WorldWideScience

Sample records for space exploration policy

  1. Security Policy for a Generic Space Exploration Communication Network Architecture

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  2. Comparison of Historic Exploration with Contemporary Space Policy Suggests a Retheorisation of Settings

    Cokely, J.; Rankin, W.; Heinrich, P.; McAuliffe, M.

    The 2008 NASA Astrobiology Roadmap provides one way of theorising this developing field, a way which has become the normative model for the discipline: science-and scholarship-driven funding for space. By contrast, a novel re-evaluation of funding policies is undertaken in this article to reframe astrobiology, terraforming and associated space travel and research. Textual visualisation, discourse and numeric analytical methods, and value theory are applied to historical data and contemporary sources to re-investigate significant drivers and constraints on the mechanisms of enabling space exploration. Two data sets are identified and compared: the business objectives and outcomes of major 15th-17th century European joint-stock exploration and trading companies and a case study of a current space industry entrepreneur company. Comparison of these analyses suggests that viable funding policy drivers can exist outside the normative science and scholarship-driven roadmap. The two drivers identified in this study are (1) the intrinsic value of space as a territory to be experienced and enjoyed, not just studied, and (2) the instrumental, commercial value of exploiting these experiences by developing infrastructure and retail revenues. Filtering of these results also offers an investment rationale for companies operating in, or about to enter, the space business marketplace.

  3. Space exploration

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  4. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  5. Space Exploration

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  6. JAXA's Space Exploration Scenario

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  7. Nutrition for Space Exploration

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  8. SpaceExplorer

    Hansen, Thomas Riisgaard

    2007-01-01

    Web pages are designed to be displayed on a single screen, but as more and more screens are being introduced in our surroundings a burning question becomes how to design, interact, and display web pages on multiple devices and displays. In this paper I present the SpaceExplorer prototype, which...... is able to display standard HTML web pages on multiple displays with only a minor modification to the language. Based on the prototype a number of different examples are presented and discussed and some preliminary findings are presented....

  9. Space Science in Action: Space Exploration [Videotape].

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  10. Powering the Space Exploration Initiative

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  11. Nuclear Energy in Space Exploration

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  12. MEMS applications in space exploration

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  13. From space exploration to commercialisation

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without

  14. Space weapon technology and policy

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  15. Human Factors in Space Exploration

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  16. Website Policies / Important Links | Data Explorer

    Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important ) Publication Date (oldest first) Close Clear All Find DOE Data Explorer Website Policies / Important Links Science | Office of Scientific and Technical Information Website Policies / Important Links * Site Map

  17. Keep Religion Out of National Space Policy

    Carter, William E.

    2006-02-01

    In an Eos forum last spring, Robert Frodeman (University of Texas, Denton) suggested that ``it is time that we draw more consciously upon the expertise of scholars trained in the areas of art, philosophy, and religion in the design of our space policy'' [2005]. I would agree that artists and philosophers may help the public to appreciate the true grandeur of the universe and thus increase popular support for the exploration of space, but I cannot think of a potentially more disastrous step than to bring ``scholars trained in. . .religion'' into the development of our national space policy, as Frodeman advocates. My concerns have nothing to do with the First Amendment of the U.S. Constitution-I simply think that the potential negatives far outweigh the potential benefits.

  18. Nuclear Energy for Space Exploration

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  19. DIPS space exploration initiative safety

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  20. New NASA Technologies for Space Exploration

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  1. Uranium exploration/development policy

    Anon.

    1983-01-01

    The Honeymoon joint venturers have been advised that their request for compensation has been refused. This follows the South Australian Government's decision not to grant a mining lease. An application for a retention lease to the joint venturers at Beverley was also refused. The Government has formulated clear guidelines for both retention leases and exploration licences which will be applied to all companies engaged specifically in exploration for uranium

  2. Social Foundations of Human Space Exploration

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  3. Report explores Congress' science policy

    Jones, Richard

    Scientists interested in understanding how Congress develops science policy would find it useful to read a recent report by the Carnegie Commission on Science, Technology, and Government. “Science, Technology and Congress: Analysis and Advice from the Congressional Support Agencies” contains revealing insights about the often hard-pressed system that Congress uses to analyze science and technology issues.“Congress is on the front line of many battles over the directions of science and technology,” says the 70-page report. “The quality of congressional decisions on these issues often depends on the quality and usefulness of information and analysis made available to Congress.” The report describes the overwhelming amount of information received by members of Congress, few of whom have “substantial training or experience” in science and technology. Making this information understandable and useful is the role of the Office of Technology Assessment, the Congressional Research Service, the General Accounting Office, and the Congressional Budget Office.

  4. Fact Sheet: National Space Policy. Appendix F-2

    1996-01-01

    For over three decades, the United States has led the world in the exploration and use of outer space. Our achievements in space have inspired a generation of Americans and people throughout the world. We will maintain this leadership role by supporting a strong, stable, and balanced national space program that serves our goals in national security, foreign policy, economic growth, environmental stewardship, and scientific and technical excellence. Access to and use of space are central for preserving peace and protecting US national security as well as civil and commercial interests. The United States will pursue greater levels of partnership and cooperation in national and international space activities and work with other nations to ensure the continued exploration and use of outer space for peaceful purposes. The goals of the US space program are to: (a) Enhance knowledge of the Earth, the solar system, and the universe through human and robotic exploration; (b) Strengthen and maintain the national security of the United States; (c) Enhance the economic competitiveness and scientific and technical capabilities of the United States; (d) Encourage State, local, and private sector investment in, and use of, space technologies; (e) Promote international cooperation to further US domestic, national security, and foreign policies. The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all humanity. "Peaceful purposes" allow defense and intelligence-related activities in pursuit of national security and other goals. The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space. The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without

  5. Space Exploration: Issues Concerning the Vision for Space Exploration

    Smith, Marcia S

    2006-01-01

    .... Bush announced new goals for the National Aeronautics and Space Administration (NASA), directing the agency to focus on returning humans to the Moon by 2020, and eventually sending them to Mars and worlds beyond...

  6. Product Lifecycle Management and Sustainable Space Exploration

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  7. Strategies For Human Exploration Leading To Human Colonization of Space

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  8. Radiation risk in space exploration

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  9. Social Sciences and Space Exploration

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  10. Commercialization is Required for Sustainable Space Exploration and Development

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  11. Applied Nanotechnology for Human Space Exploration

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  12. Strategies and Policies for Space - Indian Perspective

    Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund

    2002-01-01

    Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.

  13. Technology transfer from the space exploration initiative

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  14. Pioneers in Astronomy and Space Exploration

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  15. Standardizing the European Education Policy Space

    Lawn, Martin

    2011-01-01

    Countries in Europe, through the European Union, are creating, as part of the market and its governance, a new policy space in education. It is being formed through law, regulation, networking and harmonization. The development of standards across the different fields of policy, statistical calculation and commerce underpins and extends the…

  16. The New National Vision for Space Exploration

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that

  17. Critical incidents: exploring theory policy and practice

    Beeke, Matthew A.

    2011-01-01

    Responding to critical incidents in school communities has become an established part of the practice of educational psychologists (EPs). Despite this the EP professional journal literature is sparse, the last major study being conducted by Houghton in 1996. Within a mixed methods design this study aimed to explore various aspects of EP practice in response to critical incidents. Firstly, critical incident policy and EP journal literature was examined to provide a definition...

