WorldWideScience

Sample records for space exploration prospects

  1. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  2. International cooperation in planetary exploration - Past success and future prospects

    Science.gov (United States)

    Rosendhal, Jeffrey D.

    1987-01-01

    A review is given of the ways in which the National Aeronautics and Space Administration (NASA) has participated in international efforts to explore the solar system. Past examples of successful international cooperative programs are described. Prospects for future cooperative efforts are discussed with emphasis placed on current events, issues, and trends which are likely to affect possibilities for cooperation over the next 5 to 10 years. Key factors which will play a major role in shaping future prospects for cooperation include the move towards balancing the budget in the United States and the impact of the Challenger accident on the NASA program.

  3. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    these other objects. In Chapter 3, Marov describes the planets Mercury, Venus, Earth, and Mars, their history and origin, and their environmental conditions, and in Chapter 4 Owen provides similar information about Jupiter, Saturn, Uranus, Neptune, and Pluto, "The Outer Planets of the Solar System." Morrison provides a thorough discussion of "Asteroids, Comets, and Other Small Bodies" in Chapter 5. The understanding of these relics of the formation of the solar system may form the center of our ability to understand the origin of solar systems in general, and of the critical role that the beginning of the solar system had on the prospects for the origin of life and its continued survival and evolution in the face of their recurrent impacts on Earth. In Chapter 6, the first chapter of the third part, Rummel describes the area of "Exobiology," the study of the origin, evolution, and distribution of life in the context of the origin and evolution of the universe. The same processes that have given rise to life on Earth may have given rise to life elsewhere. In Chapter 7, the "Earth and the Biosphere," the nature and function of the Earth are discussed as a specific instance of planetary and biological evolution. The effects of biological processes on the Earth under the influence of human activities are also addressed by Moore and Bartlett in Chapter 7. The final chapter in this section concerns the prospects that life in the universe may be widespread; "SETI," the Search for Extraterrestrial Intelligence, by Billingham and Tarter, presents the arguments for conducting a search for evidence of life elsewhere in the galaxy, and describes the various methods proposed for conducting such a search. While SETI has a distinctly exploration al character, more direct means are available for exploring the solar system around us. The fourth part of the volume addresses this subject of space exploration. Considering the prospects for research on space biology and medicine, the means

  4. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  5. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  6. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  7. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  8. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  9. The New National Vision for Space Exploration

    Science.gov (United States)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that

  10. Why We Explore: The Value of Space Exploration for Future Generations

    Science.gov (United States)

    Cook, Stephen A.; Armstrong, Robert C., Jr.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) and its industry partners are making measurable progress toward delivering new human space transportation capabilities to serve as the catalyst for a new era of discovery, as directed by the U.S. Vision for Space Exploration. In the interest of ensuring prolonged support, the Agency encourages space advocates of all stripes to accurately portray both the tangible and intangible benefits of space exploration, especially its value for future generations. This may be done not only by emphasizing the nation's return on its aerospace investment, but also by highlighting enabling security features and by promoting the scientific and technological benefits that accrue from the human exploration of space. As America embarks on a new era of leadership and international partnership on the next frontier, we are poised to master space by living off-planet on the Moon to prepare astronauts for longer journeys to Mars. These and other relevant facts should be clearly in the view of influential decision-makers and the American taxpayers, and we must increasingly involve those on whom the long-term sustainability of space exploration ultimately depends: America's youth. This paper will examine three areas of concrete benefits for future generations: fundamental security, economic enterprise, and high-technology advancements spurred by the innovation that scientific discovery demands.

  11. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  12. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  13. Outer space and nuclear deterrence: problems and prospects

    International Nuclear Information System (INIS)

    Gasparini Alves, P.

    1993-01-01

    The presentation deals with the role of outer-space applications and prospects for near future developments in nuclear deterrence. Outer space capabilities of United Sates, Russian Federation, Belarus, Kazakhstan, Ukraine, China, and United Kingdom as well as other states are analyzed. Conceptual problems of offensive and defensive doctrines are reviewed together with legal implications

  14. Rendezvous and Docking for Space Exploration

    Science.gov (United States)

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  15. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  16. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  17. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  18. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  19. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  20. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  1. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  2. SpaceExplorer

    DEFF Research Database (Denmark)

    Hansen, Thomas Riisgaard

    2007-01-01

    Web pages are designed to be displayed on a single screen, but as more and more screens are being introduced in our surroundings a burning question becomes how to design, interact, and display web pages on multiple devices and displays. In this paper I present the SpaceExplorer prototype, which...... is able to display standard HTML web pages on multiple displays with only a minor modification to the language. Based on the prototype a number of different examples are presented and discussed and some preliminary findings are presented....

  3. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  4. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  5. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  6. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  7. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  8. Exploring Engaged Spaces in Community-University Partnership

    Science.gov (United States)

    Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie

    2016-01-01

    The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…

  9. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  10. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  11. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  12. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  13. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  14. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Science.gov (United States)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  15. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  16. Water: A Critical Material Enabling Space Exploration

    Science.gov (United States)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  17. Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Christopher P.

    2014-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  18. Protecting and Expanding the Richness and Diversity of Life, An Ethic for Astrobiology Research and Space Exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Chris P.

    2011-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  19. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  20. A Compositional Sweep-Line State Space Exploration Method

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  1. Russian Planetary Exploration History, Development, Legacy, Prospects

    CERN Document Server

    Harvey, Brian

    2007-01-01

    Russia’s accomplishments in planetary space exploration were not achieved easily. Formerly, the USSR experienced frustration in trying to tame unreliable Molniya and Proton upper stages and in tracking spacecraft over long distances. This book will assess the scientific haul of data from the Venus and Mars missions and look at the engineering approaches. The USSR developed several generations of planetary probes: from MV and Zond to the Phobos type. The engineering techniques used and the science packages are examined, as well as the nature of the difficulties encountered which ruined several missions. The programme’s scientific and engineering legacy is also addressed, as well as its role within the Soviet space programme as a whole. Brian Harvey concludes by looking forward to future Russian planetary exploration (e.g Phobos Grunt sample return mission). Several plans have been considered and may, with a restoration of funding, come to fruition. Soviet studies of deep space and Mars missions (e.g. TMK, ...

  2. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  3. The Space Medicine Exploration Medical Condition List

    Science.gov (United States)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  4. Modular Power Standard for Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  5. Applications of MEMS for Space Exploration

    Science.gov (United States)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  6. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  7. Space exploration - Present and future challenges

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Our future deep-space exploration faces many daunting challenges, but three of them loom high above the rest: physiological debilitation, radiation sickness and psychological stress. Many measures are presently being developed to reduce these difficulties. However, in the long run, two important new developments are required: abundant supply of power, and advanced space propulsion. The future looks bright, however. While the road is a long one, it is now well defined and many exciting explorations are within near-term reach.BiographyDr. Chang-Diaz graduated from MIT in the field of applied plasma physics and fusion research. He has been a NASA space shuttle astronaut on seven missions between 1986 and 2002. As director of the ASP Laboratory in Houston, he continues research on plasma rockets.For more details: see www.jsc.nasa.gov/Bios/htmlbios/chang.htmlNote: Tea and coffee will be served at 16:00 hrs.

  8. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  9. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  10. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  11. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  12. From space exploration to commercialisation

    NARCIS (Netherlands)

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without

  13. Complexity in Simplicity: Flexible Agent-based State Space Exploration

    DEFF Research Database (Denmark)

    Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2007-01-01

    In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...

  14. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    DEFF Research Database (Denmark)

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  15. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  16. Variable Vector Countermeasure Suit for Space Habitation and Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a visionary system concept that will revolutionize space missions by...

  17. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  18. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  19. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  20. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  1. Breakthrough and prospect of shale gas exploration and development in China

    OpenAIRE

    Dazhong Dong; Yuman Wang; Xinjing Li; Caineng Zou; Quanzhong Guan; Chenchen Zhang; Jinliang Huang; Shufang Wang; Hongyan Wang; Honglin Liu; Wenhua Bai; Feng Liang; Wen Lin; Qun Zhao; Dexun Liu

    2016-01-01

    In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas explor...

  2. Application of comprehensive geophysical prospecting method in groundwater exploration

    Science.gov (United States)

    Yang, Fan; Gao, Pengju; Li, Dong; Ma, Hanwen; Cheng, Guoliang

    2018-01-01

    In order to solve the problem of shortage of water resources in northern Shaanxi, we selected rectangular large loop source transient electromagnetic method with high water affinity, and radioactive α measurement method which can delineate the water storage structure, comprehensive geophysical prospecting methods to look for groundwater. Algorithm has established a forward model, and compared all-time apparent resistivity in late-time apparent resistivity is better than late. We can find out the exact location of the groundwater and thus improving wells rate by comparatively using these two kinds of geophysical prospecting method. Hydrogeology drilling confirmed water inflow of a single well can be up to 40 m 3/h, it can fully cover native Domestic and Agricultural water, and provide an important basis for groundwater exploration.

  3. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  4. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  5. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  6. Snapshots of Student Thinking: An Exploration of Video Cases for Extending Prospective Teachers' Knowledge

    Science.gov (United States)

    Pitts Bannister, Vanessa R.; Mariano, Gina J.

    2013-01-01

    The purpose of this article is to explore the relationships between prospective teachers' content knowledge, student understanding, and pedagogy using video cases. The emphasis was on the extent to which the participants utilized constructs of Technology Pedagogy And Content Knowledge. Ten prospective teachers viewed video cases of students…

  7. Prospecting exploration and development of the uranium deposits Key Lake, Canada

    International Nuclear Information System (INIS)

    Kirchner, G.; Tan, B.H.

    1977-01-01

    This lecture gives a survey of the methods employed by the Uranerzbergbau-GmbH and Co. KG and the experience gained in connection with prospecting and exploration activities at the uranium deposits in Saskatchewan, illustrated by the case history Key Lake. (orig.) [de

  8. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    Science.gov (United States)

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  9. Prospectivity Modeling of Karstic Groundwater Using a Sequential Exploration Approach in Tepal Area, Iran

    Science.gov (United States)

    Sharifi, Fereydoun; Arab-Amiri, Ali Reza; Kamkar-Rouhani, Abolghasem; Yousefi, Mahyar; Davoodabadi-Farahani, Meysam

    2017-09-01

    The purpose of this study is water prospectivity modeling (WPM) for recognizing karstic water-bearing zones by using analyses of geo-exploration data in Kal-Qorno valley, located in Tepal area, north of Iran. For this, a sequential exploration method applied on geo-evidential data to delineate target areas for further exploration. In this regard, two major exploration phases including regional and local scales were performed. In the first phase, indicator geological features, structures and lithological units, were used to model groundwater prospectivity as a regional scale. In this phase, for karstic WPM, fuzzy lithological and structural evidence layers were generated and combined using fuzzy operators. After generating target areas using WPM, in the second phase geophysical surveys including gravimetry and geoelectrical resistivity were carried out on the recognized high potential zones as a local scale exploration. Finally the results of geophysical analyses in the second phase were used to select suitable drilling locations to access and extract karstic groundwater in the study area.

  10. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  11. Main geologic characteristics of paleochannel-type sandstone-hosted uranium deposits and relevant prospecting and exploration policy

    International Nuclear Information System (INIS)

    Chen Zuyi

    1999-01-01

    The author summarizes main prospecting and exploration-related geologic characteristics of paleochannel-type sandstone-hosted uranium deposits such as the structural control over the spatial emplacement of the deposit, the near-source occurrence, the phreatic oxidation origin, the occurrence of the uranium mineralization mostly in one horizon etc. On the basis of analyzing the above characteristics the prospecting and exploration policy of such uranium deposits is proposed

  12. Prospects for the use of thermionic nuclear power plants for interorbital transfers of space vehicles in near space

    International Nuclear Information System (INIS)

    Andreev, P.V.; Zhabotinskii, E.E.; Nikonov, A.M.

    1993-01-01

    In a previous study the authors considered the use of thermionic nuclear power plants with a thermal reactor for interorbital transfers of space vehicles by electrojet propulsion systems (EJPSs), opening up broad prospects for putting payloads into a high orbit with relatively inexpensive means for a launch into a reference orbit, e.g., the Proton launch vehicle. This is of major importance for the commercial use of space technology, in particular, for erecting technological platforms for the production of various materials. In the work reported here the authors continue the study of interorbital transfers and explore the potentialities of thermionic NPPs with a thermal reactor and with a fast reactor. In boosted operation the electrical power of the latter may reach several hundred kilowatts. What type of NPP is desirable for testing an electrojet propulsion system in interorbital transfers from a reference orbit to a high orbit, providing that the time is limited, depends on the class of the launch vehicle characterized by the mass M o that the vehicle can carry into the reference orbit, where radiation safety conditions allow the NPP to be started up. Results of studies are presented that give an idea of the rational choice of type of thermionic NPP for the organization in interorbital transfers

  13. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  14. Space Exploration: Challenges in Medicine, Research, and Ethics

    Science.gov (United States)

    Davis, Jeffrey R.

    2007-01-01

    This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.

  15. Exploration of Uranium in Simpang Kanan, East Aceh, Preliminary Prospecting Stages

    International Nuclear Information System (INIS)

    Djalil, A; Sutriyono, A; Sajiyo

    1998-01-01

    Exploration of uranium in simpang kanan, east aceh, preliminary prospecting stages. The research has been carried out to obtain the knowledge of geology, radiometry and geochemistry in relation with U prospect development. Based on the similarity of lithology in takengon sector which indicates the existence of uranium mineralization. Research method consist of geological observation, radiometric measurements of outcrops, boulders and stream sediment and heavy mineral samples. Laboratory analysis consist of petrography, autoradiography and uranium content analysis of stream sediment and rock samples. The lithology consist of slate, quartzite, marble, granite, dacite, limestone, carbonaceous sandstone, black claystone, sandstone, siltstone, carbonaceous siltstone. This area found, has been folded with the folding axis direction of NW-SE. Fault structures are generally formed as strike slip fault and several location as normal fault and heavy minerals anomalous was interpreted from granite and sandstone- siltstone. Occurrences of the geochemical anomaly, lithology and geological structures, there has been shown that few location is being the prospect area covered about 70 km of 1800km prospecting area, so it is suggested that in those related prospect area should be performed further observation

  16. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  17. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  18. Different spaces : Exploring Facebook as heterotopia

    NARCIS (Netherlands)

    Rymarczuk, R.; Derksen, Maarten

    2014-01-01

    In this paper we explore the space of Facebook, and use Michel Foucault’s concept of heterotopia to describe it. We show that the heterotopic nature of Facebook explains not only much of its attraction, but even more the discomfort that many people, users as well as non–users, experience in it.

  19. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    Science.gov (United States)

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  20. A Situation Awareness Assistant for Human Deep Space Exploration

    Science.gov (United States)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  1. Vision of Space Exploration Possibilities and limits of a human space conquest.

    Science.gov (United States)

    Zelenyi, Lev

    Few generations of a schoolboys, which later become active and productive space researchers, have been brought up on a science fiction books. These books told us about travels to other Galaxies with velocities larger then velocity of light, meetings with friendly aliens (necessarily with communistic mentalities in Soviet Union books), star wars with ugly space monsters (in the western hemisphere books), etc. Beginning of Space age (4/10/1957) opened the door to a magic box, full of scientific discoveries, made mostly by robotic satellites and spacecraft. However, already the first human space trips clearly demonstrated that space is vigorously hostile to a human beings. Space medicine during the years since Gagarin flight, made an outstanding progress in supporting human presence at orbital stations, but the radiation hazards and problem of hypomagnetism are still opened and there is no visible path to their solution. So the optimistic slogan of 60-ies “Space is Our Place” is not supported by an almost half a century practice. Space never will be a comfortable place for soft and vulnerable humans? There is a general consensus that man will be on Mars during this century (or even its first part). This is very difficult but task it seems to be realistic after the significant advance of modern technologies will be made. But, is there any real need for humans to travel beyond the Mars orbit or to the inner regions of the Solar system? Will the age of Solar system exploration comes to its logical as it was described by Stanislav Lem in his famous book “Return from stars”? The author of this talk has more questions than answers, and thinks that PEX1 Panel on Exploration is just a right place to discuss these usually by passed topics.

  2. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  3. Ethics and public integrity in space exploration

    Science.gov (United States)

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  4. Cosmic Humanity: Utopia, Realities, Prospects

    OpenAIRE

    Sergey Krichevsky

    2017-01-01

    The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity i...

  5. A space exploration strategy that promotes international and commercial participation

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  6. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  7. Research Progress and Prospect of GNSS Space Environment Science

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  8. Multi-data integration of exploration criteria and selection of prospecting targets

    International Nuclear Information System (INIS)

    Dechang, L.; Jingke, Z.; Maorong, S.; Guojuan, W.

    1991-01-01

    In this paper based on the analysis of the exploration criteria for Shengyuan Basin-a uranium ore field, the multi-data integration and information extraction of exploration criteria are carried out on computer and image processing system so that the areas with best combinations of exploration criteria are directly displayed on the screen. Six prospecting targets are selected through the field examination. Shengyuan basin in Jiangxi province is a uranium-producing, Jurassic Cretaceous volcanic-sedimentary basin with an area of about 400 sq km. Its basement consists of Sinian-Cambrian rocks with Caledonian granites intruded. Several uranium deposits, occurrences and anomalies were discovered over the basin region which, therefore, becomes a very important uranium ore field in China

  9. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Science.gov (United States)

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  10. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  11. Preaching to the converted? An analysis of the UK public for space exploration.

    Science.gov (United States)

    Entradas, Marta; Miller, Steve; Peters, Hans Peter

    2013-04-01

    This article presents the results of a survey carried out at two space outreach events in the UK aimed at characterising "the public for space exploration" and measuring public support for space exploration. Attitude towards space exploration and policy preferences were used as measures of public support. The sample involved 744 respondents and was mainly composed of adults between 25 and 45 years old, with men slightly over-represented compared with women. Findings revealed that males appeared to be stronger supporters than females - men had a more positive attitude towards space exploration and stronger space policy preferences. Because mixed groups tend to come together to such events we argue that male respondents would be more likely to be part of the "attentive" and "interested" public who come to outreach activities and bring a less interested public with them.

  12. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  13. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  14. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  15. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  16. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  17. Wernher von Braun: Reflections on His Contributions to Space Exploration

    Science.gov (United States)

    Goldman, Arthur E.

    2012-01-01

    In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.

  18. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  19. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  20. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  1. Novelty Search for Soft Robotic Space Exploration

    NARCIS (Netherlands)

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  2. Novelty search for soft robotic space exploration

    NARCIS (Netherlands)

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  3. Explaining public support for space exploration funding in America: A multivariate analysis

    Science.gov (United States)

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  4. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  5. Epoxy/UHMWPE Composite Hybridized with Gadolinium Nanoparticles for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract Deep space radiations pose a major threat to the astronauts and their space craft during the long duration space exploration expeditions [1]. Ultra High...

