. In-orbit test observations continued through early September, with the first General Observing Time (GOT) scientific observations beginning in July. Through mid-October, a total of 20 Space VLBI observations, comprising 190 hours, had been completed at the VLBA correlator. This paper reviews the unique features of correlation and imaging of Space VLBI observations. These include, for correlation, the ephemeris for an orbiting VLBI ``station'' which is not fixed on the surface of the earth, and the requirement to close the loop on the phase-transfer process from a frequency standard on the ground to the spacecraft. Images from a number of early tests and scientific observations are presented. NRAO's user-support program, providing expert assistance in data analysis to Space VLBI observers, is also described.

  12. Application of median-equation approach for outlier detection in geodetic networks

    Directory of Open Access Journals (Sweden)

    Serif Hekimoglu

    Full Text Available In geodetic measurements some outliers may occur sometimes in data sets, depending on different reasons. There are two main approaches to detect outliers as Tests for outliers (Baarda's and Pope's Tests and robust methods (Danish method, Huber method etc.. These methods use the Least Squares Estimation (LSE. The outliers affect the LSE results, especially it smears the effects of the outliers on the good observations and sometimes wrong results may be obtained. To avoid these effects, a method that does not use LSE should be preferred. The median is a high breakdown point estimator and if it is applied for the outlier detection, reliable results can be obtained. In this study, a robust method which uses median with or as a treshould value on median residuals that are obtained from median equations is proposed. If the a priori variance of the observations is known, the reliability of the new approch is greater than the one in the case where the a priori variance is unknown.

  13. Some observations on a fuzzy metric space

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, V.

    2017-07-01

    Let $(X,d)$ be a metric space. In this paper we provide some observations about the fuzzy metric space in the sense of Kramosil and Michalek $(Y,N,/wedge)$, where $Y$ is the set of non-negative real numbers $[0,/infty[$ and $N(x,y,t)=1$ if $d(x,y)/leq t$ and $N(x,y,t)=0$ if $d(x,y)/geq t$. (Author)

  14. Observing the Global Water Cycle from Space

    Science.gov (United States)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  15. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    Science.gov (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  16. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?

    Science.gov (United States)

    Ebner, R.; Featherstone, W. E.

    2008-09-01

    Establishing geodetic control networks for subsequent surveys can be a costly business, even when using GPS. Multiple stations should be occupied simultaneously and post-processed with scientific software. However, the free availability of online GPS precise point positioning (PPP) post-processing services offer the opportunity to establish a whole geodetic control network with just one dual-frequency receiver and one field crew. To test this idea, we compared coordinates from a moderate-sized (~550 km by ~440 km) geodetic network of 46 points over part of south-western Western Australia, which were processed both with the Bernese v5 scientific software and with the CSRS (Canadian Spatial Reference System) PPP free online service. After rejection of five stations where the antenna type was not recognised by CSRS, the PPP solutions agreed on average with the Bernese solutions to 3.3 mm in east, 4.8 mm in north and 11.8 mm in height. The average standard deviations of the Bernese solutions were 1.0 mm in east, 1.2 mm in north and 6.2 mm in height, whereas for CSRS they were 3.9 mm in east, 1.9 mm in north and 7.8 mm in height, reflecting the inherently lower precision of PPP. However, at the 99% confidence level, only one CSRS solution was statistically different to the Bernese solution in the north component, due to a data interruption at that site. Nevertheless, PPP can still be used to establish geodetic survey control, albeit with a slightly lower quality because of the larger standard deviations. This approach may be of particular benefit in developing countries or remote regions, where geodetic infrastructure is sparse and would not normally be established without this approach.

  17. Geodetic contributions to IWRM-projects in middle Java, Indonesia

    Science.gov (United States)

    Schmitt, Günter

    2010-12-01

    The district of Gunung Kidul in middle Java is one of the poorest regions in Indonesia. The essential reason is the acute water scarcity in this karst region during the months of the dry season. As a consequence of the poor living conditions many people have migrated away and therefore the development of the region is stagnating. During the last few years two projects have been initiated under the theme “Integrated Water Resources Management” in order to improve the water supply situation, both funded by the German Federal Ministry of Education and Research, and realized essentially by institutes of the University of Karlsruhe. Geodetic sub-projects are integrated into both projects. Special surveying activities had been, and have still to be, carried out to realise the geometrical basis for several other sub-projects. The particular contributions are 3D cave measurements for visualisation and planning, staking out of drilling points and construction axes, the definition of a common reference system, the surveying of the water distribution network and its technical facilities, the setting up and the management of a geographical information system (GIS), as well as special measurements such as dam monitoring or controlling of a vertical drilling machine. The paper reviews these projects and describes the geodetic activities.

  18. The astro-geodetic use of CCD for gravity field refinement

    Science.gov (United States)

    Gerstbach, G.

    1996-07-01

    The paper starts with a review of geoid projects, where vertical deflections are more effective than gravimetry. In alpine regions the economy of astrogeoids is at least 10 times higher, but many countries do not make use of this fact - presumably because the measurements are not fully automated up to now. Based upon the experiences of astrometry of high satellites and own tests the author analyses the use of CCD for astro-geodetic measurements. Automation and speeding up will be possible in a few years, the latter depending on the observation scheme. Sensor characteristics, cooling and reading out of the devices should be harmonized. Using line sensors in small prism astrolabes, the CCD accuracy will reach the visual one (±0.2″) within 5-10 years. Astrogeoids can be combined ideally with geological data, because vertical variation of rock densities does not cause systematic effects (contrary to gravimetry). So a geoid of ±5 cm accuracy (achieved in Austria and other alpine countries by 5-10 points per 1000 km 2) can be improved to ±2 cm without additional observations and border effects.

  19. Earth Observations from Space: The First 50 Years of Scientific Achievements

    Science.gov (United States)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  20. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  1. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    Science.gov (United States)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  2. Monitoring Coral Growth - the Dichotomy Between Underwater Photogrammetry and Geodetic Control Network

    Science.gov (United States)

    Neyer, F.; Nocerino, E.; Gruen, A.

    2018-05-01

    Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).

  3. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  4. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    Science.gov (United States)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  5. Influence of bad measurements in properties of GeodeticNnetwork

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2008-12-01

    Full Text Available In establishment of LGS (Local geodetic Net some given coordinated points from the relevant area are used, new points areestablished and the required distances and angles among the points are measured. If some measurements are defective, the netadjustment with the obtained values is depreciated, unacceptable. In the paper there is given an identification method of incorrectmeasurement results. The faulty results are eliminated in a new adjustment or the relevant defective measurements are repeated forobtaining correct values.

  6. Processing of a geodetic network determined in ETRS-89 with application of different cofactors

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2012-12-01

    Full Text Available At present, manufacturers characterize the accuracy of vectors measured by the static method of GNSS technology usingrelationship 5 mm + 1⋅ D ppm . The advantage of the GNSS system over other terrestrial technologies is that it is not affectedby uncertainties in the ground layers of the atmosphere. The paper presents experimental measurement of the 3D geodetic network usingthe technology of global navigation satellite systems, processing and analysis of measurements taken at the Čierny Váh pumping hydropowerstation. Observations were carried out in July 2008. The aim of the paper is to assess parameters used in the model to estimateparameters of the first and second order of the network structures.

  7. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  8. Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)

    Science.gov (United States)

    Shum, C. K.

    2012-04-01

    Geodesy during the onset of the 21st Century is evolving into a transformative cross-disciplinary Earth science field. The pioneers before or after the discipline Geodesy was defined include Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Kant, Laplace, Airy, Kelvin, Jeffreys, Chandler, Meinesz, Kaula, and others. The complicated dynamic processes of the Earth system manifested by interactions between the solid Earth and its fluid layers, including ocean, atmosphere, cryosphere and hydrosphere, and their feedbacks are linked with scientific problems such as global sea-level rise resulting from natural and anthropogenic climate change. Advances in the precision and stability of geodetic and fundamental instrumentations, including clocks, satellite or quasar tracking sensors, altimetry and lidars, synthetic aperture radar interferometry (InSAR), InSAR altimetry, gravimetry and gradiometry, have enabled accentuate and transformative progress in cross-disciplinary Earth sciences. In particular, advances in the measurement of the gravity with modern free-fall methods have reached accuracies of 10-9 g (~1 μGal or 10 nm/s2) or better, allowing accurate measurements of height changes at ~3 mm relative to the Earth's center of mass, and mass transports within the Earth interior or its geophysical fluids, enabling global quantifications of climate-change signals. These contemporary space geodetic and in situ sensors include, but not limited to, satellite radar and laser altimetry/lidars, GNSS/SLR/VLBI/DORIS, InSAR, spaceborne gravimetry from GRACE (Gravity Recovery And Climate Experiment twin-satellite mission) and gradiometry from GOCE (Global Ocean Circulation Experiment), tide gauges, and hydrographic data (XBT/MBT/Argo). The 2007 Intergovernmental Panel for Climate Change (IPCC) study, the Fourth Assessment Report (AR4), substantially narrowed the discrepancy between observation and the known geophysical causes of sea-level rise, but significant uncertainties

  9. Conformally compactified homogeneous spaces (Possible Observable Consequences)

    International Nuclear Information System (INIS)

    Budinich, P.

    1995-01-01

    Some arguments based on the possible spontaneous violation of the Cosmological Principles (represented by the observed large-scale structures of galaxies), the Cartan-geometry of simple spinors and on the Fock-formulation of hydrogen-atom wave-equation in momentum-space, are presented in favour of the hypothesis that space-time and momentum-space should be both conformally compactified and represented by the two four-dimensional homogeneous spaces of the conformal group, both isomorphic to (S 3 X S 1 )/Z 2 and correlated by conformal inversion. Within this framework, the possible common origin for the S0(4) symmetry underlying the geometrical structure of the Universe, of Kepler orbits and of the H-atom is discussed. On of the consequences of the proposed hypothesis could be that any quantum field theory should be naturally free from both infrared and ultraviolet divergences. But then physical spaces defined as those where physical phenomena may be best described, could be different from those homogeneous spaces. A simple, exactly soluble, toy model, valid for a two-dimensional space-time is presented where the conjecture conformally compactified space-time and momentum-space are both isomorphic to (S 1 X S 1 )/Z 2 , while the physical spaces are two finite lattice which are dual since Fourier transforms, represented by finite, discrete, sums may be well defined on them. Furthermore, a q-deformed SU q (1,1) may be represented on them if q is a root of unity. (author). 22 refs, 3 figs

  10. An Inequality Constrained Least-Squares Approach as an Alternative Estimation Procedure for Atmospheric Parameters from VLBI Observations

    Science.gov (United States)

    Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel

    2016-12-01

    On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.

  11. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-06-01

    Full Text Available In this study we demonstrate how energy and mass fluxes vary in space and time for Grey and Tyndall glaciers at the Southern Patagonia Icefield (SPI. Despite the overall glacier retreat of most Patagonian glaciers, a recent increase in mass loss has been observed, but individual glaciers respond differently in terms of spatial and temporal changes. In this context, the detailed investigation of the effect of mass balance processes on recent glacier response to climate forcing still needs refinement. We therefore quantify surface energy-fluxes and climatic mass balance of the two neighboring glaciers, Grey and Tyndall. The COupled Snow and Ice energy and MAss balance model COSIMA is applied to assess recent surface energy and climatic mass balance variability with a high temporal and spatial resolution for a 16-year period between April 2000 and March 2016. The model is driven by downscaled 6-hourly atmospheric data derived from ERA-Interim reanalysis and MODIS/Terra Snow Cover and validated against ablation measurements made in single years. High resolution precipitation fields are determined by using an analytical orographic precipitation model. Frontal ablation is estimated as residual of climatic mass balance and geodetic mass balance derived from TanDEM-X/SRTM between 2000 and 2014. We simulate a positive glacier-wide mean annual climatic mass balance of +1.02 ± 0.52 m w.e. a−1 for Grey Glacier and of +0.68 ± 0.54 m w.e. a−1 for Tyndall Glacier between 2000 and 2014. Climatic mass balance results show a high year to year variability. Comparing climatic mass balance results with previous studies underlines the high uncertainty in climatic mass balance modeling with respect to accumulation on the SPI. Due to the lack of observations accumulation estimates differ from previous studies based on the methodological approaches. Mean annual ice loss by frontal ablation is estimated to be 2.07 ± 0.70 m w.e. a−1 for Grey Glacier and 3.26 ± 0

  12. The University, the Market, and the Geodetic Engineer or

    DEFF Research Database (Denmark)

    Stubkjær, Erik

    2002-01-01

    In Europe, universities have existed for more than 800 years. The university is the place in society for higher learning and related research. Through the ages, the universities have enjoyed a remarkably freedom relative to religious and secular powers. In recent years, the objectives and practises...... project, which concerned the education of geodetic engineers in Slovenia. The body of the paper presents a selection of ideas that shaped the university through the centuries, with a view to balance the present interest in advancing market-directed behaviour....

  13. Confined space ventilation by shipyard welders: observed use and effectiveness.

    Science.gov (United States)

    Pouzou, Jane G; Warner, Chris; Neitzel, Richard L; Croteau, Gerry A; Yost, Michael G; Seixas, Noah S

    2015-01-01

    Shipbuilding involves intensive welding activities within enclosed and confined spaces, and although ventilation is commonly used in the industry, its use and effectiveness has not been adequately documented. Workers engaged in welding in enclosed or confined spaces in two shipyards were observed for their use of ventilation and monitored for their exposure to particulate matter. The type of ventilation in use, its placement and face velocity, the movement of air within the space, and other ventilation-related parameters were recorded, along with task characteristics such as the type of welding, the welder's position, and the configuration of the space. Mechanical ventilation was present in about two-thirds of the 65 welding scenarios observed, with exhaust ventilation used predominantly in one shipyard and supply blowers predominantly in the other. Welders were observed working in apparent dead-spaces within the room in 53% of the cases, even where ventilation was in use. Respiratory protection was common in the two shipyards, observed in use in 77 and 100% of the cases. Welding method, the proximity of the welder's head to the fume, and air mixing were found to be significantly associated with the welder's exposure, while other characteristics of dilution ventilation did not produce appreciable differences in exposure level. These parameters associated with exposure reduction can be assessed subjectively and are thus good candidates for training on effective ventilation use during hot work in confined spaces. Ventilation used in confined space welding is often inadequate for controlling exposure to welding fume. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Fifty Years of Lightning Observations from Space

    Science.gov (United States)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  15. Optimal observables and phase-space ambiguities

    International Nuclear Information System (INIS)

    Nachtmann, O.; Nagel, F.

    2005-01-01

    Optimal observables are known to lead to minimal statistical errors on parameters for a given normalised event distribution of a physics reaction. Thereby all statistical correlations are taken into account. Therefore, on the one hand they are a useful tool to extract values on a set of parameters from measured data. On the other hand one can calculate the minimal constraints on these parameters achievable by any data-analysis method for the specific reaction. In case the final states can be reconstructed without ambiguities optimal observables have a particularly simple form. We give explicit formulae for the optimal observables for generic reactions in case of ambiguities in the reconstruction of the final state and for general parameterisation of the final-state phase space. (orig.)

  16. Geodetic Measurements and Mechanical Models of Cyclic Deformation at Okmok Volcano, Alaska

    Science.gov (United States)

    Feigl, K.; Masterlark, T.; Lu, Z.; Ohlendorf, S. J.; Thurber, C. H.; Sigmundsson, F.

    2009-12-01

    The 1997 and 2008 eruptions of Okmok volcano, Alaska, provide a rare opportunity for conducting a rheological experiment to unravel the complex processes associated with magma migration, storage, and eruption in an active volcano. In this experiment, the magma flux during the eruption provides the “impulse” and the subsequent, transient deformation, the “response”. By simulating the impulse, measuring the response, and interpreting the constitutive relations between the two, one can infer the rheology. Okmok is an excellent natural laboratory for such an experiment because a complete cycle of deformation has been monitored using geodetic and seismic means, including: (a) geodetic time series from Interferometric Synthetic Aperture Radar (InSAR) and the Global Positioning System (GPS), (b) earthquake locations; and (c) seismic tomography. We are developing quantitative models using the Finite Element Method (FEM) to simulate the timing and location of the observed seismicity and deformation by accounting for: (a) the geometry and loading of the magma chamber and lava flow, (b) the spatial distribution of material properties; and (c) the constitutive (rheological) relations between stress and strain. Here, we test the hypothesis that the deformation following the 1997 eruption did not reach a steady state before the eruption in 2008. To do so, we iteratively confront the FEM models with the InSAR measurements using the General Inversion of Phase Technique (GIPhT). This approach models the InSAR phase data directly, without unwrapping, as developed, validated, and applied by Feigl and Thurber [Geophys. J. Int., 2009]. By minimizing a cost function that quantifies the misfit between observed and modeled values in terms of “wrapped” phase (with values ranging from -1/2 to +1/2 cycles), GIPhT can estimate parameters in a geophysical model. By avoiding the pitfalls of phase-unwrapping approaches, GIPhT allows the analysis, interpretation and modeling of more

  17. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  18. A Community-based Partnership for a Sustainable GNSS Geodetic Network

    Science.gov (United States)

    Dokka, R. K.

    2009-12-01

    Geodetic networks offer unparalleled opportunities to monitor and understand many of the rhythms of the Earth most vital to the sustainability of modern and future societies, i.e., crustal motions, sea-level, and the weather. For crustal deformation studies, the advantage is clear. Modern measurements allow us to document not only the permanent strains incurred over a seismic cycle, for example, but also the ephemeral strains that are critical for understanding the underlying physical mechanism. To be effective for science, however, geodetic networks must be properly designed, capitalized, and maintained over sufficient time intervals to fully capture the processes in action. Unfortunately, most networks lack interoperability and lack a business plan to ensure long term sustainability. The USA, for example, lacks a unified nation-wide GNSS network that can sustain its self over the coming years, decades, and century. Current federal priorities do not yet envision such a singular network. Publicly and privately funded regional networks exist, but tend to be parochial in scope, and optimized for a special user community, e.g., surveying, crustal motions, etc. Data sharing is common, but the lack of input at the beginning limits the functionality of the system for non-primary users. Funding for private networks depend heavily on the user demand, business cycle, and regulatory requirements. Agencies funding science networks offer no guarantee of sustained support. An alternative model (GULFNet) developed in Louisiana is meeting user needs, is sustainable, and is helping engineers, surveyors, and geologists become more spatially enabled. The common denominator among all participants is the view that accurate, precise, and timely geodetic data have tangible value for all segments of society. Although operated by a university (LSU), GULFNet is a community-based partnership between public and private sectors. GULFNet simultaneously achieves scientific goals by providing

  19. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  20. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    Science.gov (United States)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  1. Introducing a New Software for Geodetic Analysis

    Science.gov (United States)

    Hjelle, Geir Arne; Dähnn, Michael; Fausk, Ingrid; Kirkvik, Ann-Silje; Mysen, Eirik

    2017-04-01

    At the Norwegian Mapping Authority, we are currently developing Where, a new software for geodetic analysis. Where is built on our experiences with the Geosat software, and will be able to analyse and combine data from VLBI, SLR, GNSS and DORIS. The software is mainly written in Python which has proved very fruitful. The code is quick to write and the architecture is easily extendable and maintainable, while at the same time taking advantage of well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where, including benchmarks against other software packages, and outline our plans for further progress. In addition we will report on some investigations we have done experimenting with alternative weighting strategies for VLBI.

  2. Geodetic Slip Solution for the Mw=7.4 Champerico (Guatemala) Earthquake of 07 November 2012

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Molina, E.; Flores, O.; Rivera, J.; Lasserre, C.; Lyon-Caen, H.; Lord, N. E.

    2014-12-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 07 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador, and Mexico to estimate the coseismic slip and post-seismic deformation of the November 2012 Champerico (Guatemala) earthquake. Coseismic offsets range from ~47 mm near the epicenter to El Salvador. An inversion of the geodetic data indicate that that up to ~2 m of coseismic slip occurred on a ~30 km by 30 km rupture area between ~10 and 30 km depth, encouragingly close to the global CMT epicenter. The geodetic moment of 13 x 1019 N·m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. An inversion for the postseismic fault afterslip shows that the transient postseismic motions recorded at 11 GPS sites are well fit with a logarithmically decaying function. More than 70 per cent of the postseismic slip occurred at the same depth or directly downdip from the main shock epicenter. At the upper limit, afterslip that occurred within 6 months of the earthquake released energy equivalent to only ~20 per cent of the coseismic moment. The seismologically derived slip solution from Ye et al. (2012), which features more highly concentrated slip than our own, fits our GPS offsets reasonably well provided that we translate their slip centroid ~51 km to the west to a position close to our own slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-5 m for the peak slip along a region of the interface no larger than 30 x 30 km and possibly much smaller.

  3. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem

    Directory of Open Access Journals (Sweden)

    C. A. B. Quintero

    Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.

  4. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study

    Science.gov (United States)

    Fergason, R. L.; Weller, L.

    2018-04-01

    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  5. Cooperative research in space geodesy and crustal dynamics

    Science.gov (United States)

    1994-01-01

    This research grant, which covered the period of July 1991 to August 1994, was concerned with a variety of topics within the geodesy and crustal dynamics fields. The specific topics of this grant included satellite tracking and gravity field determinations and crustal dynamics (this concentrated of space geodetic site stability for VLBI sites). Summaries of the specific research projects are included along with a list of publications and presentations supported by this research grant.

  6. Gravity Probe B: final results of a space experiment to test general relativity.

    Science.gov (United States)

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  7. Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure

    Science.gov (United States)

    Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.

    2012-12-01

    Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the

  8. A geodetic matched-filter search for slow slip with application to the Mexico subduction zone

    Science.gov (United States)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low frequency earthquakes and repeating earthquakes provide evidence of low amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here, we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent datasets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with post-processed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modelling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T and Mw of events larger than Mw 6.0 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the down dip edges of the Mw > 7.5 SSEs.

  9. A geodetic matched filter search for slow slip with application to the Mexico subduction zone

    Science.gov (United States)

    Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W. B.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.

    2017-12-01

    Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low-frequency earthquakes and repeating earthquakes provide evidence of low-amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent data sets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with postprocessed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modeling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T, and Mw of events larger than Mw 6 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the downdip edges of the Mw>7.5 slow slip events.

  10. Observer-dependent quantum vacua in curved space. II

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1989-01-01

    An observer-dependent Hamiltonian is introduced in order to describe massless spin-1 particles in curved space-times. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which turns out to be equivalent criteria. This method works in an arbitrary geometry, although a condition on the fluid of observers is required. Computations give the vacua commonly accepted in the literature

  11. Observations from Space and the Future of Meteorology

    Science.gov (United States)

    Tepper, Morris

    1974-01-01

    Describes space-based observations and other aspects of meterology that will enable weather forecasters to lengthen the scale of predictability from the current day-to-day basis to one week or longer. (Author/GS)

  12. An observational study of defensible space in the neighbourhood park

    Science.gov (United States)

    Marzukhi, M. A.; Afiq, M. A.; Zaki, S. Ahmad; Ling, O. H. L.

    2018-02-01

    The planning of neighborhood park is important to provide space for interaction, leisure, and recreation among residents in any neighbourhood area. However, on an almost daily basis, newspapers report inappropriate incidents such as snatch theft, robbery and street attack that occurred in the neighborhood park. These cases reflect the significance of physical planning and design of neighborhood park that directly affect the safety and comfort of the users. Thus, this study attempts to engage with the defensible space concept in ensuring the security elements be applied in the planning of the recreational area. This study adopts a qualitative method form of research that is retrofitted to an observational study. The observational study is significant for revealing the condition of a neighbourhood park in the ‘real-world,’ in which direct observation is conducted on Taman Tasik Puchong Perdana. The observer focused on four elements or variables of defensible space concept including the provision of facilities in the neighborhood park, territoriality, surveillance, image and milieu. The findings revealed that the planning of Taman Tasik Puchong Perdana does not deliberate the defensible space elements, which may contribute to the crime activities in the park. In these circumstances, the planning of neighbourhood park needs to include proposals for the implementation of defensible space in response to the challenges underpinned by crime problems. Besides, the awareness among the residents needs to be emphasized with the support from local authorities and other organizations to manage and sustain the safety environment in the neighborhood park.