  18. Modular Power Standard for Space Explorations Missions

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  19. Shape space exploration of constrained meshes

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  20. Shape space exploration of constrained meshes

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  1. Yearbook on space policy 2015 access to space and the evolution of space activities

    Baranes, Blandina; Hulsroj, Peter; Lahcen, Arne

    2017-01-01

    The Yearbook on Space Policy, edited by the European Space Policy Institute (ESPI), is the reference publication analysing space policy developments. Each year it presents issues and trends in space policy and the space sector as a whole. Its scope is global and its perspective is European. The Yearbook also links space policy with other policy areas. It highlights specific events and issues, and provides useful insights, data and information on space activities. The first part of the Yearbook sets out a comprehensive overview of the economic, political, technological and institutional trends that have affected space activities. The second part of the Yearbook offers a more analytical perspective on the yearly ESPI theme and consists of external contributions written by professionals with diverse backgrounds and areas of expertise. The third part of the Yearbook carries forward the character of the Yearbook as an archive of space activities. The Yearbook is designed for government decision-makers and agencies...

  2. Enabling Rapid Naval Architecture Design Space Exploration

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  3. Applications of MEMS for Space Exploration

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  4. Space exploration and colonization - Towards a space faring society

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  5. Different spaces : Exploring Facebook as heterotopia

    Rymarczuk, R.; Derksen, Maarten

    2014-01-01

    In this paper we explore the space of Facebook, and use Michel Foucault’s concept of heterotopia to describe it. We show that the heterotopic nature of Facebook explains not only much of its attraction, but even more the discomfort that many people, users as well as non–users, experience in it.

  6. Novelty Search for Soft Robotic Space Exploration

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  7. Novelty search for soft robotic space exploration

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  8. Water: A Critical Material Enabling Space Exploration

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  9. Rendezvous and Docking for Space Exploration

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  10. Space exploration - Present and future challenges

    CERN. Geneva

    2003-01-01

    Our future deep-space exploration faces many daunting challenges, but three of them loom high above the rest: physiological debilitation, radiation sickness and psychological stress. Many measures are presently being developed to reduce these difficulties. However, in the long run, two important new developments are required: abundant supply of power, and advanced space propulsion. The future looks bright, however. While the road is a long one, it is now well defined and many exciting explorations are within near-term reach.BiographyDr. Chang-Diaz graduated from MIT in the field of applied plasma physics and fusion research. He has been a NASA space shuttle astronaut on seven missions between 1986 and 2002. As director of the ASP Laboratory in Houston, he continues research on plasma rockets.For more details: see www.jsc.nasa.gov/Bios/htmlbios/chang.htmlNote: Tea and coffee will be served at 16:00 hrs.

  11. Technology Applications that Support Space Exploration

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  12. The Space Medicine Exploration Medical Condition List

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  13. Space Biology and Medicine. Volume I; Space and Its Exploration

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    Perhaps one of the greatest gifts that has been given to the people of the world in the last few hundred years has been an emerging sense of the place of our planet and its inhabitants within the context of the vast universe. Our knowledge of the rest of the universe has not come quickly, nor was the process of attaining it only recently begun; however, the unprecedented acceleration of that process has benefitted from a fundamental new aspect of our species that has only manifested itself in the last 30 years or so, the ability to travel in space. Before the space age, the Universe was studied only through observations from the Earth. All that has changed with the beginning of the space age. Machines built by humans have flown to all but one of the nine planets that revolve around our Sun, have ventured billions of miles from the Earth and looked back, and have landed on three other worlds. Spacecraft in orbit around the Earth have viewed the sky at a vast number of electromagnetic wavelengths, detecting the shape of the galaxy and the universe, and even measuring the remnants of the universe's beginning. Human explorers have ventured forth, first for short stays in orbit, then, later, walking upon the Moon and living for long periods in space. As they did so, billions of people on the Earth came to view the Earth in a fundamentally different way, not just as the familiar day to- day backdrop for their lives, but as a small oasis suspended in the night sky above an alien landscape. It is this new view of the Earth that is the true gift of space exploration. Space exploration has at once given us a new perspective on the value of our world, and a new perspective from which to understand how it operates. It has shown us that the Earth is by far the most precious place in the solar system in terms of supporting human life, while revealing that other destinations may still be compelling. The exploration of space has at once become a challenge for humanity to overcome

  14. Ethics and public integrity in space exploration

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  15. Space Launch System for Exploration and Science

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  16. Integrated Systems Health Management for Space Exploration

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  17. UWB Technology and Applications on Space Exploration

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  18. Study of space reactors for exploration missions

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  19. Study of space reactors for exploration missions

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  20. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  1. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  2. Preaching to the converted? An analysis of the UK public for space exploration.

    Entradas, Marta; Miller, Steve; Peters, Hans Peter

    2013-04-01

    This article presents the results of a survey carried out at two space outreach events in the UK aimed at characterising "the public for space exploration" and measuring public support for space exploration. Attitude towards space exploration and policy preferences were used as measures of public support. The sample involved 744 respondents and was mainly composed of adults between 25 and 45 years old, with men slightly over-represented compared with women. Findings revealed that males appeared to be stronger supporters than females - men had a more positive attitude towards space exploration and stronger space policy preferences. Because mixed groups tend to come together to such events we argue that male respondents would be more likely to be part of the "attentive" and "interested" public who come to outreach activities and bring a less interested public with them.

  3. Habitat Concepts for Deep Space Exploration

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  4. Nuclear propulsion for the space exploration initiative

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  5. Exploring the Concept of Healing Spaces.

    DuBose, Jennifer; MacAllister, Lorissa; Hadi, Khatereh; Sakallaris, Bonnie

    2018-01-01

    Evidence-based design (EBD) research has demonstrated the power of environmental design to support improved patient, family, and staff outcomes and to minimize or avoid harm in healthcare settings. While healthcare has primarily focused on fixing the body, there is a growing recognition that our healthcare system could do more by promoting overall wellness, and this requires expanding the focus to healing. This article explores how we can extend what we know from EBD about health impacts of spatial design to the more elusive goal of healing. By breaking the concept of healing into antecedent components (emotional, psychological, social, behavioral, and functional), this review of the literature presents the existing evidence to identify how healthcare spaces can foster healing. The environmental variables found to directly affect or facilitate one or more dimension of healing were organized into six groups of variables-homelike environment, access to views and nature, light, noise control, barrier-free environment, and room layout. While there is limited scientific research confirming design solutions for creating healing spaces, the literature search revealed relationships that provide a basis for a draft definition. Healing spaces evoke a sense of cohesion of the mind, body, and spirit. They support healing intention and foster healing relationships.

  6. Benefits of Microalgae for Human Space Exploration

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  7. Modeling Physarum space exploration using memristors

    Ntinas, V; Sirakoulis, G Ch; Vourkas, I; Adamatzky, A I

    2017-01-01

    Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks. (paper)

  8. Variable Vector Countermeasure Suit for Space Habitation and Exploration

    National Aeronautics and Space Administration — The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a visionary system concept that will revolutionize space missions by...