  6. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  7. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  8. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  9. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2015-01-01

    Full Text Available The Sichuan Basin, a hotspot and one of the most successful areas for shale gas exploration and development, can largely reflect and have a big say in the future prospect of shale gas in China. Through an overall review on the progress in shale gas exploration and development in the Sichuan Basin, we obtained the following findings: (1 the Sichuan Basin has experienced the marine and terrestrial depositional evolution, resulting in the deposition of three types of organic-matter-rich shales (i.e. marine, transitional, and terrestrial, and the occurrence of six sets of favorable shale gas enrichment strata (i.e. the Sinian Doushantuo Fm, the Cambrian Qiongzhusi Fm, the Ordovician Wufeng–Silurian Longmaxi Fm, the Permian Longtan Fm, the Triassic Xujiahe Fm, and the Jurassic Zhiliujing Fm; (2 the five key elements for shale gas accumulation in the Wufeng-Longmaxi Fm are deep-water shelf facies, greater thickness of organic-rich shales, moderate thermal evolution, abundant structural fractures, reservoir overpressure; and (3 the exploration and development of shale gas in this basin still confronts two major challenges, namely, uncertain sweet spots and potential prospect of shale gas, and the immature technologies in the development of shale gas resources at a depth of more than 3500 m. In conclusion, shale gas has been discovered in the Jurassic, Triassic and Cambrian, and preliminary industrial-scale gas has been produced in the Ordovician-Silurian Fm in the Sichuan Basin, indicating a promising prospect there; commercial shale gas can be produced there with an estimated annual gas output of 30–60 billion m3; and shale gas exploration and production experiences in this basin will provide valuable theoretical and technical support for commercial shale gas development in China.

  10. Moral Geography and Exploration of the Moral Possibility Space

    Directory of Open Access Journals (Sweden)

    Bongrae Seok

    2017-12-01

    Full Text Available This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017. By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world, Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and building practical views on living good life. The goal of this geographical exploration of the moral possibility space is surveying different traditions of morality and finding tractable ways of human flourishing. This article, by following the chapters of his book, explains his views on moral diversity and his interdisciplinary and naturalistic approach to ethics. It also discusses interactive and dynamic ways to expand the moral possibility space.

  11. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  12. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  13. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    Science.gov (United States)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  14. Prospective areas in the production technology of scientific equipment for space research

    Science.gov (United States)

    Breslavets, A. V.

    1974-01-01

    The average labor of individual types of operations in the percentage ratio of the total labor consumption of manufacturing scientific instruments and apparatus for space research is presented. The prospective areas in the production technology of billet, machining, mechanical assembly, installation and assembly, adjustment and regulation and testing and control operations are noted. Basic recommendations are made with respect to further reduction of labor consumption and an increase in the productivity of labor when manufacturing scientific equipment for space research.

  15. Three near term commercial markets in space and their potential role in space exploration

    Science.gov (United States)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  16. Design space pruning through hybrid analysis in system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  17. High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop...

  18. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  19. A Management Model for International Participation in Space Exploration Missions

    Science.gov (United States)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  20. Constraints and prospects of uranium exploration in Himalaya

    International Nuclear Information System (INIS)

    Singh, Rajendra

    1994-01-01

    Exploration for uranium in the Himalaya over the last thirty years has brought to light five distinct types of mineralisation, namely, vein-type, hydrothermal shear controlled-type, disseminated-type, syngenetic-type, and sandstone-type. The first three are associated with lower to middle proterozoic metasedimentary rocks, metabasic rocks, and granitoids of the lesser Himalaya in close proximity to the main central thrust (MCT). The carbonaceous slates of Haimanta group (late proterozoic to eocambrian) and the Mussoorie phosphorites (eocambrian) represent the syngenetic types. The sandstone-type is associated with the late tertiary Siwaliks of the northwestern Himalaya. The constraints in geology and uranium exploration in the Himalaya have been briefly discussed and principal uranium occurrences in relation to their tectonic environment and genesis listed. The need for geochemical characterization of the Himalayan granitoids and the metabasics related to known uranium mineralisation and new areas have been suggested. Integrated application of radiometric, geochemical and geophysical methods of prospecting and remote sensing techniques in regional geological correlation, identification of subtle rock alterations associated with mineralized zones, geologic structures, and deep crustal lineaments have been advocated. A case for the exploration of the areas of lesser Himalaya outside the MCT has been made out so as to locate hitherto unknown types of uranium deposits including, strata bound, metamorphic, and intra granitic types, possibly with better depth persistence. (author). 57 refs., 1 fig., 2 tabs

  1. Enabling MPSoC design space exploration on FPGAs

    NARCIS (Netherlands)

    Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H.; Hussain, D.M.A.; Rajput, A.Q.K.; Chowdhry, B.S.; Gee, Q.

    2009-01-01

    Future applications for embedded systems demand chip multiprocessor designs to meet real-time deadlines. These multiprocessors are increasingly becoming heterogeneous for reasons of cost and power. Design space exploration (DSE) of application mapping becomes a major design decision in such systems.

  2. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Science.gov (United States)

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  4. Space Exploration

    Science.gov (United States)

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  5. Phase-space exploration in nuclear giant resonance decay

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.

    1995-01-01

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space

  6. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  7. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  8. Space Exploration as a Human Enterprise: The Scientific Interest

    Science.gov (United States)

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  9. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  10. Digital Cities in the making: exploring perceptions of space, agency of actors and heterotopia

    Directory of Open Access Journals (Sweden)

    Asne Kvale Handlykken

    2011-12-01

    Full Text Available

    This paper is an attempt to explore how we imagine, sense and experience spaces in digital cities by a study of the hybrid relations between digital media, users' bodies, architecture and the city. Digital and physical spaces of the city are intertwined, the city and urban places and things become sentient, embedded with sensors and digital infrastructure, challenging traditional notions of space, and how we perceive and experience urban space.  Crucial issues to explore are how interactions and agency operating amongst actors in these spaces; between sentient non-human actors, places and people?  How are spaces of interaction embedded in the city, what characterizes these spaces, can they be explored as heterotopias (Foucault? These processes are a mutual shaping of society and technology, where the role of the imaginary, of mental representations and creation are being transformed.

  11. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  12. Scalable and near-optimal design space exploration for embedded systems

    CERN Document Server

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  13. NASA's Space Launch System: A New Capability for Science and Exploration

    Science.gov (United States)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  14. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  15. Safe Exploration of State and Action Spaces in Reinforcement Learning

    OpenAIRE

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  16. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  17. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  18. Class Explorations in Space: From the Blackboard and History to the Outdoors and Future

    Science.gov (United States)

    Cavicchi, Elizabeth

    2011-11-01

    Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!

  19. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    Science.gov (United States)

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  20. On-Orbit Prospective Echocardiography on International Space Station Crew

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.

    2010-01-01

    Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.

  1. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  2. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  3. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  4. Overview and future prospects of laser plasma propulsion technology

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Lu Xin; Zhang Jie

    2003-01-01

    Due to its high cost, low efficiency, complex operation and unsatisfactory recycling, traditional rocket propulsion by chemical fuels has hindered the exploration of outer space to further limits. With the rapid development of laser and space technology, the new technology of laser propulsion exhibits unique advantages and prospects. The mechanism and current development of laser plasma propulsion are reviewed, with mention of the technical problems and focus issues of laser plasma in micro-flight propulsion

  5. The politics and perils of space exploration who will compete, who will dominate?

    CERN Document Server

    Dawson, Linda

    2017-01-01

    Written by a former Aerodynamics Officer on the space shuttle program, this book provides a complete overview of the “new” U. S. space program, which has changed considerably over the past 50 years.The future of space exploration has become increasingly dependent on other countries and private enterprise. Can private enterprise can fill the shoes of NASA and provide the same expertise and safety measures and lessons learned from NASA? In order to tell this story, it is important to understand the politics of space as well as the dangers, why it is so difficult to explore and utilize the resources of space. Some past and recent triumphs and failures will be discussed, pointing the way to a successful space policy that includes taking risks but also learning how to mitigate them.

  6. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  7. Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database

    Science.gov (United States)

    2012-01-01

    Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch. PMID:23019491

  8. Exploring the Concept of Healing Spaces.

    Science.gov (United States)

    DuBose, Jennifer; MacAllister, Lorissa; Hadi, Khatereh; Sakallaris, Bonnie

    2018-01-01

    Evidence-based design (EBD) research has demonstrated the power of environmental design to support improved patient, family, and staff outcomes and to minimize or avoid harm in healthcare settings. While healthcare has primarily focused on fixing the body, there is a growing recognition that our healthcare system could do more by promoting overall wellness, and this requires expanding the focus to healing. This article explores how we can extend what we know from EBD about health impacts of spatial design to the more elusive goal of healing. By breaking the concept of healing into antecedent components (emotional, psychological, social, behavioral, and functional), this review of the literature presents the existing evidence to identify how healthcare spaces can foster healing. The environmental variables found to directly affect or facilitate one or more dimension of healing were organized into six groups of variables-homelike environment, access to views and nature, light, noise control, barrier-free environment, and room layout. While there is limited scientific research confirming design solutions for creating healing spaces, the literature search revealed relationships that provide a basis for a draft definition. Healing spaces evoke a sense of cohesion of the mind, body, and spirit. They support healing intention and foster healing relationships.

  9. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  10. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  11. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Science.gov (United States)

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Results of a Prospective Echocardiography Trial in International Space Station Crew

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2009-01-01

    In the framework of an operationally oriented investigation, we conducted a prospective trial of a standard clinical echocardiography protocol in a cohort of long-duration crewmembers. The resulting primary and processed data appear to have no precedents. Our tele-echocardiography paradigm, including just-in-time e-training methods, was also assessed. A critical review of the imaging technique, equipment and setting limitations, and quality assurance is provided, as well as the analysis of "space normal" data.

  14. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  15. Depending on scientific and technological progress to prospect for superlarge uranium deposits. Across-century target for uranium resources exploration work in China

    International Nuclear Information System (INIS)

    Shen Feng

    1995-01-01

    After over 30 years' development, uranium resources exploration work in China has resulted in the discovery of more than 10 economic types of uranium deposits in 23 provinces (regions) of the whole country and large quantities of uranium reserves have been submitted which guarantee the development of nuclear industry in China. However, characteristics such as smaller size of deposits and ore bodies, and lower ore grade of discovered China's uranium deposits have brought about a series of problems on how to economically exploit and utilize these uranium resources. To prospect for superlarge uranium deposits is a guarantee of making uranium resources essentially meet the demand for the long-term development of nuclear industry in China, and is an important way of improving economic benefits in mining China's uranium resources. It is an important mark for uranium geological exploration work to go up a new step as well. China exhibits the geological environment in which various types of superlarge uranium deposits can be formed. Having the financial support from the state to uranium resources exploration work, having professional uranium exploration teams well-experienced in ore prospecting, having modernized uranium exploration techniques and equipment and also having foreign experience in prospecting for superlarge uranium deposits as reference, it is entirely possible to find out superlarge uranium deposits in China at the end of this century and at the beginning of next century. In order to realize the objective, the most important prerequisite is that research work on metallogenetic geological theory and exploration techniques and prospecting methodology for superlarge uranium deposits must be strengthened, and technical quality of the geological teams must be improved. Within this century, prospect targets should be selected and located accurately to carry out the emphatic breakthrough in exploration strategy

  16. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  17. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  18. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  19. Prospecting direction and favourable target areas for exploration of large and super-large uranium deposits in China

    International Nuclear Information System (INIS)

    Liu Xingzhong

    1993-01-01

    A host of large uranium deposits have been successively discovered abroad by means of geological exploration, metallogenetic model studies and the application of new geophysical and geochemical methods since 1970's. Thorough undertaking geological research relevant to prospecting for super large uranium deposits have attracted great attention of the worldwide geological circle. The important task for the vast numbers of uranium geological workers is to make an afford to discover more numerous large and super large uranium deposits in China. The author comprehensively analyses the regional geological setting and geological metallogenetic conditions for the super large uranium deposits in the world. Comparative studies have been undertaken and the prospecting direction and favourable target areas for the exploration of super large uranium deposits in China have been proposed

  20. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  1. Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme

    Science.gov (United States)

    Monreal, Timothy

    2016-01-01

    Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…

  2. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  3. Exploring the Impact of Commuter’s Residential Location Choice on the Design of a Rail Transit Line Based on Prospect Theory

    Directory of Open Access Journals (Sweden)

    Ding Liu

    2014-01-01

    Full Text Available This paper explores the impact of prospect theory based commuter’s residential location choice on the design problem of a rail transit line located in a monocentric city. A closed-form social welfare maximization model is proposed, with special consideration given to prospect theory based commuter’s residential location choice over years. Commuters are assumed to make residential location choice by a trade-off between daily housing rent and generalized travel cost to minimize their prospect values. The solutions properties of the proposed model are explored and compared analytically. It is found that overestimation exists for the optimal solutions of rail line length, headway, and fare based on traditional utility theory, compared with the optimal solutions of the proposed prospect theory based model. A numerical example is given to illustrate the properties of the proposed model.

  4. Study of space reactors for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  5. Study of space reactors for exploration missions

    International Nuclear Information System (INIS)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  6. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  7. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  8. Inner solar system prospective energy and material resources

    CERN Document Server

    Zacny, Kris

    2015-01-01

    This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors.   Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.

  9. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  10. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  11. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    simulation inputs are most important and which have negligible influence on the model output. Popular sensitivity methods include the Morris method, variance-based methods (e.g. Sobol’s), and regression methods (e.g. SRC). However, all these methods only address one output at a time, which makes it difficult...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring......Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...

  12. Essential elements of a framework for future space exploration and use: the role of science

    Science.gov (United States)

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  13. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  14. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Science.gov (United States)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  15. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    Science.gov (United States)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  16. Breakthrough and prospect of shale gas exploration and development in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong

    2016-01-01

    Full Text Available In the past five years, shale gas exploration and development has grown in a leaping-forward way in China. Following USA and Canada, China is now the third country where industrial shale gas production is realized, with the cumulative production exceeding 60 × 108 m3 until the end of 2015. In this paper, the main achievements of shale gas exploration and development in China in recent years were reviewed and the future development prospect was analyzed. It is pointed out that shale gas exploration and development in China is, on the whole, still at its early stage. Especially, marine shale gas in the Sichuan Basin has dominated the recent exploration and development. For the realization of shale gas scale development in China, one key point lies in the breakthrough and industrial production of transitional facies and continental facies shale gas. Low–moderate yield of shale gas wells is the normal in China, so it is crucial to develop key exploration and development technologies. Especially, strictly controlling single well investment and significantly reducing cost are the important means to increase shale gas exploration and development benefits. And finally, suggestions were proposed in five aspects. First, continuously strengthen theoretical and technical researches, actively carry out appraisal on shale gas “sweet spots”, and gradually accumulate development basis. Second, stress on primary evaluation of exploration and development, highlight the effective implementation of shale gas resources, and control the rhythm of appraisal drilling and productivity construction. Third, highlight fine description and evaluation of shale gas reservoirs and increase the overall development level. Fourth, intensify the research on exploration and development technologies in order to stand out simple and practical technologies with low costs. And fifth, summarize the experiences in fast growth of shale gas exploration and development, highlight

  17. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  18. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  19. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    Science.gov (United States)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  20. Private space exploration: A new way for starting a spacefaring society?

    Science.gov (United States)

    Genta, Giancarlo

    2014-11-01

    Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.

  1. Biospheres and solar system exploration

    Science.gov (United States)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  2. Development of the rational scheme of geological exploration process, its analysis and significance for prospecting and exploration of hydrocarbons at the russian sector of the Caspian sea

    Directory of Open Access Journals (Sweden)

    I. V. Bystrova

    2017-12-01

    Full Text Available To conduct a justified assessment of the perspective resources of the Caspian Sea and adjacent territories, the authors develop a rational scheme of the geological exploration process with its analysis and identification of significance for hydrocarbon exploration in the northern part of the Caspian Sea. The paper outlines the methodological approaches and concepts of introducing this scheme in search for oil and gas. This allows us to justify and select the optimal set of research methods at various stages of oil and gas production. The system of structure and principles of organization scheme of the geological prospecting process allow to identify the optimal complexes of methods of geological-geophysical and other studies for these stages. The article provides information confirming the necessity of developing and implementing this scheme in the geological exploration process of the studied territory. The necessary development of opportunities in carrying out this work fundamentally changes the qualitative aspect of the geological exploration process. The facts presented in the article allow to study in detail the structures of the shelf zone, the thicknesses and composition of productive subsalt deposits, and to trace their interrelation with continental structural elements. The paper shows the importance of providing, at different levels, a rationale and choice of an optimal set of research methods at different stages of oil and gas prospecting during the development of a rational geological exploration scheme for hydrocarbons in water areas. This paper presents a proposed block diagram of a marine geological prospecting process for hydrocarbons. It describes the sequence of performing the types of work at the regional, exploratory and exploration stages. For each stage of the study, the authors set the tasks, determine the objects of research, methods of geological and geophysical research and their results, and determine methods for

  3. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  4. Molpher: a software framework for systematic chemical space exploration

    Czech Academy of Sciences Publication Activity Database

    Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, Daniel

    2014-01-01

    Roč. 6, č. 1 (2014) ISSN 1758-2946 R&D Projects: GA TA ČR TA02010212; GA ČR(CZ) GAP202/11/0968; GA ČR(CZ) GP14-29032P Keywords : Chemical space exploration * De-novo design * In silico ligand design * Chemical biology tools Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.547, year: 2014

  5. Imaging the Surfaces of Stars from Space

    Science.gov (United States)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  6. Benefits of Microalgae for Human Space Exploration

    Science.gov (United States)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  7. DIPS space exploration initiative safety

    International Nuclear Information System (INIS)

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  8. An integrated mission approach to the space exploration initiative will ensure success

    Science.gov (United States)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  9. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  10. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  11. Towards human exploration of space: The THESEUS review series on immunology research priorities

    DEFF Research Database (Denmark)

    Jean-Pol, Frippiat; Crucian, Brian E; de Quervain, Dominique

    2016-01-01

    to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent...

  12. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    Science.gov (United States)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  13. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  14. Pruning techniques for multi-objective system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.

    2014-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  15. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  16. Space Exploration: Issues Concerning the Vision for Space Exploration

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2006-01-01

    .... Bush announced new goals for the National Aeronautics and Space Administration (NASA), directing the agency to focus on returning humans to the Moon by 2020, and eventually sending them to Mars and worlds beyond...

  17. The Now Age, New Space, and Transforming the Exploration of Geospace

    Science.gov (United States)

    Paxton, L. J.