  13. Space observations for global and regional studies of the biosphere

    Science.gov (United States)

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.

    1994-01-01

    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  14. Establishing a Modern Ground Network for Space Geodesy Applications

    Science.gov (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  15. A Comparative Study of the Applied Methods for Estimating Deflection of the Vertical in Terrestrial Geodetic Measurements

    Directory of Open Access Journals (Sweden)

    Luca Vittuari

    2016-04-01

    Full Text Available This paper compares three different methods capable of estimating the deflection of the vertical (DoV: one is based on the joint use of high precision spirit leveling and Global Navigation Satellite Systems (GNSS, a second uses astro-geodetic measurements and the third gravimetric geoid models. The working data sets refer to the geodetic International Terrestrial Reference Frame (ITRF co-location sites of Medicina (Northern, Italy and Noto (Sicily, these latter being excellent test beds for our investigations. The measurements were planned and realized to estimate the DoV with a level of precision comparable to the angular accuracy achievable in high precision network measured by modern high-end total stations. The three methods are in excellent agreement, with an operational supremacy of the astro-geodetic method, being faster and more precise than the others. The method that combines leveling and GNSS has slightly larger standard deviations; although well within the 1 arcsec level, which was assumed as threshold. Finally, the geoid model based method, whose 2.5 arcsec standard deviations exceed this threshold, is also statistically consistent with the others and should be used to determine the DoV components where local ad hoc measurements are lacking.

  16. Geodetic Measurements and Numerical Modeling of the Deformation Cycle for Okmok Volcano, Alaska: 1993-2008

    Science.gov (United States)

    Ohlendorf, S. J.; Feigl, K.; Thurber, C. H.; Lu, Z.; Masterlark, T.

    2011-12-01

    Okmok Volcano is an active caldera located on Umnak Island in the Aleutian Island arc. Okmok, having recently erupted in 1997 and 2008, is well suited for multidisciplinary studies of magma migration and storage because it hosts a good seismic network and has been the subject of synthetic aperture radar (SAR) images that span the recent eruption cycle. Interferometric SAR can characterize surface deformation in space and time, while data from the seismic network provides important information about the interior processes and structure of the volcano. We conduct a complete time series analysis of deformation of Okmok with images collected by the ERS and Envisat satellites on more than 100 distinct epochs between 1993 and 2008. We look for changes in inter-eruption inflation rates, which may indicate inelastic rheologic effects. For the time series analysis, we analyze the gradient of phase directly, without unwrapping, using the General Inversion of Phase Technique (GIPhT) [Feigl and Thurber, 2009]. This approach accounts for orbital and atmospheric effects and provides realistic estimates of the uncertainties of the model parameters. We consider several models for the source, including the prolate spheroid model and the Mogi model, to explain the observed deformation. Using a medium that is a homogeneous half space, we estimate the source depth to be centered at about 4 km below sea level, consistent with the findings of Masterlark et al. [2010]. As in several other geodetic studies, we find the source to be approximately centered beneath the caldera. To account for rheologic complexity, we next apply the Finite Element Method to simulate a pressurized cavity embedded in a medium with material properties derived from body wave seismic tomography. This approach allows us to address the problem of unreasonably large pressure values implied by a Mogi source with a radius of about 1 km by experimenting with larger sources. We also compare the time dependence of the

  17. Earth observations from space: the first 50 years of scientific achievements

    National Research Council Canada - National Science Library

    Committee on Scientific Accomplishments of Earth Observations from Space, National Research Council

    .... At the request of the National Aeronautics and Space Administration, the National Research Council convened a committee to examine the scientific accomplishments that have resulted from space-based observations...

  18. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  19. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods

    Directory of Open Access Journals (Sweden)

    Inés Dussaillant

    2018-02-01

    Full Text Available We compare two independent estimates of the rate of elevation change and geodetic mass balance of the Northern Patagonian Icefield (NPI between 2000 (3,856 km2 and 2012 (3,740 km2 from space-borne data. The first is obtained by differencing the Shuttle Radar Topography Mission (SRTM digital elevation model (DEM from February 2000 and a Satellite pour l'Observation de la Terre 5 (SPOT5 DEM from March 2012. The second is deduced by fitting pixel-based linear elevation trends over 118 DEMs calculated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo images acquired between 2000 and 2012. Both methods lead to similar and strongly negative icefield-wide mass balance rates of −1.02 ± 0.21 and −1.06 ± 0.14 m w.e. yr−1 respectively, which is in agreement with earlier studies. Contrasting glacier responses are observed, with individual glacier mass balance rates ranging from −0.15 to −2.30 m w.e. yr−1 (standard deviation = 0.49 m w.e. yr−1; N = 38. For individual glaciers, the two methods agree within error bars, except for small glaciers poorly sampled in the SPOT5 DEM due to clouds. Importantly, our study confirms the lack of penetration of the C-band SRTM radar signal into the NPI snow and firn except for a region above 2,900 m a.s.l. covering <1% of the total area. Ignoring penetration would bias the mass balance by only 0.005 m w.e. yr−1. A strong advantage of the ASTER method is that it relies only on freely available data and can thus be extended to other glacierized areas.

  20. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state

    Science.gov (United States)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey

    2018-05-01

    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  1. Stability of Global Geodetic Results

    Science.gov (United States)

    Herring, T.

    The precision of global geodetic techniques has reached unprecedented levels. Sys- tems capable of millimeter level horizontal and several millimeter vertical precisions are now deployed. The Global Positioning System (GPS) has the most deployed continuously-operating receivers with several hundred providing data through the in- ternet for analysis. However, the satellite system used with GPS evolves with time as new generations of GPS satellites are launched. During the 1990's, the constellation evolved from Block I to Block II and IIA with the most recent generation being Block IIR. There are considerable differences in the size and antenna configurations in the different generations of satellites. The antenna configuration specifically could cause systematic changes in the terrestrial reference system. Results from the ITRF2000 combinations suggest that there are significant time variations in the scale of GPS system possibly due to phase center variations in GPS transmission antennas. These variations could result in height changes of up to 3 mm/yr. We will investigate the stability of the GPS system through combination of GPS results with results from VLBI and SLR. All components of the transformation between the systems, rotation, translation and scale will be investigated.

  2. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  3. Optical observations on critical ionization velocity experiments in space

    International Nuclear Information System (INIS)

    Stenbaek-Nielsen, H.C.

    1993-01-01

    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O + . This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  4. COORDINATE TRANSFORMATION USING FEATHERSTONE AND VANÍČEK PROPOSED APPROACH - A CASE STUDY OF GHANA GEODETIC REFERENCE NETWORK

    Directory of Open Access Journals (Sweden)

    Yao Yevenyo Ziggah

    2017-03-01

    Full Text Available Most developing countries like Ghana are yet to adopt the geocentric datum for its surveying and mapping purposes. It is well known and documented that non-geocentric datums based on its establishment have more distortions in height compared with satellite datums. Most authors have argued that combining such height with horizontal positions (latitude and longitude in the transformation process could introduce unwanted distortions to the network. This is because the local geodetic height in most cases is assumed to be determined to a lower accuracy compared with the horizontal positions. In the light of this, a transformation model was proposed by Featherstone and Vaníček (1999 which avoids the use of height in both global and local datums in coordinate transformation. It was confirmed that adopting such a method reduces the effect of distortions caused by geodetic height on the transformation parameters estimated. Therefore, this paper applied Featherstone and Vaníček (FV model for the first time to a set of common points coordinates in Ghana geodetic reference network. The FV model was used to transform coordinates from global datum (WGS84 to local datum (Accra datum. The results obtained based on the Root Mean Square Error (RMSE and Mean Absolute Error (MAE in both Eastings and Northings were satisfactory. Thus, a RMSE value of 0.66 m and 0.96 m were obtained for the Eastings and Northings while 0.76 m and 0.73 m were the MAE values achieved. Also, the FV model attained a transformation accuracy of 0.49 m. Hence, this study will serve as a preliminary investigation in avoiding the use of height in coordinate transformation within Ghana’s geodetic reference network.

  5. Space Observations for Global Change

    Science.gov (United States)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  6. Humanly space objects-Perception and connection with the observer

    Science.gov (United States)

    Balint, Tibor S.; Hall, Ashley

    2015-05-01

    Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity

  7. GPS observations of coseismic deformation following the 2016, August 24, Mw 6 Amatrice earthquake (central Italy: data, analysis and preliminary fault model

    Directory of Open Access Journals (Sweden)

    Daniele Cheloni

    2016-11-01

    Full Text Available We used continuous Global Positioning System (GPS measurements to infer the fault geometry and the amount of coseismic slip associated to the August 24, 2016 Mw 6 Amatrice earthquake. We realized a three dimensional coseismic displacement field by combining different geodetic solutions generated by three independent analyses of the raw GPS observations. The coseismic deformation field described in this work aims at representing a consensus solution that minimizes the systematic biases potentially present in the individual geodetic solutions. Because of the limited number of stations available we modeled the measured coseismic displacements using a uniform slip model, deriving the geometry and kinematics of the causative fault, finding good agreement between our geodetically derived fault plane and other seismological and geological observations.

  8. Using the SPICE system to help plan and interpret space science observations

    Science.gov (United States)

    Acton, Charles H., Jr.

    1993-01-01

    A portable multimission information system named SPICE is used to assemble, archive, and provide easy user access to viewing geometry and other ancillary information needed by space scientists to interpret observations of bodies within our solar system. The modular nature of this system lends it to use in planning such observations as well. With a successful proof of concept on Voyager, the SPICE system has been adapted to the Magellan, Galileo and Mars Observer missions, and to a variety of ground based operations. Adaptation of SPICE for Cassini and the Russian Mars 94/96 projects is underway, and work on Cassini will follow, SPICE has been used to support observation planning for moving targets on the Hubble Space Telescope Project. Applications for SPICE on earth science, space physics and other astrophysics missions are under consideration.

  9. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    Science.gov (United States)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  10. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  11. Slip deficit on the san andreas fault at parkfield, california, as revealed by inversion of geodetic data.

    Science.gov (United States)

    Segall, P; Harris, R

    1986-09-26

    A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.

  12. Quantum tomography, phase-space observables and generalized Markov kernels

    International Nuclear Information System (INIS)

    Pellonpaeae, Juha-Pekka

    2009-01-01

    We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.

  13. Multi-satellite observations of magnetic fields in space plasmas

    International Nuclear Information System (INIS)

    Potemra, T.A.; Zanetti, L.J.; Bythrow, P.F.; Erlandson, R.E.

    1987-01-01

    The most common method of detecting electric currents in space has been by virtue of the magnetic perturbations they produce. A satellite can pass through a field-aligned ''Birkeland'' current and measure the in-situ magnetic perturbations. Satellite-borne magnetic field experiments may also be used to observe characteristics of resonant oscillations of the Earth's magnetic field at ULF frequencies. Examples of such measurements with magnetic field experiments on the Viking, AMPTE/CCE, and DMSP-F7 satellites will be presented. The Viking satellite, launched in February, 1986, is Sweden's first satellite and is in a polar orbit with 3.1 R/sub e/ apogee. AMPTE/CCE was launched in August, 1984, with satellites from West Germany and the United Kingdom, for the purpose of creating artificial comets in space. It is in an equatorial orbit with a 8.8 R/sub e/ apogee. The Defense Meteorological Satellite Program (DMSP)-F7 satellite was launched in October, 1983 into an 800 km circular sun-synchronous orbit in the 0830-2030 magnetic local time plane. Viking and AMPTE/CCE observed harmonic ULF pulsations when they were near the same flux tube, but separated by about 10 R/sub e/. These unique observations are used to investigate the characteristics and sources of multiple field line resonances of Alfven waves. On another occasion, Viking and DMSP-F7 observed similar magnetic perturbations at widely separated locations. The authors interpret these perturbations as due to a complicated system of large-scale stable Birkeland currents in the morning sector. This multi-satellite data set is in the early stages of exploration, but already confirms the usefulness of coordinated multi-position observations of magnetic fields in space

  14. Aerosol and cloud observations from the Lidar In-space Technology Experiment

    Science.gov (United States)

    Winker, D. M.

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.

  15. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.

    1996-01-01

    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  16. Geodetic analysis of disputed accurate qibla direction

    Science.gov (United States)

    Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah

    2018-04-01

    Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.

  17. Assimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters

    International Nuclear Information System (INIS)

    Brown, Kristen A.; Harlim, John

    2013-01-01

    In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the deterministic piecewise linear interpolation scheme and the ordinary kriging scheme in interpolating irregularly spaced raw data to regularly spaced processed data and the importance of dynamical constraint (through MSM) in filtering the processed data on a numerically stiff state estimation problem. In particular, we test this approach on a two-layer quasi-geostrophic model in a two-dimensional domain with a small radius of deformation to mimic ocean turbulence. Our numerical results suggest that the dynamical constraint becomes important when the observation noise variance is large. Second, we find that the filtered estimates with ordinary kriging are superior to those with linear interpolation when observation networks are not too sparse; such robust results are found from numerical simulations with many randomly simulated irregularly spaced observation networks, various observation time intervals, and observation error variances. Third, when the observation network is very sparse, we find that both the kriging and linear interpolations are comparable

  18. Solar System Observations with the James Webb Space Telescope

    OpenAIRE

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar...

  19. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  20. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  1. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    Science.gov (United States)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  2. Space Geodetic Observations and Modeling of 2016 Mw 5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2016-06-01

    Full Text Available Determining the relationship between crustal movement and faulting in thrust belts is essential for understanding the growth of geological structures and addressing the proposed models of a potential earthquake hazard. A Mw 5.9 earthquake occurred on 21 January 2016 in Menyuan, NE Qinghai Tibetan plateau. We combined satellite interferometry from Sentinel-1A Terrain Observation with Progressive Scans (TOPS images, historical earthquake records, aftershock relocations and geological data to determine fault seismogenic structural geometry and its relationship with the Lenglongling faults. The results indicate that the reverse slip of the 2016 earthquake is distributed on a southwest dipping shovel-shaped fault segment. The main shock rupture was initiated at the deeper part of the fault plane. The focal mechanism of the 2016 earthquake is quite different from that of a previous Ms 6.5 earthquake which occurred in 1986. Both earthquakes occurred at the two ends of a secondary fault. Joint analysis of the 1986 and 2016 earthquakes and aftershocks distribution of the 2016 event reveals an intense connection with the tectonic deformation of the Lenglongling faults. Both earthquakes resulted from the left-lateral strike-slip of the Lenglongling fault zone and showed distinct focal mechanism characteristics. Under the shearing influence, the normal component is formed at the releasing bend of the western end of the secondary fault for the left-order alignment of the fault zone, while the thrust component is formed at the restraining bend of the east end for the right-order alignment of the fault zone. Seismic activity of this region suggests that the left-lateral strike-slip of the Lenglongling fault zone plays a significant role in adjustment of the tectonic deformation in the NE Tibetan plateau.

  3. New insights into the magma chamber activity under Mauna Loa inferred from SBAS-InSAR and geodetic inversion modelling

    Science.gov (United States)

    Varugu, B. K.; Amelung, F.

    2017-12-01

    Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.

  4. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  5. Robustness analysis of geodetic networks in the case of correlated observations

    Directory of Open Access Journals (Sweden)

    Mevlut Yetkin

    Full Text Available GPS (or GNSS networks are invaluable tools for monitoring natural hazards such as earthquakes. However, blunders in GPS observations may be mistakenly interpreted as deformation. Therefore, robust networks are needed in deformation monitoring using GPS networks. Robustness analysis is a natural merger of reliability and strain and defined as the ability to resist deformations caused by the maximum undetecle errors as determined from internal reliability analysis. However, to obtain rigorously correct results; the correlations among the observations must be considered while computing maximum undetectable errors. Therefore, we propose to use the normalized reliability numbers instead of redundancy numbers (Baarda's approach in robustness analysis of a GPS network. A simple mathematical relation showing the ratio between uncorrelated and correlated cases for maximum undetectable error is derived. The same ratio is also valid for the displacements. Numerical results show that if correlations among observations are ignored, dramatically different displacements can be obtained depending on the size of multiple correlation coefficients. Furthermore, when normalized reliability numbers are small, displacements get large, i.e., observations with low reliability numbers cause bigger displacements compared to observations with high reliability numbers.

  6. Using geodetic data to infer the kinematic and mechanical properties of deformation sources on Kilauea Volcano, Hawaii

    Science.gov (United States)

    Cervelli, Peter Francis

    2002-09-01

    Paradoxically, one of the greatest hazards associated with oceanic volcanoes is not volcanic. Rather, it is the potential for catastrophic flank failure resulting in devastating tsunamis, which threaten not just the immediate vicinity, but coastal cities along the entire rim of an ocean basin. Kilauea volcano on the Island of Hawaii, USA, a potential source of such flank failures, is monitored by a network of continuously recording geodetic instruments, including Global Positioning System (GPS) receivers, tiltmeters, and strainmeters. In this thesis, methodology is developed for using these geodetic data to estimate the geometry and type of active deformation sources, such as dikes, magma chambers, and faults. The methodology is then applied to two episodes of deformation that occurred at Kilauea Volcano in 1999 and 2000. First, the deformation associated with an earthquake swarm on September 12, 1999 in the Upper East Rift Zone of Kilauea Volcano, which was recorded by continuous GPS receivers, tiltmeters, campaign GPS, leveling, and InSAR, is analyzed and interpreted as a west to east propagating dike intrusion. Lack of premonitory inflation of Kilauea's summit suggests that the immediate cause of the intrusion was probably tensile failure in the shallow crust of the Upper East Rift, rather than forceful magma injection. Second, in early November 2000, the geodetic network recorded transient southeastward displacements, which we interpret as an episode of aseismic fault slip. The duration of the event was about 36 hours; it had an equivalent moment magnitude of M5.7, and a maximum slip velocity of about 6 cm/day. Inversion of the GPS data images a shallowly dipping thrust at a depth of 4.5 km that we interpret as the down dip extension of the Hilina Pali fault system. Thus it is demonstrated that continuous geodetic networks can detect accelerating slip, potentially leading to warnings of imminent volcanic flank collapse. Finally, in the last chapter of the

  7. A few properties of a certain class of degenerate space-times

    International Nuclear Information System (INIS)

    Kowalczynski, J.K.; Plebanski, J.F.

    1977-01-01

    The properties are studied of a class of space-times determined by assuming the shape of the metric form ds 2 including disposable coordinate functions. It has been found that this class includes degenerate space-times with geodetic, null, shear-free congruence with nonvanishing expansion. The theorem has been proved that this class of solutions of the Einstein equations can easily be expanded to solutions of Einstein-Maxwell equations with a fairly general electromagnetic field. For a selected subclass relations are given between the functions determining the metric form, and two new explicit solutions with arbitrary functions of the Einstein-Maxwell equations with a cosmological constant are found. (author)

  8. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  9. Collection of Observed Gravity Values, Absolute Gravity Measurements, Grids and Other Derived Summary Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geophysical Data Center (NGDC) of NOAA, in cooperation with the National Geodetic Survey of NOAA, have published a Gravity CD-ROM containing observed...

  10. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    Science.gov (United States)

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  11. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

    Science.gov (United States)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  12. Using DORIS measurements for ionosphere modeling

    Science.gov (United States)

    Dettmering, Denise; Schmidt, Michael; Limberger, Marco

    2013-04-01

    Nowadays, most of the ionosphere models used in geodesy are based on terrestrial GNSS measurements and describe the Vertical Total Electron Content (VTEC) depending on longitude, latitude, and time. Since modeling the height distribution of the electrons is difficult due to the measurement geometry, the VTEC maps are based on the the assumption of a single-layer ionosphere. Moreover, the accuracy of the VTEC maps is different for different regions of the Earth, because the GNSS stations are unevenly distributed over the globe and some regions (especially the ocean areas) are not very well covered by observations. To overcome the unsatisfying measurement geometry of the terrestrial GNSS measurements and to take advantage of the different sensitivities of other space-geodetic observation techniques, we work on the development of multi-dimensional models of the ionosphere from the combination of modern space-geodetic satellite techniques. Our approach consists of a given background model and an unknown correction part expanded in terms of B-spline functions. Different space-geodetic measurements are used to estimate the unknown model coefficients. In order to take into account the different accuracy levels of the observations, a Variance Component Estimation (VCE) is applied. We already have proven the usefulness of radio occultation data from space-borne GPS receivers and of two-frequency altimetry data. Currently, we test the capability of DORIS observations to derive ionospheric parameters such as VTEC. Although DORIS was primarily designed for precise orbit computation of satellites, it can be used as a tool to study the Earth's ionosphere. The DORIS ground beacons are almost globally distributed and the system is on board of various Low Earth Orbiters (LEO) with different orbit heights, such as Jason-2, Cryosat-2, and HY-2. The last generation of DORIS receivers directly provides phase measurements on two frequencies. In this contribution, we test the DORIS

  13. Earth observations during Space Shuttle flight STS-41 - Discovery's mission to planet earth

    Science.gov (United States)

    Lulla, Kamlesh P.; Helfert, Michael R.; Amsbury, David L.; Whitehead, Victor S.; Richards, Richard N.; Cabana, Robert D.; Shepherd, William M.; Akers, Thomas D.; Melnick, Bruce E.

    1991-01-01

    An overview of space flight STS-41 is presented, including personal observations and comments by the mission astronauts. The crew deployed the Ulysses spacecraft to study the polar regions of the sun and the interplanetary space above the poles. Environmental observations, including those of Lake Turkana, Lake Chad, biomass burning in Madagascar and Argentina, and circular features in Yucatan are described. Observations that include landforms and geology, continental sedimentation, desert landscapes, and river morphology are discussed.

  14. The First Simultaneous Microlensing Observations by Two Space telescopes

    DEFF Research Database (Denmark)

    Shvartzvald, Y.; Li, Z.; Udalski, A.

    2016-01-01

    study the region of microlensing parameter space to which Swift is sensitive, finding that though Swift could not measure the microlens parallax with respect to ground-based observations for this event, it can be important for other events. Specifically, it is important for detecting nearby brown dwarfs...

  15. DETECTION OF COASTLINE DEFORMATION USING REMOTE SENSING AND GEODETIC SURVEYS

    Directory of Open Access Journals (Sweden)

    A. Sabuncu

    2016-06-01

    Full Text Available The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection–usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS. Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be

  16. Evaluation of a New Prototype Geodetic Astrolabe for Measuring Deflections of the Vertical

    Science.gov (United States)

    Slater, J. A.; Thompson, N.; Angell, L. E.; Belenkii, M. S.; Bruns, D. G.; Johnson, D. O.