  9. Space science--a fountain of exploration and discovery

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  10. Identity politics: Exploring Georgian foreign policy behavior

    Kornely Kakachia

    2015-07-01

    Full Text Available This paper analyses the extent to which Georgia's pro-Western foreign policy orientation stems from ideas and identity rather than from materialist and systemic factors alone. Finding such narrow approaches insufficient for explaining small state behavior, and drawing on liberal and constructivist approaches to international relations theory, the article argues that Georgia's foreign policy orientation has a strong basis in the widespread ideological perception amongst the local political elite that Georgia “belongs” in the West. Based on this theoretical framework, this paper provides a historical overview of Georgia's foreign policy, tracing the evolution of Georgia's identity from seeing itself as “Christian” in contrast to its Islamic neighbors, to identifying as European in contrast to a modern, Russian “other”. As Georgia attempts to construct a collective international identity, the devotion to the idea of Euro-Atlantic integration as a “sacred destiny” amongst the country's elite has significant foreign policy implications. This article overviews the current challenges and dilemmas of self-identification and investigates the roles that national identity and the prevailing “European” identity play in Georgia's quest for “desovietization”.

  11. Exploring the science-policy interface.

    Davies, Justine

    2010-04-30

    The sacking of David Nutt from his position as Chair of a UK government science advisory council has thrown the interface between science and policy into sharp relief. Justine Davies takes a look behind the scenes. 2010 Elsevier Inc. All rights reserved.

  12. Energy Storage Technology Development for Space Exploration

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  13. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  14. Space assets, technology and services in support of energy policy

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  15. Optimizing Light for Long Duration Space Exploration

    National Aeronautics and Space Administration — The goal of our work is to optimize lighting that supports vision and serves as a circadian countermeasure for astronauts and ground crew during space missions. Due...

  16. More Policies, Greater Inclusion? Exploring the Contradictions of New Labour Inclusive Education Policy

    Roulstone, Alan; Prideaux, Simon

    2008-01-01

    The era of New Labour government has witnessed unprecedented growth in inclusive education policies. There is, however, limited evidence that policies have increased disabled children's inclusion. This article explores reasons for this contradiction. Drawing on sociological insights, it is argued that New Labour policies on inclusive education…

  17. White Paper for US Space Policy Going Forward

    Sinclair, A.

    2009-04-01

    international space policy forums. For example: International agendas for space exploration, including international lunar settlement,the preparation of an international space shuttle and an international program for meteorite mitigation. Growing capacity of earth observation facilities Development of the informational basis within the global development arenas Information enabled inter-governmental exchange and problem solving perspectives for economic, agricultural and infrastructure development. The civil society basis within e-government International Cyberspace For US engagement into the international community at the best possible levels it is essential that US Space policy consider for the global scale affects that can be undertaken within the growing information technology attributes. These initiating attributes will also be the ones that determine for fast referendums into sustainable practice, for the revisions of an industrial base, for needed infrastructures in many areas and for comprehensive levels of educational engagement into the way forward. Both within the US, and as US outreach within global dynamics. US stands to gain through the momentum into the space and information basis, but such gain will be seen as a direct result of an integrated policy making, that identifies the authentic purpose and intention of space development for a future world. The comprehensive alignment of US space policy into the national, international and global development agendas is a topic that can only be undertaken within a measure of US public engagement. Engagement which can be found within US policy making initiative, in particular through worthwhile interchange and participation with Space Agencies around the world for development of an internationalized approach. Such an internationalized approach can be for the moon and for the earth, for education,for non -proliferation, for global security, for civil society representation and for the stringent terms of a climate change

  18. Europeanization in VET Policy as a Process of Reshaping the Educational Space

    Krista Loogma

    2016-04-01

    Full Text Available The EU represents a transforming educational space, where national and supranational boundaries in educational governance are becoming blurred. The EU has become an  important actor in educational governance and an important arena for policy learning and transfer. This paper explores how the process of reshaping the educational space manifests itself in the process of the Europeanization of VET policy in the case of Estonia. In Estonia, this process was followed by the growth of executive VET institutions and has developed from rather uncritical initial policy transfer to more active learning from the EU, although conformism can still be seen in cases of the introduction of standardizing policy tools.

  19. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  20. Synthetic biology assemblies for sustainable space exploration

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  1. Strategy for the Explorer program for solar and space physics

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  2. Handbook of space security policies, applications and programs

    Hays, Peter; Robinson, Jana; Moura, Denis; Giannopapa, Christina

    2015-01-01

    Space Security involves the use of space (in particular communication, navigation, earth observation, and electronic intelligence satellites) for military and security purposes on earth and also the maintenance of space (in particular the earth orbits) as safe and secure areas for conducting peaceful activities. The two aspects can be summarized as "space for security on earth" and “the safeguarding of space for peaceful endeavors.” The Handbook will provide a sophisticated, cutting-edge resource on the space security policy portfolio and the associated assets, assisting fellow members of the global space community and other interested policy-making and academic audiences in keeping abreast of the current and future directions of this vital dimension of international space policy. The debate on coordinated space security measures, including relevant 'Transparency and Confidence-Building Measures,' remains at a relatively early stage of development. The book offers a comprehensive description of the variou...

  3. Linking African Researchers with Adaptation Policy Spaces | IDRC ...

    Linking African Researchers with Adaptation Policy Spaces. Poor understanding of policy processes tends to reduce the value of research results and the ability of researchers to influence policy. One of the main goals of IDRC's Climate Change Adaptation in Africa (CCAA) program is to build the capacity of researchers to ...

  4. Toward a global space exploration program: A stepping stone approach

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  5. Robust Path Planning for Space Exploration Rovers

    National Aeronautics and Space Administration — Motion planning considers the problem of moving a system from a starting position to a desired goal position. This problem has been shown to be a computationally...

  6. Systems Engineering for Space Exploration Medical Capabilities

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  7. Exploring galaxy evolution with latent space walks

    Schawinski, Kevin; Turp, Dennis; Zhang, Ce

    2018-01-01

    We present a new approach using artificial intelligence to perform data-driven forward models of astrophysical phenomena. We describe how a variational autoencoder can be used to encode galaxies to latent space, independently manipulate properties such as the specific star formation rate, and return it to real space. Such transformations can be used for forward modeling phenomena using data as the only constraints. We demonstrate the utility of this approach using the question of the quenching of star formation in galaxies.

  8. Petroleum exploration in Africa from space

    Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco

    2017-10-01

    Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.

  9. Complexity in Simplicity: Flexible Agent-based State Space Exploration

    Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2007-01-01

    In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...

  10. Exploring Engaged Spaces in Community-University Partnership

    Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie

    2016-01-01

    The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…

  11. A Compositional Sweep-Line State Space Exploration Method

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  12. Global partnerships: Expanding the frontiers of space exploration education

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  13. Public choice economics and space policy: realising space tourism

    Collins, Patrick

    2001-03-01

    Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report "General Public Space Travel and Tourism" concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by 'public choice' economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.

  14. Liquid Hydrogen Sensor Considerations for Space Exploration

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  15. Exploring a Large Space of Small Games

    Barros, Gabriella; Togelius, Julian

    We explore the soundness and playability of randomly generated games expressed in the Video Game Description Language (VGDL). A grammar is defined for VGDL, which is able to express a large variety of simple arcade-like games, and random expansions of this grammar are fed to a VGDL interpreter...... and played with off the shelf agents. We see this work as the first step towards generating complete, playable games....