    2017-12-01

    In this talk I will discuss: 1) Changing our description of how and why we do Heliophysics (NASA) and Geospace Science (NSF) research 2) How we can take advantage of the New Space industry capabilities 3) How and why we can use the technology that has begun the transformation of our society into the "Now Age" I will discuss trends that I see that enable, if we have the will, a fundamental revitalization of the science that we aspire to do. I will focus on our opportunities to revolutionize the exploration of geospace (the region below about 1000km) and how that addresses fundamental questions about our place in the universe. Exploration of space, in particular exploration of geospace, is at a cusp - we can either attempt to continue to move forward using the same, tried and true techniques or we can embrace the "Now Age" and the capabilities enabled by the New Space industry to move forward to a fuller understanding of our world's place in the solar system. Heliophysics at NASA and Geospace Science at NSF can be recast as fundamental exploratory basic research that asks and answers questions that everyone can understand. We are in the Now Age because the human race has enabled and embraced a fundamentally different way of accessing information and, potentially gaining knowledge. For the first time, we have the capability to provide essentially all of recorded human knowledge immediately and to anyone - and people want that access "now". Even in the scientific community we expect to be able to see the latest data right now. This is enabled by the internet and ubiquitous connectivity; low cost data storage and memory; fast, low-cost computing; the means to visualize the information; advances in the way we store, catalog and retrieve information; and advances in modeling and simulation. Concomitant with the Now Age, and providing an impetus to do things "now", the New Space industry has enabled low cost access to space and has embraced a vision of human presence in

  18. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  19. Single Step to Orbit; a First Step in a Cooperative Space Exploration Initiative

    Science.gov (United States)

    Lusignan, Bruce; Sivalingam, Shivan

    1999-01-01

    At the end of the Cold War, disarmament planners included a recommendation to ease reduction of the U.S. and Russian aerospace industries by creating cooperative scientific pursuits. The idea was not new, having earlier been suggested by Eisenhower and Khrushchev to reduce the pressure of the "Military Industrial Complex" by undertaking joint space exploration. The Space Exploration Initiative (SEI) proposed at the end of the Cold War by President Bush and Premier Gorbachev was another attempt to ease the disarmament process by giving the bloated war industries something better to do. The engineering talent and the space rockets could be used for peaceful pursuits, notably for going back to the Moon and then on to Mars with human exploration and settlement. At the beginning of this process in 1992 staff of the Stanford Center for International Cooperation in Space attended the International Space University in Canada, met with Russian participants and invited a Russian team to work with us on a joint Stanford-Russian Mars Exploration Study. A CIA student and Airforce and Navy students just happened to join the Stanford course the next year and all students were aware that the leader of the four Russian engineers was well versed in Russian security. But, as long as they did their homework, they were welcome to participate with other students in defining the Mars mission and the three engineers they sent were excellent. At the end of this study we were invited to give a briefing to Dr. Edward Teller at Stanford's Hoover Institution of War and Peace. We were also encouraged to hold a press conference on Capitol Hill to introduce the study to the world. At a pre-conference briefing at the Space Council, we were asked to please remind the press that President Bush had asked for a cooperative exploration proposal not a U.S. alone initiative. The Stanford-Russian study used Russia's Energia launchers, priced at $300 Million each. The mission totaled out to $71.5 Billion

  20. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    Science.gov (United States)

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  1. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  2. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Science.gov (United States)

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  3. PDB-Explorer: a web-based interactive map of the protein data bank in shape space.

    Science.gov (United States)

    Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis

    2015-10-23

    The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3

  4. Identifying Sociological Factors for the Success of Space Exploration

    Science.gov (United States)

    Lundquist, C. A.; Tarter, D.; Coleman, A.

    Astrosociology factors relevant to success of future space exploration may best be identified through studies of sociological circumstances of past successful explorations, such as the Apollo-Lunar Missions. These studies benefit from access to primary records of the past programs. The Archives and Special Collections Division of the Salmon Library at the University of Alabama Huntsville (UAH) houses large collections of material from the early periods of the space age. The Huntsville campus of the University of Alabama System had its birth in the mid-1950s at the time when the von Braun rocket team was relocated from Texas to Huntsville. The University, the City of Huntsville and the US Government rocket organizations developed in parallel over subsequent years. As a result, the University has a significant space heritage and focus. This is true not only for the engineering and science disciplines, but also for the social sciences. The life of the University spans the period when Huntsville government and industrial organizations were responsible for producing the rocket vehicles to first take mankind to the Moon. That endeavor was surely as significant sociologically as technologically. In the 1980s, Donald E. Tarter, conducted a series of video interviews with some leading members of the original von Braun team. Although the interviews ranged over many engineering subjects, they also recorded personal features of people involved in the Apollo lunar exploration program and the interactions between these people. Such knowledge was of course an objective. These interviews are now in the collections of the UAH Library Archives, along with extensive documentation from the same period. Under sponsorship of the Archives and the NASA-Marshall Retiree Association, the interview series was restarted in 2006 to obtain comparable oral-history interviews with more than fifty US born members of the rocket team from the 1960s. Again these video interviews are rich with

  5. Comparison of Historic Exploration with Contemporary Space Policy Suggests a Retheorisation of Settings

    Science.gov (United States)

    Cokely, J.; Rankin, W.; Heinrich, P.; McAuliffe, M.

    The 2008 NASA Astrobiology Roadmap provides one way of theorising this developing field, a way which has become the normative model for the discipline: science-and scholarship-driven funding for space. By contrast, a novel re-evaluation of funding policies is undertaken in this article to reframe astrobiology, terraforming and associated space travel and research. Textual visualisation, discourse and numeric analytical methods, and value theory are applied to historical data and contemporary sources to re-investigate significant drivers and constraints on the mechanisms of enabling space exploration. Two data sets are identified and compared: the business objectives and outcomes of major 15th-17th century European joint-stock exploration and trading companies and a case study of a current space industry entrepreneur company. Comparison of these analyses suggests that viable funding policy drivers can exist outside the normative science and scholarship-driven roadmap. The two drivers identified in this study are (1) the intrinsic value of space as a territory to be experienced and enjoyed, not just studied, and (2) the instrumental, commercial value of exploiting these experiences by developing infrastructure and retail revenues. Filtering of these results also offers an investment rationale for companies operating in, or about to enter, the space business marketplace.

  6. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature

    Directory of Open Access Journals (Sweden)

    Tamlyn Eslie Roman

    2017-07-01

    Full Text Available Background The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. Methods A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. Results The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. Conclusion The literature supports Bossert’s conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning.

  7. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  8. The Value of Humans in the Biological Exploration of Space

    Science.gov (United States)

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  9. Planetary exploration with nanosatellites: a space campus for future technology development

    Science.gov (United States)

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  10. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  11. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  12. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  13. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  14. The potential of space exploration for the fine arts

    Science.gov (United States)

    Mclaughlin, William I.

    1993-01-01

    Art provides an integrating function between the 'upper' and 'lower' centers of the human psyche. The nature of this function can be made more specific through the triune model of the brain. The evolution of the fine arts - painting, drawing, architecture, sculpture, literature, music, dance, and drama, plus cinema and mathematics-as-a-fine-art - are examined in the context of their probable stimulations by space exploration: near term and long term.

  15. Optical Mining of Asteroids, Moons, and Planets to Enable Sustainable Human Exploration and Space Industrialization

    Data.gov (United States)

    National Aeronautics and Space Administration — PROBLEM, DEEP SPACE HUMAN EXPLORATION IS UNAFFORDABLE: In 2014 the NASA Advisory Council issued a finding that “The mismatch between NASA’s aspirations for human...

  16. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  17. Exploration of Stellarator Configuration Space with Global Search Methods

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Ethier, S.

    2001-01-01

    An exploration of stellarator configuration space z for quasi-axisymmetric stellarator (QAS) designs is discussed, using methods which provide a more global view of that space. To this end, we have implemented a ''differential evolution'' (DE) search algorithm in an existing stellarator optimizer, which is much less prone to become trapped in local, suboptimal minima of the cost function chi than the local search methods used previously. This search algorithm is complemented by mapping studies of chi over z aimed at gaining insight into the results of the automated searches. We find that a wide range of the attractive QAS configurations previously found fall into a small number of classes, with each class corresponding to a basin of chi(z). We develop maps on which these earlier stellarators can be placed, the relations among them seen, and understanding gained into the physics differences between them. It is also found that, while still large, the region of z space containing practically realizable QAS configurations is much smaller than earlier supposed

  18. Exploiting Domain Knowledge in System-level MPSoC Design Space Exploration

    NARCIS (Netherlands)

    Thompson, M.; Pimentel, A.D.

    2013-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded multimedia systems. During system-level DSE, system parameters like, e.g., the number and type of processors, and the mapping of

  19. An open-source job management framework for parameter-space exploration: OACIS

    Science.gov (United States)

    Murase, Y.; Uchitane, T.; Ito, N.

    2017-11-01

    We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.

  20. Human Exploration of the Solar System by 2100

    Science.gov (United States)

    Litchford, Ronald J.

    2017-01-01

    It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.

  1. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Science.gov (United States)

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  2. Moral Geography and Exploration of the Moral Possibility Space

    OpenAIRE

    Bongrae Seok

    2017-01-01

    This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017). By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world), Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and build...

  3. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  4. Exploration of Unknown Spaces by People Who Are Blind Using a Multi-sensory Virtual Environment

    Science.gov (United States)

    Lahav, Orly; Mioduser, David

    2004-01-01

    The ability to explore unknown spaces independently, safely and efficiently is a combined product of motor, sensory, and cognitive skills. Normal exercise of this ability directly affects an individual?s quality of life. Mental mapping of spaces and of the possible paths for navigating these spaces is essential for the development of efficient…

  5. Interleaving methods for hybrid system-level MPSoC design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.; McAllister, J.; Bhattacharyya, S.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  6. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how...

  7. Nuclear data needs for the space exploration initiative

    International Nuclear Information System (INIS)

    Howe, S.D.; Auchampaugh, G.

    1991-01-01

    On July 20, 1989, the President of the United States announced a new direction for the US Space Program. The new Space Exploration Initiative (SEI) is intended to emplace a permanent base on the Lunar surface and a manned outpost on the Mars surface by 2019. In order to achieve this ambitious challenge, new, innovative and robust technologies will have to be developed to support crew operations. Nuclear power and propulsion have been recognized as technologies that are at least mission enhancing and, in some scenarios, mission enabling. Because of the extreme operating conditions present in a nuclear rocket core, accurate modeling of the rocket will require cross section data sets which do not currently exist. In order to successfully achieve the goals of the SEI, major obstacles inherent in long duration space travel will have to be overcome. One of these obstacles is the radiation environment to which the astronauts will be exposed. In general, an unshielded crew will be exposed to roughly one REM per week in free space. For missions to Mars, the total dose could exceed more than one-half the total allowed lifetime level. Shielding of the crew may be possible, but accurate assessments of shield composition and thickness are critical if shield masses are to be kept at acceptable levels. In addition, the entire ship design may be altered by the differential neutron production by heavy ions (Galactic Cosmic Rays) incident on ship structures. The components of the radiation environment, current modeling capability and envisioned experiments will be discussed

  8. Towards human exploration of space: The THESEUS review series on immunology research priorities.

    Science.gov (United States)

    Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander

    2016-01-01

    Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.

  9. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    Science.gov (United States)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  10. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  11. Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Directory of Open Access Journals (Sweden)

    Gianfranco Ciardo

    2009-12-01

    Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.

  12. Clifford Space as a Generalization of Spacetime: Prospects for QFT of Point Particles and Strings

    OpenAIRE

    Pavsic, Matej

    2005-01-01

    The idea that spacetime has to be replaced by Clifford space (C-space) is explored. Quantum field theory (QFT) and string theory are generalized to C-space. It is shown how one can solve the cosmological constant problem and formulate string theory without central terms in the Virasoro algebra by exploiting the peculiar pseudo-Euclidean signature of C-space and the Jackiw definition of the vacuum state. As an introduction into the subject, a toy model of the harmonic oscillator in pseudo-Eucl...

  13. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  14. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  15. Biosputniks: The use by the Soviet Union and Russia of dogs, monkeys and other animals in the exploration of space, 1949-93

    Science.gov (United States)

    Harvey, B.

    1993-10-01

    The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.

  16. Down-to-Earth Benefits of Space Exploration: Past, Present, Future

    Science.gov (United States)

    Neumann, Benjamin

    2005-01-01

    A ventricular device that helps a weakened heart keep pumping while awaiting a transplant. A rescue tool for extracting victims from dangerous situations such as car wrecks. A video analysis tool used to investigate the bombing at the 1996 Olympics in Atlanta. A sound-differentiation tool for safer air traffic control. A refrigerator that run without electricity or batteries. These are just a few of the spin-offs of NASA technology that have benefited society in recent years. Now, as NASA sets its vision on space exploration, particularly of the moon and Mars, even more benefits to society are possible. This expansion of societal benefits is tied to a new emphasis on technology infusion or spin-in. NASA is seeking partners with industry, universities, and other government laboratories to help the Agency address its specific space exploration needs in five areas: (1) advanced studies, concepts, and tools; (2) advanced materials; (3) communications, computing, electronics, and imaging; (4) software, intelligent systems, and modeling; and (5) power, propulsion, and chemical systems. These spin-in partnerships will offer benefits to U.S. economic development as well as new products for the global market. As a complement to these spin-in benefits, NASA also is examining the possible future spin-outs of the innovations related to its new space exploration mission. A matrix that charts NASA's needs against various business sectors is being developed to fully understand the implications for society and industry of spin-in and spin-out. This matrix already has been used to help guide NASA s efforts to secure spin-in partnerships. This paper presents examples of NASA spin-offs, discusses NASA s present spin-in/spin-out projects for pursuing partnerships, and considers some of the future societal benefits to be reaped from these partnerships. This paper will complement the proposed paper by Frank Schowengerdt on the Innovative Partnerships Program structure and how to work

  17. Space Race Propaganda: U.S. Coverage of the Soviet Sputniks in 1957.

    Science.gov (United States)

    Marlin, Cheryl L.

    1987-01-01

    Analyzes coverage of the Soviet Sputniks in 1957 by three news magazines--"U.S.News and World Report,""Newsweek," and "Time." Reports that "Time" and "U.S. News" covered the issue in Cold War terms, whereas "Newsweek" put emphasis on the prospects for space exploration. (MM)

  18. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with

  19. Modeling Physarum space exploration using memristors

    International Nuclear Information System (INIS)

    Ntinas, V; Sirakoulis, G Ch; Vourkas, I; Adamatzky, A I

    2017-01-01

    Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks. (paper)

  20. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    Science.gov (United States)

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  1. Comparative prospective randomized trial: laparoscopic versus open common bile duct exploration

    Directory of Open Access Journals (Sweden)

    Vladimir Grubnik

    2011-06-01

    Full Text Available Introduction: Single-stage laparoscopic procedures for common bile duct (CBD stones are an alternative treatmentoption to two-stage endo-laparoscopic treatment and to open choledocholithotomy. Several reports have demonstratedthe feasibility, safety, efficiency and cost-effectiveness of laparoscopic techniques.Aim: To analyse the safety and benefits of laparoscopic compared to open common bile duct (CBD exploration.Material and methods: The prospective randomized trial included a total of 256 patients with CBD stones operated from2005 to 2009 in a single centre. The male/female ratio was 82/174, with a median age 62.3 ±5.8 years (range 27 to 87years. There were two groups of patients. Group I: laparoscopic CBD exploration (138 patients. Group II: open CBD exploration(118 patients. Patient comorbidity was assessed by means of the American Society of Anesthesiologists (ASA classification;ASA II – 109 patients, ASA III – 59 patients. Bile duct stones were visualized preoperatively by means of US examinationin 129 patients, by means of ERCP in 26 patients, and by magnetic resonance cholangiopancreatography (MRCPin 72 patients. Preoperative evaluation was done through medical history, biochemical tests and ultrasonography.Results: The mean duration of laparoscopic procedures was 82 min (range 40-160 min. The mean duration of openprocedures was 90 min (range 60-150 min. Mean blood loss was much lower in the laparoscopic group than in theopen group (20 ±2 v.s 285 ±27, p < 0.01. Postoperative complications were observed in 7 patients of the laparoscopicgroup and in 15 patients in the open group (p < 0.01. Laparoscopic common bile duct exploration was performedthrough a trans-cystic approach in 76 patients and via choledochotomy in 62 patients. The transcystic approach wassuccessful in 76 patients (74.5%. External drainage was used in 25 (32.8% patients with the transcystic approach.Conclusions: Laparoscopic CBD exploration can be performed with

  2. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Directory of Open Access Journals (Sweden)

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  3. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  4. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  5. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe

    Science.gov (United States)

    Ehrenfreund, P.; Peter, N.; Billings, L.

    2010-08-01

    Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.

  6. The role of nuclear reactors in space exploration and development

    International Nuclear Information System (INIS)

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  7. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  8. Hematopoietic Stem Cell Therapy as a Counter-Measure for Human Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Roach, A.-N.; Ramsahai, S.; Kim, B. C.; Fitzgerald, W.; Riley, D. A.; Gonda, S. R.

    2004-01-01

    Human exploration of deep space depends, in part, on our ability to counter severe/invasive disorders that astronauts experience in space environments. The known symptoms include hematological/cardiac abnormalities,bone and muscle losses, immunodeficiency, neurological disorders, and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, we have advanced a hypothesis that ome of the space-caused disorders maybe amenable to hematopoietis stem cell therapy(HSCT) so as to maintain promote human exploration of deep space. Using mouse models of human anemia beta-thaiassemia) as well as spaceflight (hindlimb unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, in the case of HSCT for muscle loss, the beta-galactosidese marked HSCs were detected in the hindlimbs of unloaded mouse following transplantation by -X-gal wholemaunt staining procedure. Histochemicaland physical analyses indicated structural contribution of HSCs to the muscle. HSCT for immunodeficiency was investigated ising beta-galactosidese gene-tagged Escherichia coli as the infectious agent. Results of the X-gal staining procedure indicated the rapeutic role of the HSCT. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  9. Mars Wars: The Rise and Fall of the Space Exploration Initiative

    Science.gov (United States)

    Hogan, Thor

    2007-08-01

    The rise of Space Exploration Initiative (SEI) and its eventual demise represents one of the landmark episodes in the history of the American space program ranking with the creation of NASA, the decision to go to the Moon, the post-Apollo planning process, and the space station decision. The story of this failed initiative is one shaped by key protagonists and critical battles. It is a tale of organizational, cultural, and personal confrontation. Organizational skirmishes involved the Space Council versus NASA, the White House versus congressional appropriators, and the Johnson Space Center versus the rest of the space agency all seeking control of the national space policy process. Cultural struggles pitted the increasingly conservative engineering ethos of NASA against the faster, better, cheaper philosophy of a Space Council looking for innovative solutions to technical problems. Personality clashes matched Vice President Dan Quayle and Space Council Executive Secretary Mark Albrecht against NASA Administrator Dick Truly and Johnson Space Center Director Aaron Cohen. In the final analysis, the demise of SEI was a classic example of a defective decision-making process one that lacked adequate high-level policy guidance, failed to address critical fiscal constraints, developed inadequate programmatic alternatives, and garnered no congressional support. Some space policy experts have argued that SEI was doomed to fail, due primarily to the immense budgetary pressures facing the nation during the early 1990's. This book will argue, however, that the failure of the initiative was not predetermined; instead, it was the result of a deeply flawed policy process that failed to develop (or even consider) policy options that may have been politically acceptable given the existing political environment.