    2009-12-01

    During the last three years, the National Geospatial-Intelligence Agency (NGA), with assistance from the U.S. Naval Observatory (USNO), sponsored the development of a new electronic geodetic astrolabe for measuring deflections of the vertical (DoV). NGA’s current operational astrolabes, built in 1995, have a number of undesirable features including the need for a pool of liquid mercury as a reflecting surface. The new state-of-the-art prototype instrument, completed by Trex Enterprises in early 2009, was designed to meet a 0.2 arcsec accuracy requirement. It reduces the weight, eliminates the mercury, and dramatically reduces observation times. The new astrolabe consists of a 101 mm aperture telescope with a 1.5° field of view and an inclinometer mounted inside a 92-cm high, 30-cm diameter tube, an external GPS receiver for timing, and a laptop computer that controls and monitors the instrument and performs the computations. Star images are recorded by an astronomical-grade camera with a 2,048 x 2,048 pixel CCD sensor that is externally triggered by time pulses from the GPS receiver. The prototype was designed for nighttime observation of visible stars equal to or brighter than magnitude 10.0. The inclinometer is a system of two orthogonal pendula that define the local gravitational vertical, each consisting of a brass plumb bob suspended from an aluminized polymer ribbon set between two electrodes. An internal reference collimator is rigidly tied to the inclinometer and projects an array of reference points of light onto the CCD sensor. After the astrolabe is coarsely leveled to within 20 arcsec, voice coil actuators automatically adjust and maintain the inclinometer vertical to within 0.02 arcsec. Independent images are collected at 6 second intervals using a 200 msec exposure time. The CCD coordinates are determined for each star and a collimator reference point on each image. Stars are identified by referencing a customized star catalog produced by USNO. A

  17. Observation and simulation of AGW in Space

    Science.gov (United States)

    Kunitsyn, Vyacheslav; Kholodov, Alexander; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Vorontsov, Artem

    2014-05-01

    Examples are presented of satellite observations and imaging of AGW and related phenomena in space travelling ionospheric disturbances (TID). The structure of AGW perturbations was reconstructed by satellite radio tomography (RT) based on the signals of Global Navigation Satellite Systems (GNSS). The experiments use different GNSS, both low-orbiting (Russian Tsikada and American Transit) and high-orbiting (GPS, GLONASS, Galileo, Beidou). The examples of RT imaging of TIDs and AGWs from anthropogenic sources such as ground explosions, rocket launching, heating the ionosphere by high-power radio waves are presented. In the latter case, the corresponding AGWs and TIDs were generated in response to the modulation in the power of the heating wave. The natural AGW-like wave disturbances are frequently observed in the atmosphere and ionosphere in the form of variations in density and electron concentration. These phenomena are caused by the influence of the near-space environment, atmosphere, and surface phenomena including long-period vibrations of the Earth's surface, earthquakes, explosions, temperature heating, seisches, tsunami waves, etc. Examples of experimental RT reconstructions of wave disturbances associated with the earthquakes and tsunami waves are presented, and RT images of TIDs caused by the variations in the corpuscular ionization are demonstrated. The results of numerical modeling of AGW generation by some surface and volume sources are discussed. The milli-Hertz AGWs generated by these sources induce perturbations with a typical scale of a few hundred of kilometers at the heights of the middle atmosphere and ionosphere. The numerical modeling is based on the solution of equations of geophysical hydrodynamics. The results of the numerical simulations agree with the observations. The authors acknowledge the support of the Russian Foundation for Basic Research (grants 14-05-00855 and 13-05-01122), grant of the President of Russian Federation MK-2670

  18. Development of web tools to disseminate space geodesy data-related products

    Science.gov (United States)

    Soudarin, Laurent; Ferrage, Pascale; Mezerette, Adrien

    2015-04-01

    In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). A database was created to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).

  19. The impact of using jason-1 and cryosat-2 geodetic mission altimetry for gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Jain, Maulik; Knudsen, Per

    2016-01-01

    Since the release of the Danish Technical University DTU10 global marine gravity field in 2010, the amount of geodetic mission altimetry data has nearly tripled. The Cryosat-2 satellite have provided data along its 369 day near repeat since 2010 and as of May 2012 the Jason-1 satellite has been o...

  20. Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3-8, 2000: data processing, geodetic coordinates and comparison with prior geodetic surveys

    Science.gov (United States)

    Pauk, Benjamin A.; Power, John A.; Lisowski, Mike; Dzurisin, Daniel; Iwatsubo, Eugene Y.; Melbourne, Tim

    2001-01-01

    Between August 3 and 8,2000,the Alaska Volcano Observatory completed a Global Positioning System (GPS) survey at Augustine Volcano, Alaska. Augustine is a frequently active calcalkaline volcano located in the lower portion of Cook Inlet (fig. 1), with reported eruptions in 1812, 1882, 1909?, 1935, 1964, 1976, and 1986 (Miller et al., 1998). Geodetic measurements using electronic and optical surveying techniques (EDM and theodolite) were begun at Augustine Volcano in 1986. In 1988 and 1989, an island-wide trilateration network comprising 19 benchmarks was completed and measured in its entirety (Power and Iwatsubo, 1998). Partial GPS surveys of the Augustine Island geodetic network were completed in 1992 and 1995; however, neither of these surveys included all marks on the island.Additional GPS measurements of benchmarks A5 and A15 (fig. 2) were made during the summers of 1992, 1993, 1994, and 1996. The goals of the 2000 GPS survey were to:1) re-measure all existing benchmarks on Augustine Island using a homogeneous set of GPS equipment operated in a consistent manner, 2) add measurements at benchmarks on the western shore of Cook Inlet at distances of 15 to 25 km, 3) add measurements at an existing benchmark (BURR) on Augustine Island that was not previously surveyed, and 4) add additional marks in areas of the island thought to be actively deforming. The entire survey resulted in collection of GPS data at a total of 24 sites (fig. 1 and 2). In this report we describe the methods of GPS data collection and processing used at Augustine during the 2000 survey. We use this data to calculate coordinates and elevations for all 24 sites surveyed. Data from the 2000 survey is then compared toelectronic and optical measurements made in 1988 and 1989. This report also contains a general description of all marks surveyed in 2000 and photographs of all new marks established during the 2000 survey (Appendix A).

  1. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    Science.gov (United States)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  2. Automated Detection of Small Bodies by Space Based Observation

    Science.gov (United States)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  3. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  4. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    Science.gov (United States)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically

  5. Uvođenje novih geodetskih referentnih sistema u Bosni i Hercegovini : Introduction of a new geodetic reference systems in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Šeho Zimić

    2017-12-01

    Full Text Available The introduction of a new reference system in Bosnia and Herzegovina is not only a necessity, but an obligation imposed by the United Nations (UN and the European Union (EU. At the General Assembly on February 26, 2015, the UN has adopted a resolution titled "Global Geodetic Reference Frame for Sustainable Development - GGRF", which for the first time raise the geodetic issue as a political issue at such a high level. The resolution highlights the strong need for more precise positioning and navigation from the use of smartphones to the study of climate changes, population migrations and other scientific researches of relevance to the whole world (http://www.unggrf.org/. All this is not possible without a global exchange of geodata and a common global geodetic reference system. Through the Inspire Directive, the EU has clearly specified which coordinate and heights systems are being applied in Europe. The countries in the region have adopted the European terrestrial reference system ETRS89 as a new reference system in their legislation. Through the EUREF campaign BALKAN98 and the introduction of the Network of permanent GNSS stations Bosnia and Herzegovina has joined the famil

  6. Analyzing the capability of a radio telescope in a bistatic space debris observation system

    International Nuclear Information System (INIS)

    Zhao Zhe; Zhao You; Gao Peng-Qi

    2013-01-01

    A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China

  7. Observing Tropospheric Ozone From Space

    Science.gov (United States)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  8. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Science.gov (United States)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  9. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  10. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt

    Science.gov (United States)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.

    2017-12-01

    Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed

  11. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    Science.gov (United States)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  12. Using observational methods to evaluate public open spaces and physical activity in Brazil.

    Science.gov (United States)

    Hino A A, F; Reis, Rodrigo S; Ribeiro, Isabela C; Parra, Diana C; Brownson, Ross C; Fermino, Rogerio C

    2010-07-01

    Open public spaces have been identified as important facilities to promote physical activity (PA) at the community level. The main goals of this study are to describe open public spaces user's characteristics and to explore to what extent these characteristics are associated with PA behavior. A system of direct observation was used to evaluate the PA levels on parks and squares (smaller parks) and users's characteristics (gender and age). The 4 parks and 4 squares observed were selected from neighborhoods with different socioeconomic status and environmental characteristics. The settings were observed 3 times a day, 6 days per week, during 2 weeks. More men than women were observed in parks (63.1%) and squares (70.0%) as well as more adults and adolescents than older adults and children. Users were more physically active in parks (men = 34.1%, women = 36.1%) than in squares (men = 25.5%, women 22.8%). The characteristics of public open spaces may affect PA in the observed places. Initiatives to improve PA levels in community settings should consider users' characteristics and preferences to be more effective and reach a larger number of people.

  13. Observing the Anthropocene from Space

    Science.gov (United States)

    Burrows, John

    The industrial revolution, which began in the UK in the late 18th century, has been fuelled by the use of cheap energy from fossil fuel combustion. It has facilitated a dramatic rise in both the human population, now above 7 Billion with 50% now living in urban agglomerations, and its standard of living. It is anticipated that by 2050 there will be of the order of 8.3 to 10 billion people, 75% living in cities. Anthropogenic activity has resulted in pollution from the local to the global scale changes in land use, the destruction of stratospheric ozone, the modification of biogeochemical cycling, acid deposition, impacted on ecosystems and ecosystem services, destruction of biodiversity and climate change. The impact of man has moved the earth from the Holocene to the new geological epoch of the Anthropocene. To improve our understanding of the earth atmosphere system and the accuracy of the prediction of its future changes, knowledge of the amounts and distributions of trace atmospheric constituents are essential -“One cannot manage what is not measured”. An integrated observing system, comprising ground and space based segments is required to improve our science and to provide an evidence base needed for environmental policymakers. Passive remote sensing measurements made of the up-welling radiation at the top of the atmosphere from instrumentation on space borne platforms provide a unique opportunity to retrieve globally atmospheric composition. This presentation describes results from the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY on ESA Envsiat 2002 to 2012) and its spin offs GOME (Global Ozone Monitoring Experiment ESA ERS-2 1995 to 2011) and GOME-2 (ESA/EUMETSAT Metop series). The potential of the SCIAMACHY successors Sentinel 5, CarbonSat, and SCIA-ISS will also be addressed.

  14. Congruence analysis of geodetic networks - hypothesis tests versus model selection by information criteria

    Science.gov (United States)

    Lehmann, Rüdiger; Lösler, Michael

    2017-12-01

    Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.

  15. The magnetic field of the earth - Performance considerations for space-based observing systems

    Science.gov (United States)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.

    1985-01-01

    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  16. Earth observation space programmes, SAFISY activities, strategies of international organisations, legal aspects. Volume 3

    International Nuclear Information System (INIS)

    1992-01-01

    This volume is separated in four sessions. First part is on earth observation space programmes (international earth observation projects and international collaboration, the ERS-1, SPOT and PRIRODA programmes, the first ESA earth observation polar platform and its payload, the future earth observation remote sensing techniques and concepts). The second part is on SAFISY activities (ISY programmes, education and applications, demonstrations and outreach projects). The third part is on programme and strategies of international organisations with respect to earth observation from space. The fourth part is on legal aspects of the use of satellite remote sensing data in Europe. (A.B.). refs., figs., tabs

  17. Thin-plate spline quadrature of geodetic integrals

    Science.gov (United States)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  18. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.

    2012-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  19. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Science.gov (United States)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  20. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    Science.gov (United States)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  1. Multidisciplinary Observations of Subduction (MOOS) Experiment in South-Central Alaska

    Science.gov (United States)

    Christensen, D.; Abers, G.; Freymueller, J.

    2008-12-01

    Seismic and geodetic data are being collected in the Kenai Peninsula and surrounding area of south central Alaska as part of the PASSCAL experiment MOOS. A total of 34 broadband seismic stations were deployed between the summers of 2007 and 2008. Seventeen of these stations continue to operate for an additional year and are scheduled to be removed in the summer of 2009. Numerous GPS campaign sites have and will be visited during the same time period. The MOOS seismic deployment provides coverage across the interplate coupled zone and adjacent transition zone in the shallow parts of the Alaskan subduction zone. It is a southern extension of an earlier broadband deployment BEAAR (Broadband Experiment Across the Alaska Range) to the north. When integrated with the previous BEAAR experiment, these data will allow high-resolution broadband imaging along a 600 km long transect over the Alaska subduction zone, at 10-15 km station spacing. The MOOS deployment allows us to test several hypotheses relating to the postulated subduction of the Yakutat Block and the nature of the coupled zone which ruptured in the great 1964 earthquake. The seismic and geodetic stations cover an area that includes part of the 1964 main asperity and the adjacent, less coupled, region to the southwest. Data gathered from this experiment will shed light on the nature of this boundary from both a geodetic and seismic (or earth structure) perspective. Shallow seismicity recorded by this network greatly improves the catalog of events in this area and helps to delineate active features in the subduction complex. Preliminary results from this project will be presented.

  2. Remote observing with NASA's Deep Space Network

    Science.gov (United States)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  3. Stress coupling in the seismic cycle indicated from geodetic measurements

    Science.gov (United States)

    Wang, L.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2012-12-01

    The seismic cycle includes several phases, the interseismic, coseismic and postseismic phase. In the interseismic phase, strain gradually builds up around the overall locked fault in tens to thousands of years, while it is coseismically released in seconds. In the postseismic interval, stress relaxation lasts months to years, indicated by evident aseismic deformations which have been indicated to release comparable or even higher strain energy than the main shocks themselves. Benefiting from the development of geodetic observatory, e.g., Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) in the last two decades, the measurements of surface deformation have been significantly improved and become valuable information for understanding the stress evolution on the large fault plane. In this study, we utilize the GPS/InSAR data to investigate the slip deficit during the interseismic phase, the coseismic slip and the early postseismic creep on the fault plane. However, it is already well-known that slip inversions based only on the surface measurements are typically non-unique and subject to large uncertainties. To reduce the ambiguity, we utilize the assumption of stress coupling between interseismic and coseismic phases, and between coseismic and postseismic phases. We use a stress constrained joint inversion in Bayesian approach (Wang et al., 2012) to invert simultaneously for (1) interseismic slip deficit and coseismic slip, and (2) coseismic slip and postseismic creep. As case studies, we analyze earthquakes occurred in well-instrumented regions such as the 2004 M6.0 Parkfield earthquake, the 2010 M8.7 earthquake and the 2011 M9.1 Tohoku-Oki earthquake. We show that the inversion with the stress-coupling constraint leads to better constrained slip distributions. Meanwhile, the results also indicate that the assumed stress coupling is reasonable and can be well reflected from the available geodetic measurements. Reference: Lifeng

  4. Observing Geohazards from Space

    Directory of Open Access Journals (Sweden)

    Francesca Cigna

    2018-02-01

    Full Text Available With a wide spectrum of imaging capabilities—from optical to radar sensors, low to very high resolution, continental to local scale, single-image to multi-temporal approaches, yearly to sub-daily acquisition repeat cycles—Earth Observation (EO offers several opportunities for the geoscience community to map and monitor natural and human-induced Earth hazards from space. The Special Issue “Observing Geohazards from Space” of Geosciences gathers 12 research articles on the development, validation, and implementation of satellite EO data, processing methods, and applications for mapping and monitoring of geohazards such as slow moving landslides, ground subsidence and uplift, and active and abandoned mining-induced ground movements. Papers published in this Special Issue provide novel case studies demonstrating how EO and remote sensing data can be used to detect and delineate land instability and geological hazards in different environmental contexts and using a range of spatial resolutions and image processing methods. Remote sensing datasets used in the Special Issue papers encompass satellite imagery from the ERS-1/2, ENVISAT, RADARSAT-1/2, and Sentinel-1 C-band, TerraSAR-X and COSMO-SkyMed X-band, and ALOS L-band SAR missions; Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2 multi-spectral data; UAV-derived RGB and near infrared aerial photographs; LiDAR surveying; and GNSS positioning data. Techniques that are showcased include, but are not limited to, differential Interferometric SAR (InSAR and its advanced approaches such as Persistent Scatterers (PS and Small Baseline Subset (SBAS methods to estimate ground deformation, Object-Based Image Analysis (OBIA to identify landslides in high resolution multi-spectral data, UAV and airborne photogrammetry, Structure-from-Motion (SfM for digital elevation model generation, aerial photo-interpretation, feature extraction, and time series analysis. Case studies presented in the papers focus on

  5. A phase-space approach to atmospheric dynamics based on observational data. Theory and applications

    International Nuclear Information System (INIS)

    Wang Risheng.

    1994-01-01

    This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)

  6. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  7. Encouraging Deep Approach to Learning in Civil and Geodetic Engineering

    Directory of Open Access Journals (Sweden)

    Gašper Mrak

    2016-10-01

    Full Text Available This paper presents activities and changes applied to the teaching process within selected courses offered by Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia. Theoretical background, evaluated from the point of the technical education needs, is presented. It can be seen that special focus has to be made to the students' motivation for deep learning which guarantees optimal balance between acquisition of concepts and skills, information processing and integration of fragmented pieces of knowledge into complex structures. Three case studies used to test theoretical points of departure are presented. Results of the introduced novelties and changes have been evaluated through the assessment of knowledge, students' satisfaction and teaching staff evaluations. For conclusive results, monitoring over a longer period of time should be conducted.

  8. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2017-12-01

    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  9. Data Records derived from GEOSAT Geodetic Mission (GM) and Exact Repeat Mission (ERM) data from 30 March 1985 to 31 December 1989

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains Sensor Data Records (SDRs), Geodetic Data Records (GDRs), Waveform Data Records (WDRs), and Crossover Difference data Records (XDRs) from...

  10. Geodetic, Geologic and Seismic Interdisciplinary Research of Tectonically Caused Movements in the Wider Area of the City of Zagreb

    Science.gov (United States)

    Dapo, A.; Pribicevic, B.; Herak, M.; Prelogovic, E.

    2012-04-01

    Since the last great earthquake in 1880 which shook the Zagreb area with IX° MCS, tectonic movements and models of numerous Zagreb faults have been the focal point of Croatian geologists, seismologists and in the last 15 years also geodetic scientists, who all have been working in the scope of their scientific branches on bringing the light to the tectonic mechanisms in the wider Zagreb area. Since it is tectonically very active area and being the Capitol city of the Croatia with very high population density it is of utmost importance to understand those mechanisms and to according to them find the best possible measures for protecting people and valuables. Best results are certainly going to be achieved through the interdisciplinary approach. That is why this paper presents first interdisciplinary results from geodetic, geologic and seismic researches and their contribution to the collective knowledge about tectonic movements in the wider area of the City of Zagreb.

  11. Evaluating Commercial and Private Cloud Services for Facility-Scale Geodetic Data Access, Analysis, and Services

    Science.gov (United States)

    Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.

    2017-12-01

    UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data

  12. The Crustal Dynamics Data Information System: A Resource to Support Scientific Analysis Using Space Geodesy

    Science.gov (United States)

    Noll. Carey E.

    2010-01-01

    Since 1982. the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements. obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS). the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS). and the International Earth rotation and Reference frame Service (IERS), Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn. the global user community downloads nearly 1.2 TBytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS. including background information about the system and its. user communities

  13. Geostatistical Investigations of Displacements on the Basis of Data from the Geodetic Monitoring of a Hydrotechnical Object

    Science.gov (United States)

    Namysłowska-Wilczyńska, Barbara; Wynalek, Janusz

    2017-12-01

    Geostatistical methods make the analysis of measurement data possible. This article presents the problems directed towards the use of geostatistics in spatial analysis of displacements based on geodetic monitoring. Using methods of applied (spatial) statistics, the research deals with interesting and current issues connected to space-time analysis, modeling displacements and deformations, as applied to any large-area objects on which geodetic monitoring is conducted (e.g., water dams, urban areas in the vicinity of deep excavations, areas at a macro-regional scale subject to anthropogenic influences caused by mining, etc.). These problems are very crucial, especially for safety assessment of important hydrotechnical constructions, as well as for modeling and estimating mining damage. Based on the geodetic monitoring data, a substantial basic empirical material was created, comprising many years of research results concerning displacements of controlled points situated on the crown and foreland of an exemplary earth dam, and used to assess the behaviour and safety of the object during its whole operating period. A research method at a macro-regional scale was applied to investigate some phenomena connected with the operation of the analysed big hydrotechnical construction. Applying a semivariogram function enabled the spatial variability analysis of displacements. Isotropic empirical semivariograms were calculated and then, theoretical parameters of analytical functions were determined, which approximated the courses of the mentioned empirical variability measure. Using ordinary (block) kriging at the grid nodes of an elementary spatial grid covering the analysed object, the values of the Z* estimated means of displacements were calculated together with the accompanying assessment of uncertainty estimation - a standard deviation of estimation σk. Raster maps of the distribution of estimated averages Z* and raster maps of deviations of estimation σk (in perspective

  14. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    Science.gov (United States)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  15. Developments of borehole strain observation outside China

    Institute of Scientific and Technical Information of China (English)

    邱泽华; 石耀霖

    2004-01-01

    Borehole strain observation is playing an increasingly important role in the study on the crustal movements. It hasbeen used by many countries such as China, USA, Japan, Peru, Australia, South Africa, Iceland and Italy, in research fields of plate tectonics, earthquake, volcanic eruption, dam safety, oil field subsidence, mining collapse andso on. Borehole strainmeter has been improved rapidly and tends to get more and more components included inone probe. Based on observations by this kind of instruments, studies on seismic strain step, slow earthquake,earthquake precursor and volcanic eruption forecasting have made remarkable achievements. In the coming years,borehole strain observation is going to become one major geodetic means, together with GPS and InSAR.

  16. Atmospheric Variability of CO2 impact on space observation Requirements

    Science.gov (United States)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  17. Incorporating Geodetic Technologies in to Field and Campus Courses at the University of Michigan: Best Practices and Lessons Learned

    Science.gov (United States)

    Niemi, N. A.; Clark, M. K.

    2017-12-01

    For the past 6 years, the University of Michigan has implemented geodetic techniques into both summer field courses and on-campus courses. The primary means for incorporating these technologies has been a partnership with UNAVCO to introduce terrestrial laser scanning (TLS) at summer field courses, although employing Structure from Motion(SfM), ArcCollector for iPads and RTK GPS surveying have also been explored. The nature of these types of data lend themselves readily to geomorphology, environmental, and natural hazards-based projects, and we have developed field projects or labs around neotectonics (fault-scarp scanning and diffusion analysis), change detection (braided stream evolution, landslide and rock glacier motion, coastal change) and mass wasting processes (rock avalanche scanning and analysis). While we have primarily developed multi-day projects that use these tools in a field camp setting, we have also developed weekend field trip projects and traditional afternoon lab exercises associated with on-campus courses. The use of geodetic technology is generally well received by students. Reasons for this are the use of somewhat different skill sets from traditional geologic mapping problems, including research survey design, real-time data acquisition, and quantitative data analysis. Students also perceive that they are engaged in learning technology which they may use in their future employment. Challenges encountered, particularly in the field, include managing large student groups with a finite pool of equipment, rapid data processing pressures, variable student experience with analysis software and limited technical support for field-based computational resources. We will describe the positive attributes of incorporating geodetic technologies into undergraduate courses and elaborate on some best practices learned from our experiences.

  18. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    Science.gov (United States)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  19. Observing at-surface irradiance and albedo from space : The Tibet experiment

    NARCIS (Netherlands)

    Roupioz, L.

    2015-01-01

    Monitoring the solar radiation budget on a daily basis is a prerequisite to study land surface processes, especially in climatology and hydrology, and in derived applications like drought early warning. Current space-born radiometers can provide daily observations to derive surface radiative fluxes

  20. Monitoring of Volcanic Activity by Sub-mm Geodetic Analyses

    Science.gov (United States)

    Miura, S.; Mare, Y.; Ichiki, M.; Demachi, T.; Tachibana, K.; Nishimura, T.