  16. Exploring Alcohol Policy Approaches to Prevent Sexual Violence Perpetration

    Lippy, Caroline; DeGue, Sarah

    2018-01-01

    Sexual violence continues to be a significant public health problem worldwide with serious consequences for individuals and communities. The implementation of prevention strategies that address risk and protective factors for sexual violence at the community level are important components of a comprehensive approach, but few such strategies have been identified or evaluated. The current review explores one potential opportunity for preventing sexual violence perpetration at the community level: alcohol policy. Alcohol policy has the potential to impact sexual violence perpetration through the direct effects of excessive alcohol consumption on behavior or through the impact of alcohol and alcohol outlets on social organization within communities. Policies affecting alcohol pricing, sale time, outlet density, drinking environment, marketing, and college environment are reviewed to identify existing evidence of impact on rates of sexual violence or related outcomes, including risk factors and related health behaviors. Several policy areas with initial evidence of an association with sexual violence outcomes were identified, including policies affecting alcohol pricing, alcohol outlet density, barroom management, sexist content in alcohol marketing, and policies banning alcohol on campus and in substance-free dorms. We identify other policy areas with evidence of an impact on related outcomes and risk factors that may also hold potential as a preventative approach for sexual violence perpetration. Evidence from the current review suggests that alcohol policy may represent one promising avenue for the prevention of sexual violence perpetration at the community level, but additional research is needed to directly examine effects on sexual violence outcomes. PMID:25403447

  17. In-Space Manufacturing (ISM): Pioneering Space Exploration

    Werkheiser, Niki

    2015-01-01

    ISM Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions. This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

  18. Evolution of space drones for planetary exploration: A review

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  19. Exploring the international policy dimension of sustainability in Dutch agriculture

    Brouwer, F.M.; Leneman, H.; Groeneveld, R.A.

    2007-01-01

    The report offers an overview of experiences in France and the United Kingdom as regards efforts to promote sustainability in agriculture. It also identifies international policy constraints on national efforts to promote sustainability. In addition, it explores opportunities for and threats to the

  20. Estimating the costs of human space exploration

    Mandell, Humboldt C., Jr.

    1994-01-01

    The plan for NASA's new exploration initiative has the following strategic themes: (1) incremental, logical evolutionary development; (2) economic viability; and (3) excellence in management. The cost estimation process is involved with all of these themes and they are completely dependent upon the engineering cost estimator for success. The purpose is to articulate the issues associated with beginning this major new government initiative, to show how NASA intends to resolve them, and finally to demonstrate the vital importance of a leadership role by the cost estimation community.

  1. The politics and perils of space exploration who will compete, who will dominate?

    Dawson, Linda

    2017-01-01

    Written by a former Aerodynamics Officer on the space shuttle program, this book provides a complete overview of the “new” U. S. space program, which has changed considerably over the past 50 years.The future of space exploration has become increasingly dependent on other countries and private enterprise. Can private enterprise can fill the shoes of NASA and provide the same expertise and safety measures and lessons learned from NASA? In order to tell this story, it is important to understand the politics of space as well as the dangers, why it is so difficult to explore and utilize the resources of space. Some past and recent triumphs and failures will be discussed, pointing the way to a successful space policy that includes taking risks but also learning how to mitigate them.

  2. Exploring Sustainability Using images from Space

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks

  3. Applications of Radiative Heating for Space Exploration

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  4. Space Exploration as a Human Enterprise: The Scientific Interest

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  5. Interaction Challenges in Human-Robot Space Exploration

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  6. Mars Wars: The Rise and Fall of the Space Exploration Initiative

    Hogan, Thor

    2007-08-01

    The rise of Space Exploration Initiative (SEI) and its eventual demise represents one of the landmark episodes in the history of the American space program ranking with the creation of NASA, the decision to go to the Moon, the post-Apollo planning process, and the space station decision. The story of this failed initiative is one shaped by key protagonists and critical battles. It is a tale of organizational, cultural, and personal confrontation. Organizational skirmishes involved the Space Council versus NASA, the White House versus congressional appropriators, and the Johnson Space Center versus the rest of the space agency all seeking control of the national space policy process. Cultural struggles pitted the increasingly conservative engineering ethos of NASA against the faster, better, cheaper philosophy of a Space Council looking for innovative solutions to technical problems. Personality clashes matched Vice President Dan Quayle and Space Council Executive Secretary Mark Albrecht against NASA Administrator Dick Truly and Johnson Space Center Director Aaron Cohen. In the final analysis, the demise of SEI was a classic example of a defective decision-making process one that lacked adequate high-level policy guidance, failed to address critical fiscal constraints, developed inadequate programmatic alternatives, and garnered no congressional support. Some space policy experts have argued that SEI was doomed to fail, due primarily to the immense budgetary pressures facing the nation during the early 1990's. This book will argue, however, that the failure of the initiative was not predetermined; instead, it was the result of a deeply flawed policy process that failed to develop (or even consider) policy options that may have been politically acceptable given the existing political environment.

  7. A Tool for Parameter-space Explorations

    Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu

    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.

  8. Space Policy Debate - On Space Privatization and Property Rights

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This presentation is intended to acquaint the audience of UC Berkeley and UC Los Angeles students with the mission of NASA, core competencies at Ames, and to provide a framework for further discussion by students of aeronautics and space sciences.

  9. Enabling Sustainable Exploration through the Commercial Development of Space

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  10. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  11. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  12. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  13. Human life support for advanced space exploration

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  14. Safe Exploration of State and Action Spaces in Reinforcement Learning

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  15. Space Exploration: Challenges in Medicine, Research, and Ethics

    Davis, Jeffrey R.

    2007-01-01

    This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.

  16. National space policy of the United States.

    2010-06-28

    The space age began as a race for security and prestige between two superpowers . The opportunities : were boundless, and the decades that followed have seen a radical transformation in the way we live our : daily lives, in large part due to our use ...

  17. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  18. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  19. A Sweep-Line Method for State Space Exploration

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  20. Policy space for health and trade and investment agreements.

    Koivusalo, Meri

    2014-06-01

    New trade agreements affect how governments can regulate for health both within health systems and in addressing health protection, promotion and social determinants of health in other policies. It is essential that those responsible for health understand the impacts of these trade negotiations and agreements on policy space for health at a national and local level. While we know more about implications from negotiations concerning intellectual property rights and trade in goods, this paper provides a screening checklist for less-discussed areas of domestic regulation, services, investment and government procurement. As implications are likely to differ on the basis of the organization and structures of national health systems and policy priorities, the emphasis is on finding out key provisions as well as on how exemptions and exclusions can be used to ensure policy space for health. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  2. Optimization of ACC system spacing policy on curved highway

    Ma, Jun; Qian, Kun; Gong, Zaiyan

    2017-05-01

    The paper optimizes the original spacing policy when adopting VTH (Variable Time Headway), proposes to introduce the road curve curvature K to the spacing policy to cope with following the wrong vehicle or failing to follow the vehicle owing to the radar limitation of curve in ACC system. By utilizing MATLAB/Simulink, automobile longitudinal dynamics model is established. At last, the paper sets up such three common cases as the vehicle ahead runs at a uniform velocity, an accelerated velocity and hits the brake suddenly, simulates these cases on the curve with different curvature, analyzes the curve spacing policy in the perspective of safety and vehicle following efficiency and draws the conclusion whether the optimization scheme is effective or not.

  3. Why We Explore: The Value of Space Exploration for Future Generations

    Cook, Stephen A.; Armstrong, Robert C., Jr.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) and its industry partners are making measurable progress toward delivering new human space transportation capabilities to serve as the catalyst for a new era of discovery, as directed by the U.S. Vision for Space Exploration. In the interest of ensuring prolonged support, the Agency encourages space advocates of all stripes to accurately portray both the tangible and intangible benefits of space exploration, especially its value for future generations. This may be done not only by emphasizing the nation's return on its aerospace investment, but also by highlighting enabling security features and by promoting the scientific and technological benefits that accrue from the human exploration of space. As America embarks on a new era of leadership and international partnership on the next frontier, we are poised to master space by living off-planet on the Moon to prepare astronauts for longer journeys to Mars. These and other relevant facts should be clearly in the view of influential decision-makers and the American taxpayers, and we must increasingly involve those on whom the long-term sustainability of space exploration ultimately depends: America's youth. This paper will examine three areas of concrete benefits for future generations: fundamental security, economic enterprise, and high-technology advancements spurred by the innovation that scientific discovery demands.