  10. Prospective targets of geological exploration in the Siberian platform and criteria of their feasibility

    Directory of Open Access Journals (Sweden)

    D.V. Milyaev

    2017-06-01

    Full Text Available The relevance of the study is due to the reducing number of prospective blocks remaining unlicensed in Eastern Siberia and the need for feasibility study of the remaining potentially attractive blocks. The aim of the study is evaluation of the resource potential and allocation of new prospective license blocks in Eastern Siberia based on geological and economic criteria. The methods and instruments used in the study. To perform the economic analysis of resources and to assess the efficiency and risks of subsoil exploration and development, the authors used the results of in-house regional geological and geophysical modelling and economic research. A feasibility study of each potential pool was conducted on the author’s automated complex GeoProfi. The authors used probabilistic analysis and the cash flow discounting method to draw up an expert forecast. The results of the study. The study covers the present state and development prospects of oil and gas fields in the Siberian Platform within the Krasnoyarsk Territory, the Irkutsk Region, and the Sakha (Yakutia Republic. The top priority petroleum zones were analysed. A feasibility study of selected areas was conducted. The income density and feasible recoverable reserves density were mapped. The critical parameters that indicate unprofitable targets were calculated. The most feasible subsoil blocks were determined based on the correlation of economic and probability parameters.

  11. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    Science.gov (United States)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  12. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  13. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The World is Not Enough (WINE) is a new generation of CubeSats that take advantage of ISRU to explore space. The WINE takes advantage of existing CubeSat technology...

  14. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  15. Analysis of geological condition and prospecting potential of uranium metallogenesis in Maling granite mass

    International Nuclear Information System (INIS)

    Shao Fei; Zou Maoqing; Wu Yong; Xu Jinshan; Xu Wang; Chen Chang

    2011-01-01

    Based on the study of regional geological evolution of Maling granite mass, uranium content of granite mass and its peripheric strata, petrogeochemistry and the known spatial distribution pattern of uranium mineralization and ore-controlling structures, new recognition is 1) Maling composite mass is the 'S' type re-melted granite, 2) the accumulative area of regional uranium metallogenic substances forms uranium-rich re-melted strata, 3) magma evolution is the matter base for the uranium-rich hydrotherm, 4) NE-trending main faults are channels for metallogenesis and the lateral high-angle dipping faults, fractures and interlayer fractures in the peripheric strata are the spaces of mineralization. The ore intersected by drilling in Maling granite is acidic type. Prospecting potential of Maling granite mass is analyzed, and preferable prospecting space is delineated for further exploration. (authors)

  16. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  17. Cosmic Humanity: Utopia, Realities, Prospects

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  18. Enabling Fast ASIP Design Space Exploration: An FPGA-Based Runtime Reconfigurable Prototyper

    Directory of Open Access Journals (Sweden)

    Paolo Meloni

    2012-01-01

    Full Text Available Application Specific Instruction-set Processors (ASIPs expose to the designer a large number of degrees of freedom. Accurate and rapid simulation tools are needed to explore the design space. To this aim, FPGA-based emulators have recently been proposed as an alternative to pure software cycle-accurate simulator. However, the advantages of on-hardware emulation are reduced by the overhead of the RTL synthesis process that needs to be run for each configuration to be emulated. The work presented in this paper aims at mitigating this overhead, exploiting a form of software-driven platform runtime reconfiguration. We present a complete emulation toolchain that, given a set of candidate ASIP configurations, identifies and builds an overdimensioned architecture capable of being reconfigured via software at runtime, emulating all the design space points under evaluation. The approach has been validated against two different case studies, a filtering kernel and an M-JPEG encoding kernel. Moreover, the presented emulation toolchain couples FPGA emulation with activity-based physical modeling to extract area and power/energy consumption figures. We show how the adoption of the presented toolchain reduces significantly the design space exploration time, while introducing an overhead lower than 10% for the FPGA resources and lower than 0.5% in terms of operating frequency.

  19. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  20. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Science.gov (United States)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  1. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    Science.gov (United States)

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  2. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  3. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    Science.gov (United States)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  4. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  5. Exploring and linking biomedical resources through multidimensional semantic spaces.

    Science.gov (United States)

    Berlanga, Rafael; Jiménez-Ruiz, Ernesto; Nebot, Victoria

    2012-01-25

    integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.

  6. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  7. Exploration economics

    International Nuclear Information System (INIS)

    Mcgill, R.E.

    1992-01-01

    This paper deals with determining the economic viability of the play or prospect. At the outset, one point is important. Preexploration economists are important because they enable geologists to see if their assumptions will prove profitable. Their assumptions must consider the full range of possible outcomes, even if only some portion of that range may contain prospects or plays that are estimated to be profitable. Play economics are preferable to prospect economics because, being the sum of several prospects, they give a broader view of the investment opportunity. Finally, remember that play and prospect economics are always slightly optimistic. They seldom include all of the exploration and overhead changes that must ultimately be borne by the successful prospects

  8. Social Sciences and Space Exploration

    Science.gov (United States)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  9. Uranium exploration: new thinking, new theories and new technologies

    International Nuclear Information System (INIS)

    Dai Jiemin

    2000-01-01

    Uranium prospecting and exploration in China have almost past a course of a half century. At the boundary of two centuries, what is the trend of uranium prospecting and exploration? The coming uranium prospecting and exploration will be dependent on the enlightenment of new thinking, the guidance of new theories and the support of new technologies and methods. In a word, the authors must set up a creation system for uranium prospecting and exploration. The above-mentioned ideas are discussed

  10. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  11. An Exploration of Hybrid Spaces for Place-Based Geomorphology with Latino Bilingual Children

    Science.gov (United States)

    Martínez-Álvarez, Patricia; Bannan, Brenda

    2014-01-01

    Latino bilingual children hold rich understandings, which are underexplored and underutilized in the geoscience classroom. Oftentimes, young Latinos possess unique cultural land experiences shaping their place identities. We consider science as language and culture, and propose place-based geoscience hybrid space explorations that are culturally…

  12. Crew Roles and Interactions in Scientific Space Exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  13. Development of a bio-chip dedicated to planetary exploration. First step: resistance studies to space conditions

    International Nuclear Information System (INIS)

    Le Postollec, A.; Dobrijevic, M.; Incerti, S.; Moretto, Ph.; Seznec, H.; Desorgher, L.; Santin, G.; Nieminen, P.; Dartnell, L.; Vandenabeele-Trambouze, O.; Coussot, G.

    2008-02-01

    For upcoming exploration missions, space agencies advocate the development of a new promising technique to search for traces of extent or extinct life: the bio-chip use. A bio-chip is a miniaturized device composed of biological sensitive systems fixed on a solid substrate. As space is a hazardous environment, a main concern relies on the resistance of a bio-chip to a panel of harsh constraints among which the resistance to radiations. Within the framework of the BiOMAS (Bio-chip for Organic Matter Analysis in Space) project, our team is currently developing a bio-chip especially designed for planetary exploration. We present here the methodology adopted and the beginning experiments to select the best constituents, to determine resistance levels and to define well-adapted protection for the bio-chip

  14. Exploration the conception of prospective students teacher about limit of function

    Science.gov (United States)

    Usman, Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    The purpose of this research is to explore the conception of prospective students teacher that highly skilled on mathematical ability about limit function, especially in the aspects of understanding, representation, mental image and proposition. This study was conducted by a qualitative exploratory method. The subject was one of the students in the mathematics education of Syiahkuala University which being chosen according to the expected criteria.. The research instrument was divided into main and supporting instrument. The data was analyzed by reducing, presenting, interpreting and concluding. The analyzing data results obtained the subject's conception about limit function were elaborated the meaning of limit function with representation verbal, graphic, symbol, and logical explanation, expressing the limit function definition with verbal representation, graphic, table and symbol. The subject defined the correlation of limit function by imaging, revealing, and using one-sided the limit of function. They expanded the propositions by symbols, explained logically, and proved using a formal definition.

  15. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  16. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    Science.gov (United States)

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that

  17. Securing America's access to space

    Energy Technology Data Exchange (ETDEWEB)

    Rendine, M.; Wood, L.

    1990-05-23

    We review pertinent aspects of the history of the space launch capabilities of the United States and survey its present status and near-term outlook. Steps which must be taken, pitfalls which much be avoided, and a core set of National options for re-acquiring in the near term the capability to access the space environment with large payloads are discussed. We devote considerable attention to the prospect of creating an interim heavy-lift space launch vehicle of at least 100,000 pound payload-orbiting capacity to serve National needs during the next dozen years, suggesting that such a capability can be demonstrated within 5 years for less than $1 B. Such capability will apparently be essential for meeting the first-phase goals of the President's Space Exploration Initiative. Some other high-leverage aspects of securing American access to space are also noted briefly, emphasizing unconventional technological approaches of presently high promise.

  18. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  19. The application of isotopic dating methods for prospection and exploration of nuclear raw material

    International Nuclear Information System (INIS)

    Komlev, L.V.; Anderson, E.B.

    1977-01-01

    Among the geological and geochemical methods for prospecting and searching the nuclear raw material, the isotope-dating methods determine the most important search criterion - the time of the ore-forming. The elaboration and use of these methods in uranium-ore regions reveal a series of geochemical epochs of uranium and thorium accumulation connected naturally with the history of geological evolution of the earth crust. The isotope-dating methods enable with confidence to establish the stages of tectono-magmatic activity resulting in the redistribution and the local concentration of uranium. The wide use of isotopic methods is a necessary condition for reasonable trends of the modern geological exploration [ru

  20. You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.

    Science.gov (United States)

    Eldridge, Alice

    2015-01-01

    Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.

  1. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  2. NASA: A generic infrastructure for system-level MP-SoC design space exploration

    NARCIS (Netherlands)

    Jia, Z.J.; Pimentel, A.D.; Thompson, M.; Bautista, T.; Núñez, A.

    2010-01-01

    System-level simulation and design space exploration (DSE) are key ingredients for the design of multiprocessor system-on-chip (MP-SoC) based embedded systems. The efforts in this area, however, typically use ad-hoc software infrastructures to facilitate and support the system-level DSE experiments.

  3. Exploring the reference point in prospect theory: gambles for length of life.

    Science.gov (United States)

    van Osch, Sylvie M C; van den Hout, Wilbert B; Stiggelbout, Anne M

    2006-01-01

    Attitude toward risk is an important factor determining patient preferences. Risk behavior has been shown to be strongly dependent on the perception of the outcome as either a gain or a loss. According to prospect theory, the reference point determines how an outcome is perceived. However, no theory on the location of the reference point exists, and for the health domain, there is no direct evidence for the location of the reference point. This article combines qualitative with quantitative data to provide evidence of the reference point in life-year certainty equivalent (CE) gambles and to explore the psychology behind the reference point. The authors argue that goals (aspirations) in life influence the reference point. While thinking aloud, 45 healthy respondents gave certainty equivalents for life-year CE gambles with long and short durations of survival. Contrary to suggestions from the literature, qualitative data argued that the offered certainty equivalent most frequently served as the reference point. Thus, respondents perceived life-year CE gambles as mixed. Framing of the question and goals set in life appeared to be important factors behind the psychology of the reference point. On the basis of the authors' quantitative and qualitative data, they argue that goals alter the perception of outcomes as described by prospect theory by influencing the reference point. This relationship is more apparent for the near future as opposed to the remote future, as goals are mostly set for the near future.

  4. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Science.gov (United States)

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  5. Managing the exploration process: conference papers

    International Nuclear Information System (INIS)

    1999-01-01

    The conference includes eight articles on the theme of the meeting including: I - creating an environment that fosters exploration and development ideas; II - integrating a global perspective when setting objectives for exploration planning; III - practical issues is setting exploration objectives; IV - portfolio analysis of exploration prospect of ideas; V - the effective presentation of exploration prospects; V I - the future of information management; VII - assessing exploration assets; and V III - environmental and regulatory considerations when planning an exploratory well. Individual articles indexed/abstracted separately include: articles I, II, III, VII, and V III

  6. Exploring Prospective Teachers’ Reflections in the Context of Conducting Clinical Interviews

    Directory of Open Access Journals (Sweden)

    Rukiye Didem Taylan

    2018-04-01

    Full Text Available This study investigated prospective mathematics teachers’ reflections on the experience of designing and conducting one-to-one clinical interviews with middle school students in the context of an elective course on use of video in teacher learning. Prospective teachers were asked to write about weaknesses and strengths in student understanding as well as their own performance as an interviewer in terms of asking questions and responding to student thinking in their reflections on conducting clinical interviews. Furthermore, prospective teachers were also asked to reflect on what they would do differently in order to conduct better clinical interviews. Nature of prospective teachers’ reflections were analyzed by using existing frameworks (through constructs of reflection-on-action and reflection-for-action and by using thematic analysis. Results of data analyses revealed that prospective teachers had more difficulties in providing meaningful reflection-for-action which was related to alternative decisions and planning for future similar interviews. Thematic analysis results revealed prospective teachers’ learning were grouped under three categories: conducting clinical interviews as part of being a teacher, complexity of conducting clinical interviews, and personal theories about middle school students. There are implications for both teacher learning and research.

  7. Astronautics summary and prospects

    CERN Document Server

    Kiselev, Anatoly Ivanovich; Menshikov, Valery Alexandrovich

    2003-01-01

    The monograph by A.I.Kiselev, A.A. Medvedev and Y.A.Menshikov, Astronautics: Summary and Prospects, aroused enthusiasm both among experts and the public at large. This is due to the felicitous choice of presentation that combines a simple description of complex space matters with scientificsubstantiation of the sub­ jectmatter described. The wealth of color photos makes the book still more attractive, and it was nominated for an award at the 14th International Moscow Book Fair, being singled out as the "best publication of the book fair". The book's popularity led to a second edition, substantially revised and enlarged. Since the first edition did not sufficiently cover the issues of space impact on ecology and the prospective development of space systems, the authors revised the entire volume, including in it the chapter "Space activity and ecology" and the section "Multi-function space systems". Using the federal monitoring system, now in the phase of system engi­ neering, as an example, the authors consi...

  8. Exploring links between foundation phase teachers’ content knowledge and their example spaces

    Directory of Open Access Journals (Sweden)

    Samantha Morrison

    2013-12-01

    Full Text Available This paper explores two foundation phase teachers’ example spaces (a space in the mind where examples exist when teaching number-related topics in relation to snapshots of their content knowledge (CK. Data was collected during a pilot primary maths for teaching course that included assessments of teacher content knowledge (CK. An analysis of a content-knowledge focused pre-test developed for the larger study indicated a relatively high score for one teacher and a low score for the other. Using Rowland’s (2008 framework, an analysis of classroom practice showed associations between a higher CK and the extent of a teacher’s example space and more coherent connections between different representational forms. Although no hard claims or generalisations of the link between teachers’ example spaces and their level of mathematics content knowledge can be made here, this study reinforces evidence of the need to increase teachers’ CK from a pedagogic perspective in order to raise the level of mathematics teaching and learning in the South African landscape.

  9. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    Science.gov (United States)

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  10. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    Science.gov (United States)

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  11. The role of nuclear power and nuclear propulsion in the peaceful exploration of space

    International Nuclear Information System (INIS)

    2005-09-01

    This publication has been produced within the framework of the IAEA's innovative reactor and fuel cycle technology development activities. It elucidates the role that peaceful space related nuclear power research and development could play in terrestrial innovative reactor and fuel cycle technology development initiatives. This review is a contribution to the Inter-Agency Meeting on Outer Space Activities, and reflects the stepped up efforts of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space to further strengthen cooperation between international organizations in space related activities. Apart from fostering information exchange within the United Nations organizations, this publication aims at finding new potential fields for innovative reactor and fuel cycle technology development. In assessing the status and reviewing the role of nuclear power in the peaceful exploration of space, it also aims to initiate a discussion on the potential benefits of space related nuclear power technology research and development to the development of innovative terrestrial nuclear systems

  12. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  13. Lasers, Clocks and Drag-Free Control Exploration of Relativistic Gravity in Space

    CERN Document Server

    Dittus, Hansjorg; Turyshev, Slava G

    2008-01-01

    Over the next decade the gravitational physics community will benefit from dramatic improvements in many technologies critical to testing gravity. Highly accurate deep space navigation, interplanetary laser communication, interferometry and metrology, high precision frequency standards, precise pointing and attitude control, together with drag-free technologies, will revolutionize the field of experimental gravitational physics. The centennial of the general theory of relativity in 2015 will motivate a significant number of experiments designed to test this theory with unprecedented accuracy. The purpose of the contributions in this book, written by international experts, is to explore the possibilities for the next 20 years for conducting gravitational experiments in space that would utilize both entirely new and highly improved existing capabilities.

  14. Prospective Memory in Context: Moving through a Familiar Space

    Science.gov (United States)

    Smith, Rebekah E.; Hunt, R. Reed; Murray, Amy E.

    2017-01-01

    Successful completion of delayed intentions is a common but important aspect of daily behavior. Such behavior requires not only memory for the intended action but also recognition of the opportunity to perform that action, known collectively as prospective memory. The fact that prospective memory tasks occur in the midst of other activities is…

  15. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    International Nuclear Information System (INIS)

    Lee, Kerry; Wilson, Thomas; Zapp, Neal; Pinsky, Lawrence

    2007-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics

  16. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  17. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Science.gov (United States)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  18. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning.

    Science.gov (United States)

    Lee, Andrew Chee Keng; Jordan, Hannah C; Horsley, Jason

    2015-01-01

    There has been considerable work done in recent years exploring the value of urban green space for health and wellbeing. Urban green spaces provide environmental benefits through their effects on negating urban heat, offsetting greenhouse gas emissions, and attenuating storm water. They also have direct health benefits by providing urban residents spaces for physical activity and social interaction, and allowing psychological restoration to take place. Consequently, there is a real need to understand the mechanisms by which these benefits accrue. Previously, much of the focus has been on the characteristics of the urban green space that are likely to influence its use, such as its accessibility, quality, facilities, attractiveness, and security. This assumes a causal relationship, when in reality the relationship is more complex and multifactorial. It is more likely that it is the functionality of the green space, be it for exercise or sociocultural activities, rather than its character, which translates to the reported benefits. Challenges exist, such as competing urban planning priorities, economic considerations, and market forces. There is thus a need for urban planning to match the health benefits sought with the needs of the community and the functionality that the urban green space will serve.

  19. Lunar and Planetary Robotic Exploration Missions in the 20th Century

    Science.gov (United States)

    Huntress, W. T., Jr.; Moroz, V. I.; Shevalev, I. L.

    2003-07-01

    The prospect of traveling to the planets was science fiction at the beginning of the 20th Century and science fact at its end. The space age was born of the Cold War in the 1950s and throughout most of the remainder of the century it provided not just an adventure in the exploration of space but a suspenseful drama as the US and USSR competed to be first and best. It is a tale of patience to overcome obstacles, courage to try the previously impossible and persistence to overcome failure, a tale of both fantastic accomplishment and debilitating loss. We briefly describe the history of robotic lunar and planetary exploration in the 20th Century, the missions attempted, their goals and their fate. We describe how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation.