    2017-12-01

    Volcanic earthquakes have been occurring beneath Zao volcano in northern Honshu, Japan since 2013, following the increase of deep low frequency earthquakes from 2012. On account of a burst of seismicity initiated in April 2015, the JMA announced a warning of eruption, however, the seismicity gradually decreased for the next two months and the warning was canceled in June. In the same time period, minor expansive deformation was observed by GNSS. Small earthquakes are still occurring, and low-freq. earthquakes (LPE) occur sometimes accompanied by static tilt changes. In this study, we try to extract the sub-mm displacements from the LPE waveforms observed by broadband seismometers (BBS) and utilize them for geodetic inversion to monitor volcanic activities. Thun et al. (2015, 2016) devised an efficient method using a running median filter (RMF) to remove LP noises, which contaminate displacement waveforms. They demonstrated the reproducibility of the waveforms corresponding to the experimentally given sub-mm displacements in the laboratory. They also apply the method to the field LPE data obtained from several volcanoes to show static displacements. The procedure is outlined as follows: (1) Unfiltered removal of the instrument response, (2) LP noise estimate by LPF with a corner frequency of 5/M, where M (seconds) is the time window of the RMF and should be at least three times the length of the rise time. (3) Subtract the noise estimated from step (2). (4) Integrate to obtain displacement waveforms. We apply the method to the BBS waveform at a distance of about 1.5 km ESE from the summit crater of Zao Volcano associated with a LPE on April 1, 2017. Assuming the time window M as 300 seconds, we successfully obtained the displacement history: taking the rise time of about 2 minutes, the site was gradually uplifted with the amount of about 50-60 µm and then subsided with HF displacements in the next 2 minutes resulting about 20-30 µm static upheaval. Comparing the

  1. Quantifying the short- and long-term controls exerted by the basal and lateral boundaries of the Slumgullion Landslide from creepmeters and 3-D surface deformation

    Science.gov (United States)

    Delbridge, B. G.; Bilham, R. G.; Wang, T.; Fielding, E. J.; Burgmann, R.

    2017-12-01

    The Slumgullion landslide is 3.9 km long, moves persistently with peak rates of up to 2 cm/day, and exhibits daily, seasonal, and decadal accelerations. In this study, we provide geodetic observations needed to test whether the short- and long-term variations are governed by the same physical mechanisms. Specific focus is placed on disentangling the roles played by the lateral and basal landslide surfaces. In order to provide surface geodetic measurements with dense spatial resolution (pixel spacing Hall effect sensor, resulting in resolution of 8 microns and with a 5 m range.

  2. Extreme covariant quantum observables in the case of an Abelian symmetry group and a transitive value space

    International Nuclear Information System (INIS)

    Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka

    2011-01-01

    We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.

  3. Approaching control for tethered space robot based on disturbance observer using super twisting law

    Science.gov (United States)

    Hu, Yongxin; Huang, Panfeng; Meng, Zhongjie; Wang, Dongke; Lu, Yingbo

    2018-05-01

    Approaching control is a key mission for the tethered space robot to perform the task of removing space debris. But the uncertainties of the TSR such as the change of model parameter have an important effect on the approaching mission. Considering the space tether and the attitude of the gripper, the dynamic model of the TSR is derived using Lagrange method. Then a disturbance observer is designed to estimate the uncertainty based on STW control method. Using the disturbance observer, a controller is designed, and the performance is compared with the dynamic inverse controller which turns out that the proposed controller performs better. Numerical simulation validates the feasibility of the proposed controller on the position and attitude tracking of the TSR.

  4. OGLE-2016-BLG-0168 Binary Microlensing Event: Prediction and Confirmation of the Microlens Parallax Effect from Space-based Observations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, I.-G.; Yee, J. C.; Jung, Y. K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Udalski, A.; Skowron, J.; Mróz, P.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4,00-478 Warszawa (Poland); Novati, S. Calchi [IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Han, C. [Department of Physics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Chung, S.-J.; Hwang, K.-H.; Ryu, Y.-H. [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-Gu, Daejeon 34055 (Korea, Republic of); Collaboration: OGLE Collaboration; KMTNet Group; Spitzer Team; and others

    2017-11-01

    The microlens parallax is a crucial observable for conclusively identifying the nature of lens systems in microlensing events containing or composed of faint (even dark) astronomical objects such as planets, neutron stars, brown dwarfs, and black holes. With the commencement of a new era of microlensing in collaboration with space-based observations, the microlens parallax can be routinely measured. In addition, space-based observations can provide opportunities to verify the microlens parallax measured from ground-only observations and to find a unique solution to the lensing light-curve analysis. Furthermore, since most space-based observations cannot cover the full light curves of lensing events, it is also necessary to verify the reliability of the information extracted from fragmentary space-based light curves. We conduct a test based on the microlensing event OGLE-2016-BLG-0168, created by a binary lens system consisting of almost equal mass M-dwarf stars, to demonstrate that it is possible to verify the microlens parallax and to resolve degeneracies using the space-based light curve even though the observations are fragmentary. Since space-based observatories will frequently produce fragmentary light curves due to their short observing windows, the methodology of this test will be useful for next-generation microlensing experiments that combine space-based and ground-based collaboration.

  5. A telescope for observation from space of extreme lightnings in the upper atmosphere

    International Nuclear Information System (INIS)

    Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; Kim, Y.K.; Klimov, P.; Lee, J.; Lee, H.Y.; Na, G.W.; Oh, S.J.; Panasyuk, M.; Park, I.H.; Park, J.H.; Park, Y.-S.

    2008-01-01

    A new type of telescope with a wide field-of-view and functions of fast zoom-in has been introduced. Two kinds of MEMS (Micro-Electro-Mechanical Systems) micromirrors, digital and analog, are used for reflectors of the telescope, placed at different focal lengths. We apply this technology to the observation from space of TLE (Transient Luminous Events), extremely large transient sparks occurring at the upper atmosphere. TLE are one type of important backgrounds to be understood for future space observation of UHECR (Ultra-High Energy Cosmic Rays). The launch of the payload carried by a Russian microsatellite is foreseen in the middle of 2008

  6. A new space technology for ocean observation: the SMOS mission

    Directory of Open Access Journals (Sweden)

    Jordi Font

    2012-09-01

    Full Text Available Capability for sea surface salinity observation was an important gap in ocean remote sensing in the last few decades of the 20th century. New technological developments during the 1990s at the European Space Agency led to the proposal of SMOS (Soil Moisture and Ocean Salinity, an Earth explorer opportunity mission based on the use of a microwave interferometric radiometer, MIRAS (Microwave Imaging Radiometer with Aperture Synthesis. SMOS, the first satellite ever addressing the observation of ocean salinity from space, was successfully launched in November 2009. The determination of salinity from the MIRAS radiometric measurements at 1.4 GHz is a complex procedure that requires high performance from the instrument and accurate modelling of several physical processes that impact on the microwave emission of the ocean’s surface. This paper introduces SMOS in the ocean remote sensing context, and summarizes the MIRAS principles of operation and the SMOS salinity retrieval approach. It describes the Spanish SMOS high-level data processing centre (CP34 and the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, and presents a preliminary validation of global sea surface salinity maps operationally produced by CP34.

  7. Using and Experiencing the Academic Library: A Multisite Observational Study of Space and Place

    Science.gov (United States)

    May, Francine; Swabey, Alice

    2015-01-01

    This study examines how students are using academic library spaces and the role these spaces are playing in the campus community. Data were collected on five campuses (two community colleges, two undergraduate universities, and one technical institute) via observational seating sweeps and questionnaires. The study found remarkably similar usage…

  8. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  9. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers

    Science.gov (United States)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.

    1984-01-01

    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  10. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    Science.gov (United States)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  11. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  12. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  13. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data.

    Science.gov (United States)

    Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M

    2014-07-09

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively.

  14. Cambridge observations at 38-115 MHz and their implications for space astronomy

    International Nuclear Information System (INIS)

    Saunders, R.

    1987-01-01

    The design and performance of the Cambridge LF telescopes are reviewed. Consideration is given to the 151-MHz 6C telescope, the 38-MHz and 151-MHz LF synthesis telescopes, 81.5-MHz interplanetary scintillation observations with the 3.6-hectare array, long-baseline interferometry at 81.5 MHz, and the use of the Jodrell Bank MERLIN for 151-MHz closure-phase observations of bright sources. The strict limitation on the field mappable at a given resolution in ground-based observations at these frequencies is pointed out, and some outstanding astronomical problems requiring 0.3-30-MHz space observations are listed. 7 references

  15. Polarised Multiangular Reflectance Measurements Using the Finnish Geodetic Institute Field Goniospectrometer

    Directory of Open Access Journals (Sweden)

    Jouni Peltoniemi

    2009-05-01

    Full Text Available The design, operation, and properties of the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO are presented. FIGIFIGO is a portable instrument for the measurement of surface Bidirectional Reflectance Factor (BRF for samples with diameters of 10 – 50 cm. A set of polarising optics enable the measurement of linearly polarised BRF over the full solar spectrum (350 – 2,500 nm. FIGIFIGO is designed mainly for field operation using sunlight, but operation in a laboratory environment is also possible. The acquired BRF have an accuracy of 1 – 5% depending on wavelength, sample properties, and measurement conditions. The angles are registered at accuracies better than 2°. During 2004 – 2008, FIGIFIGO has been used in the measurement of over 150 samples, all around northern Europe. The samples concentrate mostly on boreal forest understorey, snow, urban surfaces, and reflectance calibration surfaces.

  16. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project

    Science.gov (United States)

    Themistocleous, Kyriacos; Danezis, Chris; Mendonidis, Evangelos; Lymperopoulou, Efstathia

    2017-10-01

    This paper presents the integrated methods using UAVs and geodetic techniques to monitor ground deformation within the Choirokoitia UNESCO World Heritage Site in Cyprus. The Neolithic settlement of Choirokoitia, occupied from the 7th to the 4th millennium B.C., is one of the most important prehistoric sites in the eastern Mediterranean. The study is conducted under the PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) project, which is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu) and through the Cyprus Research Promotion Foundation. PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology based on radar interferometry to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. The field measurements collected at the Choirokoitia site will be later compared with SAR data to verify micro-movements in the area to monitor potential geo-hazards. The site is located on a steep hill, which makes it vulnerable to rock falls and landslides.

  17. State of Art in space weather observational activities and data management in Europe

    Science.gov (United States)

    Stanislawska, Iwona

    One of the primary scientific and technical goals of space weather is to produce data in order to investigate the Sun impact on the Earth and its environment. Studies based on data mining philosophy yield increase the knowledge of space weather physical properties, modelling capabilities and gain applications of various procedures in space weather monitoring and forecasting. Exchanging tailored individually and/or jointly data between different entities, storing of the databases and making data accessible for the users is the most important task undertaken by investigators. National activities spread over Europe is currently consolidated pursuant to the terms of effectiveness and individual contributions embedded in joint integrated efforts. The role of COST 724 Action in animation of such a movement is essential. The paper focuses on the analysis of the European availability in the Internet near-real time and historical collections of the European ground based and satellite observations, operational indices and parameters. A detailed description of data delivered is included. The structure of the content is supplied according to the following selection: (1) observations, raw and/or corrected, updated data, (2) resolution, availability of real-time and historical data, (3) products, as the results of models and theory including (a) maps, forecasts and alerts, (b) resolution, availability of real-time and historical data, (4) platforms to deliver data. Characterization of the networking of stations, observatories and space related monitoring systems of data collections is integrated part of the paper. According to these provisions operational systems developed for these purposes is presented and analysed. It concerns measurements, observations and parameters from the theory and models referred to local, regional collections, European and worldwide networks. Techniques used by these organizations to generate the digital content are identified. As the reference pan

  18. Fermi Coordinates of an Observer Moving in a Circle in Minkowski Space: Apparent Behavior of Clocks

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2000-01-01

    Space-time coordinate transformations valid for arbitrarily long coordinate time are derived from global Minkowski coordinates to the Fermi coordinates of an observer moving in a circle in three-dimensional space...

  19. Laboratory Observation of Electron Phase-Space Holes during Magnetic Reconnection

    International Nuclear Information System (INIS)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.

    2008-01-01

    We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth (∼2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size ∼2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release

  20. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  1. Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake

    Science.gov (United States)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.

    2013-12-01

    On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.

  2. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    Science.gov (United States)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  3. The State of GPS Vertical Positioning Precision : Separation of Earth Processes by Space Geodesy

    CERN Document Server

    2003-01-01

    Observed signals in GPS data are the sum of noise and real crustal motions. Interpretation of the data depends on our ability to extract a signal of interest from the total signal. This workshop will highlight the difficulties associated with extracting a signal such as post-glacial rebound, plate tectonics or loading, from vertical geodetic data.

  4. Undergraduate teaching modules featuring geodesy data applied to critical social topics (GETSI: GEodetic Tools for Societal Issues)

    Science.gov (United States)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.

    2015-12-01

    The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in

  5. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Gunn de Rosas, C. L.

    2013-12-01

    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  6. THE ROLE OF ASTRO-GEODETIC IN PRECISE GUIDANCE OF LONG TUNNELS

    Directory of Open Access Journals (Sweden)

    M. Mirghasempour

    2015-12-01

    Full Text Available One of prime aspects of surveying projects is guidance of paths of a long tunnel from different directions and finally ending all paths in a specific place. This kind of underground surveying, because of particular condition, has some different points in relation to the ground surveying, including Improper geometry in underground transverse, low precise measurement in direction and length due to condition such as refraction, distinct gravity between underground point and corresponding point on the ground (both value and direction of gravity and etc. To solve this problems, astro-geodetic that is part of geodesy science, can help surveying engineers. In this article, the role of astronomy is defined in two subjects: 1- Azimuth determination of directions from entrance and exit nets of tunnel and also calibration of gyro-theodolite to use them in Underground transvers: By astronomical methods, azimuth of directions can be determine with an accuracy of 0.5 arcsecond, whereas, nowadays, no gyroscope can measure the azimuth in this accuracy; For instance, accuracy of the most precise gyroscope (Gyromat 5000 is 1.2 cm over a distance of one kilometre (2.4 arcsecond. Furthermore, the calibration methods that will be mention in this article, have significance effects on underground transverse. 2- Height relation between entrance point and exit point is problematic and time consuming; For example, in a 3 km long tunnel ( in Arak- Khoram Abad freeway, to relate entrance point to exit point, it is necessary to perform levelling about 90 km. Other example of this boring and time consuming levelling is in Kerman tunnel. This tunnel is 36 km length, but to transfer the entrance point height to exit point, 150 km levelling is needed. According to this paper, The solution for this difficulty is application of astro-geodetic and determination of vertical deflection by digital zenith camera system TZK2-D. These two elements make possible to define geoid profile

  7. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    Science.gov (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  8. Observation of Atmospheric Constituents From Space

    Science.gov (United States)

    Burrows, J. P.

    Remote sensing of the atmosphere from space is a growing research field. Surprisingly but for good physical reasons, the mesosphere and stratosphere are easier to probe from space than the troposphere. GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (Scanning Imaging absorption spectroMeter for Atmospheric CHartographY) are related European instruments, which were proposed and been designed to measure atmospheric constituents (gases, aerosols and clouds) by passive remote sensing of the up-welling solar radiation leaving atmosphere. GOME is a smaller version of SCIAMACHY and was launched as part of the core payload of the second European research satellite (ERS-2) on the 20th April 1995. GOME comprises four spectral channels and measures simultaneously the earthshine radiance or solar extra terrestrial irradiance between 240 and 790 nm. Inversion of GOME measurements using the DOAS (Differential Optical Absorption Spectroscopy) yields the total column of trace gases (e.g. O3, NO2, HCHO, BrO and OClO). Application of the FURM (Full Retrieval Method) enables the profiles of O3 to be retrieved. One of the important achievements of GOME has been the separation of tropopsheirc columns of trace gases using TEM (Tropospheric Excess Method). SCIAMACHY has been developed as Germa n, Dutch and Belgian contribution to ENVISAT. It has significantly enhanced capability compared to GOME, measuring a larger spectral range, 220-2380 nm, and observing in alternate nadir and limb modes as well as solar and lunar occultation. ENVISAT is to be launched into a sun synchronous polar orbit, having an equator crossing time of 10.00 a.m. at the beginning of March 2002. SCIAMACHY is thereby able to measure many more species and vertical profiles than GOME. This facilitates improved tropospheric retrievals. Finally GeoTROPE (Geostationary TROPospheric Explorer) is a new mission, which is proposed for launch within the ESA Earth Explorer Opportunity Mission. It comprises two national

  9. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  10. Scoring sensor observations to facilitate the exchange of space surveillance data

    Science.gov (United States)

    Weigel, M.; Fiedler, H.; Schildknecht, T.

    2017-08-01

    In this paper, a scoring metric for space surveillance sensor observations is introduced. A scoring metric allows for direct comparison of data quantity and data quality, and makes transparent the effort made by different sensor operators. The concept might be applied to various sensor types like tracking and surveillance radar, active optical laser tracking, or passive optical telescopes as well as combinations of different measurement types. For each measurement type, a polynomial least squares fit is performed on the measurement values contained in the track. The track score is the average sum over the polynomial coefficients uncertainties and scaled by reference measurement accuracy. Based on the newly developed scoring metric, an accounting model and a rating model are introduced. Both models facilitate the exchange of observation data within a network of space surveillance sensors operators. In this paper, optical observations are taken as an example for analysis purposes, but both models can also be utilized for any other type of observations. The rating model has the capability to distinguish between network participants with major and minor data contribution to the network. The level of sanction on data reception is defined by the participants themselves enabling a high flexibility. The more elaborated accounting model translates the track score to credit points earned for data provision and spend for data reception. In this model, data reception is automatically limited for participants with low contribution to the network. The introduced method for observation scoring is first applied for transparent data exchange within the Small Aperture Robotic Telescope Network (SMARTnet). Therefore a detailed mathematical description is presented for line of sight measurements from optical telescopes, as well as numerical simulations for different network setups.

  11. Geodetic data support trapping of ethane in Titan's polar crust

    Science.gov (United States)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  12. First observations of iodine oxide from space

    Science.gov (United States)

    Saiz-Lopez, Alfonso; Chance, Kelly; Liu, Xiong; Kurosu, Thomas P.; Sander, Stanley P.

    2007-06-01

    We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 × 1013 molecules cm-2 are observed around coastal Antarctica; by contrast during that time in the Artic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2-4 × 1012 molecules cm-2 for slant columns). The levels reported here are in reasonably good agreement with previous ground-based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea-ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica.

  13. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  14. Geodetic slip solutions for the Mw = 7.4 Champerico (Guatemala) earthquake of 2012 November 7 and its postseismic deformation

    Science.gov (United States)

    Ellis, Andria P.; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2015-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 2012 November 7 Mw = 7.4 earthquake offers the first opportunity to study coseismic and postseismic behaviour along a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador and Mexico to estimate the coseismic slip and postseismic deformation of the November 2012 Champerico (Guatemala) earthquake. An inversion of the coseismic offsets, which range up to ˜47 mm at the surface near the epicentre, indicates that up to ˜2 m of coseismic slip occurred on a ˜30 × 30 km rupture area between ˜10 and 30 km depth, which is near the global CMT centroid. The geodetic moment of 13 × 1019 N m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. Transient postseismic deformation that was recorded at 11 GPS sites is attributable to a combination of fault afterslip and viscoelastic flow in the lower crust and/or mantle. Modelling of the viscoelastic deformation suggests that it constituted no more than ˜30 per cent of the short-term postseismic deformation. GPS observations that extend six months after the earthquake are well fit by a model in which most afterslip occurred at the same depth or directly downdip from the rupture zone and released energy equivalent to no more than ˜20 per cent of the coseismic moment. An independent seismological slip solution that features more highly concentrated coseismic slip than our own fits the GPS offsets well if its slip centroid is translated ˜50 km to the west to a position close to our slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-7 m for the peak slip along a region of the interface no larger than 30 × 30 km.

  15. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  16. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  17. Image processing improvement for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  18. Ground and space observations of medium frequency auroral radio emissions

    Science.gov (United States)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  19. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  20. Instituto Geografico Nacional of Spain

    Science.gov (United States)

    Colomer, Francisco; Garcia-Espada, Susana; Gomez-Gonzalez, Jesus; Lopez-Fernandez, Jose Antonio; Santamaria-Gomez, Alvaro; De Vicente, Pablo

    2013-01-01

    This report updates the description of the space geodesy facilities of the Spanish National Geographic Institute (IGN). The current 40-meter radio telescope at Yebes, a network station for IVS, has performed geodetic VLBI observations regularly since September 2008. In addition to this, the project to establish an Atlantic Network of Geodynamical and Space Stations (RAEGE) is progressing with the construction of the first antenna, which is being erected at Yebes.

  1. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  2. Batman flies: a compact spectro-imager for space observation

    Science.gov (United States)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2017-11-01

    Multi-object spectroscopy (MOS) is a key technique for large field of view surveys. MOEMS programmable slit masks could be next-generation devices for selecting objects in future infrared astronomical instrumentation for space telescopes. MOS is used extensively to investigate astronomical objects by optimizing the Signal-to-Noise Ratio (SNR): high precision spectra are obtained and the problem of spectral confusion and background level occurring in slitless spectroscopy is cancelled. Fainter limiting fluxes are reached and the scientific return is maximized both in cosmology and in legacy science. Major telescopes around the world are equipped with MOS in order to simultaneously record several hundred spectra in a single observation run. Next generation MOS for space like the Near Infrared Multi-Object Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) require a programmable multi-slit mask. Conventional masks or complex fiber-optics-based mechanisms are not attractive for space. The programmable multi-slit mask requires remote control of the multislit configuration in real time. During the early-phase studies of the European Space Agency (ESA) EUCLID mission, a MOS instrument based on a MOEMS device has been assessed. Due to complexity and cost reasons, slitless spectroscopy was chosen for EUCLID, despite a much higher efficiency with slit spectroscopy. A promising possible solution is the use of MOEMS devices such as micromirror arrays (MMA) [1,2,3] or micro-shutter arrays (MSA) [4]. MMAs are designed for generating reflecting slits, while MSAs generate transmissive slits. In Europe an effort is currently under way to develop single-crystalline silicon micromirror arrays for future generation infrared multi-object spectroscopy (collaboration LAM / EPFL-CSEM) [5,6]. By placing the programmable slit mask in the focal plane of the telescope, the light from selected objects is directed toward the spectrograph, while the light from other objects and

  3. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA

    Science.gov (United States)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.

    2017-12-01

    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  4. Learning characteristics of a space-time neural network as a tether skiprope observer

    Science.gov (United States)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  5. Facilitating open global data use in earthquake source modelling to improve geodetic and seismological approaches

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Isken, Marius; Vasyura-Bathke, Hannes

    2017-04-01

    In the last few years impressive achievements have been made in improving inferences about earthquake sources by using InSAR (Interferometric Synthetic Aperture Radar) data. Several factors aided these developments. The open data basis of earthquake observations has expanded vastly with the two powerful Sentinel-1 SAR sensors up in space. Increasing computer power allows processing of large data sets for more detailed source models. Moreover, data inversion approaches for earthquake source inferences are becoming more advanced. By now data error propagation is widely implemented and the estimation of model uncertainties is a regular feature of reported optimum earthquake source models. Also, more regularly InSAR-derived surface displacements and seismological waveforms are combined, which requires finite rupture models instead of point-source approximations and layered medium models instead of homogeneous half-spaces. In other words the disciplinary differences in geodetic and seismological earthquake source modelling shrink towards common source-medium descriptions and a source near-field/far-field data point of view. We explore and facilitate the combination of InSAR-derived near-field static surface displacement maps and dynamic far-field seismological waveform data for global earthquake source inferences. We join in the community efforts with the particular goal to improve crustal earthquake source inferences in generally not well instrumented areas, where often only the global backbone observations of earthquakes are available provided by seismological broadband sensor networks and, since recently, by Sentinel-1 SAR acquisitions. We present our work on modelling standards for the combination of static and dynamic surface displacements in the source's near-field and far-field, e.g. on data and prediction error estimations as well as model uncertainty estimation. Rectangular dislocations and moment-tensor point sources are exchanged by simple planar finite

  6. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  7. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-01-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  8. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  9. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  10. A new planetary mapping for future space missions

    Science.gov (United States)

    Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen

    2015-04-01

    The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of

  11. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  12. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared

    Science.gov (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva

    2018-04-01

    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  13. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    Science.gov (United States)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  14. Hubble space telescope: The GO and GTO observing programs, version 3.0

    Science.gov (United States)

    Downes, Ron

    1992-01-01

    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  15. Large micro-mirror arrays: key components in future space instruments for Universe and Earth Observation

    Directory of Open Access Journals (Sweden)

    Zamkotsian Frederic

    2015-01-01

    Full Text Available In future space missions for Universe and Earth Observation, scientific return could be optimized using MOEMS devices. Micro-mirror arrays are used for designing new generation of instruments, multi-object spectrographs in Universe Observation and programmable wide field spectrographs in Earth Observation. Mock-ups have been designed and built for both applications and they show very promising results.