  4. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  5. A space exploration strategy that promotes international and commercial participation

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  6. Exploring domestic partnership benefits policies in corporate America.

    Davidson, Elizabeth L; Rouse, Joy

    2004-01-01

    This article examines the domestic partner benefits (DP benefits) movement in corporate America, among Fortune 500 companies. An unprecedented number of Fortune 500 corporations started to extend equal benefits to their employees in the late 1990s. One-third of Fortune 500 companies now extend DP benefits to their gay employees despite national refusal to legally recognize same-sex unions. We provide a macro analysis of the 2002 Fortune 500 companies to explore the characteristics of the corporations that offer the benefits and the impetus for adopting these new gay friendly policies. Findings are that top ranked Fortune 500 and industry leaders act as benchmarkers for the corporate community. Region of the corporate headquarters and commitment to diversity issues also inform these organizational changes. Isomorphisic processes offer viable explanations for the transformation of the corporate climate that touts DP benefit policies as "the right thing to do" and considers these policies as good business sense in order to compete for employees. The DP benefits movement reflects corporate America trying to enhance their reputational capital by including gay issues as part of their diversity programs and policies.

  7. The value of integrating policy people and space in research.

    Hecker, Louise; Birla, Ravi K

    2009-03-01

    In this article, we address several tangible and intangible factors, which are difficult to quantify and often overlooked yet are crucial for research success. We discuss three dimensions which encompass: (1) policy, (2) people, and (3) space. Policies, such as rules and regulations, define the culture of any research program/initiative. Governing rules and regulations defined within these policies are dictated by cultural values. Individuals who exhibit strong leadership, promote innovation, and exercise strategic planning often determine the governing policies. People are the most valuable asset available to any institution. Ensuring the professional growth (personal and scientific) and creating an environment which supports collaborative and collegial research through teamwork are factors that are important for individuals. Space, the physical work environment, is the third dimension of our model and is often an underutilized resource. In addition to the physical layout and design of the space, creating a positive work atmosphere which supports research initiatives is equally important and can create valuable momentum to research efforts. Collectively, these three dimensions (policy, people, and space) have a significant impact on the success of any research initiative. The primary objective of this article is to create awareness and emphasize the importance of implementing these variables within research initiatives in academic settings.

  8. Wernher von Braun: Reflections on His Contributions to Space Exploration

    Goldman, Arthur E.

    2012-01-01

    In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.

  9. NASA's Space Launch System: An Enabling Capability for International Exploration

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  10. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  11. Application of nuclear photon engines for deep-space exploration

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  12. Enabling MPSoC design space exploration on FPGAs

    Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H.; Hussain, D.M.A.; Rajput, A.Q.K.; Chowdhry, B.S.; Gee, Q.

    2009-01-01

    Future applications for embedded systems demand chip multiprocessor designs to meet real-time deadlines. These multiprocessors are increasingly becoming heterogeneous for reasons of cost and power. Design space exploration (DSE) of application mapping becomes a major design decision in such systems.

  13. Power system requirements and selection for the space exploration initiative

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  14. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  15. Moral Geography and Exploration of the Moral Possibility Space

    Bongrae Seok

    2017-12-01

    Full Text Available This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017. By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world, Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and building practical views on living good life. The goal of this geographical exploration of the moral possibility space is surveying different traditions of morality and finding tractable ways of human flourishing. This article, by following the chapters of his book, explains his views on moral diversity and his interdisciplinary and naturalistic approach to ethics. It also discusses interactive and dynamic ways to expand the moral possibility space.

  16. A Space For Critical Research on Education Policy

    Rasmussen, Palle

    2014-01-01

    of educational research. Since most network activity is focused around the yearly conferences, the first part of the article discusses the conference session space, its forms and its links to the broader community of educational researchers. The second part of the article traces the origin and development......The activities of EERA and the yearly ECER conferences are mainly organized in standing networks. Through the example of the network on Policy Studies and Politics of Education, this article takes a closer look at network activity and the ways in which it contributes to the development...... of the network on Policy Studies and Politics of Education, emphasizing how the network has provided a space for critical analysis and discussion of education policies and forms of governance being pursued by national and trans-national actors in and beyond Europe....

  17. A Situation Awareness Assistant for Human Deep Space Exploration

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  18. Exploration for uranium in Argentina: New policies of reactivation

    Bianchi, R.E.

    2009-01-01

    Full text: The policy established by the National Government of Argentina in August 2006 related to resuming the Nuclear activity in the country, lead the CNEA trough the Exploration of Raw Materials Manager (ERMM) to establish working strategies for the next 10 years. These strategies together with the assignment of an adequate budget will contribute to define new uranium resources, which together with the already known ones, will be used to supply the requirements of Nuclear Power and Research Plants in the future. Thus, the ERMM is applying a policy of human resources hiring new personnel in order to count with the minimum necessary workforce to reach these tasks. In Argentina known U resources are related to sedimentary, igneous and metamorphic environments. Considering the geology of the different regions, Argentina has been divided into 57 units in which the geological, geochemical, mineralogical and structural information is evaluated in order to estimate the uranium geological favorability of each unit. The final pursuit of this regional study is to circumscribe new areas with anomalous uranium contents in which prospection and exploration should be carried out. These studies together with prospection and exploration works are performed in the country by four exploration centers based in Salta (RN), Cordoba (R.Ce), Mendoza (R.Cu) and Trelew (RP). The works planned for each exploration center includes: Regional Noroeste, Mina Franca Deposit: peri-granitic vein- type mineralization: 25% of surface exploration has been performed. Mineralized areas: Istataco and San Buenaventura correspond to an igneous-metamorphic environment, Sierra de Vaqueria to a sedimentary one: Prospection stage. Regional Centro, Mineralized areas: El Gallo: drilling stage and Donato: prospection stage, correspond to an igneous-metamorphic environment with intra and peri-granitic anomalies. Noya: prospection stage, sedimentary environment. Regional Cuyo, Mineralized area: Western Sierra

  19. A Management Model for International Participation in Space Exploration Missions

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  20. Explaining public support for space exploration funding in America: A multivariate analysis

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  1. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  2. Micro-Inspector Spacecraft for Space Exploration Missions

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  3. Human Space Exploration: The Moon, Mars, and Beyond

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  4. Alenia Spazio: Space Programs for Solar System Exploration .

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  5. Advances in Autonomous Systems for Missions of Space Exploration

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  6. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  7. Essential elements of a framework for future space exploration and use: the role of science

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  8. Solar Electric Propulsion Concepts for Human Space Exploration

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  9. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  10. Exploring the living universe: A strategy for space life sciences

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  11. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  12. The potential of space exploration for the fine arts

    Mclaughlin, William I.

    1993-01-01

    Art provides an integrating function between the 'upper' and 'lower' centers of the human psyche. The nature of this function can be made more specific through the triune model of the brain. The evolution of the fine arts - painting, drawing, architecture, sculpture, literature, music, dance, and drama, plus cinema and mathematics-as-a-fine-art - are examined in the context of their probable stimulations by space exploration: near term and long term.