  20. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    Science.gov (United States)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  1. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  2. Biomimetics on seed dispersal: survey and insights for space exploration

    International Nuclear Information System (INIS)

    Pandolfi, Camilla; Izzo, Dario

    2013-01-01

    Seeds provide the vital genetic link and dispersal agent between successive generations of plants. Without seed dispersal as a means of reproduction, many plants would quickly die out. Because plants lack any sort of mobility and remain in the same spot for their entire lives, they rely on seed dispersal to transport their offspring throughout the environment. This can be accomplished either collectively or individually; in any case as seeds ultimately abdicate their movement, they are at the mercy of environmental factors. Thus, seed dispersal strategies are characterized by robustness, adaptability, intelligence (both behavioral and morphological), and mass and energy efficiency (including the ability to utilize environmental sources of energy available): all qualities that advanced engineering systems aim at in general, and in particular those that need to enable complex endeavors such as space exploration. Plants evolved and adapted their strategy according to their environment, and taken together, they enclose many desirable characteristics that a space mission needs to have. Understanding in detail how plants control the development of seeds, fabricate structural components for their dispersal, build molecular machineries to keep seeds dormant up to the right moment and monitor the environment to release them at the right time could provide several solutions impacting current space mission design practices. It can lead to miniaturization, higher integration and packing efficiency, energy efficiency and higher autonomy and robustness. Consequently, there would appear to be good reasons for considering biomimetic solutions from plant kingdom when designing space missions, especially to other celestial bodies, where solid and liquid surfaces, atmosphere, etc constitute and are obviously parallel with the terrestrial environment where plants evolved. In this paper, we review the current state of biomimetics on seed dispersal to improve space mission design

  3. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    Energy Technology Data Exchange (ETDEWEB)

    Kabisch, Nadja, E-mail: nadja.kabisch@geo.hu-berlin.de [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany); Qureshi, Salman [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); School of Architecture, Birmingham Institute of Art and Design, Birmingham City University, The Parkside Building, 5 Cardigan Street, Birmingham B4 7BD (United Kingdom); Haase, Dagmar [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany)

    2015-01-15

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap.

  4. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    International Nuclear Information System (INIS)

    Kabisch, Nadja; Qureshi, Salman; Haase, Dagmar

    2015-01-01

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap

  5. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    Science.gov (United States)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  6. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  7. Exploration and guidance in media-rich information spaces : the implementation and realization of guided tours in digital dossiers

    NARCIS (Netherlands)

    Riel, van C.; Wang, Y.; Eliëns, A.; Guerrero-Bote, V.P.

    2006-01-01

    Confronted with media-rich information spaces involves interfaces that are usually designed to facilitate personal exploration to locate information of interest. Navigating such media-rich information spaces, where information structures can be complex, may result in disorientation and demotivation.

  8. A System-level Infrastructure for Multi-dimensional MP-SoC Design Space Co-exploration

    NARCIS (Netherlands)

    Jia, Z.J.; Bautista, T.; Nunez, A.; Pimentel, A.D.; Thompson, M.

    2013-01-01

    In this article, we present a flexible and extensible system-level MP-SoC design space exploration (DSE) infrastructure, called NASA. This highly modular framework uses well-defined interfaces to easily integrate different system-level simulation tools as well as different combinations of search

  9. Technology Assessment in Support of the Presidential Vision for Space Exploration

    Science.gov (United States)

    Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert

    2006-01-01

    This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.

  10. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  11. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  12. Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used

  13. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  14. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  15. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  16. Requirements for high level models supporting design space exploration in model-based systems engineering

    NARCIS (Netherlands)

    Haveman, Steven; Bonnema, Gerrit Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during

  17. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  18. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    Science.gov (United States)

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  19. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  20. Computational methods in the exploration of the classical and statistical mechanics of celestial scale strings: Rotating Space Elevators

    Science.gov (United States)

    Knudsen, Steven; Golubovic, Leonardo

    2015-04-01

    With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.

  1. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning

    Directory of Open Access Journals (Sweden)

    Lee ACK

    2015-08-01

    Full Text Available Andrew Chee Keng Lee,1 Hannah C Jordan,1 Jason Horsley2 1Section of Public Health, School of Health and Related Research, University of Sheffield, 2Sheffield City Council, Sheffield, UK Abstract: There has been considerable work done in recent years exploring the value of urban green space for health and wellbeing. Urban green spaces provide environmental benefits through their effects on negating urban heat, offsetting greenhouse gas emissions, and attenuating storm water. They also have direct health benefits by providing urban residents spaces for physical activity and social interaction, and allowing psychological restoration to take place. Consequently, there is a real need to understand the mechanisms by which these benefits accrue. Previously, much of the focus has been on the characteristics of the urban green space that are likely to influence its use, such as its accessibility, quality, facilities, attractiveness, and security. This assumes a causal relationship, when in reality the relationship is more complex and multifactorial. It is more likely that it is the functionality of the green space, be it for exercise or sociocultural activities, rather than its character, which translates to the reported benefits. Challenges exist, such as competing urban planning priorities, economic considerations, and market forces. There is thus a need for urban planning to match the health benefits sought with the needs of the community and the functionality that the urban green space will serve. Keywords: urban green space, public open space, urban planning, public health 

  2. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  3. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The paradigm of exploration is changing. Smaller, smarter, and more efficient systems are being developed that could do as well as large, expensive, and heavy...

  4. Transition in the Human Exploration of Space at NASA

    Science.gov (United States)

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  5. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  6. Mass Reduction: The Weighty Challenge for Exploration Space Flight

    Science.gov (United States)

    Kloeris, Vickie L.

    2014-01-01

    Meeting nutritional and acceptability requirements is critical for the food system for an exploration class space mission. However, this must be achieved within the constraints of available resources such as water, crew time, stowage volume, launch mass and power availability. ? Due to resource constraints, exploration class missions are not expected to have refrigerators or freezers for food storage, and current per person food mass must be reduced to improve mission feasibility. ? The Packaged Food Mass Reduction Trade Study (Stoklosa, 2009) concluded that the mass of the current space food system can be effectively reduced by decreasing water content of certain foods and offering nutrient dense substitutes, such as meal replacement bars and beverages. Target nutrient ranges were established based on the nutritional content of the current breakfast and lunch meals in the ISS standard menu. A market survey of available commercial products produced no viable options for meal replacement bar or beverage products. New prototypes for both categories were formulated to meet target nutrient ranges. Samples of prototype products were packaged in high barrier packaging currently used for ISS and underwent an accelerated shelf life study at 31 degC and 41 degC (50% RH) for 24 weeks. Samples were assessed at the following time points: Initial, 6 weeks, 12 weeks, and 24 weeks. Testing at each time point included the following: color, texture, water activity, acceptability, and hexanal analysis (for food bars only). Proof of concept prototypes demonstrated that meal replacement food bars and beverages can deliver a comparable macronutrient profile while reducing the overall mass when compared to the ISS Standard Menu. Future work suggestions for meal replacement bars: Reformulation to include ingredients that reduce hardness and reduce browning to increase shelf life. Micronutrient analysis and potential fortification. Sensory evaluation studies including satiety tests and

  7. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  8. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  9. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  10. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  11. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  12. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  13. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  14. Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.

  15. Veganism In Star Trek : A Comic Reformatting Of Plant-Based Space Exploration

    OpenAIRE

    Tamminen, Tiariia

    2017-01-01

    My thesis revolves around collecting references to veganism and animal rights in five different science fiction TV series of the Star Trek franchise. I especially concentrate on how the character creation, setting and spoken lines express development and implementation of food technology and ethics. My objective is to show how our relationship to food and animal rights is presented in the main canon of the Star Trek franchise in terms of exploration in space. I will express this further t...

  16. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  17. Present condition of uranium exploration and the prospecting direction in southwest China

    International Nuclear Information System (INIS)

    Ni Shijun; Zhang Chengjiang; Xu Zhengqi; Chen Youliang

    2012-01-01

    Southwest China is one of the important areas where uranium is distributed. After exploration and research of 50 years, the metallogenic conditions for uranium deposits in Southwest China have been studied more deeply. It is found that uranium ore in Southwest China has more complete types, less deposits and more mineral occurrences, and the amount of uranium resources is disproportionate to the area of Southwest China. Researches of years show that Southwest China is characterized by thick crust. thick sedimentary cover, weak crust-mantle interaction, weak deep flu id activity in shallow strata, strong dynamic formation in shallow strata and obvious deep geologic process on block mar- gins. In this paper, the control of deep geologic process and evolution in uranium metallogenesis in Southwest China is studied by employing new theories and thoughts on the fundamental concept that deep geologic process and evolution has important control on super-large scale deposits. The study focuses on the crust-mantle structure and evolution with uranium metallogenesis, structural and magmatic activity and deep fluid activity with uranium metallogenesis, and ore-con- trolling role of penetrating faults on block edges and inside the blocks. To offer theoretic basis for large-scale uranium deposit prospecting in Southwest China, the key research on uranium deposit in Southwest China in future should be on the deep geologic evolution and uranium metallogenesis in Western Qinling Region, the uranium metallogenesis of iron oxide copper gold deposits on Kangdian axis, the uranium metallogenesis in Yunnan-Guizhou contiguous area, the hydrothermal uranium metallogenesis in Eastern Tibet and Western Sichuan, and the connection between sandstone type uranium deposit and magmatic activity. Meanwhile, the above regions are also the key ones for uranium deposit prospecting in Southwest China in a rather long period in future. (authors)

  18. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  19. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Science.gov (United States)

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  20. In-Space Manufacturing (ISM): Pioneering Space Exploration

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions. This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

  1. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  2. At the precipice: a prospective exploration of medical students' expectations of the pre-clerkship to clerkship transition.

    Science.gov (United States)

    Soo, Jason; Brett-MacLean, Pamela; Cave, Marie-Therese; Oswald, Anna

    2016-03-01

    Medical learners face many challenging transitions. We prospectively explored students' perceptions of their upcoming transition to clerkship and their future professional selves. In 2013, 160/165 end-of-second-year medical students wrote narrative reflections and 79/165 completed a questionnaire on their perceptions of their upcoming transition to clerkship. Narratives were separately analyzed by four authors and then discussed to identify a final thematic framework using parsimonious category construction. We identified two overarching themes: (1) "Looking back": experiences which had helped students feel prepared for clerkship with subthemes focused on of patient care, shadowing, classroom teaching and the pre-clerkship years as foundational knowledge, (2) "Looking forward": anticipating the clerkship experience and the journey of becoming a physician with subthemes focused on death and dying, hierarchy, work-life balance, interactions with patients, concerns about competency and career choice. Questionnaire data revealed incongruities around expectations of minimal exposure to death and dying, little need for independent study and limited direct patient responsibility. We confirmed that internal transformations are happening in contemplative time even before clerkship. By prospectively exploring pre-clerkship students' perceptions of the transition to clerkship training we identified expectations and misconceptions that could be addressed with future curricular interventions. While students are aware of and anticipating their learning needs it is not as clear that they realise how much their future learning will depend on their own inner resources. We suggest that more attention be paid to professional identity formation and the development of the physician as a person during these critical transitions.

  3. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    Science.gov (United States)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  4. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  5. Application of Emerging Pharmaceutical Technologies for Therapeutic Challenges of Space Exploration Missions

    Science.gov (United States)

    Putcha, Lakshmi

    2011-01-01

    An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.

  6. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    Science.gov (United States)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development

  7. The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration

    Directory of Open Access Journals (Sweden)

    Kevin R Duda

    2015-04-01

    Full Text Available The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs and control moment gyroscopes (CMGs within miniaturized modules placed on body segments to provide a viscous resistance during movements against a specified direction of down – initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from down initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  8. Exploring the triplet parameters space to optimise the final focus of the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2141109; Abelleira, Jose; Seryi, Andrei; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider (FCC-hh).

  9. International petroleum licensing, exploration activity and fiscal terms

    International Nuclear Information System (INIS)

    Hodgshon, S.

    1994-01-01

    Although there is no decline in current international petroleum licensing activity, attention is drawn to the fact that it is concentrated in certain countries, many of them amongst the less geologically prospective. Among the factors other then geological prospectivity which promote a successful licensing and exploration environment, the most important is the fiscal terms offered. While countries which are highly prospective geologically may stiffen terms and still attract exploration companies because they feel they can make major discoveries, any decline in prospectivity needs to be accompanied by a matching change in fiscal terms to maintain interest. Less prospective countries which, hitherto, have created favourable investment conditions may however find that further declines cannot be reversed by attractive fiscal terms. (7 figures, 3 tables). (UK)

  10. Petroleum exploration in Africa from space

    Science.gov (United States)

    Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco

    2017-10-01

    Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.

  11. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  12. The project of documentary space 'ExploRe' Opened pluri-disciplinary exploration of reversibility: multiple-point of view access to exploratory works of Andra on reversibility

    International Nuclear Information System (INIS)

    Cahier, Jean-Pierre; Desfriches, Orelie; Zacklad, Manuel

    2009-01-01

    The authors present a digital space (a web site - 'ExploRe') which would allows a community to share a set of pluri-disciplinary information items concerning reversibility, and in which the community members describe the items by using attributes and themes belonging to different points of view

  13. Bioprocessing: Prospects for space electrophoresis

    Science.gov (United States)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  14. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  15. A prospective evaluation of laparoscopic exploration with intraoperative ultrasound as a technique for localizing sporadic insulinomas.

    Science.gov (United States)

    Grover, Amelia C; Skarulis, Monica; Alexander, H Richard; Pingpank, James F; Javor, Edward D; Chang, Richard; Shawker, Thomas; Gorden, Phil; Cochran, Craig; Libutti, Steven K

    2005-12-01

    Preoperative imaging studies localize insulinomas in less than 50% of patients. Arteriography with calcium stimulation and venous sampling (ASVS) regionalizes greater than 90% of insulinomas but requires specialized expertise and an invasive procedure. This prospective study evaluated laparoscopic exploration with IOUS compared with the other localization procedures in patients with a sporadic insulinoma. Between March 2001 and October 2004, 14 patients (7 women and 7 men; mean age, 53) with an insulinoma were enrolled in an IRB-approved protocol. Computed tomography, magnetic resonance imaging, ultrasound scan, and arteriography with calcium stimulation and venous sampling were performed preoperatively. A surgeon, blinded to the results of the localizing studies, performed a laparoscopic exploration with intraoperative ultrasound (IOUS). At the completion of the exploration, the success of laparoscopy for localization was scored, and the tumor was resected. Twelve of 14 tumors were localized successfully before laparoscopy (noninvasive, 7 of 14; invasive, 11 of 14). Laparoscopic IOUS localized successfully 12 of 14 tumors. All lesions were resected, and all patients were cured (median follow-up, 36 months). Laparoscopic IOUS identified 86% of tumors. The authors consider laparoscopic IOUS to be equivalent to ASVS in localizing insulinomas. Further study is therefore warranted to determine the role of laparoscopy with IOUS in the localization and treatment algorithm for patients with sporadic insulinoma.

  16. Fusion of Built in Test (BIT) Technologies with Embeddable Fault Tolerant Techniques for Power System and Drives in Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA develops next generation space exploration systems as part of the Constellation program, new prognostics and health management tools are needed to ensure...

  17. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  18. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  19. Use of probability methods in prospecting-exploration in looking for oil. Primeneniye veroyatnostnykh metodov v poiskovo-razvedochnykh rabotakh na neft'

    Energy Technology Data Exchange (ETDEWEB)

    Kharbukh, Dzh U; Davton, Dzh Kh; Devis, Dzh K

    1981-01-01

    The experience of using probability methods in different geological conditions on the US territory is generalized. The efficiency of using systems analysis, imitation modeling of prospecting-exploration process and conditions for arrangement of fields, machine processing of data in plotting different types of structural maps, probability forecasting of the presence of fields is shown. Especial attention is focused on nonstructural traps. A brief dictionary of terms is presented used in the mathematical apparatus and the computer in oil geology.

  20. Problems in Epistemic Space

    DEFF Research Database (Denmark)

    Bjerring, Jens Christian Krarup

    2014-01-01

    be done for modal claims involving epistemic possibility. The main aim of this paper is to investigate the prospects of constructing a space of worlds—epistemic space—that allows us to model what is epistemically possible for ordinary, non-ideally rational agents like you and me. I will argue...... that the prospects look dim for successfully constructing such a space. In turn, this will make a case for the claim that we cannot use the standard possible worlds framework to model what is epistemically possible for ordinary agents....

  1. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  2. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  3. An Exploration of the Preparation and Organization of Teaching Practice Exercise to Prospective Science and Mathematics Teachers toward Improving Teaching Profession at Morogoro Teachers' College

    Science.gov (United States)

    Mungure, Daudi Mika

    2016-01-01

    This paper explored the preparation and organization of teaching practice exercise to prospective science and mathematics teachers in Tanzania teachers college specifically Morogoro Teachers' College toward improving teaching profession. Due to the challenges stated by different scholars on preparation and organization of teaching practice…

  4. Talk in Blended-Space Speech Communities: An Exploration of Discursive Practices of a Professional Development Group

    Science.gov (United States)

    Garvin, Tabitha Ann

    2011-01-01

    This study is an exploration of alternative teacher professional development. While using symbolic interactionism for a research lens, it characterizes the discursive practices commonly found in formal, informal, and blended-space speech communities based on the talk within a leadership-development program comprised of five female, church-based…

  5. Space 2000 Symposium

    Science.gov (United States)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  6. Optimizing Light for Long Duration Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our work is to optimize lighting that supports vision and serves as a circadian countermeasure for astronauts and ground crew during space missions. Due...

  7. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  8. Design study of nuclear power systems for deep space explorers. (2) Electricity supply capabilities of solid cores

    International Nuclear Information System (INIS)

    Yamaji, Akifumi; Takizuka, Takakazu; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

    2009-01-01

    This study has been carried out in series with the other study, 'Criticality of Low Enriched Uranium Fueled Core' to explore the possibilities of a solid reactor electricity generation system for supplying propulsion power of a deep space explorer. The design ranges of two different systems are determined with respect to the electric power, the radiator mass, and the operating temperatures of the heat-pipes and thermoelectric converters. The two systems are the core surface cooling with heat-pipe system (CSHP), and the core direct cooling with heat-pipe system (CDHP). The evaluated electric powers widely cover the 1 to 100 kW range, which had long been claimed to be the range that lacked the power sources in space. Therefore, the concepts shown by this study may lead to a breakthrough of the human activities in space. The working temperature ranges of the main components, namely the heat-pipes and thermoelectric converters, are wide and covers down to relatively low temperatures. This is desirable from the viewpoints of broadening the choices, reducing the development needs, and improving the reliabilities of the devices. Hence, it is advantageous for an early establishment of the concept. (author)

  9. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  10. A scenario for interstellar exploration and its financing

    CERN Document Server

    Bignami, Giovanni F

    2013-01-01

    This book develops a credible scenario for interstellar exploration and colonization. In so doing, it examines: • the present situation and prospects for interstellar exploration technologies; • where to go: the search for habitable planets; • the motivations for space travel and colonization; • the financial mechanisms required to fund such enterprises. The final section of the book analyzes the uncertainties surrounding the presented scenario. The purpose of building a scenario is not only to pinpoint future events but also to highlight the uncertainties that may propel the future in different directions. Interstellar travel and colonization requires a civilization in which human beings see themselves as inhabitants of a single planet and in which global governance of these processes is conducted on a cooperative basis. The key question is, then, whether our present civilization is ready for such an endeavor, reflecting the fact that the critical uncertainties are political and cultural in nature. I...