  16. StreakDet data processing and analysis pipeline for space debris optical observations

    Science.gov (United States)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the

  17. Geodetic measurement of deformation east of the San Andreas Fault in Central California

    Science.gov (United States)

    Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael

    1988-01-01

    The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.

  18. Feasibility of Construction of the Continuously Operating Geodetic GPS Network of Sinaloa, Mexico

    Science.gov (United States)

    Vazquez, G. E.; Jacobo, C.

    2011-12-01

    This research is based on the study and analysis of feasibility for the construction of the geodetic network for GPS continuous operation for Sinaloa, hereafter called (RGOCSIN). A GPS network of continuous operation is defined as that materialized structure physically through permanent monuments where measurements to the systems of Global Positioning (GPS) is performed continuously throughout a region. The GPS measurements in this network are measurements of accuracy according to international standards to define its coordinates, thus constituting the basic structure of geodetic referencing for a country. In this context is that in the near future the RGOCSIN constitutes a system state only accurate and reliable georeferencing in real-time (continuous and permanent operation) and will be used for different purposes; i.e., in addition to being fundamental basis for any lifting topographic or geodetic survey, and other areas such as: (1) Different construction processes (control and monitoring of engineering works); (2) Studies of deformation of the Earth's crust (before and after a seismic event); (3) GPS meteorology (weather forecasting); (4) Demarcation projects (natural and political); (5) Establishment of bases to generate mapping (necessary for the economic and social development of the state); (6) Precision agriculture (optimization of economic resources to the various crops); (7) Geographic information systems (Organization and planning activities associated with the design and construction of public services); (8) Urban growth (possible settlements in the appropriate form and taking care of the environmental aspect), among others. However there are criteria and regulations according to the INEGI (Instituto Nacional de Estadística y Geografía, http://www.inegi.org.mx/) that must be met; even for this stage of feasibility of construction that sees this project as a first phase. The fundamental criterion to be taken into account according to INEGI is a

  19. Installation of a seafloor geodetic network offshore northern Chile (GeoSEA)

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian; Contreras-Reyes, Eduardo

    2016-04-01

    The seafloor stores crucial information on sub-seafloor processes, including stress, elastic strain, and earthquake and tsunami generation. This information may be extracted through the nascent scientific field of seafloor geodesy. The target of the recently installed GeoSEA array (Geodetic Earthquake Observatory on the SEAfloor) is to measure crustal deformation in mm-scale on the marine forearc and outer rise of the South American subduction system around 21°S. This segment of the Nazca-South American plate boundary has last ruptured in an earthquake in 1877 and was identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). The southern portion of the segment remains unbroken by a recent earthquake. Seafloor geodetic measurements provide a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The GeoSEA Network consists of autonomous seafloor transponders installed on 4 m high tripods, which were lowered to the seabed on the deep-sea cable of RV SONNE in December 2015. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years and measure acoustic distance, tilt and pressure. An additional component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is capable to upload the seafloor data to the sea surface and to transfer it via satellite. We have chosen three areas on the middle and lower slope and the outer rise for the set-up of three sub-arrays. The array in Area 1 on the middle continental slope consists of 8 transponders located in pairs on four topographic ridges, which are surface expressions of faults at depth. Area 2 is located on the outer rise seaward of the trench where 5 stations monitor extension across plate-bending related normal faults. The third area is located at water depth >5000 m on the lower continental slope

  20. Geodetic determinations for the NuMI project at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1999-01-01

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  1. On the possibility of space objects invasion observations into the Earth's atmosphere with the help of a multifunctional polarimeter

    Science.gov (United States)

    Nevodovskyi, P. V.; Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Relevance of the tasks associated with the observation of the invasion of space objects into the Earth's atmosphere increases with each passing year. We used astronomical panoramic polarimeter for carrying out of polarimetric observations of objects, that flying into the atmosphere of the Earth from the surrounding outer space.

  2. Crustal Strain Observation Using a Two-Color Interferometer with Accurate Correction of Refractive Index of Air

    Directory of Open Access Journals (Sweden)

    Souichi Telada

    2014-07-01

    Full Text Available A highly accurate two-color interferometer with automatic correction of the refractive index of air was developed for crustal strain observation. The two-color interferometer, which can measure a geometrical distance of approximately 70 m, with a relative resolution of 2 × 10−9, clearly detected a change in strain due to earth tides in spite of optical measurement in air. Moreover, a large strain quake due to an earthquake could be observed without disturbing the measurement. We demonstrated the advantages of the two-color interferometer in air for geodetic observation.

  3. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  4. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo

    1989-01-01

    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  5. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  6. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  7. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-07-01

    Full Text Available The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of apparent total displacements at the middle of the crest of the dam exhibits periodicity and linear trends. Correlation analysis revealed that periodic and linear displacement responses of the dam are related to variations of seasonal temperature and linearly increased reservoir level, respectively, indicating a relation between temperature, water load and dam deformation. It is also concluded that measured deformations based on geodetic data show good agreement with the predicted deformation obtained by the FEM analysis.

  8. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  9. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems

    Science.gov (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  10. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  11. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    Directory of Open Access Journals (Sweden)

    T Nagatsuma

    2014-10-01

    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  12. Azimuth selection for sea level measurements using geodetic GPS receivers

    Science.gov (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  13. NChina16: A stable geodetic reference frame for geological hazard studies in North China

    Science.gov (United States)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.

    2018-04-01

    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  14. Improving deformation models by discounting transient signals in geodetic data: 2. Geodetic data, stress directions, and long-term strain rates in Italy

    Science.gov (United States)

    Carafa, Michele M. C.; Bird, Peter

    2016-07-01

    The lithosphere of Italy is exposed to a number of different short-term strain transients, including but not limited to landslides, postseismic relaxation, and volcanic inflation/deflation. These transients affect GPS velocities and complicate the assessment of the long-term tectonic component of the surface deformation. In a companion paper we present a method for anticipating the principal patterns of nontectonic, short-term strains and building this information into the covariance matrix of the geodetic velocities. In this work we apply this method to Italian GPS velocities to build an augmented covariance matrix that characterizes all expected discrepancies between short- and long-term velocities. We find that formal uncertainties usually reported for GPS measurements are smaller than the variability of the same benchmarks across a geologic time span. Furthermore, we include in our modeling the azimuths of most compressive horizontal principal stresses (SHmax) because GPS data cannot resolve the active kinematics of coastal and offshore areas. We find that the final tectonic model can be made relatively insensitive to short-term interfering processes if the augmented covariance matrix and SHmax data records are used in the objective function. This results in a preferred neotectonic model that is also in closer agreement with independent geologic and seismological constraints and has the advantage of reducing short-term biases in forecasts of long-term seismicity.

  15. Prospects for Observing Ultracompact Binaries with Space-Based Gravitational Wave Interferometers and Optical Telescopes

    Science.gov (United States)

    Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.

    2012-01-01

    Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.

  16. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data

    Science.gov (United States)

    Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter

    2013-01-01

    An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.

  17. How Well do we Know Near-Surface Density When Determining Mass Balance by the Geodetic Method?

    Science.gov (United States)

    Kuhn, M. H.; Matzi, E.

    2005-12-01

    From a data set of firn pits in the accumulation area of Hintereisferner in the years 1964 - 2002 the behavior of density and water equivalent was analyzed with a view to estimating the potential errors in the application of the geodetic method. Since annual specific balance ranged from 100 to 3300 mm w.e. the profiles were scaled to total depth. For the uppermost 10% of the annual deposit at a typical location the 1964-2002 mean density would be 350 kg/m-3 with a standard deviation of 110 kg/m-3; for the 10% layer at the base of the annual snowpack the respective figures are 510 +- 30 kg/m-3. The normalized long term means of an ensemble of 9 pits ranged from 310 to 380 kg/m-3 in the top layer and from 510 to 540 kg/m-3 in the bottom layer. When one outlier is removed the the range in the bottom layer reduces to 525 to 540 kg/m-3. This small local variance encourages the use of the geodetic method. The comparison of elevation models of 1969 and 1997 yields a mass change that agrees very well with the results of the glaciological method provided the volume change is converted to mass with a density of 900 kg/m-3. While this may be true for the entire glacier on long terms, it will fail for individual years in the accumulation area. Possible errors are calculated from the data set emphasizing the role of year to year changes of specific balance and accumulation area ratio.

  18. Observations and models of Co- and Post-Seismic Deformation Due to the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    Science.gov (United States)

    Wang, K.; Fialko, Y. A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.

  19. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  20. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  1. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  2. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    Science.gov (United States)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  3. High resolution solar observations in the context of space weather prediction

    Science.gov (United States)

    Yang, Guo

    Space weather has a great impact on the Earth and human life. It is important to study and monitor active regions on the solar surface and ultimately to predict space weather based on the Sun's activity. In this study, a system that uses the full power of speckle masking imaging by parallel processing to obtain high-spatial resolution images of the solar surface in near real-time has been developed and built. The application of this system greatly improves the ability to monitor the evolution of solar active regions and to predict the adverse effects of space weather. The data obtained by this system have also been used to study fine structures on the solar surface and their effects on the upper solar atmosphere. A solar active region has been studied using high resolution data obtained by speckle masking imaging. Evolution of a pore in an active region presented. Formation of a rudimentary penumbra is studied. The effects of the change of the magnetic fields on the upper level atmosphere is discussed. Coronal Mass Ejections (CMEs) have a great impact on space weather. To study the relationship between CMEs and filament disappearance, a list of 431 filament and prominence disappearance events has been compiled. Comparison of this list with CME data obtained by satellite has shown that most filament disappearances seem to have no corresponding CME events. Even for the limb events, only thirty percent of filament disappearances are associated with CMEs. A CME event that was observed on March 20, 2000 has been studied in detail. This event did not show the three-parts structure of typical CMEs. The kinematical and morphological properties of this event were examined.

  4. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    Science.gov (United States)

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  5. Global height datum unification: a new approach in gravity potential space

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  6. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  7. Determining the orientation of the observed object in threedimensional space using stereo vision methods

    International Nuclear Information System (INIS)

    Ponomarev, S

    2014-01-01

    The task of matching image of an object with its template is central for many optoelectronic systems. Solution of the matching problem in three-dimensional space in contrast to the structural alignment in the image plane allows using a larger amount of information about the object for determining its orientation, which may increase the probability of correct matching. In the case of stereo vision methods for constructing a three-dimensional image of the object, it becomes possible to achieve invariance w.r.t. background and distance to the observed object. Only three of the orientation angle of the object relative to the camera are uncertain and require measurements. This paper proposes a method for determining the orientation angles of the observed object in three-dimensional space, which is based on the processing of stereo image sequences. Disparity map segmentation method that allows one to ensure the invariance of the background is presented. Quantitative estimates of the effectiveness of the proposed method are presented and discussed.

  8. The Latest Space-Borne Observations of TGFs from Fermi-GBM

    Science.gov (United States)

    Fishman, Gerald J.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is detecting about two TGFs per week. This rate has increased by a factor of approx.eight since launch when flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Weaker, un-triggered TGFs are now also being observed about once per day over selected low-latitude regions Americas. The high efficiency and time resolution (2 s) of GBM allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. TGFs are observed to be shorter than previously thought, with an average duration of approx.100 micro-s. The absolute times of TGFs are known to approx.10 micro-s, allowing accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The events are observed in the thick bismuth germanate (BGO) scintillation detectors of GBM with photon energies above 40 MeV. Other new results on the temporal and spectral characteristics of TGFs will be presented, along with properties of several electron-positron TGF events that have been identified.

  9. HUBBLE SPACE TELESCOPE OBSERVATIONS OF MAIN-BELT COMET (596) SCHEILA

    International Nuclear Information System (INIS)

    Jewitt, David; Weaver, Harold; Mutchler, Max; Larson, Stephen; Agarwal, Jessica

    2011-01-01

    We present Hubble Space Telescope Observations of (596) Scheila during its recent dust outburst. The nucleus remained point-like with absolute magnitude H V = 8.85 ± 0.02 in our data, equal to the pre-outburst value, with no secondary fragments of diameter ≥100 m (for assumed albedos 0.04). We find a coma having a peak scattering cross section ∼2.2x10 4 km 2 , corresponding to a mass in micron-sized particles of ∼4x10 7 kg. The particles are deflected by solar radiation pressure on projected spatial scales ∼2x10 4 km, in the sunward direction, and swept from the vicinity of the nucleus on timescales of weeks. The coma fades by ∼30% between observations on UT 2010 December 27 and 2011 January 4. The observed mass loss is inconsistent with an origin either by rotational instability of the nucleus or by electrostatic ejection of regolith charged by sunlight. Dust ejection could be caused by the sudden but unexplained exposure of buried ice. However, the data are most simply explained by the impact, at ∼5 km s -1 , of a previously unknown asteroid ∼35 m in diameter.

  10. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; hide

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  11. Geodetic Infrastructure in the Ibiza and Barcelona Harbours for Sea Level Monitoring

    Science.gov (United States)

    Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Perez, B.; Pros, F.

    2013-12-01

    The presentation is directed to the description of the actual situation and relevant information of the geodetic infrastructure of Ibiza and Barcelona sites for sea level determination and contribution to regional sea level rise. Time series are being analysed for mean sea level variations www.puertos.es. .In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica s.l. near an acoustic tide gauge. Puertos del Estado installed in 2007 a MIROS radar tide gauge and the Barcelona Harbour Authority a GPS referente station in the roof of the new Control Tower situated in the Energy Pier. The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land. The measured settlement rate is about 1cm/year that may be could mask the values registered by the tide gauge. A description of the actual infrastructure at Ibiza harbour at Marina de Botafoch, is presented and its applications to sea level monitoring and altimeter calibration in support of the main CGPS at Ibiza harbour. It is described the geometrical precision levelling made in June 2013 between the radar tide gauge and the GPS station. In particular, the CGPS located at Ibiza harbour is essential for its application to the marine campaign Baleares 2013, near Ibiza island. The main objective is to determine the altimeter bias for Jason-2, about 9:09 UTC September 15, 2013, and Saral/AltiKa, about 05:30 UTC September 16, UTC. These activities has been received funding of the Ministerio de Ciencia e Innovacion under Spanish

  12. Learned Compact Local Feature Descriptor for Tls-Based Geodetic Monitoring of Natural Outdoor Scenes

    Science.gov (United States)

    Gojcic, Z.; Zhou, C.; Wieser, A.

    2018-05-01

    The advantages of terrestrial laser scanning (TLS) for geodetic monitoring of man-made and natural objects are not yet fully exploited. Herein we address one of the open challenges by proposing feature-based methods for identification of corresponding points in point clouds of two or more epochs. We propose a learned compact feature descriptor tailored for point clouds of natural outdoor scenes obtained using TLS. We evaluate our method both on a benchmark data set and on a specially acquired outdoor dataset resembling a simplified monitoring scenario where we successfully estimate 3D displacement vectors of a rock that has been displaced between the scans. We show that the proposed descriptor has the capacity to generalize to unseen data and achieves state-of-the-art performance while being time efficient at the matching step due the low dimension.

  13. Observation of Octupole Driven Resonance Phenomena with Space Charge at the CERN Proton Synchrotron

    CERN Document Server

    Métral, E; Martini, M; Steerenberg, R; Franchetti, Giuliano; Hofmann, I

    2006-01-01

    Several benchmarking space charge experiments have been performed during the last few years in the CERN Proton Synchrotron. These controlled experiments are of paramount importance to validate the present very powerful simulation codes. The observations of the combined effect of space charge and nonlinear resonance on beam loss and emittance, using a single controllable octupole during ~ 1 s at 1.4 GeV kinetic energy, are discussed in some detail in the present paper. By lowering the working point towards the octupolar resonance, a gradual transition from a regime of loss-free core emittance blow-up to a regime of continuous loss was found.

  14. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    Science.gov (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  15. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    Science.gov (United States)

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  16. How the geometric calculus resolves the ordering ambiguity of quantum theory in curved space

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2003-01-01

    The long standing problem of the ordering ambiguity in the definition of the Hamilton operator for a point particle in curved space is naturally resolved by using the powerful geometric calculus based on Clifford algebra. The momentum operator is defined to be the vector derivative (the gradient) multiplied by -i; it can be expanded in terms of basis vectors γ μ as p = -iγ μ ∂ μ . The product of two such operators is unambiguous, and such is the Hamiltonian which is just the d'Alembert operator in curved space; the curvature scalar term is not present in the Hamiltonian if we confine our consideration to scalar wavefunctions only. It is also shown that p is Hermitian and a self-adjoint operator: the presence of the basis vectors γ μ compensates the presence of √|g| in the matrix elements and in the scalar product. The expectation value of such an operator follows the classical geodetic line

  17. Geophysical Observations Supporting Research of Magmatic Processes at Icelandic Volcanoes

    Science.gov (United States)

    Vogfjörd, Kristín. S.; Hjaltadóttir, Sigurlaug; Roberts, Matthew J.

    2010-05-01

    Magmatic processes at volcanoes on the boundary between the European and North American plates in Iceland are observed with in-situ multidisciplinary geophysical networks owned by different national, European or American universities and research institutions, but through collaboration mostly operated by the Icelandic Meteorological Office. The terrestrial observations are augmented by space-based interferometric synthetic aperture radar (InSAR) images of the volcanoes and their surrounding surface. Together this infrastructure can monitor magma movements in several volcanoes from the base of the crust up to the surface. The national seismic network is sensitive enough to detect small scale seismicity deep in the crust under some of the voclanoes. High resolution mapping of this seismicity and its temporal progression has been used to delineate the track of the magma as it migrates upwards in the crust, either to form an intrusion at shallow levels or to reach the surface in an eruption. Broadband recording has also enabled capturing low frequency signals emanating from magmatic movements. In two volcanoes, Eyjafjallajökull and Katla, just east of the South Iceland Seismic Zone (SISZ), seismicity just above the crust-mantle boundary has revealed magma intruding into the crust from the mantle below. As the magma moves to shallower levels, the deformation of the Earth‘s surface is captured by geodetic systems, such as continuous GPS networks, (InSAR) images of the surface and -- even more sensitive to the deformation -- strain meters placed in boreholes around 200 m below the Earth‘s surface. Analysis of these signals can reveal the size and shape of the magma as well as the temporal evolution. At near-by Hekla volcano flanking the SISZ to the north, where only 50% of events are of M>1 compared to 86% of earthquakes in Eyjafjallajökull, the sensitivity of the seismic network is insufficient to detect the smallest seismicity and so the volcano appears less

  18. Distributed Space Mission Design for Earth Observation Using Model-Based Performance Evaluation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Cervantes, Ben; DeWeck, Oliver

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth observation missions owing to their unique ability to increase observation sampling in multiple dimensions. DSM design is a complex problem with many design variables, multiple objectives determining performance and cost and emergent, often unexpected, behaviors. There are very few open-access tools available to explore the tradespace of variables, minimize cost and maximize performance for pre-defined science goals, and therefore select the most optimal design. This paper presents a software tool that can multiple DSM architectures based on pre-defined design variable ranges and size those architectures in terms of predefined science and cost metrics. The tool will help a user select Pareto optimal DSM designs based on design of experiments techniques. The tool will be applied to some earth observation examples to demonstrate its applicability in making some key decisions between different performance metrics and cost metrics early in the design lifecycle.

  19. The evidences of progressive pressurization of volcanic conduit as driving forces of unrest phenomena analyzed via modelling of multiplatform geodetic measurements: Fernandina (GALAPAGOS) and Maunaloa (HAWAII) case studies

    Science.gov (United States)

    Pepe, Susi; Castaldo, Raffaele; Casu, Francesco; D'Auria, Luca; De Luca, Claudio; De Novellis, Vincenzo; Solaro, Giuseppe; Tizzani, Pietro

    2017-04-01

    collection, we determined the source responsible of deformation observed and in particular the results of our inversions show that the pipe source contributes substantially to both the ground deformation pattern and the cost function. In the case of Fernandina Volcano (Galápagos) we exploited the advanced Differential SAR Interferometry (DInSAR) techniques to analyze the 2012-2013 uplift episode by using X-band data from the COSMO-SkyMed (CSK) satellite constellation. This volcano falls among those not well monitored, therefore, the availability of CSK data, acquired with a repeat time ranging from 4 to 12 days and with a ground resolution of 3 meters, represents a unique opportunity to perform a detailed study of the space and time ground deformation field changes (Sansosti et al., 2014). In addition, in this case study we computed the ground deformation time series by applying the Small BAseline Subset (SBAS)-DInSAR approach (Berardino et al., 2002) to CSK data, acquired from both ascending and descending orbits. The results of their combination (vertical and horizontal E-W components) are used in order to evaluate, through a cross correlation analysis (Tizzani et al., 2009; 2015), the volcanic areas that are characterized by similar uplift temporal behavior. Subsequently, we determine the geometry, location and the temporal evolution of the geodetic source responsible for the 2012 - 2013 uplift event by applying an inverse method to the DInSAR measurements. We search for its geometrical parameters and volume variation that minimize the difference between the observed data and the modelled ground deformation field. We tested various analytical models and finally, using the Akaike Information Criterion (Akaike, 1965) among the tested analytical sources, we selected the tilted pipe. The pipe model is similar to the prolate ellipsoid, but the size of the smaller axis is kept fixed to a very small value (i.e., 10 m). Despite having a similar fit with the prolate ellipsoid

  20. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    Science.gov (United States)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  1. Global deformation of the Earth, surface mass anomalies, and the geodetic infrastructure required to study these processes

    Science.gov (United States)

    Kusche, J.; Rietbroek, R.; Gunter, B.; Mark-Willem, J.

    2008-12-01

    Global deformation of the Earth can be linked to loading caused by mass changes in the atmosphere, the ocean and the terrestrial hydrosphere. World-wide geodetic observation systems like GPS, e.g., the global IGS network, can be used to study the global deformation of the Earth directly and, when other effects are properly modeled, provide information regarding the surface loading mass (e.g., to derive geo-center motion estimates). Vice versa, other observing systems that monitor mass change, either through gravitational changes (GRACE) or through a combination of in-situ and modeled quantities (e.g., the atmosphere, ocean or hydrosphere), can provide indirect information on global deformation. In the framework of the German 'Mass transport and mass distribution' program, we estimate surface mass anomalies at spherical harmonic resolution up to degree and order 30 by linking three complementary data sets in a least squares approach. Our estimates include geo-center motion and the thickness of a spatially uniform layer on top of the ocean surface (that is otherwise estimated from surface fluxes, evaporation and precipitation, and river run-off) as a time-series. As with all current Earth observing systems, each dataset has its own limitations and do not realize homogeneous coverage over the globe. To assess the impact that these limitations might have on current and future deformation and loading mass solutions, a sensitivity study was conducted. Simulated real-case and idealized solutions were explored in which the spatial distribution and quality of GPS, GRACE and OBP data sets were varied. The results show that significant improvements, e.g., over the current GRACE monthly gravity fields, in particular at the low degrees, can be achieved when these solutions are combined with present day GPS and OBP products. Our idealized scenarios also provide quantitative implications on how much surface mass change estimates may improve in the future when improved observing

  2. Viking telecommunication effects of GEOS satellite interference based on testing at the Madrid deep space station

    Science.gov (United States)

    Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.