  13. Moral Geography and Exploration of the Moral Possibility Space

    Bongrae Seok

    2017-01-01

    This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017). By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world), Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and build...

  14. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  15. Molpher: a software framework for systematic chemical space exploration

    Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, Daniel

    2014-01-01

    Roč. 6, č. 1 (2014) ISSN 1758-2946 R&D Projects: GA TA ČR TA02010212; GA ČR(CZ) GAP202/11/0968; GA ČR(CZ) GP14-29032P Keywords : Chemical space exploration * De-novo design * In silico ligand design * Chemical biology tools Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.547, year: 2014

  16. International Space Education Outreach: Taking Exploration to the Global Classroom

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  17. Phase-space exploration in nuclear giant resonance decay

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.

    1995-01-01

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space

  18. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    simulation inputs are most important and which have negligible influence on the model output. Popular sensitivity methods include the Morris method, variance-based methods (e.g. Sobol’s), and regression methods (e.g. SRC). However, all these methods only address one output at a time, which makes it difficult...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring......Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...

  19. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  20. Crew roles and interactions in scientific space exploration

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  1. Aviation or space policy: New challenges for the insurance sector to private human access to space

    van Oijhuizen Galhego Rosa, Ana Cristina

    2013-12-01

    The phenomenon of private human access to space has introduced a new set of problems in the insurance sector. Orbital and suborbital space transportation will surely be unique commercial services for this new market. Discussions are under way regarding space insurance, in order to establish whether this new market ought to be regulated by aviation or space law. Alongside new definitions, infrastructures, legal frameworks and liability insurances, the insurance sector has also been introducing a new approach. In this paper, I aim to analyse some of the possibilities of new premiums, capacities, and policies (under aviation or space insurance rules), as well as the new insurance products related to vehicles, passengers and third party liability. This paper claims that a change toward new insurance regimes is crucial, due to the current stage in development of space tourism and the urgency to adapt insurance rules to support future development in this area.

  2. The Value of Humans in the Biological Exploration of Space

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  3. Elements of ESA's policy on space and security

    Giannopapa, Christina; Adriaensen, Maarten; Antoni, Ntorina; Schrogl, Kai-Uwe

    2018-06-01

    In the past decade Europe has been facing rising security threats, ranging from climate change, migrations, nearby conflicts and crises, to terrorism. The demand to tackle these critical challenges is increasing in Member States. Space is already contributing, and could further contribute with already existing systems and future ones. The increasing need for security in Europe and for safety and security of Europe's space activities has led to a growing number of activities in ESA in various domains. It has also driven new and strengthened partnerships with security stakeholders in Europe. At the European level, ESA is collaborating closely with the main European institutions dealing with space security. In addition, as an organisation ESA has evolved to conduct security-related projects and programmes and to address the threats to its own activities, thereby securing the investments of the Member States. Over the past years the Agency has set up a comprehensive regulatory framework in order to be able to cope with security related requirements. Over the past years, ESA has increased its exchanges with its Member States. The paper presents main elements of the ESA's policy on space and security. It introduces the current European context for space and security, the European goals in this domain and the specific objectives to which the Agency intends to contribute. Space and security in the ESA context is set out under two components: a) security from space and b) security in space, including the security of ESA's own activities (corporate security and the security of ESA's space missions). Subsequently, ESA's activities are elaborated around these two pillars, composed of different activities conducted in the most appropriate frameworks and in coordination with the relevant stakeholders and shareholders.

  4. NASA Virtual Institutes: International Bridges for Space Exploration

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  5. Exploring Organizational Smoking Policies and Employee Vaping Behavior.

    Song, Xiaochuan; English, Master Thomas M; Whitman, Marilyn V

    2017-04-01

    Cigarette consumption has become global threat to both smokers and organizations. However, little is known about organizational smoking and vaping policies, and their influence to employees' smoking and vaping behavior. We collected data from 456 employed smokers, vapers, and/or dual users. Smoking and/or vaping behavior, along with perceived organizational smoking/vaping policies were examined. Vapers reported perceiving more stringent smoking policy, while vapers who reported having workplace vaping policies perceived having generally more stringent vaping policy. Most smokers and vapers are well informed about smoking policy; however, a considerable portion of them do not have a good understanding about organizational vaping policy. Organizations should not consider smoking and vaping to be the same when setting policy. Employers should ensure that organizational vaping policies are present and clear to all employees.

  6. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  7. Epoxy/UHMWPE Composite Hybridized with Gadolinium Nanoparticles for Space Exploration, Phase I

    National Aeronautics and Space Administration — Abstract Deep space radiations pose a major threat to the astronauts and their space craft during the long duration space exploration expeditions [1]. Ultra High...

  8. Exploring and linking biomedical resources through multidimensional semantic spaces.

    Berlanga, Rafael; Jiménez-Ruiz, Ernesto; Nebot, Victoria

    2012-01-25

    integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.

  9. Exploring perturbative conformal field theory in Mellin space

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  10. Exploring the Dialogic Space of Public Participation in Science

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  11. Nuclear data needs for the space exploration initiative

    Howe, S.D.; Auchampaugh, G.

    1991-01-01

    On July 20, 1989, the President of the United States announced a new direction for the US Space Program. The new Space Exploration Initiative (SEI) is intended to emplace a permanent base on the Lunar surface and a manned outpost on the Mars surface by 2019. In order to achieve this ambitious challenge, new, innovative and robust technologies will have to be developed to support crew operations. Nuclear power and propulsion have been recognized as technologies that are at least mission enhancing and, in some scenarios, mission enabling. Because of the extreme operating conditions present in a nuclear rocket core, accurate modeling of the rocket will require cross section data sets which do not currently exist. In order to successfully achieve the goals of the SEI, major obstacles inherent in long duration space travel will have to be overcome. One of these obstacles is the radiation environment to which the astronauts will be exposed. In general, an unshielded crew will be exposed to roughly one REM per week in free space. For missions to Mars, the total dose could exceed more than one-half the total allowed lifetime level. Shielding of the crew may be possible, but accurate assessments of shield composition and thickness are critical if shield masses are to be kept at acceptable levels. In addition, the entire ship design may be altered by the differential neutron production by heavy ions (Galactic Cosmic Rays) incident on ship structures. The components of the radiation environment, current modeling capability and envisioned experiments will be discussed

  12. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  13. Design space pruning through hybrid analysis in system-level design space exploration

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  14. New developments in Indian space policies and programmes—The next five years

    Sridhara Murthi, K. R.; Bhaskaranarayana, A.; Madhusudana, H. N.

    2010-02-01

    Over past four decades Indian space programme has systematically acquired capabilities in space technologies and implemented its programmes with a high level of focus on societal applications. It is developed into a multi-dimensional programme where its strategy is directed towards diverse stake holders and actors such as government, users and beneficiaries including general public, industrial suppliers as well as customers, academia and other space agencies/international organisations. Over the next five years, the Indian space programme has charted an ambitious set of policies and programmes that aim to enhance impacts on society. The major task is to enlarge and diversify the services delivered to a large section of population affected by income, connectivity and digital divides. While efficacy of application of space based systems have been proven in several fields such as tele-education, water resources management, improving productivity of land and out reaching quality health services and others, the crux of the problem is to evolve sustainable and scalable delivery mechanisms on a very large scale and extending over large geographical areas. Essentially the problem shifts from being predominately a technology problem to one of a composite of economic, cultural and social problems. Tackling such problems would need renewal of policies relating to commercial as well as public service systems. Major programmatic initiatives are planned in the next five years involving new and upgraded technologies to expand services from space to fill the gaps and to improve economic efficiency. Thrust is also given to science and exploration mission beyond Chandrayaan-1 and some initial steps for the participation in human space flight. This paper discusses the policy and strategy perspectives of the programmes planned by Indian Space Research Organisation over next five years.