  11. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Science.gov (United States)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  12. Hot-Fire Test of Liquid Oxygen/Hydrogen Space Launch Mission Injector Applicable to Exploration Upper Stage

    Science.gov (United States)

    Barnett, Greg; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..

  13. Learning to Take an Inquiry Stance in Teacher Research: An Exploration of Unstructured Thought-Partner Spaces

    Science.gov (United States)

    Lawton-Sticklor, Nastasia; Bodamer, Scott F.

    2016-01-01

    This article explores a research partnership between a university-based researcher and a middle school science teacher. Our partnership began with project-based inquiry and continued with unstructured thought-partner spaces: meetings with no agenda where we wrestled with problems of practice. Framed as incubation periods, these meetings allowed us…

  14. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    Science.gov (United States)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  15. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    Science.gov (United States)

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  16. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  17. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  18. The uranium market prospects

    International Nuclear Information System (INIS)

    Lloyd, R.

    1981-01-01

    A historical analysis of the uranium market points out the cyclical nature of the market and suggests that the spot price, exploration levels, and mill capacity utilization rate are dependent on economic factors. An examination of the current uranium market suggests that the effects of the forecasted surplus supply, the diminishing returns in exploration and the long lead times and high costs of development may mean that future production levels are uncertain. The general prospects for the uranium industry are also uncertain because of barriers to trade, environmental regulations and public opinion. The paper concludes that by the use of long term contracts, appropriate inventory policy and greater discussion between producers and consumers the prospects for the uranium market can be made more certain and further imbalances in demand and supply can be avoided. (author)

  19. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  20. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  1. Location-based prospective memory.

    Science.gov (United States)

    O'Rear, Andrea E; Radvansky, Gabriel A

    2018-02-01

    This study explores location-based prospective memory. People often have to remember to do things when in a particular location, such as buying tissues the next time they are in the supermarket. For event cognition theory, location is important for structuring events. However, because event cognition has not been used to examine prospective memory, the question remains of how multiple events will influence prospective memory performance. In our experiments, people delivered messages from store to store in a virtual shopping mall as an ongoing task. The prospective tasks were to do certain activities in certain stores. For Experiment 1, each trial involved one prospective memory task to be done in a single location at one of three delays. The virtual environment and location cues were effective for prospective memory, and performance was unaffected by delay. For Experiment 2, each trial involved two prospective memory tasks, given in either one or two instruction locations, and to be done in either one or two store locations. There was improved performance when people received instructions from two locations and did both tasks in one location relative to other combinations. This demonstrates that location-based event structure influences how well people perform on prospective memory tasks.

  2. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  3. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  4. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    Science.gov (United States)

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  5. Characteristics of uranium mineralization and prospecting direction in the northeast of Ordos basin

    International Nuclear Information System (INIS)

    Li Xide

    2012-01-01

    With greenness considered a kind of symbol of ancient interformational oxidation in under subsegment of Zhiluo Group in the northeast of Ordos Basin, Zaohuohao Uranium deposit , Husiliang, Hantaimiao, and Chaidenghao Uranium mines have been founded one after the other in the exploration process of Sandstone-type uranium deposits and achieved results. The thickness in different sections of the ore bearing sand bodies, Output features in space of ancient interformational oxidation, ore body scales, and configuration are more difference. In the paper some characteristics of Uranium mineralization are summarized, and preliminary proposals are given on prospecting direction in different sections. (author)

  6. Possibilities of systems approach in oil and gas prospecting in the Perm Urals

    Energy Technology Data Exchange (ETDEWEB)

    Viksman, S.I.; Kalabin, S.N.; Makalovskiy, V.V.

    1985-01-01

    An examination is made of the possibility of systems approach in prospecting and exploration for oil and gas; the advantages of this approach in purposeful selection of priority directions of prospecting and exploration are given.

  7. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  8. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    will fly past the moon at a perigee of approximately 100km, and this closest approach will occur about 5 days after launch. The limiting factor for the latest deployment time is the available power in the sequencer system. Several NASA Mission Directorates were involved in the development of programs for the competition, selection, and development of EM-1 payloads that support directorate priorities. CubeSat payloads on EM-1 will include both NASA research experiments and spacecraft developed by industry, international and potentially academia partners. The Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) Division was allocated five payload opportunities on the EM-1 mission. Near Earth Asteroid (NEA) Scout is designed to rendezvous with and characterize a candidate NEA. A solar sail, an innovation the spacecraft will demonstrated for the CubeSat class, will provide propulsion. Lunar Flashlight will use a green propellant system and will search for potential ice deposits in the moon's permanently shadowed craters. BioSentinel is a yeast radiation biosensor, planned to measure the effects of space radiation on deoxyribonucleic acid (DNA). Lunar Icecube, a collaboration with Morehead State University, will prospect for water in ice, liquid, and vapor forms as well as other lunar volatiles from a low-perigee, highly inclined lunar orbit using a compact Infrared spectrometer. Skyfire, a partnership with Lockheed Martin, is a technology demonstration mission that will perform a lunar flyby, collecting spectroscopy, and thermography data to address questions related to surface characterization, remote sensing, and site selection. NASA's Space Technology Mission Directorate (STMD) was allocated three payload opportunities on the EM-1 mission. These slots will be filled via the Centennial Challenges Program, NASA's flagship program for technology prize competitions, which directly engages the public, academia, and industry in open

  9. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  10. Exploring the Model Design Space for Battery Health Management

    Science.gov (United States)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  11. Use of the 37-38 GHz and 40-40.5 GHz Ka-bands for Deep Space Communications

    Science.gov (United States)

    Morabito, David; Hastrup, Rolf

    2004-01-01

    This paper covers a wide variety of issues associated with the implementation and use of these frequency bands for deep space communications. Performance issues, such as ground station pointing stability, ground antenna gain, antenna pattern, and propagation effects such as due to atmospheric, charged-particle and space loss at 37 GHz, will be addressed in comparison to the 32 GHz Ka-band deep space allocation. Issues with the use of and competition for this spectrum also will be covered. The state of the hardware developed (or proposed) for operating in this frequency band will be covered from the standpoint of the prospects for achieving higher data rates that could be accommodated in the available bandwidth. Hardware areas to be explored include modulators, digital-to-analog converters, filters, power amplifiers, receivers, and antennas. The potential users of the frequency band will be explored as well as their anticipated methods to achieve the potential high data rates and the implications of the competition for bandwidth.

  12. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  13. The Necessity of Functional Analysis for Space Exploration Programs

    Science.gov (United States)

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    for space exploration programs.

  14. Exploration for uranium in Argentina: New policies of reactivation

    International Nuclear Information System (INIS)

    Bianchi, R.E.

    2009-01-01

    Full text: The policy established by the National Government of Argentina in August 2006 related to resuming the Nuclear activity in the country, lead the CNEA trough the Exploration of Raw Materials Manager (ERMM) to establish working strategies for the next 10 years. These strategies together with the assignment of an adequate budget will contribute to define new uranium resources, which together with the already known ones, will be used to supply the requirements of Nuclear Power and Research Plants in the future. Thus, the ERMM is applying a policy of human resources hiring new personnel in order to count with the minimum necessary workforce to reach these tasks. In Argentina known U resources are related to sedimentary, igneous and metamorphic environments. Considering the geology of the different regions, Argentina has been divided into 57 units in which the geological, geochemical, mineralogical and structural information is evaluated in order to estimate the uranium geological favorability of each unit. The final pursuit of this regional study is to circumscribe new areas with anomalous uranium contents in which prospection and exploration should be carried out. These studies together with prospection and exploration works are performed in the country by four exploration centers based in Salta (RN), Cordoba (R.Ce), Mendoza (R.Cu) and Trelew (RP). The works planned for each exploration center includes: Regional Noroeste, Mina Franca Deposit: peri-granitic vein- type mineralization: 25% of surface exploration has been performed. Mineralized areas: Istataco and San Buenaventura correspond to an igneous-metamorphic environment, Sierra de Vaqueria to a sedimentary one: Prospection stage. Regional Centro, Mineralized areas: El Gallo: drilling stage and Donato: prospection stage, correspond to an igneous-metamorphic environment with intra and peri-granitic anomalies. Noya: prospection stage, sedimentary environment. Regional Cuyo, Mineralized area: Western Sierra

  15. Performative Research in Art Education: Scenes from the Seminar "Exploring Performative Rituals in City Space"

    Directory of Open Access Journals (Sweden)

    Ulrike Stutz

    2008-05-01

    Full Text Available In my contribution, I lay the foundations for a performative approach to art education research and then apply it to three examples from a performance seminar conducted with university students. In the process, I subject video documentaries produced during performative exploration of everyday rituals in public space, to a fresh performative analysis using media techniques. My research interest targets the reactions of passers-by as an expanded audience, i.e., it targets the qualitative changes of social space brought about by these actions of site specific art. The contribution is presented as a multimedia document with videos and animations. The parallel presentation of different media formats produces differentiating and activating readings. URN: urn:nbn:de:0114-fqs0802514

  16. Explore 2070: what use of a prospective exercise on climate change impacts at the national scale to define adaptation strategies?

    International Nuclear Information System (INIS)

    Carroget, Aurelie; Perrin, Charles; Sauquet, Eric; Vidal, Jean-Philippe; Chazot, Sebastien; Chauveau, Mathilde; Rouchy, Nathalie

    2017-01-01

    Projected climate change could have important impacts on water availability in France by mid-21. century. The Explore 2070 prospective study, directed by the Ministry in charge of ecology, has thus highlighted the necessity to quantify and anticipate these changes, and to build adaptation strategies to limit their negative impacts on hydro-systems and human activities. This paper analyses how these works have contributed to the sensitization of water actors and to the reflection about climate change adaptation in France and to the reflection on adaptation to climate change in France

  17. Robotic Design Choice Overview using Co-simulation and Design Space Exploration

    DEFF Research Database (Denmark)

    Christiansen, Martin Peter; Larsen, Peter Gorm; Nyholm Jørgensen, Rasmus

    2015-01-01

    . Simulations are used to evaluate the robot model output response in relation to operational demands. An example of a load carrying challenge in relation to the feeding robot is presented and a design space is defined with candidate solutions in both the mechanical and software domains. Simulation results......Rapid robotic system development has created a demand for multi-disciplinary methods and tools to explore and compare design alternatives. In this paper, we present a collaborative modelling technique that combines discrete-event models of controller software with continuous-time models of physical...... robot components. The proposed co-modelling method utilises Vienna Development Method (VDM) and Matlab for discrete-event modelling and 20-sim for continuous-time modelling. The model-based development of a mobile robot mink feeding system is used to illustrate the collaborative modelling method...

  18. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  19. Pattern recognition applied to uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, P L; Press, F [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences

    1977-07-14

    It is stated that pattern recognition techniques provide one way of combining quantitative and descriptive geological data for mineral prospecting. A quantified decision process using computer-selected patterns of geological data has the potential for selecting areas with undiscovered deposits of uranium or other minerals. When a natural resource is mined more rapidly than it is discovered, its continued production becomes increasingly difficult, and it has been noted that, although a considerable uranium reserve may remain in the U.S.A., the discovery rate for uranium is decreasing exponentially with cumulative exploration footage drilled. Pattern recognition methods of organising geological information for prospecting may provide new predictive power, as well as insight into the occurrence of uranium ore deposits. Often the task of prospecting consists of three stages of information processing: (1) collection of data on known ore deposits; (2) noting any regularities common to the known examples of an ore; (3) selection of new exploration targets based on the results of the second stage. A logical pattern recognition algorithm is here described that implements this geological procedure to demonstrate the possibility of building a quantified uranium prospecting guide from diverse geologic data.

  20. Current status and future prospect of space and time reversal symmetry violation on low energy neutron reactions

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1993-01-01

    In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139 La target, alexandrite laser for optical pumping, polarized 3 He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)

  1. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Science.gov (United States)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  2. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  3. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  4. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  5. An Exploration of Prospective Teachers' Learning of Clinical Interview Techniques

    Science.gov (United States)

    Groth, Randall E.; Bergner, Jennifer A.; Burgess, Claudia R.

    2016-01-01

    The present study followed four prospective teachers through the process of learning to interview during an undergraduate research project experience. Participants conducted and video recorded a series of interviews with children. They also carried out guided analyses of the videos and written artefacts from the interviews to formulate conjectures…

  6. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  7. Prospects for dark matter searches in the pMSSM

    International Nuclear Information System (INIS)

    Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2015-01-01

    We investigate the prospects for detection of neutralino dark matter in the 19-parameter phenomenological MSSM (pMSSM). We explore very wide ranges of the pMSSM parameters but pay particular attention to the higgsino-like neutralino at the ∼1 TeV scale, which has been shown to be a well motivated solution in many constrained supersymmetric models, as well as to a wino-dominated solution with the mass in the range of 2–3 TeV. After summarising the present bounds on the parameter space from direct and indirect detection experiments, we focus on prospects for detection of the Cherenkov Telescope Array (CTA). To this end, we derive a realistic assessment of the sensitivity of CTA to photon fluxes from dark matter annihilation by means of a binned likelihood analysis for the Einasto and Navarro-Frenk-White halo profiles. We use the most up to date instrument response functions and background simulation model provided by the CTA Collaboration. We find that, with 500 hours of observation, under the Einasto profile CTA is bound to exclude at the 95% C.L. almost all of the ∼1 TeV higgsino region of the pMSSM, effectively closing the window for heavy supersymmetric dark matter in many realistic models. CTA will be able to probe the vast majority of cases corresponding to a spin-independent scattering cross section below the reach of 1-tonne underground detector searches for dark matter, in fact even well below the irreducible neutrino background for direct detection. On the other hand, many points lying beyond the sensitivity of CTA will be within the reach of 1-tonne detectors, and some within collider reach. Altogether, CTA will provide a highly sensitive way of searching for dark matter that will be partially overlapping and partially complementary with 1-tonne detector and collider searches, thus being instrumental to effectively explore the nearly full parameter space of the pMSSM.

  8. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.

    Science.gov (United States)

    Kim, Eun-Mi; Park, Joon Ho; Kim, Byung-Gee; Seo, Joo-Hyun

    2018-03-01

    Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.

    Science.gov (United States)

    Sailem, Heba; Bousgouni, Vicky; Cooper, Sam; Bakal, Chris

    2014-01-22

    One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton. Classical biochemical and genetic approaches have identified thousands of individual components that contribute to cell shape, but it remains difficult to predict how cell shape is generated by the activity of these components using bottom-up approaches because of the complex nature of their interactions in space and time. Here, we describe the regulation of cellular shape by signalling systems using a top-down approach. We first exploit the shape diversity generated by systematic RNAi screening and comprehensively define the shape space a migratory cell explores. We suggest a simple Boolean model involving the activation of Rac and Rho GTPases in two compartments to explain the basis for all cell shapes in the dataset. Critically, we also generate a probabilistic graphical model to show how cells explore this space in a deterministic, rather than a stochastic, fashion. We validate the predictions made by our model using live-cell imaging. Our work explains how cross-talk between Rho and Rac can generate different cell shapes, and thus morphological heterogeneity, in genetically identical populations.

  10. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  11. Specific and Diversive Career Exploration during Late Adolescence

    Science.gov (United States)

    Porfeli, Erik J.; Skorikov, Vladimir B.

    2010-01-01

    The exploration literature suggests that career exploration may be separated into two distinct forms. Diversive career exploration involves learning broadly about the world of work and the self, whereas specific career exploration involves an in-depth investigation focused on aligning one's perceptions of self and career prospects. The goal of the…

  12. Welcoming the Dark Side?: Exploring Whitelash and Actual Space Nazis in TFA Fanfiction

    Directory of Open Access Journals (Sweden)

    Cait Coker

    2017-12-01

    Full Text Available From the release of its first trailer, Star Wars: The Force Awakens received a racist backlash in response to the character of Finn, a black Stormtrooper turned hero. Nonetheless, after the film’s debut, slash fans across the Internet joined to make the Finn/Poe and Finn/Poe/Rey relationships (known as ‘ships among the most popular in both art and fiction, in what seemed to be a welcome sign of fandom’s evolution from the usual orgy of white cis-bodies. However, by the time TFA was available for legal download, the Kylo/Hux ‘ship had overtaken the others significantly, despite their lack of screentime and actual lines, and the fact that they were “actual space Nazis” and “evil space boyfriends.” This essay will explore the intersections of racism and misogyny in TFA fanfiction and discuss why these most problematic ‘ships have become the most popular, and consider how the mainstreaming of the Empire in the popular imagination is a form of political whitelash.

  13. Advanced micro-reactor for space and deep sea exploration: a scientific Brazilian vision

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca; Lobo, Paulo D.C.

    2011-01-01

    Humankind is at the point to initiate a new adventure in its evolutionary journey, the colonization of other planets of our solar system and space travels. Also, there is still another frontier where the human presence is scarce, the oceans and the Earth seabed. To have success in the exploration of these new frontiers a fundamental requirement must be satisfied: secure availability of energy for life support and others processes. This work deals with the establishment of a basis for a Brazilian nuclear research and development (R and D) program to develop micro-reactor (MR) technologies that may be used in the seabed, the space or another hostile environment on Earth. The work presents a set of basic requirements that is used to define the best reactor type to be used in these environments. Also, the limits and dimensions that define the class of micro-reactors are discussed. The fast neutron spectrum was chosen as the best for the MR and the limits for the active core volume and thermal power are 30 liters and 5 MW. (author)

  14. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  15. Living among giants exploring and settling the outer solar system

    CERN Document Server

    Carroll, Michael

    2015-01-01

    The outer Solar System is rich in resources and may be the best region in which to search for life beyond Earth. In fact, it may ultimately be the best place for Earthlings to set up permanent abodes. This book surveys the feasibility of that prospect, covering the fascinating history of exploration that kicks off our adventure into the outer Solar System.   Although other books provide surveys of the outer planets, Carroll approaches it from the perspective of potential future human exploration, exploitation and settlement, using insights from today’s leading scientists in the field. These experts take us to targets such as the moons Titan, Triton, Enceladus, Iapetus and Europa, and within the atmospheres of the gas and ice giants. In these pages you will experience the thrill of discovery awaiting those who journey through the giant worlds and their moons.   All the latest research is included, as are numerous illustrations, among them original paintings by the author, a renowned prize-winning space art...

  16. Deriving optimal exploration target zones on mineral prospectivity maps

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-08-01

    Full Text Available into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral...

  17. Growing crops for space explorers on the moon, Mars, or in space

    Science.gov (United States)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  18. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  19. Exploring galaxy evolution with latent space walks

    Science.gov (United States)

    Schawinski, Kevin; Turp, Dennis; Zhang, Ce

    2018-01-01

    We present a new approach using artificial intelligence to perform data-driven forward models of astrophysical phenomena. We describe how a variational autoencoder can be used to encode galaxies to latent space, independently manipulate properties such as the specific star formation rate, and return it to real space. Such transformations can be used for forward modeling phenomena using data as the only constraints. We demonstrate the utility of this approach using the question of the quenching of star formation in galaxies.