    1976-01-01

    In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.

  3. Assessment of 3D hydrologic deformation using GRACE and GPS

    Science.gov (United States)

    Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.

    2009-12-01

    Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of

  4. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks

    Science.gov (United States)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl

    2013-08-01

    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  5. Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution

    Directory of Open Access Journals (Sweden)

    M. Rihaoui

    2009-12-01

    Full Text Available We report on an experimental study of space-charge effects in a radio-frequency (rf photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  6. Use of Geodetic Laser Scanning to Evaluate the Curvature of Bedrock Surfaces in an Investigation of Sheeting Joint Formation

    Science.gov (United States)

    Martel, S. J.; Mitchell, K.

    2007-12-01

    We are using aerial and tripod-mounted geodetic laser scanning (GLS) data, together with photography and large-scale geologic mapping, to investigate the formation of sheeting joints in Yosemite National Park. Sheeting joints are opening-mode fractures that form subparallel to the topography, and over broad areas in Yosemite they define the bedrock surface. Rock slabs bounded by sheeting joints superficially resemble the layers of an onion. Our hypothesis is that sheeting joints form where a tensile stress normal to the topographic surface exists in the shallow subsurface. This condition is met where k2 P22 + k3 P33 > γ cosβ, where k2 and k3 are the principal curvatures of the bedrock surface, P22 and P33 are the corresponding normal stresses parallel to the principal stresses, γ is the unit weight of the rock, and β is the slope angle. Sheeting joints are predicted where at least one of the principal curvatures is sufficiently convex (negative) and the corresponding normal stress is sufficiently compressive (negative). We use aerial GLS data with a vertical resolution of ~10 cm and a point spacing of ~1 m to measure the slope and curvature of the bedrock surface at the scale of a ridge or valley. We use tripod-mounted GLS data with a point spacing of ~5 cm, large-scale geologic mapping, and photographs to detect steps between consecutive sheeting joints, with the step height giving the sheet joint spacing. Outcrops hosting sheeting joints have a stair-step appearance with a distinctive curvature signature: high convex curvature at the top of a step, and high concave curvature at the step bottom. Steps between sheeting joints with a spacing of less than a meter or so are difficult to detect using the aerial GLS data. Apparently the interpolation of aerial data onto a grid, necessary for our curvature codes, and the smoothing of gridded data to filter out trees compromises the value of the aerial GLS data in detecting the step edges, even though the vertical

  7. The AUSTRAL VLBI observing program

    Science.gov (United States)

    Plank, L.; Lovell, J. E. J.; McCallum, J. N.; Mayer, D.; Reynolds, C.; Quick, J.; Weston, S.; Titov, O.; Shabala, S. S.; Böhm, J.; Natusch, T.; Nickola, M.; Gulyaev, S.

    2017-07-01

    The AUSTRAL observing program was started in 2011, performing geodetic and astrometric very long baseline interferometry (VLBI) sessions using the new Australian AuScope VLBI antennas at Hobart, Katherine, and Yarragadee, with contribution from the Warkworth (New Zealand) 12 m and Hartebeesthoek (South Africa) 15 m antennas to make a southern hemisphere array of telescopes with similar design and capability. Designed in the style of the next-generation VLBI system, these small and fast antennas allow for a new way of observing, comprising higher data rates and more observations than the standard observing sessions coordinated by the International VLBI Service for Geodesy and Astrometry (IVS). In this contribution, the continuous development of the AUSTRAL sessions is described, leading to an improvement of the results in terms of baseline length repeatabilities by a factor of two since the start of this program. The focus is on the scheduling strategy and increased number of observations, aspects of automated operation, and data logistics, as well as results of the 151 AUSTRAL sessions performed so far. The high number of the AUSTRAL sessions makes them an important contributor to VLBI end-products, such as the terrestrial and celestial reference frames and Earth orientation parameters. We compare AUSTRAL results with other IVS sessions and discuss their suitability for the determination of baselines, station coordinates, source coordinates, and Earth orientation parameters.

  8. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    Science.gov (United States)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  9. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary

    Science.gov (United States)

    Farkas, Péter; Hevér, Renáta; Grenerczy, Gyula

    2015-04-01

    ESA's latest Synthetic Aperture Radar (SAR) mission Sentinel-1 is a huge step forward in SAR interferometry. With its default acquisition mode called the Interferometric Wide Swath Mode (IW) areas through all scales can be mapped with an excellent return time of 12 days (while only the Sentinel-1A is in orbit). Its operational data policy is also a novelty, it allows scientific users free and unlimited access to data. It implements a new type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPS) SAR. It has the same resolution as ScanSAR but with better signal-to-noise ratio distribution. The bigger coverage is achieved by rotation of the antenna in the azimuth direction, therefore it requires very precise co-registration because even errors under a pixel accuracy can introduce azimuth phase variations caused by differences in Doppler-centroids. In our work we will summarize the benefits and the drawbacks of the IW mode. We would like to implement the processing chain of GAMMA Remote Sensing of such data for mapping surface motion with special attention to the co-registration step. Not only traditional InSAR but the advanced method of Persistent Scatterer InSAR (PSInSAR) will be performed and presented as well. PS coverage, along with coherence, is expected to be good due to the small perpendicular and temporal baselines. We would also like to integrate these measurements into national geodetic networks using common reference points. We have installed trihedral corner reflectors at some selected sites to aid precise collocation. Thus, we aim to demonstrate that Sentinel-1 can be effectively used for surface movement detection and monitoring and it can also provide valuable information for the improvement of our networks.

  10. Earth orientation determinations by short duration VLBI observations

    Science.gov (United States)

    Nothnagel, Axel; Zhihan, Qian; Nicolson, George D.; Tomasi, Paolo

    1994-03-01

    In May 1989 and April 1990 the radio telescopes of the Wettzell Geodetic Fundamental Station in Germany and of the Shanghai Observatory near Seshan in China observed two series of daily VLBI experiments of short duration for precise determination of UT1. In 1990 a few experiments were complemented by the Hartebeesthoek Radio Astronomy Observatory in South Africa and the Medicina telescope of the Bologna Istituto di Radioastronomia in Italy. Employing the South African station together with the east-west baseline formed by the observatories of Seshan and Medicina permitted simultaneous determinations of UT1 and polar motion. Here we report on the results of these observations. Comparing the UT1 results with those of the IRIS Intensive series gives a clear indication of the absolute accuracy of such short duration VLBI measurements which is estimated to be of the order of ±60 µs.

  11. A Fast Radio Burst Search Method for VLBI Observation

    Science.gov (United States)

    Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li

    2018-02-01

    We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.

  12. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  13. STRUCTURAL MONITORING WITH GEODETIC SURVEY OF QUADRIFOGLIO CONDOMINIUM (LECCE

    Directory of Open Access Journals (Sweden)

    D. Costantino

    2014-01-01

    Full Text Available Monitoring buildings for moving elements has been always a problem of great importance for their conservation and preservation, as well as for risk mitigation. In particular, topographic surveying allows, through the use of the principles and instruments of the geodetic survey, to control moving points which have been identified and measured. In this study case, twelve survey campaigns were done for monitoring a building located in the city of Lecce. The condominium was built five years ago on an old quarry filled with debris to allow construction. Later in time, obviously, cracks started to appear on walls within the property, and for this legal actions were taken. The survey schema adopted has been that of triangulation/trilateration, from two vertices with known coordinates. With this methodologies four cornerstones have been identified, established with forced centering on pillars with anchor plates, connected to same number of framework points, considered stable. From these, 23 control points located on the structure with rotating prisms anchored at the same manner have been surveyed. The elaboration has been carried out by generating redundancy of the measures and compensating the values with least mean squares. The results obtained by the activity of survey and elaboration have confirmed the existence of ongoing phenomena. The causes that have generated the phenomenon have been, subsequently, investigated and have been considered attributable to the existence of a sewer pipeline and a water pipeline not properly put in place and consequently broke down due to the geological characteristics of the site.

  14. Observing the Anthropocene from Space: Challenges and Needs

    Science.gov (United States)

    Burrows, John

    2016-07-01

    The rapid growth of human population since the industrial revolution has been coupled with a much increased standard of living and bountiful production of food. The dominant energy source sustaining this development has been fossil fuel combustion. However this has resulted in pollution which now spans all scales. There have significant impacts on air quality, water quality, stratospheric ozone and climate. The impacts can sudden and large and also slowly accumulate over time in the long term. The first decades of the space age resulted in pioneering efforts to establish adequate measurement capability. This process is continuing to evolve. Over the past two decades there have been a number of efforts to define the contribution and needs for a space segment which can separate anthropogenic form natural changes in the earth system. This talk introduces this topic of the use of the space segment to deconvolve change from anthropogenic activity and natural phenomena.

  15. Estimating slip deficit of the North Anatolian Fault beneath the Sea of Marmara, Turkey, using on- and off-shore geodetic data

    Science.gov (United States)

    Yamamoto, R.; Kido, M.; Ohta, Y.; Takahashi, N.; Yamamoto, Y.; Kalafat, D.; Pinar, A.; Ozener, H.; Ozeren, M. S.; Yoshiyuki, K.

    2016-12-01

    The North Anatolian Fault (NAF) in the northern Turkey regionally has right-lateral strike-slip motion. In the last decade, seismic activities have been migrating from east to west along the fault. In 1999, Izmit and Duzce Earthquakes were respectively occurred at 100 km and 200 km east of Istanbul, while it remains un-ruptured in the vicinity of Istanbul beneath the Sea of Marmara. In this region, onshore geodetic tools cannot be used and we instead used "seafloor acoustic extensometers" to detect slip deficit rate across the western part of the NAF (around 27.7 °E). A pair of extensometers can periodically measure precise range (about 3-4 mm precision per 1 km baseline) by observing round-trip time of acoustic signal between the two. We installed four instruments in September 2014 and an additional one in March 2015 across the NAF. We have recovered data for about 600-days through acoustic modem. By correcting travel-times for sound velocity using concurrently measured temperature, pressure and tilt change of instruments, we obtained 8-10 ±1 mm/yr of right-lateral movement at the site. Combing the result with on-shore GNSS data across the Sea of Marmara, we constructed a possible fault model. According to the model in Kaneko et al. (2013), we simply assume a bimodal slip condition on the fault plane that infinitely continues to the E-W direction; full-creep (25 mm/yr as is given at infinite distant from the fault plane) deeper than 15 km and applied an overriding partially locked layer (17 mm/yr slip deficit as is obtained by extensometers). We calculated 2-D displacement field in a homogeneous elastic half-space medium. With this model, N-S variation of on-shore GNSS data across the Sea of Marmara can be reasonably explained. However, due to the lack of GNSS site near the fault plane, constraint on the depth of the partially locked layer is not sufficient. We have newly installed GNSS sites, one of which is closer to the fault plane ( 10 km) than before and

  16. New algorithms for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Laas-Bourez, Myrtille; Boer, Michel; Blanchet, Gwendoline; Ducrotte, Etienne; Klotz, Alain

    To preserve the space environment for the future, and to make space expedition safe, we have to improve our knowledge of the debris population in the vicinity of the geostationary orbit. Since 2004, CNES observes satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes. One is located in France and the second being in ESO La Silla, Chile. This system makes real time processing and its wide field of view is useful for detection, systematic survey and tracking both catalogued and uncatalogued objets. We are implementing new, more efficient, image processing algorithms. A new source extraction algorithm based on morphological mathematic, and a "matching-pursuit" algorithm allow to correlate the measurements of the same object on successive images and give an almost nil false detection rate. These new methods allow us to detect objects on the geostationary belt and on other orbits like MEO or GTO. We also improved the timing precision of individual images (few milliseconds) and the precision of the position restitution respective to the celestial frame. Our "delay card" provides an extremely precise date of objects in a picture and our new algorithm accurately extracts stars from background for calibration; Thanks to all these improvements, the overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like GTO orbit. In this paper we present our new methods and the work we have made for the detection of space debris: the images dating with a card of delay, the accuracy of astronomical calibration, and the robustness of the extracting space debris with different algorithms. The results obtained on the sky will be shown.

  17. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.

    1995-05-01

    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  18. Need for denser geodetic network to get real constrain on the fault behavior along the Main Marmara Sea segments of the NAF, toward an optimized GPS network.

    Science.gov (United States)

    Klein, E.; Masson, F.; Duputel, Z.; Yavasoglu, H.; Agram, P. S.

    2016-12-01

    Over the last two decades, the densification of GPS networks and the development of new radar satellites offered an unprecedented opportunity to study crustal deformation due to faulting. Yet, submarine strike slip fault segments remain a major issue, especially when the landscape appears unfavorable to the use of SAR measurements. It is the case of the North Anatolian fault segments located in the Main Marmara Sea, that remain unbroken ever since the Mw7.4 earthquake of Izmit in 1999, which ended a eastward migrating seismic sequence of Mw > 7 earthquakes. Located directly offshore Istanbul, evaluation of seismic hazard appears capital. But a strong controversy remains over whether these segments are accumulating strain and are likely to experience a major earthquake, or are creeping, resulting both from the simplicity of current geodetic models and the scarcity of geodetic data. We indeed show that 2D infinite fault models cannot account for the complexity of the Marmara fault segments. But current geodetic data in the western region of Istanbul are also insufficient to invert for the coupling using a 3D geometry of the fault. Therefore, we implement a global optimization procedure aiming at identifying the most favorable distribution of GPS stations to explore the strain accumulation. We present here the results of this procedure that allows to determine both the optimal number and location of the new stations. We show that a denser terrestrial survey network can indeed locally improve the resolution on the shallower part of the fault, even more efficiently with permanent stations. But data closer from the fault, only possible by submarine measurements, remain necessary to properly constrain the fault behavior and its potential along strike coupling variations.

  19. Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake

    DEFF Research Database (Denmark)

    Hoechner, Andreas; Sobolev, Stephan V.; Einarsson, Indriði

    2011-01-01

    or postseismic relaxation, leads to difficulties in finding a consistent interpretation of obtained viscosities. Using standard Maxwell viscosity of 1e19 Pa s to analyze postseismic near-field GPS time series from the 2004 Sumatra-Andaman earthquake requires large time-dependent afterslip with a relaxation time...... Maxwell model with afterslip is not compatible with observations, since even large afterslip has a more localized effect than transient relaxation due to the main earthquake, which in turn is in agreement with observations. Thus, a combination of ground-and space-based geodetic observations is very useful...

  20. Constraints on timescales and mechanics of magmatic underplating from InSAR observations of large active magma sills in the Earth's crust.

    Science.gov (United States)

    Fialko, Y.

    2002-12-01

    Theoretical models of the granitoid magma generation due to magmatic underplating predict that anatectic melts are produced on quite short timescales of the order of the crystallization time of typical mafic underplates (e.g., 102-10^3 years for sill intrusions that are a few tens to a few hundred meters thick). If so, the intrusion of mafic underplates, the volume changes associated with in situ melting, and the subsequent evacuation of the resulting granitoid magmas can each generate geodetically observable deformation. Geodetic measurements in areas of contemporaneous large active magma bodies may therefore provide critical constraints on the timescales and dynamics of crustal anatexis. We use Interferometric Synthetic Aperture Radar (InSAR) observations in regions of the ongoing crustal magmatism to constrain typical rates of the large-scale melt generation and/or migration, and to test the proposed models of the granitic melt production. Our primary targets include large mid-crustal magma bodies imaged by seismic studies, in particular, the Socorro (New Mexico, USA), the Altiplano-Puna (south America), and the south Tibet (Asia) magma bodies. All these magma bodies are located at depth of 19-20 km, suggesting a strong rheological or buoyancy control on the transition from a vertical to a horizontal magma flow. Stacked interferometric data from the Socorro magma body indicate a quasi-steady uplift with a maximum rate of 3-4 mm/yr over the last 10 years covered by the InSAR observations. The uplift morphology can be well described by an elastic inflation of the Socorro sill. We show that deformation models that allow for the viscous-like rheology of the mid-to-lower crust cannot be easily reconciled with the geodetic data. However, thermodynamic modeling, in conjunction with inferences of the nearly constant uplift rates, suggest that the deformations associated with the intrusion emplacement must involve a significant inelastic component. Such inelastic

  1. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    northwest, from the epicenter in Baja California through the US-Mexico border. The ALS observations were collected from an aircraft altitude of 600 m, flying at approximately 80 m/sec, using an Optech Inc. Gemini sensor, operating at 100 kHz, a scanning angle plus/minus 14 degrees and scan rate of 60 Hz. Some 24 lines, comprising a corridor 3 km wide and 106 km in length, were mapped, with a nominal point density of just over 10 points/m2. Total flight time for the project was just under 21 hours, but the laser on time was only 13 hours and 21 minutes. Preliminary versions of the observational data were delivered to the PIs (Michael Oskin, UC Davis, and Ramon Arrowsmith, ASU) within a few days of their collection. Geodetic imaging is still in its early stages of development, and ALS technology is progressing rapidly. The use of multiple channel (based on multiple lasers of the same or different colors and/or receivers operating in parallel) ALS units will result in contiguous sub-decimeter coverage, and deployment of ALS units in UAVs, with data transmitted to the operators in real time, will further reduce the turn-around time and enable more rapid assessment of earthquakes within the next decade.

  2. Adjustment technique without explicit formation of normal equations /conjugate gradient method/

    Science.gov (United States)

    Saxena, N. K.

    1974-01-01

    For a simultaneous adjustment of a large geodetic triangulation system, a semiiterative technique is modified and used successfully. In this semiiterative technique, known as the conjugate gradient (CG) method, original observation equations are used, and thus the explicit formation of normal equations is avoided, 'huge' computer storage space being saved in the case of triangulation systems. This method is suitable even for very poorly conditioned systems where solution is obtained only after more iterations. A detailed study of the CG method for its application to large geodetic triangulation systems was done that also considered constraint equations with observation equations. It was programmed and tested on systems as small as two unknowns and three equations up to those as large as 804 unknowns and 1397 equations. When real data (573 unknowns, 965 equations) from a 1858-km-long triangulation system were used, a solution vector accurate to four decimal places was obtained in 2.96 min after 1171 iterations (i.e., 2.0 times the number of unknowns).

  3. Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-04-01

    Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

  4. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    Science.gov (United States)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  5. Earth observations from space: History, promise, and reality. Executive summary

    Science.gov (United States)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  6. Earth observations during Space Shuttle Mission STS-42 - Discovery's mission to planet earth

    Science.gov (United States)

    Lulla, Kamlesh P.; Helfert, Michael; Amsbury, David; Pitts, David; Jaklitch, Pat; Wilkinson, Justin; Evans, Cynthia; Ackleson, Steve; Helms, David; Chambers, Mark

    1993-01-01

    The noteworthy imagery acquired during Space Shuttle Mission STS-42 is documented. Attention is given to frozen Tibetan lakes, Merapi Volcano in Java, Mt. Pinatubo in the Philippines, the coastline east of Tokyo Japan, land use in southern India, and the Indus River Delta. Observations of Kamchatka Peninsula, Lake Baikal, Moscow, Katmai National Park and Mt. Augustine, Alaska, the Alaskan coast by the Bering Sea, snow-covered New York, the Rhone River valley, the Strait of Gibraltar, and Mt. Ararat, Turkey, are also reported.

  7. Hubble Space Telescope-NICMOS Observations of M31'S Metal-Rich Globular Clusters and Their Surrounding Fields. I. Techniques

    Science.gov (United States)

    Stephens, Andrew W.; Frogel, Jay A.; Freedman, Wendy; Gallart, Carme; Jablonka, Pascale; Ortolani, Sergio; Renzini, Alvio; Rich, R. Michael; Davies, Roger

    2001-05-01

    Astronomers are always anxious to push their observations to the limit-basing results on objects at the detection threshold, spectral features barely stronger than the noise, or photometry in very crowded regions. In this paper we present a careful analysis of photometry in crowded regions and show how image blending affects the results and interpretation of such data. Although this analysis is specifically for our NICMOS observations in M31, the techniques we develop can be applied to any imaging data taken in crowded fields; we show how the effects of image blending will limit even the Next Generation Space Telescope. We have obtained HST-NICMOS observations of five of M31's most metal-rich globular clusters. These data allow photometry of individual stars in the clusters and their surrounding fields. However, to achieve our goals-obtain accurate luminosity functions to compare with their Galactic counterparts, determine metallicities from the slope of the giant branch, identify long-period variables, and estimate ages from the AGB tip luminosity-we must be able to disentangle the true properties of the population from the observational effects associated with measurements made in very crowded fields. We thus use three different techniques to analyze the effects of crowding on our data, including the insertion of artificial stars (traditional completeness tests) and the creation of completely artificial clusters. These computer simulations are used to derive threshold- and critical-blending radii for each cluster, which determine how close to the cluster center reliable photometry can be achieved. The simulations also allow us to quantify and correct for the effects of blending on the slope and width of the RGB at different surface brightness levels. We then use these results to estimate the limits blending will place on future space-based observations. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science

  8. Observations and Modeling of Coseismic and Postseismic Deformation Due To the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    Science.gov (United States)

    Wang, Kang; Fialko, Yuri

    2018-01-01

    We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to ˜70 mm over ˜20 months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2 years).

  9. EPOS-GNSS - Improving the infrastructure for GNSS data and products in Europe

    Science.gov (United States)

    Fernandes, Rui; Bos, Machiel; Bruyninx, Carine; Crocker, Paul; Dousa, Jan; Socquet, Anne; Walpersdorf, Andrea; Avallone, Antonio; Ganas, Athanassios; Gunnar, Benedikt; Ionescu, Constantin; Kenyeres, Ambrus; Ozener, Haluk; Vergnolle, Mathilde; Lidberg, Martin; Liwosz, Tomek; Soehne, Wolfgang

    2017-04-01

    EPOS-IP WP10 - "GNSS Data & Products" is the Working Package 10 of the European Plate Observing System - Implementation Phase project in charge of implementing services for the geo-sciences community to access existing Pan-European Geodetic Infrastructures. WP10 is currently formed by representatives of participating European institutions but in the operational phase contributions will be solicited from the entire geodetic community. In fact, WP10 also includes members from other institutions/countries that formally are not participating in the EPOS-IP but will be key players in the future services to be provided by EPOS. Additionally, several partners are also key partners at EUREF, which is also actively collaborating with EPOS. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate the continuous GNSS data from existing Research Infrastructures. Present efforts are on developing geodetic tools to support Solid Earth research by optimizing the existing resources. However, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit in the future from the optimization of the geodetic resources in Europe. We present and discuss the status of the implementation of the thematic and core services (TCS) for GNSS data within EPOS and the related business plan. We explain the tools and web-services being developed towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using a transparent and standardized processes. We also detail the different DDSS (Data, Data-Products, Services, Software) that will be made available for the Operational Phase of EPOS, which will start to be tested and made available during 2017 and 2018.