  15. The Role of Cis-Lunar Space in Future Global Space Exploration

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  16. Science Granting Councils: An Exploration of Policies and Practices ...

    New Cyber Policy Centres for the Global South. IDRC is pleased to announce the results of its 2017 call for proposals to establish Cyber Policy Centres in the Global South. View moreNew Cyber Policy Centres for the Global South ...

  17. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  18. Biomimetics on seed dispersal: survey and insights for space exploration

    Pandolfi, Camilla; Izzo, Dario

    2013-01-01

    Seeds provide the vital genetic link and dispersal agent between successive generations of plants. Without seed dispersal as a means of reproduction, many plants would quickly die out. Because plants lack any sort of mobility and remain in the same spot for their entire lives, they rely on seed dispersal to transport their offspring throughout the environment. This can be accomplished either collectively or individually; in any case as seeds ultimately abdicate their movement, they are at the mercy of environmental factors. Thus, seed dispersal strategies are characterized by robustness, adaptability, intelligence (both behavioral and morphological), and mass and energy efficiency (including the ability to utilize environmental sources of energy available): all qualities that advanced engineering systems aim at in general, and in particular those that need to enable complex endeavors such as space exploration. Plants evolved and adapted their strategy according to their environment, and taken together, they enclose many desirable characteristics that a space mission needs to have. Understanding in detail how plants control the development of seeds, fabricate structural components for their dispersal, build molecular machineries to keep seeds dormant up to the right moment and monitor the environment to release them at the right time could provide several solutions impacting current space mission design practices. It can lead to miniaturization, higher integration and packing efficiency, energy efficiency and higher autonomy and robustness. Consequently, there would appear to be good reasons for considering biomimetic solutions from plant kingdom when designing space missions, especially to other celestial bodies, where solid and liquid surfaces, atmosphere, etc constitute and are obviously parallel with the terrestrial environment where plants evolved. In this paper, we review the current state of biomimetics on seed dispersal to improve space mission design

  19. Synthetic Biology as an Enabling Technology for Space Exploration

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  20. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  1. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  2. Identifying Sociological Factors for the Success of Space Exploration

    Lundquist, C. A.; Tarter, D.; Coleman, A.

    Astrosociology factors relevant to success of future space exploration may best be identified through studies of sociological circumstances of past successful explorations, such as the Apollo-Lunar Missions. These studies benefit from access to primary records of the past programs. The Archives and Special Collections Division of the Salmon Library at the University of Alabama Huntsville (UAH) houses large collections of material from the early periods of the space age. The Huntsville campus of the University of Alabama System had its birth in the mid-1950s at the time when the von Braun rocket team was relocated from Texas to Huntsville. The University, the City of Huntsville and the US Government rocket organizations developed in parallel over subsequent years. As a result, the University has a significant space heritage and focus. This is true not only for the engineering and science disciplines, but also for the social sciences. The life of the University spans the period when Huntsville government and industrial organizations were responsible for producing the rocket vehicles to first take mankind to the Moon. That endeavor was surely as significant sociologically as technologically. In the 1980s, Donald E. Tarter, conducted a series of video interviews with some leading members of the original von Braun team. Although the interviews ranged over many engineering subjects, they also recorded personal features of people involved in the Apollo lunar exploration program and the interactions between these people. Such knowledge was of course an objective. These interviews are now in the collections of the UAH Library Archives, along with extensive documentation from the same period. Under sponsorship of the Archives and the NASA-Marshall Retiree Association, the interview series was restarted in 2006 to obtain comparable oral-history interviews with more than fifty US born members of the rocket team from the 1960s. Again these video interviews are rich with

  3. Exploration of Stellarator Configuration Space with Global Search Methods

    Mynick, H.E.; Pomphrey, N.; Ethier, S.

    2001-01-01

    An exploration of stellarator configuration space z for quasi-axisymmetric stellarator (QAS) designs is discussed, using methods which provide a more global view of that space. To this end, we have implemented a ''differential evolution'' (DE) search algorithm in an existing stellarator optimizer, which is much less prone to become trapped in local, suboptimal minima of the cost function chi than the local search methods used previously. This search algorithm is complemented by mapping studies of chi over z aimed at gaining insight into the results of the automated searches. We find that a wide range of the attractive QAS configurations previously found fall into a small number of classes, with each class corresponding to a basin of chi(z). We develop maps on which these earlier stellarators can be placed, the relations among them seen, and understanding gained into the physics differences between them. It is also found that, while still large, the region of z space containing practically realizable QAS configurations is much smaller than earlier supposed

  4. Vision of Space Exploration Possibilities and limits of a human space conquest.

    Zelenyi, Lev

    Few generations of a schoolboys, which later become active and productive space researchers, have been brought up on a science fiction books. These books told us about travels to other Galaxies with velocities larger then velocity of light, meetings with friendly aliens (necessarily with communistic mentalities in Soviet Union books), star wars with ugly space monsters (in the western hemisphere books), etc. Beginning of Space age (4/10/1957) opened the door to a magic box, full of scientific discoveries, made mostly by robotic satellites and spacecraft. However, already the first human space trips clearly demonstrated that space is vigorously hostile to a human beings. Space medicine during the years since Gagarin flight, made an outstanding progress in supporting human presence at orbital stations, but the radiation hazards and problem of hypomagnetism are still opened and there is no visible path to their solution. So the optimistic slogan of 60-ies “Space is Our Place” is not supported by an almost half a century practice. Space never will be a comfortable place for soft and vulnerable humans? There is a general consensus that man will be on Mars during this century (or even its first part). This is very difficult but task it seems to be realistic after the significant advance of modern technologies will be made. But, is there any real need for humans to travel beyond the Mars orbit or to the inner regions of the Solar system? Will the age of Solar system exploration comes to its logical as it was described by Stanislav Lem in his famous book “Return from stars”? The author of this talk has more questions than answers, and thinks that PEX1 Panel on Exploration is just a right place to discuss these usually by passed topics.

  5. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  6. Addressing Human System Risks to Future Space Exploration

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  7. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  8. Exploring Fiscal Policy at Zero Interest Rates in Intermediate Macroeconomics

    Ramamurthy, Srikanth; Sedgley, Norman

    2013-01-01

    Since the financial meltdown of 2007, advanced macroeconomic theory has delved more deeply into the question of the appropriate fiscal policy when the nominal interest rate is close to or at zero percent. Such analysis is typically conducted with the aid of New Keynesian Dynamic Stochastic General Equilibrium models. The policy implications are,…

  9. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  10. Exploring the Complex Interplay of National Learning and Teaching Policy and Academic Development Practice

    Smith, Karen

    2016-01-01

    Academic developers are important interpreters of policy, yet little research has focussed on the interplay of policy and academic development practice. Using methods from critical discourse analysis, this article analyses a national learning and teaching policy, charts its development, and explores its interpretation by the academic development…

  11. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  12. The role of space in the security and defence policy of Turkey. A change in outlook: Security in space versus security from space

    Ercan, C.; Kale, I.