  20. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  1. Geophysical exploration of the Kalahari Suture Zone

    Science.gov (United States)

    Brett, J. S.; Mason, R.; Smith, P. H.

    2000-04-01

    Fancamp Resources Limited of Montreal, Canada, commenced exploration of the Kalahari Suture Zone in southwest Botswana in 1996, following the interpretation of airborne magnetic surveys covering 400 km of strike along the Kalahari Suture Zone. Initial focus was on mafic/ultramafic intrusions associated with the Tshane Complex as potential targets for CuNiPGM mineralization, but these targets are now considered to be too deeply buried (> 700 m) to be of economic significance at this time. The exploration focus has been redirected to several prospective large coincident magnetic/gravity anomalies. These are considered prospective targets for Olympic Dam-type CuCo mineralisation associated with alkaline intrusive complexes, and/or NiCuCoPGM mineralisation associated with basic intrusive complexes. The two most important and prospective targets are the so-called 'Great Red Spot' and Tsetseng Complex. Additional ground geophysical surveys and deep drilling are planned for the next phase of exploration. These large targets are of high priority and represent tremendous potential for mineral development in the sparsely populated area of western Botswana.

  2. Read-only-memory-based quantum computation: Experimental explorations using nuclear magnetic resonance and future prospects

    International Nuclear Information System (INIS)

    Sypher, D.R.; Brereton, I.M.; Wiseman, H.M.; Hollis, B.L.; Travaglione, B.C.

    2002-01-01

    Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less 'magical', and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature 'real-world' problem relating to the lengths of paths in a network

  3. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  4. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  5. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  6. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  7. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  8. The current situation of uranium resources exploration in East China: Problems, thought and countermeasure

    International Nuclear Information System (INIS)

    He Xiaomei; Mao Mengcai

    2014-01-01

    Based on analyzing the current situation of uranium resources and exploration effort in East China, the main existing problems, technical thought and countermeasure for the future exploration in East China are discussed in this paper. The degree of both uranium exploration and study in East China is relatively high, philosophy of scientific mineral-prospecting should be established in the new round of mineral prospecting. Under guidance of metallogenic theory of large mineralization cluster area and uranium metallogenic theory of multi-sources, previous data and research achievement should be analyzed and summarized. With the help of metallogenic model, useful methods and means should be applied to set up exploration model in order to realize news phase of model exploration, comprehensive exploration, 3D exploration and quantitative exploration. Efficiency of exploration of uranium resources should be strugglingly increased. High profitable uranium resources will be actively found with rich, shallow, near and easy features. The prospecting targets and strategy reserves of uranium resources will be increased in East China. (authors)

  9. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  10. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  11. Generating and exploring good building layouts

    KAUST Repository

    Bao, Fan

    2013-07-16

    Good building layouts are required to conform to regulatory guidelines, while meeting certain quality measures. While different methods can sample the space of such good layouts, there exists little support for a user to understand and systematically explore the samples. Starting from a discrete set of good layouts, we analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. We represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. We use our framework on a variety of different test scenarios to showcase an intuitive design, navigation, and exploration interface. Copyright © ACM. Copyright © ACM 2013.

  12. 2009 PNST prospective - Book of abstracts

    International Nuclear Information System (INIS)

    Aulanier, Guillaume; Jacquey, Christian; Bocchialini, Karine; Savoini, Philippe; Mazelle, Christian; Galtier, Sebastien; Passot, Thierry; Appourchaux, Thierry; Pincon, Jean-Louis; Lathuillere, Chantal; Dudok de Wit, Thierry; Lignieres, Francois; Malherbe, Jean-Marie; Jacquey, Christian; Fontaine, Dominique; Vilmer, Nicole

    2009-09-01

    PNST (Programme National Soleil-Terre/Sun-Earth National Program) is dedicated to analysis of the Sun-Earth system, from generation of the solar magnetic field, flares and coronal mass ejections, until impact on the terrestrial magnetosphere, ionosphere and thermosphere. Research activities carried out in the frame of Programme National Soleil-Terre (PNST) rely on both ground-based and space-borne instruments. One of the main objectives of PNST is to stimulate coordinated studies and to optimize scientific return of these instruments. The 2009 PNST prospective colloquium comprised 9 sessions: 1 - Eruptive activity in plasmas; 2 - Particles heating and acceleration; 3 - Energy transfers at different scales and turbulence; 4 - Coupling between the different envelopes; 5 - Sun-Earth relations and space meteorology; 6 - Sun and star prototypes; 7 - Databases, services; 8 - Instrumentation; 9 - Prospective. This document is the book of abstracts of the colloquium

  13. Uranium prospection methods illustrated with examples

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1985-01-01

    Uranium exploration methods are briefly reviewed: aerial (radiometric, spectrometric), surface (mapping, radiometric, geophysical, geochemical), sub-surface (well logging, boring) and mining methods in the different steps of a mine project: preliminary studies, general prospecting, detailed prospecting deposit area and deposit estimation. Choice of methods depends strongly on geographic and geologic environment. Three examples are given concerning: an intragranitic deposit Limousin (France), a deposit spatially related to a discordance Athabasca (Canada) and a sedimentary deposit Manyingee (Western Australia) [fr

  14. Preparing future space leaders - International Space University

    Science.gov (United States)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  15. European Space Agency's Fluorescence Explorer Mission: Concept and Applications

    Science.gov (United States)

    Mohammed, G.; Moreno, J. F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M.

    2012-12-01

    The Fluorescence Explorer (FLEX) is a dedicated satellite for the detection and measurement of solar-induced fluorescence (SIF). It is one of two candidate missions currently under evaluation by ESA for deployment in its Earth Explorer 8 program, with Phase A/B1 assessments now underway. FLEX is planned as a tandem mission with ESA's core mission Sentinel-3, and would carry an instrument, FLORIS, optimized for discrimination of the fluorescence signal in terrestrial vegetation. The FLEX mission would be the first to be focussed upon optimization of SIF detection in terrestrial vegetation, and using finer spatial resolution than is available with current satellites. It would open up a novel avenue for monitoring photosynthetic function from space, with diverse potential applications. Plant photosynthetic tissues absorbing sunlight in the wavebands of photosynthetically active radiation (400 to 700 nm) emit fluorescence in the form of red and far-red light. This signal confers a small but measurable contribution to apparent reflectance spectra, and with appropriate analysis it may be detected and quantified. Over the last 15-20 years, techniques for SIF detection have progressed from contact or near-contact methods using single leaves to remote techniques using airborne sensors and towers over plant canopies. Ongoing developments in instrumentation, atmospheric correction procedures, signal extraction techniques, and utilization of the SIF signal itself are all critical aspects of progress in this area. The FLEX mission would crystallize developments to date into a state-of-the-art pioneering mission targeting actual photosynthetic function. This compares to existing methods which address only potential function. Thus, FLEX could serve to provide real-time data on vegetation health and stress status, and inputs for parameterization of photosynthetic models (e.g. with measures of light-use efficiency). SIF might be correlated or modelled to photosynthetic rates or

  16. Architecture for the silver generation: exploring the meaning of appropriate space for ageing in a Swedish municipality.

    Science.gov (United States)

    Andersson, Jonas E

    2011-03-01

    This paper focuses on an architecture competition for the silver generation, namely those aged 65 years and older. Twenty-seven Swedish informants were interviewed using an interviewing guide that included a photographic survey. The informants emphasised aesthetic dimensions in architecture for the prolongation of ageing in place and independent living in a residential home. This study highlights the individual adjustment of space, and the integrated location in existing urban settings near nature. Based on the findings, a habitational model for exploring the appropriate space for ageing is formulated. It suggests that architecture through location and spatial features needs to generate positive associations with the users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  18. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  19. Space agencies' scientific roadmaps need harmonisation and reegular re-assessment

    Science.gov (United States)

    Worms, Jean-Claude; Culhane, J. Leonard; Walter, Nicolas; Swings, Jean-Pierre; Detsis, Emmanouil

    The need to consider international collaboration in the exploration of space has been recognised since the dawn of the space age in 1957. Since then, international collaboration has been the main operational working mode amongst space scientists the world over, setting aside national pre-eminence and other political arguments. COSPAR itself was created as a tool for scientists to maintain the dialogue at the time of the cold war. Similarly the inherent constraints of the field (cost, complexity, time span) have led space agencies to try and coordinate their efforts. As a result many - if not all - of the key space science missions since the 60’s have been collaborative by nature. Different collaboration models have existed with varying success, and the corresponding lessons learned have been assessed through various fora and reports. For various reasons whose scope has broadened since that time (use of space in other domains such as Earth observation, telecommunication and navigation; emergence of commercial space activities; increased public appeal and capacity to motivate the young generation to engage into related careers), the importance of international collaboration in space has never faltered and coordination among spacefaring nations has become the norm. However programme harmonisation is often found to be lacking, and duplication of efforts sometimes happens due to different planning and decision procedures, programmatic timelines or budgetary constraints. Previous studies, in particular by the European ESSC-ESF, with input from the US NAS-SSB, advocated the need to establish a coordinating body involving major space agencies to address these coordination issues in a systematic and harmonious way. Since then and in line with this recommendation, the International Space Exploration Coordination Group (ISECG) of 14 space agencies was created in 2007 and published a first roadmap to advance a “Global Exploration Strategy”. ISECG is non-binding though

  20. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    Science.gov (United States)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  1. On-Orbit Prospective Echocardiography on International Space Station

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  2. Use of Parallel Micro-Platform for the Simulation the Space Exploration

    Science.gov (United States)

    Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen

    The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.

  3. Human exploration of space: why, where, what for?

    Science.gov (United States)

    Vernikos, J

    2008-08-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".

  4. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  5. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  6. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  7. Deep Space Exploration: Will We Be Ready? Infectious Diseases, Microgravity and Other Forces Affecting Health Pose Challenges for Humans Planning to Explore Space

    Science.gov (United States)

    LaRocco, Mark T.; Pierson, Duane L.

    1999-01-01

    In contemplating space travel beyond earth orbits, we humans face significant barriers and major challenges. Although researchers involved in several scientific subdisciplines, including space medicine and space life sciences, may provide insights to help overcome those barriers, their efforts are at an early stage of development, leaving open many questions of potentially major consequence.

  8. Training course on radiometric prospecting techniques

    International Nuclear Information System (INIS)

    1979-01-01

    A training course on radiometric prospecting techniques was presented by the Atomic Energy Board in collaboration with the South African Geophysical Association and the Geological Society of South Africa. Various aspects related to uranium prospecting were discussed e.g. the uranium supply and demand position, the basic physics of radioactivity, uranium geochemistry, mineralogy and mobility, the instrumentation and techniques used in uranium exploration, for example, borehole logging, radon emanometry and airborne radiometric surveys and also data processing and interpretation methods

  9. Application of radio-geochemical exploration to investigation on geo-ecological environment

    International Nuclear Information System (INIS)

    Ye Qingsen

    2000-01-01

    Taking investigation on radon hazards and natural radioactivity as examples, the author expounds the prospects of the application of radio-geochemical exploration to the investigation on geo-ecological environment. It is especially emphasized that the methods of radio-geochemical exploration can not be only widely applied in the field of traditional radio-geological prospecting but also play an important role in the investigation on geo-ecological environment

  10. Exploring PCK ability of prospective science teachers in reflective learning on heat and transfer

    Science.gov (United States)

    Nurmatin, S.; Rustaman, N. Y.

    2016-02-01

    Learning can be planned by the person him/herself when he or she tries to reflect his/her learning. A study involving prospective science teachers in junior secondary schools was carried out to analyze their ability on Pedagogical Content Knowledge (PCK) in reflective learning after teaching practice. The study was focused especially in creating Pedagogical and Professional Repertoires (PaP-eRs) as part of resource-folios. PaP-eRs as a narrative writing in the learning activities are created by prospective science teachers after lesson plan implementation. Making the narrative writing is intended that prospective science teachers can reflect their learning in teaching. Research subjects are six prospective science teachers who are implementing "Program Pengalaman Lapangan" (PPL) in two junior secondary schools in Bandung, West Java, Indonesia. All of them were assigned by supervisor teachers to teach VII grade students on certain topic "heat and its transfer". Instruments used as a means of collecting data in this study is PaP-eRs. Collected PaP-eRs were then analyzed using PaP-eRs analysis format as instruments for analysis. The result of analyzing PaP-eRs indicates that learning activities, which narrated, involve initial activities, core activities and final activities. However, any activity, which is narrated just superficial as its big line so the narration cannot be, used as reflective learning. It indicates that PCK ability of prospective science teachers in creating narrative writing (PaP-eRs) for reflective learning is still low.

  11. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities.

    Science.gov (United States)

    Bergouignan, Audrey; Stein, T Peter; Habold, Caroline; Coxam, Veronique; O' Gorman, Donal; Blanc, Stéphane

    2016-01-01

    Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance.

  12. Evolution to Space

    Science.gov (United States)

    Cohen, Jacob

    2013-01-01

    This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.

  13. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  14. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  15. Farside explorer

    DEFF Research Database (Denmark)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon

    2012-01-01

    the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from...... the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar......Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded...

  16. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Science.gov (United States)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  17. Exploration Technology Program plans and directions

    Science.gov (United States)

    Aldrich, A.; Rosen, R.; Craig, M.; Mankins, J. C.

    During the first part of the next century, the United States will return to the Moon to create a permanent lunar base, and, before the year 2019, we will send a human mission to Mars. In addition to these human operations, the Space Exploration Initiative will integrally incorporate robotic lunar and Mars missions. In achieving these efforts to expand human presence and activity in space and also exerted and frontiers of human knowledge, the SEI will require an array of new technologies. Mission architecture definition is still underway, but previous studies indicate that the SEI will require developments in areas such as advanced engines for space transportation, in-space assembly and construction to support permanent basing of exploration systems in space, and advanced surface operations capabilities including adequate levels of power and surface roving vehicles, and technologies to support safely long-duration human operations in space. Plans are now being put into place to implement an Exploration Technology Program (ETP) which will develop the major technologies needed for SEI. In close coordination with other ongoing U.S. government research and development efforts, the ETP will provide in the near term clear demonstrations of potential exploration technologies, research results to support SEI architecture decisions, and a foundation of mature technology that is ready to be applied in the first round of SEI missions. In addition to the technology needed for the first round of SEI missions, the ETP will also put in place a foundation of research for longer-term technology needs—ultimately leading the human missions to Mars. The Space Exploration Initiative and the Exploration Technology Program will challenge the best and the brightest minds across government, industry and academia, inspiring students of all ages and making possible future terrestial applications of SEI technologies that may create whole new industries for the future.

  18. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    Science.gov (United States)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  19. Metamaterial-Backed Conformal Antennas for Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this experiment is to demonstrate a successful X-band antenna array fabricated on a high-permittivity substrate together with bandgap metamaterials...

  20. RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Balch; Ron Broadhead

    2005-03-01

    Incomplete or sparse data such as geologic or formation characteristics introduce a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results when working with sparse data. State-of-the-art expert exploration tools, relying on a database, and computer maps generated by neural networks and user inputs, have been developed through the use of ''fuzzy'' logic, a mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk has been reduced with the use of these properly verified and validated ''Fuzzy Expert Exploration (FEE) Tools.'' Through the course of this project, FEE Tools and supporting software were developed for two producing formations in southeast New Mexico. Tools of this type can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In today's oil industry environment, many smaller exploration companies lack the resources of a pool of expert exploration personnel. Downsizing, volatile oil prices, and scarcity of domestic exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tools benefit a diverse group in the U.S., allowing a more efficient use of scarce funds, and potentially reducing dependence on foreign oil and providing lower product prices for consumers.

  1. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Science.gov (United States)

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  2. Evaluation of undrilled prospects. Sensitivity to economic and geological factors

    International Nuclear Information System (INIS)

    Hermanrud, C.; Abrahamsen, K.; Vollset, J.; Nordahl, S.; Jourdan, C.

    1996-01-01

    Economic prospect evaluation at an early stage involves personnel with different skills, such as geoscientists, reservoir engineers, construction engineers and economists. Data are transferred between these groups of people who often have only a vague understanding of the accuracy of the data they receive. This lack of communication naturally limits the correctness of the results. To improve this communication, the complete process of prospect evaluation (including both geological and economical aspects) has been followed here in order to show the different data sets that are transferred and to comment upon their accuracy. Although this paper is based entirely on Statoil's methodology, it is nevertheless believed to be of general relevance. In Statoil's methodology, prospect volumes calculated by geoscientists are given as likelihood distributions. Post-drilling examination of such volume distributions show that historically they have been too optimistic. However, historical prospect risking has correctly identified the most important risk factors and has been able to separate low-risk from high-risk prospects in a satisfactory manner. The number of appraisal wells that are needed before the development of a field can be decided upon is often crucial to the economic evaluations. This number, however, is usually underestimated during the early stages of exploration, probably because data limitations mask reservoir heterogeneities. Reservoir performance is of utmost importance to early economic calculations as it influences both the drilling costs and the production of hydrocarbons vs. time. Of course, reservoir productivity is highly uncertain when judged prior to drilling the first well. Historical data show that reserve estimates of producing fields tend to be upgraded as reservoir depletion proceeds, although several fields have had their reserve estimates downgraded shortly after production start-up. The operational and investment costs are not generally

  3. Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC)

    Science.gov (United States)

    Mueller, R. P.; Sibille, L.; Leucht, K.; Smith, J. D.; Townsend, I. I.; Nick, A. J.; Schuler, J. M.

    2015-01-01

    The first steps for In Situ Resource Utilization (ISRU) on target bodies such as the Moon, Mars and Near Earth Asteroids (NEA), and even comets, involve the same sequence of steps as in the terrestrial mining of resources. First exploration including prospecting must occur, and then the resource must be acquired through excavation methods if it is of value. Subsequently a load, haul and dump sequence of events occurs, followed by processing of the resource in an ISRU plant, to produce useful commodities. While these technologies and related supporting operations are mature in terrestrial applications, they will be different in space since the environment and indigenous materials are different than on Earth. In addition, the equipment must be highly automated, since for the majority of the production cycle time, there will be no humans present to assist or intervene. This space mining equipment must withstand a harsh environment which includes vacuum, radical temperature swing cycles, highly abrasive lofted dust, electrostatic effects, van der Waals forces effects, galactic cosmic radiation, solar particle events, high thermal gradients when spanning sunlight terminators, steep slopes into craters / lava tubes and cryogenic temperatures as low as 40 K in permanently shadowed regions. In addition the equipment must be tele-operated from Earth or a local base where the crew is sheltered. If the tele-operation occurs from Earth then significant communications latency effects mandate the use of autonomous control systems in the mining equipment. While this is an extremely challenging engineering design scenario, it is also an opportunity, since the technologies developed in this endeavor could be used in the next generations of terrestrial mining equipment, in order to mine deeper, safer, more economical and with a higher degree of flexibility. New space technologies could precipitate new mining solutions here on Earth. The NASA KSC Swamp Works is an innovation

  4. Teaching Prospective Teachers about Fractions: Historical and Pedagogical Perspectives

    Science.gov (United States)

    Park, Jungeun; Gucler, Beste; McCrory, Raven

    2013-01-01

    Research shows that students, and sometimes teachers, have trouble with fractions, especially conceiving of fractions as numbers that extend the whole number system. This paper explores how fractions are addressed in undergraduate mathematics courses for prospective elementary teachers (PSTs). In particular, we explore how, and whether, the…

  5. Robust Path Planning for Space Exploration Rovers

    Data.gov (United States)

    National Aeronautics and Space Administration — Motion planning considers the problem of moving a system from a starting position to a desired goal position. This problem has been shown to be a computationally...