  10. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    Science.gov (United States)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a

  11. Momentum-space resummation for transverse observables and the Higgs p ⊥ at N3LL+NNLO

    Science.gov (United States)

    Bizoń, Wojciech; Monni, Pier Francesco; Re, Emanuele; Rottoli, Luca; Torrielli, Paolo

    2018-02-01

    We present an approach to the momentum-space resummation of global, recursively infrared and collinear safe observables that can vanish away from the Sudakov region. We focus on the hadro-production of a generic colour singlet, and we consider the class of observables that depend only upon the total transverse momentum of the radiation, prime examples being the transverse momentum of the singlet, and ϕ ∗ in Drell-Yan pair production. We derive a resummation formula valid up to next-to-next-to-next-to-leading-logarithmic accuracy for the considered class of observables. We use this result to compute state-of-the-art predictions for the Higgs-boson transverse-momentum spectrum at the LHC at next-to-next-to-next-to-leading-logarithmic accuracy matched to fixed next-to-next-to-leading order. Our resummation formula reduces exactly to the customary resummation performed in impact-parameter space in the known cases, and it also predicts the correct power-behaved scaling of the cross section in the limit of small value of the observable. We show how this formalism is efficiently implemented by means of Monte Carlo techniques in a fully exclusive generator that allows one to apply arbitrary cuts on the Born variables for any colour singlet, as well as to automatically match the resummed results to fixed-order calculations.

  12. Real-space observation of nanojet-induced modes in a chain of microspheres

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang; Wang, Po-Kai

    2014-01-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  13. Real-space observation of nanojet-induced modes in a chain of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Yang, E-mail: cyliu@mail.tku.edu.tw; Wang, Po-Kai

    2014-04-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  14. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  15. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  16. The use of satellite laser observations in studying the crustal movements

    Directory of Open Access Journals (Sweden)

    Gamal F. Attia

    2012-12-01

    Full Text Available The mutual tectonic displacements of the lithospheric blocks take place within the deep fracture dividing them into hundreds and thousands kilometers long. It is possible to suggest that the reason of the accumulation of considerable local shift deformations is the change of the velocity of the tectonic motion in some or other parts of fractures as a result of different physical, chemical and mechanical processes. Nowadays, the range precision of Satellite Laser Ranging (SLR technique reaches a few millimeters level. Therefore, the space geodesy technique becomes a very important tool in detecting and monitoring recent crustal movements. Regular repeated measurements of the baselines between some stations on different plates give the possibility to construct precise and detail models of crustal movements. In this paper, the length of four baselines between Helwan-SLR station and other four SLR stations are calculated using satellite geodetical technique.

  17. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    KAUST Repository

    Vasyura-Bathke, Hannes

    2015-04-28

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a ‘sliding-trapdoor’ ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano\\'s western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that ‘sliding-trapdoor’ ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  18. Observational Model for Precision Astrometry with the Space Interferometry Mission

    National Research Council Canada - National Science Library

    Turyshev, Slava G; Milman, Mark H

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10-m baseline Michelson optical interferometer operating in the visible waveband that is designed to achieve astrometric accuracy in the single digits of the microarcsecond domain...

  19. Research on Optimal Observation Scale for Damaged Buildings after Earthquake Based on Optimal Feature Space

    Science.gov (United States)

    Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.

    2018-04-01

    A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.

  20. The Demonstrator for the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [www.epos.cineca.it

  1. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  2. Self-force correction to geodetic spin precession in Kerr spacetime

    Science.gov (United States)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  3. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    Science.gov (United States)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  4. Observations of electron phase-space holes driven during magnetic reconnection in a laboratory plasma

    Science.gov (United States)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.

    2012-03-01

    This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.

  5. Transferring Knowledge from a Bird's-Eye View - Earth Observation and Space Travels in Schools

    Science.gov (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Voß, Kerstin

    2014-05-01

    In spring 2014, four commercial cameras will be transported by a Dragon spacecraft to the International Space Station (ISS) and mounted to the ESA Columbus laboratory. The cameras will deliver live earth observation data from different angles. The "Columbus-Eye"* project aims at distributing the video and image data produced by those cameras through a web portal. It should primary serve as learning portal for pupils comprising teaching material around the ISS earth observation imagery. The pupils should be motivated to work with the images in order to learn about curriculum relevant topics of natural sciences. The material will be prepared based on the experiences of the FIS* (German abbreviation for "Remote Sensing in Schools") project and its learning portal. Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 5 years since FIS' kickoff. The talk presents the educational valorization of remote sensing data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of remote sensing holds ready for teaching the regular curricula of Geography, Biology, Physics, Math and Informatics. Beside the sequenced implementation into digital and interactive teaching units, examples of a richly illustrated encyclopedia as well as easy-to-use image processing tools are given. The presentation finally addresses the question of how synergies of space travels can be used to enhance the fascination of earth observation imagery in the light of problem-based learning in everyday school lessons.

  6. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    Science.gov (United States)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  7. Space Telescope and Optical Reverberation Mapping Project.I. Ultraviolet Observations of the Seyfert 1 Galaxy NGC 5548 with the Cosmic Origins Spectrograph on Hubble Space Telescope

    NARCIS (Netherlands)

    De Rosa, G.; Peterson, B.M.; Ely, J.; Kriss, G.A.; Crenshaw, D.M.; Horne, K.; Korista, K.T.; Netzer, H.; Pogge, R.W.; Arévalo, P.; Barth, A.J.; Bentz, M.C.; Brandt, W.N.; Breeveld, A.A.; Brewer, B.J.; Dalla Bontà, E.; De Lorenzo-Cáceres, A.; Denney, K.D.; Dietrich, M.; Edelson, R.; Evans, P.A.; Fausnaugh, M.M.; Gehrels, N.; Gelbord, J.M.; Goad, M.R.; Grier, C.J.; Grupe, D.; Hall, P.B.; Kaastra, J.; Kelly, B.C.; Kennea, J.A.; Kochanek, C.S.; Lira, P.; Mathur, S.; McHardy, I.M.; Nousek, J.A.; Pancoast, A.; Papadakis, I.; Pei, L.; Schimoia, J.S.; Siegel, M.; Starkey, D.; Treu, T.; Uttley, P.; Vaughan, S.; Vestergaard, M.; Villforth, C.; Yan, H.; Young, S.; Zu, Y.

    2015-01-01

    We describe the first results from a six-month long reverberation-mapping experiment in the ultraviolet based on 171 observations of the Seyfert 1 galaxy NGC 5548 with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Significant correlated variability is found in the continuum and

  8. Source parameters for the 1952 Kern County earthquake, California: A joint inversion of leveling and triangulation observations

    OpenAIRE

    Bawden, Gerald W.

    2001-01-01

    Coseismic leveling and triangulation observations are used to determine the faulting geometry and slip distribution of the July 21, 1952, Mw 7.3 Kern County earthquake on the White Wolf fault. A singular value decomposition inversion is used to assess the ability of the geodetic network to resolve slip along a multisegment fault and shows that the network is sufficient to resolve slip along the surface rupture to a depth of 10 km. Below 10 km, the network can only resolve dip slip near the fa...

  9. Gender-sensitive observations in public spaces as a teaching tool

    NARCIS (Netherlands)

    Droogleever Fortuijn, J.

    2009-01-01

    Public spaces can be seen as arenas where gendered social roles, relations and identities are (re)produced, represented and contested. Because of their (assumed) public character - crowded, open, accessible and visible - these spaces are extremely useful as «observatories» for teaching and learning

  10. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Science.gov (United States)

    Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  11. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    Science.gov (United States)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  12. Magnetospheric Multiscale (MMS) Observation of Plasma Velocity-Space Cascade Processes

    Science.gov (United States)

    Parashar, T. N.; Servidio, S.; Matthaeus, W. H.; Chasapis, A.; Perrone, D.; Valentini, F.; Veltri, P.; Gershman, D. J.; Schwartz, S. J.; Giles, B. L.; Fuselier, S. A.; Phan, T.; Burch, J.

    2017-12-01

    Plasma turbulence is investigated using high-resolution ion velocity distributions, measured by theMagnetospheric Multiscale Mission (MMS) in the Earth's magnetosheath. The particle distributionmanifests large fluctuations, suggesting a cascade-like process in velocity space, invoked by theoristsfor many years. This complex velocity space structure is investigated using a three-dimensional Hermitetransform that reveals a power law distribution of moments. A Kolmogorov approach leads directlyto a range of predictions for this phase-space cascade. The scaling theory is in agreement withobservations, suggesting a new path for the study of plasma turbulence in weakly collisional spaceand astrophysical plasmas.

  13. The RMI Space Weather and Navigation Systems (SWANS) Project

    Science.gov (United States)

    Warnant, Rene; Lejeune, Sandrine; Wautelet, Gilles; Spits, Justine; Stegen, Koen; Stankov, Stan

    The SWANS (Space Weather and Navigation Systems) research and development project (http://swans.meteo.be) is an initiative of the Royal Meteorological Institute (RMI) under the auspices of the Belgian Solar-Terrestrial Centre of Excellence (STCE). The RMI SWANS objectives are: research on space weather and its effects on GNSS applications; permanent mon-itoring of the local/regional geomagnetic and ionospheric activity; and development/operation of relevant nowcast, forecast, and alert services to help professional GNSS/GALILEO users in mitigating space weather effects. Several SWANS developments have already been implemented and available for use. The K-LOGIC (Local Operational Geomagnetic Index K Calculation) system is a nowcast system based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, and calculating the local geomagnetic K index. Simultaneously, the planetary Kp index is estimated from solar wind measurements, thus adding to the service reliability and providing forecast capabilities as well. A novel hybrid empirical model, based on these ground-and space-based observations, has been implemented for nowcasting and forecasting the geomagnetic index, issuing also alerts whenever storm-level activity is indicated. A very important feature of the nowcast/forecast system is the strict control on the data input and processing, allowing for an immediate assessment of the output quality. The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution. A key module is the real-time estimation of the ionospheric slab thickness, offering additional infor-mation on the local ionospheric dynamics. The RTK (Real Time Kinematic) status mapping provides a quick look at the small-scale ionospheric effects on the RTK

  14. Probing Very Bright End of Galaxy Luminosity Function at z >~ 7 Using Hubble Space Telescope Pure Parallel Observations

    Science.gov (United States)

    Yan, Haojing; Yan, Lin; Zamojski, Michel A.; Windhorst, Rogier A.; McCarthy, Patrick J.; Fan, Xiaohui; Röttgering, Huub J. A.; Koekemoer, Anton M.; Robertson, Brant E.; Davé, Romeel; Cai, Zheng

    2011-02-01

    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 arcmin2 in total area. We have found three bright Y 098-dropouts, which are candidate galaxies at z >~ 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date (L>2L*). Such very luminous objects could be the progenitors of the high-mass Lyman break galaxies observed at lower redshifts (up to z ~ 5). While our sample is still limited in size, it is much less subject to the uncertainty caused by "cosmic variance" than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z ≈ 7.4 is not well explained by the current luminosity function (LF) estimates at z ≈ 8. However, its inferred surface density could be explained by the prediction from the LFs at z ≈ 7 if it belongs to the high-redshift tail of the galaxy population at z ≈ 7. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11700 and 11702.

  15. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  16. Sentinel-2: next generation satellites for optical land observation from space

    Science.gov (United States)

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  17. Earth Observation from the International Space Station -Remote Sensing in Schools-

    Science.gov (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  18. Topological inversion for solution of geodesy-constrained geophysical problems

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2015-04-01

    Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a

  19. LOD estimation from DORIS observations

    Science.gov (United States)

    Stepanek, Petr; Filler, Vratislav; Buday, Michal; Hugentobler, Urs

    2016-04-01

    The difference between astronomically determined duration of the day and 86400 seconds is called length of day (LOD). The LOD could be also understood as the daily rate of the difference between the Universal Time UT1, based on the Earth rotation, and the International Atomic Time TAI. The LOD is estimated using various Satellite Geodesy techniques as GNSS and SLR, while absolute UT1-TAI difference is precisely determined by VLBI. Contrary to other IERS techniques, the LOD estimation using DORIS (Doppler Orbitography and Radiopositioning Integrated by satellite) measurement did not achieve a geodetic accuracy in the past, reaching the precision at the level of several ms per day. However, recent experiments performed by IDS (International DORIS Service) analysis centre at Geodetic Observatory Pecny show a possibility to reach accuracy around 0.1 ms per day, when not adjusting the cross-track harmonics in the Satellite orbit model. The paper presents the long term LOD series determined from the DORIS solutions. The series are compared with C04 as the reference. Results are discussed in the context of accuracy achieved with GNSS and SLR. Besides the multi-satellite DORIS solutions, also the LOD series from the individual DORIS satellite solutions are analysed.

  20. Characterizing the Trade Space Between Capability and Complexity in Next Generation Cloud and Precipitation Observing Systems Using Markov Chain Monte Carlos Techniques

    Science.gov (United States)

    Xu, Z.; Mace, G. G.; Posselt, D. J.

    2017-12-01

    As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.

  1. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Ochałek Agnieszka

    2018-01-01

    Full Text Available The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements – an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  2. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    Science.gov (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  3. Characteristics and limitations of GPS L1 observations from submerged antennas - Theoretical investigation in snow, ice, and freshwater and practical observations within a freshwater layer

    Science.gov (United States)

    Steiner, Ladina; Meindl, Michael; Geiger, Alain

    2018-05-01

    Observations from a submerged GNSS antenna underneath a snowpack need to be analyzed to investigate its potential for snowpack characterization. The magnitude of the main interaction processes involved in the GPS L1 signal propagation through different layers of snow, ice, or freshwater is examined theoretically in the present paper. For this purpose, the GPS signal penetration depth, attenuation, reflection, refraction as well as the excess path length are theoretically investigated. Liquid water exerts the largest influence on GPS signal propagation through a snowpack. An experiment is thus set up with a submerged geodetic GPS antenna to investigate the influence of liquid water on the GPS observations. The experimental results correspond well with theory and show that the GPS signal penetrates the liquid water up to three centimeters. The error in the height component due to the signal propagation delay in water can be corrected with a newly derived model. The water level above the submerged antenna could also be estimated.

  4. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  5. Relative-locality distant observers and the phenomenology of momentum-space geometry

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Rosati, Giacomo; Trevisan, Gabriele; Arzano, Michele; Kowalski-Glikman, Jerzy

    2012-01-01

    We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincare-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincare connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source. (paper)

  6. Relative-locality distant observers and the phenomenology of momentum-space geometry

    Science.gov (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele; Kowalski-Glikman, Jerzy; Rosati, Giacomo; Trevisan, Gabriele

    2012-04-01

    We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincaré-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincaré connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source.

  7. SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Lee, C.-U.; Gould, A.; Chung, S.-J.; Kim, S.-L.; Cha, S.-M. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Bozza, V. [Dipartimento di Fisica “E. R. Caianiello”, Uńiversitá di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Albrow, M. D. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch 8020 (New Zealand); Jung, Y. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138 (United States); Collaboration: OGLE Collaboration; KMTNet Collaboration; and others

    2016-08-10

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enabling us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  8. The study of three-dimensional net method of deformation observation

    International Nuclear Information System (INIS)

    Jia Jinyun

    1996-12-01

    Due to the influence of all kinds of factors, when buildings and equipment of nuclear power stations, water power stations and so on are in their service, deformations always happen to them. Especially, the breakage, the slide of edge danger rocks and basic displacement in the area of nuclear power station site can all interfere its regular operation, even endanger safety. But the traditional trigonometric net control can not obtain high precise deformation observation. So, topographic balanced vertical deviations are applied. The slope distance is divided rationally into horizontal and vertical components, then the precise vertical component is used to participate in restricting the deflection in order to enhance the observation post's precision. Meanwhile, the element model is selected, high precise monitoring net of three-dimensional deformation is set up, using astro-geodetic deflection of the vertical to correct the observation values. In this way, the earth error of height is given, the plane coordinate is defined by paralleling some plane of reference ellipsoid. This method may satisfy the deformation observation in the projects such as nuclear power stations or so. (8 figs., 5 tabs.)

  9. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    Science.gov (United States)

    Azzouzi, R.

    2009-04-01

    Western Mediterranean and especially on Morocco. Exploiting parameters of positions and dispersions of these stations within the 1997-2003 period, the motion and the interaction types of interaction between African and Eurasian tectonic plates can be estimated. Similarly, the crustal dynamic parameters of tension of these sites will be computed. The time occupation on repeated observations sites is at least 72 hours. The measurements are continuous on permanent stations. The precise ephemerides are used in GPS computations. The post-treatments are done using commercial and scientific softwares. The coordinates obtained for two consecutive periods to and t within a period of 8 years will be used by programs established for this purpose to estimate crustal dynamic parameters of tension as well as to evaluate the appropriate movements. Even crustal dynamic parameters will be determined on each sites of the GPS-Geodynamics network, whose interest of seismic investigations is very important. This will allow best knowledge of substantial seismic activities of the surrounding zones. It can be deduced by measuring the motions and their parameter tensions using GPS. These estimations will contribute on the earthquake prediction by supervising the strain accumulation and its release in the active areas. For the geodetically aspect the GPS-Geodynamics sites computed in the ITRF frame can be used with other similar ounces' of Africa country and some well selected and convenient IGS, EUREF stations..to determine first the NAFREF and the AFRER frames.

  10. Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?

    International Nuclear Information System (INIS)

    Ansmann, Albert

    2006-01-01

    Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground stations can deliver the same results as obtained from space when the Klett formalism is applied to elastic backscatter lidar data for the same aerosol case. This question is investigated based on simulations of observed cases of simple and complex aerosol layering. The results show that the differences between spaceborne and ground-based observations can be as large as20% for the backscatter and extinction coefficients and the optimum estimates of the column lidar ratios. In cases with complex aerosol layering, the application of the two-layer approach can lead to similar results (space, ground) and accurate products provided that horizontally homogeneous aerosol conditions are given

  11. Geodetic proof of vertical recent movements at the seism generating zone of Acambay, Mexico

    Directory of Open Access Journals (Sweden)

    Luis Miguel Espinosa-Rodríguez

    2016-12-01

    Full Text Available The central territorial belt oriented west-east and located along the parallel 19 in the Mexican Republic, is composed of a complex system of faults, that respond to the consequent morphology of a tension arched system, which has been erected to the Volcanic Transmexican or Transversal Belt. This region evidences the dynamics and evolution of a graben and horst tectonic system, as well as volcanic manifestations characterized by stratovolcanoes, monogenetic fields and fisural flows, among others. In particular, in the center of the Mexican regional complex, the fault system which delimits the region of Acambay in the state of Mexico, had showed evidences of seismogenerating activity during a century until the present time. According to the above and based on the geomorphological analysis and the geodetic measurements, the dynamic presented by these morphostructures in a multitemporal comparative study (1998/2003 o 2011 is showed. The rates of vertical tectonic movements reflect recent rise values ranging from + 7,3 to 12,8 mm/year in the northern horst of Santa María Tixmadejé, while in the central graben of Acambay are very weak, of the order of + 0,4 to + 0,5 mm/year.

  12. Observational modeling of topological spaces

    International Nuclear Information System (INIS)

    Molaei, M.R.

    2009-01-01

    In this paper a model for a multi-dimensional observer by using of the fuzzy theory is presented. Relative form of Tychonoff theorem is proved. The notion of topological entropy is extended. The persistence of relative topological entropy under relative conjugate relation is proved.

  13. Geodetic Control Points, Chippewa County has been working on tightening up their control network over the years. The first network was constructed in 1993, with densification done from 2008-2011., Published in 2011, Not Applicable scale, Chippewa County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Geodetic Control Points dataset current as of 2011. Chippewa County has been working on tightening up their control network over the years. The first network was...

  14. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy...... Telescope images appear to lie on the stellar field of a host galaxy, and as the large H I column density measured here and in later ground-based observations is unlikely on a random line of sight, we believe we are probably seeing absorption from H I in the host galaxy. In any case, this represents...

  15. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  16. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    Science.gov (United States)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  17. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  18. Observations of strain accumulation across the san andreas fault near palmdale, california, with a two-color geodimeter.

    Science.gov (United States)

    Langbein, J O; Linker, M F; McGarr, A; Slater, L E

    1982-12-17

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized.

  19. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    Science.gov (United States)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  20. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity

    Science.gov (United States)

    Chao, Ben F.; Cox, C. M.

    2005-01-01

    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  1. Geodetic constraints on continental rifting along the Red Sea

    Science.gov (United States)

    Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.

    2006-12-01

    We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that

  2. OGLE-2015-BLG-0479LA,B: BINARY GRAVITATIONAL MICROLENS CHARACTERIZED BY SIMULTANEOUS GROUND-BASED AND SPACE-BASED OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Udalski, A.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Gould, A.; Zhu, Wei; Fausnaugh, M.; Gaudi, B. S.; Wibking, B. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Street, R. A. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Yee, J. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beichman, C.; Novati, S. Calchi [NASA Exoplanet Science Institute, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Bryden, C.; Henderson, Calen B.; Shvartzvald, Y. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. [Spitzer Science Center, MS 220-6, California Institute of Technology, Pasadena, CA (United States); Collaboration: (The Spitzer Microlensing Team; (The OGLE Collaboration; (The RoboNet collaboration; (The MiNDSTEp Consortium; (The μ FUN Collaboration; and others

    2016-09-01

    We present a combined analysis of the observations of the gravitational microlensing event OGLE-2015-BLG-0479 taken both from the ground and by the Spitzer Space Telescope . The light curves seen from the ground and from space exhibit a time offset of ∼13 days between the caustic spikes, indicating that the relative lens-source positions seen from the two places are displaced by parallax effects. From modeling the light curves, we measure the space-based microlens parallax. Combined with the angular Einstein radius measured by analyzing the caustic crossings, we determine the mass and distance of the lens. We find that the lens is a binary composed of two G-type stars with masses of ∼1.0 M {sub ⊙} and ∼0.9 M {sub ⊙} located at a distance of ∼3 kpc. In addition, we are able to constrain the complete orbital parameters of the lens thanks to the precise measurement of the microlens parallax derived from the joint analysis. In contrast to the binary event OGLE-2014-BLG-1050, which was also observed by Spitzer, we find that the interpretation of OGLE-2015-BLG-0479 does not suffer from the degeneracy between (±, ±) and (±, ∓) solutions, confirming that the four-fold parallax degeneracy in single-lens events collapses into the two-fold degeneracy for the general case of binary-lens events. The location of the blend in the color–magnitude diagram is consistent with the lens properties, suggesting that the blend is the lens itself. The blend is bright enough for spectroscopy and thus this possibility can be checked from future follow-up observations.

  3. Determining astronomical seeing conditions at Matjiesfontein by optical and turbulence methods

    Energy Technology Data Exchange (ETDEWEB)

    Nickola, M [Hartebeesthoek Radio Astronomy Observatory (HartRAO) Space Geodesy Programme, PO Box 443, Krugersdorp 1740 (South Africa); Esau, I [G.C. Rieber Climate Institute of the Nansen Environmental and Remote Sensing Center (NERSC), Thoermohlensgate 47, N-5006 Bergen (Norway); Djolov, G [University of Pretoria, Department of Geography, Geoinformatics and Meteorology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002 (South Africa)

    2010-08-15

    Matjiesfontein in the Karoo has been proposed as a suitable location for a new fundamental space geodetic observatory. On-site geodetic equipment will include a Lunar Laser Ranger (LLR). LLR requires sub-arcsecond optical seeing conditions for delivery of high quality and quantity data. Seeing conditions at the Matjiesfontein site will be evaluated by making use of an automated seeing monitor and by modelling atmospheric turbulence with Large Eddy Simulation Nansen Center Improved Code (LESNIC).

  4. Research Article. Geodesic equations and their numerical solutions in geodetic and Cartesian coordinates on an oblate spheroid

    Directory of Open Access Journals (Sweden)

    Panou G.

    2017-02-01

    Full Text Available The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically using both geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not used for the solution but it is computed, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished.

  5. The contribution of the Volcano Observations Work Package to the implementation of the European Plate Observing System

    Science.gov (United States)

    Puglisi, Giuseppe

    2016-04-01

    The overall aim of the implementation phase of European Plate Observing System (EPOS) is to make the integrated platform operational in order to guarantee seamless access to the data provided by the European Solid Earth communities. The Volcano Observations Work Package (WP11) contributes to this objective by implementing a Thematic Core Service (TCS) which is planned to give access to the data and services provided by the European Volcano Observatories (VO) and some Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.). Both types are considered as national research infrastructures (RI) which the TCS will integrate. Currently, monitoring networks on European volcanoes consist of thousands of stations or sites where volcanological parameters are continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), as well as various prototypal monitoring systems (e.g. Doppler radars, ground based SAR). Across Europe several laboratories provide sample characterization (rocks, gases, isotopes, etc.), quasi-continuous analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing facilities. All these RIs provide high-quality information (observations) on the current status of European volcanoes and the geodynamic background of the surrounding areas. The implementation of the Volcano Observations TCS will address technical as well as managerial issues, both considering the current heterogeneous state-of-the-art of the volcanological research infrastructures in Europe. Indeed, the current arrangement of individual VO and VRI is considered too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort in the framework of the EPOS

  6. Earth observations during Space Shuttle mission STS-45 Mission to Planet Earth - March 24-April 2, 1992

    Science.gov (United States)

    Pitts, David E.; Helfert, Michael R.; Lulla, Kamlesh P.; Mckay, Mary F.; Whitehead, Victor S.; Amsbury, David L.; Bremer, Jeffrey; Ackleson, Steven G.; Evans, Cynthia A.; Wilkinson, M. J.

    1992-01-01

    A description is presented of the activities and results of the Space Shuttle mission STS-45, known as the Mission to Planet Earth. Observations of Mount St. Helens, Manila Bay and Mt. Pinatubo, the Great Salt Lake, the Aral Sea, and the Siberian cities of Troitsk and Kuybyshev are examined. The geological features and effects of human activity seen in photographs of these areas are pointed out.

  7. Acceleration of H, He, and heavy ions observed in the magnetosheath, magnetotail, and near-by interplanetary space

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.; Hovestadt, D.

    1975-01-01

    Pulses of electrons and ions composed of H, He, and heavier elements were observed in the magnetosheath, magnetotail, and near-by interplanetary space. From the spatial positions where these particles were detected and the ion flow directions we conclude that they were accelerated at the bow shock near the sub-solar point and in the near-earth region of the neutral sheet of the magnetotail. (orig.) [de

  8. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    Science.gov (United States)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they moved

  9. Toward Microsatellite Based Space Situational Awareness

    Science.gov (United States)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments

  10. Extending Supernova Spectral Templates for Next Generation Space Telescope Observations

    Science.gov (United States)

    Roberts-Pierel, Justin; Rodney, Steven A.; Steven Rodney

    2018-01-01

    Widely used empirical supernova (SN) Spectral Energy Distributions (SEDs) have not historically extended meaningfully into the ultraviolet (UV), or the infrared (IR). However, both are critical for current and future aspects of SN research including UV spectra as probes of poorly understood SN Ia physical properties, and expanding our view of the universe with high-redshift James Webb Space Telescope (JWST) IR observations. We therefore present a comprehensive set of SN SED templates that have been extended into the UV and IR, as well as an open-source software package written in Python that enables a user to generate their own extrapolated SEDs. We have taken a sampling of core-collapse (CC) and Type Ia SNe to get a time-dependent distribution of UV and IR colors (U-B,r’-[JHK]), and then generated color curves are used to extrapolate SEDs into the UV and IR. The SED extrapolation process is now easily duplicated using a user’s own data and parameters via our open-source Python package: SNSEDextend. This work develops the tools necessary to explore the JWST’s ability to discriminate between CC and Type Ia SNe, as well as provides a repository of SN SEDs that will be invaluable to future JWST and WFIRST SN studies.

  11. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    Science.gov (United States)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  12. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input

  13. Comparing observer models and feature selection methods for a task-based statistical assessment of digital breast tomsynthesis in reconstruction space

    Science.gov (United States)

    Park, Subok; Zhang, George Z.; Zeng, Rongping; Myers, Kyle J.

    2014-03-01

    A task-based assessment of image quality1 for digital breast tomosynthesis (DBT) can be done in either the projected or reconstructed data space. As the choice of observer models and feature selection methods can vary depending on the type of task and data statistics, we previously investigated the performance of two channelized- Hotelling observer models in conjunction with 2D Laguerre-Gauss (LG) and two implementations of partial least squares (PLS) channels along with that of the Hotelling observer in binary detection tasks involving DBT projections.2, 3 The difference in these observers lies in how the spatial correlation in DBT angular projections is incorporated in the observer's strategy to perform the given task. In the current work, we extend our method to the reconstructed data space of DBT. We investigate how various model observers including the aforementioned compare for performing the binary detection of a spherical signal embedded in structured breast phantoms with the use of DBT slices reconstructed via filtered back projection. We explore how well the model observers incorporate the spatial correlation between different numbers of reconstructed DBT slices while varying the number of projections. For this, relatively small and large scan angles (24° and 96°) are used for comparison. Our results indicate that 1) given a particular scan angle, the number of projections needed to achieve the best performance for each observer is similar across all observer/channel combinations, i.e., Np = 25 for scan angle 96° and Np = 13 for scan angle 24°, and 2) given these sufficient numbers of projections, the number of slices for each observer to achieve the best performance differs depending on the channel/observer types, which is more pronounced in the narrow scan angle case.

  14. How to spy on your neighbor's water consumption from space

    Science.gov (United States)

    Neely, W.; Borsa, A. A.; Burney, J. A.

    2017-12-01

    Dependence on groundwater has increased in the agricultural production regions of California's Central Valley due to recent and persistent droughts. To protect the long-term reliability of groundwater resources in California, the state passed the Sustainable Groundwater Management Act (SGMA) in September 2014. In situ observation of subsurface reservoir levels is ideal for monitoring aquifer health at a water district scale, but is limited by the low density of monitoring wells and temporal gaps between measurements. An alternative to well measurements relies on the fact that groundwater extraction may lead to surface subsidence due to the compaction of the aquifer at depth. Such surface displacements can be resolved using geodetic techniques. We present an integrative approach using Interferometric Synthetic Aperture Radar (InSAR) and continuous Global Positioning System (cGPS) station observations to characterize surface deformation related to extensive pumping at a farm-level resolution every 12-24 days. We demonstrate our technique in the southern Central Valley where we observe subsidence upwards of 25 cm/yr from late 2014 to early 2017. Our methods offer an inexpensive supplement to in situ measurements that allows for the detection and deterrence of water mismanagement.

  15. 'The End of Sitting' in a public space: observations of spontaneous visitors.

    Science.gov (United States)

    Renaud, Lidewij R; Huysmans, Maaike A; Speklé, Erwin M; van der Beek, Allard J; van der Ploeg, Hidde P

    2017-12-08

    Sitting too much has been associated with negative health outcomes. 'The End of Sitting' is a newly developed office landscape that moves away from the traditional chair-desk setup. The landscape aims to reduce sitting time by offering a variety of (supported) standing positions. The aim of this study was to determine the usage of the landscape after being placed in the main entrance hall of the VU University in Amsterdam. We observed the number of spontaneous visitors as well as the duration of visits, changes to another location within the landscape, and adopted postures. Using questionnaires reasons (not) to visit the landscape, perceived affordances of the landscape and associations with long-term use were determined. Observed numbers of visitors were relatively low and duration of visits were short, which seemed to indicate visitors were trying out the landscape. The majority of visitors were in an upright position, reflecting the designers' intentions. Visitors indicated that long-term use would be pleasant to them. 'The End of Sitting' landscape received positive reactions but number of visits were limited in the few months that it was placed in the university main entrance hall. The landscape might be better suited for designated working or study spaces, for which it was originally intended. It might also be worth to explore the landscapes suitability for short stay environments, such as waiting rooms.

  16. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  17. UPDATED ANALYSIS OF THE UPWIND INTERPLANETARY HYDROGEN VELOCITY AS OBSERVED BY THE HUBBLE SPACE TELESCOPE DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Vincent, Frederic E.; Ben-Jaffel, Lotfi; Harris, Walter M.

    2011-01-01

    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the incoming ISM-ionized component deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. While current models of the heliospheric interface predict the observed IPH velocity for solar maximum, they are not consistent with data covering solar minimum. With updates to the HST data points, we now find that all data can be fit by the existing models to within 1σ, with the exception of SWAN observations taken at solar minimum (1997/1998). We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed characteristics of the solar cycle dependence. Hence, new observations are merited.

  18. Contribution of GNSS CORS Infrastructure to the Mission of Modern Geodesy and Status of GNSS CORS in Thailand

    Directory of Open Access Journals (Sweden)

    Chalermchon Satirapod

    2011-01-01

    Full Text Available Geodesy is the science of measuring and mapping the geometry, orientation and gravity field of the Earth including the associated variations with time. Geodesy has also provided the foundation for high accuracy surveying and mapping. Modern Geodesy involves a range of space and terrestrial technologies that contribute to our knowledge of the solid earth, atmosphere and oceans. These technologies include: Global Positioning System/Global Navigation Satellite Systems (GPS/GNSS, Satellite Laser Ranging (SLR, Very Long Baseline Interferometry (VLBI, Satellite Altimetry, Gravity Mapping Missions such as GRACE, CHAMP and GOCE, satelliteborne Differential Interferometric Synthetic Aperture Radar (DInSAR, Absolute and Relative Gravimetry, and Precise Terrestrial Surveying (Levelling and Traversing. A variety of services have been established in recent years to ensure high accuracy and reliable geodetic products to support geoscientific research. The reference frame defined by Modern Geodesy is now the basis for most national and regional datums. Furthermore, the GPS/GNSS technology is a crucial geopositioning tool for both Geodesy and Surveying. There is therefore a blurring of the distinction between geodetic and surveying GPS/GNSS techniques, and increasingly the ground infrastructure of continuously operating reference stations (CORS receivers attempts to address the needs of both geodesists and other positioning professionals. Yet Geodesy is also striving to increase the level of accuracy by a factor of ten over the next decade in order to address the demands of “global change” studies. The Global Geodetic Observing System (GGOS is an important component of the International Association of Geodesy. GGOS aims to integrate all geodetic observations in order to generate a consistent high quality set of geodetic parameters for monitoring the phenomena and processes within the “System Earth”. Integration implies the inclusion of all relevant

  19. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  20. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    Science.gov (United States)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  1. An Astrosocial Observation: The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca L.

    2007-01-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  2. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-07-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. We briefly discuss the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Author)

  3. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  4. LONG-TERM STABILITY OF THE LOCAL GROUND CONTROL NETWORK AT THE CO-LOCATION SITE OF MEDICINA

    Science.gov (United States)

    Abbondanza, C.; Sarti, P.; Legrand, J.

    2009-12-01

    ITRF combinations rely on the availability of accurate tie vectors linking reference points of space geodetic techniques. Co-located instruments are assumed to move consistently and no local relative motion is taken into account. Instabilities may degrade the quality of the co-location itself and perturb the result of ITRF combinations. This work aims to determine the stability of the local ground control network at Medicina (Italy) with independent surveying methods. The observatory hosts a co-location between a VLBI telescope and two GPS antennas, MEDI and MSEL. It is located in the Po Plain where thick layers of clays are the prevalent soil characteristics. Hence, provision of long term stability of geodetic monuments is a challenge and monitoring their stability is an issue. MEDI and the VLBI station regularly contribute to the determination of ITRF, while MSEL is part of the EUREF network. A set of five tie vectors observations linking the VLBI and MEDI reference points was acquired between 2001 and 2007. It is our main tool for performing local deformation analysis. Additionally, the GPS time series of MEDI and MSEL were used to cross check and confirm the local instability detected by terrestrial methods. To achieve a rigorous and reliable investigation of the local stability, multi-epoch terrestrial observations were homogeneously processed according to common parameterizations in a consistent reference frame. Similarly, continuous GPS observations from MEDI and MSEL were analysed according to the new EPN reprocessing strategy in order to monitor the short baseline between MEDI and MSEL; to spotlight any change in its length. Both approaches confirm differential motions at the site which can be related to monument instabilities originated by the particularly unfavourable local geological setting and the inapt design of the monuments foundation. The monuments move non homogeneously at rates reaching up to 1.6 mm/year, this value being comparable to intra

  5. Observer-dependent quantum vacua in curved space

    International Nuclear Information System (INIS)

    Castagnino, M.; Ferraro, R.

    1986-01-01

    An observer-dependent Hamiltonian is introduced. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which result to be equivalent criteria. This method encompasses a great number of known vacuum definitions, and works in an arbitrary geometry if the observer's field satisfies certain properties

  6. Numerical Identification of Multiparameters in the Space Fractional Advection Dispersion Equation by Final Observations

    Directory of Open Access Journals (Sweden)

    Dali Zhang

    2012-01-01

    Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.

  7. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki,  Maximillian; Jonsson, Sigurjon

    2015-01-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking

  8. PHOTOMETRIC OBSERVATIONS OF SELECTED, OPTICALLY BRIGHT QUASARS FOR SPACE INTERFEROMETRY MISSION AND OTHER FUTURE CELESTIAL REFERENCE FRAMES

    International Nuclear Information System (INIS)

    Ojha, Roopesh; Zacharias, Norbert; Hennessy, Gregory S.; Gaume, Ralph A.; Johnston, Kenneth J.

    2009-01-01

    Photometric observations of 235 extragalactic objects that are potential targets for the Space Interferometry Mission (SIM) are presented. Mean B, V, R, I magnitudes at the 5% level are obtained at 1-4 epochs between 2005 and 2007 using the 1 m telescopes at Cerro Tololo Inter-American Observatory and the Naval Observatory Flagstaff Station. Of the 134 sources that have V magnitudes in the Veron and Veron-Cetty catalog, a difference of over 1.0 mag is found for the observed-catalog magnitudes for about 36% of the common sources, and 10 sources show over 3 mag difference. Our first set of observations presented here form the basis of a long-term photometric variability study of the selected reference frame sources to assist in mission target selection and to support QSO multicolor photometric variability studies in general.

  9. An Approach to Assess Observation Impact Based on Observation-Minus-Forecast Residuals

    Science.gov (United States)

    Todling, Ricardo

    2009-01-01

    Langland and Baker (2004) introduced an approach to assess the impact of observations on the forecasts. In that, a state-space aspect of the forecast is defined and a procedure is derived that relates changes in the aspect with changes in the initial conditions associated with the assimilation of observations) ultimately providing information about the impact of individual observations on the forecast. Some features of the approach are to be noted. The typical choice of forecast aspect employed in related works is rather arbitrary and leads to an incomplete assessment of the observing system. Furthermore, the state-space forecast aspect requires availability of a verification state that should ideally be uncorrelated with the forecast but in practice is not. Lastly, the approach involves the adjoint operator of the entire data assimilation system and as such it is constrained by the validity of this operator. In this presentation, an observation-space metric is used that, for a relatively time-homogeneous observing system, allows inferring observation impact on the forecast without some of the limitations above. Specifically, using observation-minus-forecast residuals leads to an approach with the following features: (i) it suggests a rather natural choice of forecast aspect, directly linked to the analysis system and providing full assessment of the observations; (ii) it naturally avoids introducing undesirable correlations in the forecast aspect by verifying against the observations; and (iii) it does not involve linearization and use of adjoints; therefore being applicable to any length of forecast. The state and observation-space approaches might be complementary to some degree, and involve different limitations and complexities. Illustrations are given using the NASA GEOS-5 data.

  10. European Plate Observing System - Norway (EPOS-N): A National Consortium for the Norwegian Implementation of EPOS

    Science.gov (United States)

    Atakan, Kuvvet; Tellefsen, Karen

    2017-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Science: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS-Norway is therefore in line with the European vision of EPOS, i.e. monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures for solid Earth science. The EPOS-Norway project started in January 2016 with a national consortium consisting of six institutions. These are: University of Bergen (Coordinator), NORSAR, National Mapping Authority, Geological Survey of Norway, Christian Michelsen Research and University of Oslo. EPOS-N will during the next five years focus on the implementation of three main components. These are: (i) Developing a Norwegian e-Infrastructure to integrate the Norwegian Solid Earth data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories, (ii) Improving the monitoring capacity in the Arctic, including Northern Norway and the Arctic islands, and (iii) Establishing a national Solid Earth Science Forum providing a constant feedback mechanism for improved integration of multidisciplinary data, as well as training of young scientists for future utilization of all available solid Earth observational data through a single e-infrastructure. Currently, a list of data, data products, software and services (DDSS) is being prepared. These elements will be integrated in the EPOS-N data/web-portal, which will allow users to browse, select and download

  11. ERP Estimation using a Kalman Filter in VLBI

    Science.gov (United States)

    Karbon, M.; Soja, B.; Nilsson, T.; Heinkelmann, R.; Liu, L.; Lu, C.; Mora-Diaz, J. A.; Raposo-Pulido, V.; Xu, M.; Schuh, H.

    2014-12-01

    Geodetic Very Long Baseline Interferometry (VLBI) is one of the primary space geodetic techniques, providing the full set of Earth Orientation Parameters (EOP), and it is unique for observing long term Universal Time (UT1). For applications such as satellite-based navigation and positioning, accurate and continuous ERP obtained in near real-time are essential. They also allow the precise tracking of interplanetary spacecraft. One of the goals of VGOS (VLBI Global Observing System) is to provide such near real-time ERP. With the launch of this next generation VLBI system, the International VLBI Service for Geodesy and Astrometry (IVS) increased its efforts not only to reach 1 mm accuracy on a global scale but also to reduce the time span between the collection of VLBI observations and the availability of the final results substantially. Project VLBI-ART contributes to these objectives by implementing an elaborate Kalman filter, which represents a perfect tool for analyzing VLBI data in quasi real-time. The goal is to implement it in the GFZ version of the Vienna VLBI Software (VieVS) as a completely automated tool, i.e., with no need for human interaction. Here we present the methodology and first results of Kalman filtered EOP from VLBI data.

  12. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    Science.gov (United States)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  13. GLAS/ICESat L2 Global Land Surface Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA14 contains the land elevation and elevation distribution corrected for geodetic and atmospheric affects calculated from algorithms fine-tuned for over land...

  14. GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5) V034

    Data.gov (United States)

    National Aeronautics and Space Administration — GLAH14 contains the land elevation and elevation distribution corrected for geodetic and atmospheric affects calculated from algorithms fine-tuned for over land...

  15. The Cauchy problem for space-time monopole equations in Sobolev spaces

    Science.gov (United States)

    Huh, Hyungjin; Yim, Jihyun

    2018-04-01

    We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).

  16. Recent results from the VLNDEF network

    Science.gov (United States)

    Capra, Alessandro; Zanutta, Antonio; Negusini, Monia; Gandolfi, Stefano; Sarti, Pierguido; Vittuari, Luca; Salvini, Francesco; Cianfarra, Paola; Sterzai, Paolo

    2013-04-01

    The Italian geodetic infrastructure in Antarctica has been constantly developed during the last two decades. The integration of geodetic instruments with other geophysical sensors has been driving the planning and design of the geodetic infrastructure at Mario Zucchelli Station (MZS) and in a wide area around the base. Our purpose is to maximize the interdisciplinary use of the geodetic observations and to widen the field of investigation. The first geodetic GPS network was established in the area of Mt. Melbourne in the late 80s to study the local movement and deformation of the volcanic cone. A wider geodetic network was materialized on rocky outcrops in 1999-2000 with the purpose to study crustal deformations in the Northern Victoria Land (NVL). The project, named VLNDEF (Victoria Land Network for DEFormation Control), also aims at colleting measurements to constrain Glacial Isostatic Adjustment (GIA) models. VLNDEF is formed by 28 points that are accessible by means of helicopter, the maximum distance of points from the Italian base MZS being about 500 km. A permanent GPS station (TNB1) was installed in 1998 at MZS with DOMES N. 66036M001. In addition, to increase redundancy in the long term observations at MZS, an additional permanent GPS station TNB2 was installed in 2008 on a marker materialized a couple of years earlier and a few meters apart from TNB1. In addition, during 2008 three semi permanent remote stations were installed: VL01 (Cape Hallett), VL05 (Cape Philips), VL18 (Starr Nunatak). They are powered by a set of batteries and solar panels and provide a few months of data every year. Since its establishment, VLNDEF has been surveyed ten times, of which three are surveys of the whole network. GPS measurements are the core of the Italian geodetic infrastructure and are complemented by tide gauge measurements (since 2006), radiosoundings (during the Austral summer), on-ground meteorological parameters, episodic absolute and relative gravity

  17. Real space channelization for generic DBT system image quality evaluation with channelized Hotelling observer

    Science.gov (United States)

    Petrov, Dimitar; Cockmartin, Lesley; Marshall, Nicholas; Vancoillie, Liesbeth; Young, Kenneth; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new 3D mammography technique that promises better detection of low contrast masses than conventional 2D mammography. The parameter space for DBT is large however and finding an optimal balance between dose and image quality remains challenging. Given the large number of conditions and images required in optimization studies, the use of human observers (HO) is time consuming and certainly not feasible for the tuning of all degrees of freedom. Our goal was to develop a model observer (MO) that could predict human detectability for clinically relevant details embedded within a newly developed structured phantom for DBT applications. DBT series were acquired on GE SenoClaire 3D, Giotto Class, Fujifilm AMULET Innovality and Philips MicroDose systems at different dose levels, Siemens Inspiration DBT acquisitions were reconstructed with different algorithms, while a larger set of DBT series was acquired on Hologic Dimensions system for first reproducibility testing. A channelized Hotelling observer (CHO) with Gabor channels was developed The parameters of the Gabor channels were tuned on all systems at standard scanning conditions and the candidate that produced the best fit for all systems was chosen. After tuning, the MO was applied to all systems and conditions. Linear regression lines between MO and HO scores were calculated, giving correlation coefficients between 0.87 and 0.99 for all tested conditions.

  18. GLAS/ICESat L2 Ocean Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA15 contains the ocean elevation and small-scale roughness corrected for geodetic and atmospheric affects, calculated from algorithms fine-tuned for ocean returns....

  19. Map projections cartographic information systems

    CERN Document Server

    Grafarend, Erik W; Syffus, Rainer

    2014-01-01

    This book offers a timely review of map projections including sphere, ellipsoid, rotational surfaces, and geodetic datum transformations. Coverage includes computer vision, and remote sensing space projective mappings in photogrammetry.

  20. The crustal velocity field mosaic of the Alpine Mediterranean area (Italy): Insights from new geodetic data

    Science.gov (United States)

    Farolfi, Gregorio; Del Ventisette, Chiara

    2016-04-01

    A new horizontal crustal velocity field of Alpine Mediterranean area was determined by continuous long time series (6.5 years) of 113 Global Navigation Satellite System (GNSS) permanent stations. The processing was performed using state-of-the-art absolute antenna phase center correction model and recomputed precise IGS orbits available since April 2014. Moreover, a new more accurate tropospheric mapping function for geodetic applications was adopted. Results provide a new detailed map of the kinematics throughout the entire study area. This area is characterized by a complex tectonic setting driven by the interaction of Eurasian and African plates. The eastern Alps, Corsica, Sardinia and the Tyrrhenian Sea (which is covered only by interpolation data) show small velocity residuals with respect to the Eurasian plate. The whole Apennines axis discriminates two different velocity patterns, the Adriatic and the Tyrrhenian area. The area around Messina Strait, which separates peninsular Italy and Sicily, represents a poorly understood region. Results identify an important boundary zone between two different domains, Calabria and Sicily, which are characterized by different crustal motions. The northeastern part of Sicily and Calabria move like Adriatic area, whilst the rest of Sicily, Malta and Lampedusa are dominated by African motion.