  6. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  7. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  8. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Science.gov (United States)

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  9. Prospecting and exploration of the Key Lake uranium deposits, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Tan, B.H.

    1980-01-01

    The research activities which led to the detection of the Key Lake deposit and their model character for uranium prospecting in this area are discussed. The genesis of the ores and the surrounding rocks are described, and the possible genesis of the deposit is discussed on the basis of the present state of knowledge. (HP) [de

  10. The urban public space betterment and land use sustainability Under the human behavior

    Science.gov (United States)

    Zhao, Xiaofan; Ji, Yanning

    2018-02-01

    This paper analyzes the differences between Chinese and western public life and environmental behavior habits. Identify specific needs for Chinese urban public Spaces. At the same time, the paper analyzes the problems related to urban construction in China, including micro-land use, transportation and urban pattern. The solution of Chinese urban public space layout is proposed and the prospects of sustainable urban public space. Urban betterment are prospected in the future.

  11. A qualitative study to explore Prospect theory and message framing and diet and cancer prevention-related issues among African American adolescents

    Science.gov (United States)

    Satia, Jessie A.; Barlow, Jameta; Armstrong-Brown, Janelle; Watters, Joanne L.

    2010-01-01

    Aims To develop and test cancer prevention messages based on Prospect theory on motivation to improve dietary intake in African American adolescents, and to explore other salient factors that may inform dietary intervention design and implementation in this population. Methods Semi-structured in-person qualitative interviews were conducted with 13 African-American male and female adolescents, 12-16 years, in North Carolina. Prospect theory and message framing were used to guide the design of the four sets of diet-related messages related to cancer prevention: short-term gain-, long-term gain-, short-term loss-, and long-term loss-framed messages. Data were also collected on demographic, behavioral, and psychological factors; usual health behaviors; and preferences for intervention delivery. Results The majority of respondents found the gain-framed, short-term messages most salient for both fruits/vegetables (8 (61.5%)), and fat consumption (7 (53.8%)). For fat consumption only, 2 (15.4%) found the loss-framed, short-term messages pertinent; none found the loss-framed, long-term messages relevant for either dietary variable. All indicated interest in participating in a dietary intervention/education program; most preferred the Internet as a channel for intervention delivery. Participants expressed diverse views regarding knowledge, attitudes, and beliefs regarding healthy eating. Conclusions Researchers conducting dietary interventions and education initiatives and medical professionals who counsel African American adolescents should consider using Prospect Theory as a theoretical framework, should focus on gain-framed short-term messages regarding cancer prevention, and should employ the Internet for data collection and intervention and information delivery. PMID:20142738

  12. Book Review Microfinance: Perils and Prospects

    African Journals Online (AJOL)

    African Review of Economics and Finance, Vol 4, No. 2, June ... This book explores the perils and prospects of microfinance by looking at the issue ... qualitative data, and a list of references that could be useful to readers who want to learn ...

  13. Another extension of Orlicz-Sobolev spaces to metric spaces

    Directory of Open Access Journals (Sweden)

    Noureddine Aïssaoui

    2004-01-01

    Full Text Available We propose another extension of Orlicz-Sobolev spaces to metric spaces based on the concepts of the Φ-modulus and Φ-capacity. The resulting space NΦ1 is a Banach space. The relationship between NΦ1 and MΦ1 (the first extension defined in Aïssaoui (2002 is studied. We also explore and compare different definitions of capacities and give a criterion under which NΦ1 is strictly smaller than the Orlicz space LΦ.

  14. Space: A new frontier

    Science.gov (United States)

    Cutolo, Mona; Miranda, Denis M.

    1986-08-01

    The challenges and the promises of space colonization present an exciting opportunity for exploring and analyzing the values, the institutions and the physical environments we have created on Earth. Here we describe an interdisciplinary course, team-taught, that examines the current state of space exploration and the innovative technologies spawned by space research. The course also explores the possible social, economic, political and international impacts of migration to space of people and industries. A course project is to design a space colony for a community of 10,000 people. Given the technical design parameters and other details, the students are to engineer socially an ideal community, bearing in mind the short lifetimes of utopian communities of the past. The process is intended to help the students gain a fair understanding of the dynamics of human societies and of the technologies we have developed that enable us to change our world and to design new worlds.

  15. USSR Report, Space

    Science.gov (United States)

    1984-06-14

    Prospecting in these regions has already led to the discovery of a large number of mineral deposits, for instance, in the Fergana intermountain depression ...honey, cranberries and even fresh cherries were sent at the request of V. Ryumin. Fresh vegetables and fruits were sent into space on a cargo

  16. BIO PROSPECTING IN NIGERIA: EVALUATING THE ADEQUACY ...

    African Journals Online (AJOL)

    in strategic planning and policy formulation on bio prospecting, amongst ... into the challenging field of exploring biological diversity for commercially ...... sions of these regulations, such body corporate, or any person who was purporting to act.

  17. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  18. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

    Science.gov (United States)

    Basith, Shaherin; Cui, Minghua; Macalino, Stephani J. Y.; Park, Jongmi; Clavio, Nina A. B.; Kang, Soosung; Choi, Sun

    2018-01-01

    The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR structural biology.” Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed. PMID:29593527

  19. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    KAUST Repository

    Binyahib, Roba S.

    2013-05-13

    With an increase in processing power, more complex simulations have resulted in larger data size, with higher resolution and more variables. Many techniques have been developed to help the user to visualize and analyze data from such simulations. However, dealing with a large amount of multivariate data is challenging, time- consuming and often requires high-end clusters. Consequently, novel visualization techniques are needed to explore such data. Many users would like to visually explore their data and change certain visual aspects without the need to use special clusters or having to load a large amount of data. This is the idea behind explorable images (EI). Explorable images are a novel approach that provides limited interactive visualization without the need to re-render from the original data [40]. In this work, the concept of EI has been used to create a workflow that deals with explorable iso-surfaces for scalar fields in a multivariate, time-varying dataset. As a pre-processing step, a set of iso-values for each scalar field is inferred and extracted from a user-assisted sampling technique in time-parameter space. These iso-values are then used to generate iso- surfaces that are then pre-rendered (from a fixed viewpoint) along with additional buffers (i.e. normals, depth, values of other fields, etc.) to provide a compressed representation of iso-surfaces in the dataset. We present a tool that at run-time allows the user to interactively browse and calculate a combination of iso-surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces, modify their color map, and interactively re-light the surfaces. We demonstrate the effectiveness of our approach over a multi-terabyte combustion dataset. We also illustrate the efficiency and accuracy of our

  20. End-to-end simulations and planning of a small space telescopes: Galaxy Evolution Spectroscopic Explorer: a case study

    Science.gov (United States)

    Heap, Sara; Folta, David; Gong, Qian; Howard, Joseph; Hull, Tony; Purves, Lloyd

    2016-08-01

    Large astronomical missions are usually general-purpose telescopes with a suite of instruments optimized for different wavelength regions, spectral resolutions, etc. Their end-to-end (E2E) simulations are typically photons-in to flux-out calculations made to verify that each instrument meets its performance specifications. In contrast, smaller space missions are usually single-purpose telescopes, and their E2E simulations start with the scientific question to be answered and end with an assessment of the effectiveness of the mission in answering the scientific question. Thus, E2E simulations for small missions consist a longer string of calculations than for large missions, as they include not only the telescope and instrumentation, but also the spacecraft, orbit, and external factors such as coordination with other telescopes. Here, we illustrate the strategy and organization of small-mission E2E simulations using the Galaxy Evolution Spectroscopic Explorer (GESE) as a case study. GESE is an Explorer/Probe-class space mission concept with the primary aim of understanding galaxy evolution. Operation of a small survey telescope in space like GESE is usually simpler than operations of large telescopes driven by the varied scientific programs of the observers or by transient events. Nevertheless, both types of telescopes share two common challenges: maximizing the integration time on target, while minimizing operation costs including communication costs and staffing on the ground. We show in the case of GESE how these challenges can be met through a custom orbit and a system design emphasizing simplification and leveraging information from ground-based telescopes.

  1. Oil and gas industry, exploration and development

    International Nuclear Information System (INIS)

    Appert, O.

    1998-01-01

    A consistent investment boost on exploration and development, the favourable prospects connected with technological improvement, the opening of virgin areas of exploration are all factors granting extraordinary opportunities for the oil and gas industry. However, environmental constraints relevant to emission standards and products quality are also growing and will be increasingly binding upon both oil and car industries [it

  2. A tool for exploring space-time patterns : an animation user research

    Directory of Open Access Journals (Sweden)

    Ogao Patrick J

    2006-08-01

    Full Text Available Abstract Background Ever since Dr. John Snow (1813–1854 used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping – all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation in exploring geospatial structures encompassing disease, urban and census mapping. Results Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred

  3. A tool for exploring space-time patterns: an animation user research.

    Science.gov (United States)

    Ogao, Patrick J

    2006-08-29

    Ever since Dr. John Snow (1813-1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping--all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and

  4. Prospects for oil and gas in ultradeep horizons of the Chechen-Ingush ASSR

    Energy Technology Data Exchange (ETDEWEB)

    Yandarbiev, N.Sh.

    1981-01-01

    Described is the modern state of prospecting and exploration for oil and gas in the territory of the Chechen-Ingush ASSR, and the prospects for discovering new deposits of hydrocarbons in ultradeep horizons are substantiated.

  5. An exploration of chronic pain patients perceptions of home telerehabilitation services

    NARCIS (Netherlands)

    Cranen, Karlijn; Cranen, Karlijn; Drossaert, Constance H.C.; Brinkman, Evelien S.; Braakman-Jansen, Louise Marie Antoinette; IJzerman, Maarten Joost; Vollenbroek-Hutten, Miriam Marie Rosé

    2011-01-01

    Objectives  To explore patients’ perceptions regarding prospective telerehabilitation services and the factors that facilitate or impede patients’ intentions to use these services. Design  Using semi-structured interviews, patients reflected on the pros and cons of various scenarios of prospective

  6. Augmented paper maps: Exploring the design space of a mixed reality system

    Science.gov (United States)

    Paelke, Volker; Sester, Monika

    Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.

  7. A Constraint-Based Understanding of Design Spaces

    DEFF Research Database (Denmark)

    Biskjaer, Michael Mose; Dalsgaard, Peter; Halskov, Kim

    2014-01-01

    space schema, can identify the properties of the prospective product that s/he can form. Through a case study, we show how design space schemas can support designers in various ways, including gaining an overview of the design process, documenting it, reflecting on it, and developing design concepts...

  8. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    sources is paramount to success. We are currently working on several processes to produce the propellants that would allow us to visit and explore the surface of Mars. The capabilities currently at our disposal for launching and delivering equipment to another planet or satellite dictate that the size and scale of any hardware must be extremely small. The miniaturization of the processes needed to prepare the in situ propellants and life support commodities is a real challenge. Chemical engineers are faced with the prospect of reproducing an entire production facility in miniature so the complex can be lifted into space and delivered to our destination. Another area that does not normally concern chemical engineers is the extreme physical aspects payloads are subjected to with the launch of a spacecraft. Extreme accelerations followed by the sudden loss of nearly all gravitational forces are well outside normal equipment design conditions. If the equipment cannot survive the overall trip, then it obviously will not be able to yield the needed products upon arrival. These launch constraints must be taken into account. Finally, we must consider both the effectiveness and efficiencies of the processes. A facility located on the Moon or Mars will not have an unlimited supply of power or other ancillary utilities. For a Mars expedition, the available electric power is severely limited. The design of both the processes and the equipment must be considered. With these constraints in mind, only the most efficient designs will be viable. Cryogenics, in situ resource utilization, miniaturization, launchability, and power/process efficiencies are only a few of the areas that chemical engineers provide support and expertise for the exploration of space.

  9. Space and the American imagination

    Science.gov (United States)

    Mccurdy, Howard E.

    1994-01-01

    The introduction will set out the principal theme of the book: that the rise of the U.S. space program was due to a concerted effort by science writers, engineers, industrialists, and civic and political leaders to create a popular culture of space exploration based on important elements of American social life (such as frontier mythology, fears about the cold war, and the rise of the consumer culture). Much of the disillusionment with the NASA space program which set in during the third decade of space flight can be traced to a widening gap between popular expectations and the reality of space exploration.

  10. Phenomenology of dark energy: exploring the space of theories with future redshift surveys

    International Nuclear Information System (INIS)

    Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian

    2014-01-01

    We use the effective field theory of dark energy to explore the space of modified gravity models which are capable of driving the present cosmic acceleration. We identify five universal functions of cosmic time that are enough to describe a wide range of theories containing a single scalar degree of freedom in addition to the metric. The first function (the effective equation of state) uniquely controls the expansion history of the universe. The remaining four functions appear in the linear cosmological perturbation equations, but only three of them regulate the growth history of large scale structures. We propose a specific parameterization of such functions in terms of characteristic coefficients that serve as coordinates in the space of modified gravity theories and can be effectively constrained by the next generation of cosmological experiments. We address in full generality the problem of the soundness of the theory against ghost-like and gradient instabilities and show how the space of non-pathological models shrinks when a more negative equation of state parameter is considered. This analysis allows us to locate a large class of stable theories that violate the null energy condition (i.e. super-acceleration models) and to recover, as particular subsets, various models considered so far. Finally, under the assumption that the true underlying cosmological model is the Λ Cold Dark Matter (ΛCDM) scenario, and relying on the figure of merit of EUCLID-like observations, we demonstrate that the theoretical requirement of stability significantly narrows the empirical likelihood, increasing the discriminatory power of data. We also find that the vast majority of these non-pathological theories generating the same expansion history as the ΛCDM model predict a different, lower, growth rate of cosmic structures

  11. Impact of space environment on stability of medicines: Challenges and prospects.

    Science.gov (United States)

    Mehta, Priti; Bhayani, Dhara

    2017-03-20

    To upkeep health of astronauts in a unique, isolated, and extreme environment of space is the primary goal for a successful space mission, hence, safe and efficacious medications are essential for the wellness of astronauts. Space medication has been challenged with problems related to efficacy. Along with altered physiology, one of the possible reasons could be instability of space medications in the presence of harsh spaceflight environmental conditions. Altered physical and chemical stability can result in reduced potency which can result in reduced efficacy. Right now, medicines from the International Space Station are replaced before their expiration. But, for longer duration missions to Mars or any other asteroid, there will not be any chance of replacement of medicines. Hence, it is desired that medicines maintain the shelf-life throughout the space mission. Stability of medicines used for short term or long term space missions cannot be judged by drug stability guidelines based on terrestrial environmental factors. Unique environmental conditions related to spaceflight include microgravity, excessive vibration, hard vacuum, humidity variation, temperature differences and excessive radiation, which may cause instability of medicines. This write-up provides a review of the problem and countermeasure approaches for pharmaceuticals exposed to the space environment. The first part of the article discusses thought processes behind outlining of International Conference on Harmonization drug stability guidelines, Q1A (R2) and Q1B, and its acceptance limits for accelerated stability study. The second part of the article describes the difference in the radiation environment of deep space compared to radiation environment inside the space shuttle based on penetration power of different types of radiation. In the third part of the article, various promising approaches are listed which can be used for assurance of space medicine stability. One of the approaches is the

  12. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  13. Epistemological tensions in prospective history teachers’ beliefs about the objectives of secondary education

    NARCIS (Netherlands)

    Wansink, B.G.J.; Akkerman, S.F.; Haenen, J.P.P.; Vermunt, Jan; Wubbels, T.

    2017-01-01

    In recent decades we witnessed ongoing debates about the objectives of history education, with different underlying epistemological perspectives. This qualitative study explored prospective history teachers’ beliefs about these objectives of history education. Prospective history teachers of six

  14. National Security Space Launch Report

    Science.gov (United States)

    2006-01-01

    Company Clayton Mowry, President, Arianespace Inc., North American—“Launch Solutions” Elon Musk , CEO and CTO, Space Exploration Technologies (SpaceX...technologies to the NASA Exploration Initiative (“…Moon, Mars and Beyond.”).1 EELV Technology Needs The Atlas V and Delta IV vehicles incorporate current... Mars and other destinations.” 46 National Security Space Launch Report Figure 6.1 U.S. Government Liquid Propulsion Rocket Investment, 1991–2005

  15. Exploring a Third Space for Sustainable Educational Development—HIV/AIDS Prevention, Zambia

    Directory of Open Access Journals (Sweden)

    Ellen Carm

    2018-03-01

    Full Text Available This study was conducted in Zambia from 2002 to 2008, a country greatly affected by the HIV (Human Immunodeficiency Virus/AIDS (Acquired Immune Deficiency Syndrome epidemic. The global, national, as well as local discourses on spread and mitigation were clustered around scientific knowledge and the local context and cultural traditions. The education sector struggled with implementing the national HIV/AIDS education strategy but by a broader stakeholder involvement, and a close collaboration between the educational sector and tribal chiefs and their traditional internal structures, a localized approach emerged. The overall objective of the paper is to illustrate how a multi-voiced strategy can bring about sustainable change, illustrated by this study. The study used qualitative constructivist and grounded theoretical approaches, and applied the third generation of cultural and historical activity theory (CHAT as an analytical tool. Bernstein’s concept, symbolic control, contributes to a broader understanding of the underlying processes and outcomes of the study. The findings revealed that the strategically monitored multi-voiced participation of local stakeholders created a learning space where both scientific and indigenous knowledge were blended, and thereby creating solutions to preventive action meeting the local needs. The study exemplifies these processes by identifying contradictions between the various levels and activity systems involved, by listing some of their characteristics, manifestations and finally their negotiated solutions. These solutions, or the third space interventions, the outcome of the multi-voiced participation, is in the paper used to explore a theoretical framework for an ethical and decolonized development strategy; a precondition for sustained local development.

  16. Liquid Hydrogen Sensor Considerations for Space Exploration

    Science.gov (United States)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  17. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  18. Anti-Urokinase Receptor Antisense Oligonucleotide (uPAR-aODN) to Prevent and Cure Long-Term Space Exploration-Related Retinal Pathological Angiogenesis

    Science.gov (United States)

    Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio

    2008-06-01

    Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.

  19. Current status and research of plant space mutation breeding

    International Nuclear Information System (INIS)

    Qiu Xinmian

    2011-01-01

    Plant space mutation breeding and discussed themechanism of plant space mutagenesis. The variations of organisms were induced by the comprehensive effects of high vacuum, microgravity,incense radiat ion and so on. The application of space mutation breeding and inheritance in specially good grmplasm material in China were well summarized. The prospects of space mutat ion breeding was described. The space mutagenesis will provided a new way for the future breeding. (author)

  20. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.

    2008-01-01

    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.