    2017-01-01

    Space and security domains are strongly related with each other. Nowadays, space is an indispensable part of security and defence policy, and it is increasingly becoming a critical infrastructure for strategic Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) systems. However, space is vulnerable itself to the new space threats. This study reviews the current and near future space role in Turkey's security and defence policy and aims to address...

  13. Science on the Moon: The Wailing Wall of Space Exploration

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  14. Exploration of US men's professional sport organization concussion policies.

    Cochrane, Graham Dean; Owen, Matthew; Ackerson, Joseph D; Hale, Matthew H; Gould, Sara

    2017-05-01

    Concussion policies are increasingly being developed and adopted among professional sports organizations. We sought to compare the policies of the National Hockey League (NHL), the National Basketball Association (NBA), the National Football League (NFL), and Major League Baseball (MLB). Our objective was to summarize each policy and evaluate the extent to which each policy is organization-specific and/or consistent with medical guidelines. We visited websites for the NHL, NBA, NFL, and MLB. We searched media articles reporting concussion policy. We utilized only publically available data. We collected information on each league's approach to the definition of concussion, education provided about concussion, baseline testing requirements, minimum return to play time and return to play protocol. We found that concussion policies vary across these organizations. Most organizations utilize the Concussion in Sport Group (CISG) definition (2013) to define concussion. The NFL and NBA mandate preseason education. All organizations require some type of baseline testing. All organizations require sideline evaluation after suspected concussion. The NFL and MLB require Sport Concussion Assessment Tool (SCAT) testing for sideline evaluation of suspected concussion. MLB is the only organization to require minimum time before return to play. There is a return to play protocol in place for each organization. The NFL and MLB require independent neurologic consultation as part of their return to play protocol. There is variability in concussion policy among the professional sports organizations. The most pronounced variation from the CISG consensus statement is the variability in the minimum time to return to play. Further, the rules of the individual sports have a role in how concussion policy can be designed and implemented. Professional sports set an example for thousands of recreational sports enthusiasts so their publically available policies on concussion have a large impact.

  15. Three near term commercial markets in space and their potential role in space exploration

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  16. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  17. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  18. Crew Roles and Interactions in Scientific Space Exploration

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  19. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  20. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  1. Transition in the Human Exploration of Space at NASA

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  2. Science on the Moon: The Wailing Wall of Space Exploration

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  3. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  4. Mass Reduction: The Weighty Challenge for Exploration Space Flight

    Kloeris, Vickie L.

    2014-01-01

    Meeting nutritional and acceptability requirements is critical for the food system for an exploration class space mission. However, this must be achieved within the constraints of available resources such as water, crew time, stowage volume, launch mass and power availability. ? Due to resource constraints, exploration class missions are not expected to have refrigerators or freezers for food storage, and current per person food mass must be reduced to improve mission feasibility. ? The Packaged Food Mass Reduction Trade Study (Stoklosa, 2009) concluded that the mass of the current space food system can be effectively reduced by decreasing water content of certain foods and offering nutrient dense substitutes, such as meal replacement bars and beverages. Target nutrient ranges were established based on the nutritional content of the current breakfast and lunch meals in the ISS standard menu. A market survey of available commercial products produced no viable options for meal replacement bar or beverage products. New prototypes for both categories were formulated to meet target nutrient ranges. Samples of prototype products were packaged in high barrier packaging currently used for ISS and underwent an accelerated shelf life study at 31 degC and 41 degC (50% RH) for 24 weeks. Samples were assessed at the following time points: Initial, 6 weeks, 12 weeks, and 24 weeks. Testing at each time point included the following: color, texture, water activity, acceptability, and hexanal analysis (for food bars only). Proof of concept prototypes demonstrated that meal replacement food bars and beverages can deliver a comparable macronutrient profile while reducing the overall mass when compared to the ISS Standard Menu. Future work suggestions for meal replacement bars: Reformulation to include ingredients that reduce hardness and reduce browning to increase shelf life. Micronutrient analysis and potential fortification. Sensory evaluation studies including satiety tests and

  5. European Space Agency's Fluorescence Explorer Mission: Concept and Applications

    Mohammed, G.; Moreno, J. F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M.

    2012-12-01

    The Fluorescence Explorer (FLEX) is a dedicated satellite for the detection and measurement of solar-induced fluorescence (SIF). It is one of two candidate missions currently under evaluation by ESA for deployment in its Earth Explorer 8 program, with Phase A/B1 assessments now underway. FLEX is planned as a tandem mission with ESA's core mission Sentinel-3, and would carry an instrument, FLORIS, optimized for discrimination of the fluorescence signal in terrestrial vegetation. The FLEX mission would be the first to be focussed upon optimization of SIF detection in terrestrial vegetation, and using finer spatial resolution than is available with current satellites. It would open up a novel avenue for monitoring photosynthetic function from space, with diverse potential applications. Plant photosynthetic tissues absorbing sunlight in the wavebands of photosynthetically active radiation (400 to 700 nm) emit fluorescence in the form of red and far-red light. This signal confers a small but measurable contribution to apparent reflectance spectra, and with appropriate analysis it may be detected and quantified. Over the last 15-20 years, techniques for SIF detection have progressed from contact or near-contact methods using single leaves to remote techniques using airborne sensors and towers over plant canopies. Ongoing developments in instrumentation, atmospheric correction procedures, signal extraction techniques, and utilization of the SIF signal itself are all critical aspects of progress in this area. The FLEX mission would crystallize developments to date into a state-of-the-art pioneering mission targeting actual photosynthetic function. This compares to existing methods which address only potential function. Thus, FLEX could serve to provide real-time data on vegetation health and stress status, and inputs for parameterization of photosynthetic models (e.g. with measures of light-use efficiency). SIF might be correlated or modelled to photosynthetic rates or

  6. The Necessity of Functional Analysis for Space Exploration Programs

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    for space exploration programs.

  7. Social policies, separation, and second birth spacing in Western Europe

    Michaela Kreyenfeld

    2017-10-01

    Full Text Available Objective: This paper studies postseparation fertility behavior. The aim is to investigate whether, and if so how, separation affects second birth spacing in Western European countries. Methods: This analysis makes use of rich survey data from Belgium, France, Germany, Italy, Spain, and the United Kingdom, as well as from Finnish register data. We thus cover the behavior of a large proportion of the population of Western Europe. We also use descriptive measures, such as Kaplan‒Meier survival functions and cumulative incidence curves. In the multivariate analysis, we employ event history modeling to show how education relates to postseparation fertility behavior. Results: There are large differences in postseparation fertility behavior across European countries. For Spain and Italy, we find that only a negligibly small proportion of the population have a second child after separating from the other parent of the firstborn child. The countries with the highest proportion of second children with a new partner are the United Kingdom, Germany, and Finland. In all countries, separation after first birth leads to a sharp increase in the birth interval between first and second births. Contribution: Our study is a contribution to the demographic literature that aims at understanding birth spacing patterns in Western Europe. Furthermore, we draw attention to the role of postseparation policies in explaining country differences in fertility behavior in contemporary societies.

  8. An Empirical Exploration of Selected Policy Options in Organ Donation.

    Klenow, Daniel J.; Youngs, George A., Jr.

    1995-01-01

    Presents findings from a mail survey of 414 persons regarding organ transplantation and donation policy issues. Gauged three measures of support for organ donation: donor card commitment, required request of next-of-kin support, and weak presumed consent support. High levels of support exist for organ donor cards and the next-of-kin law. Little…

  9. A review of EIAs on trade policy in China: Exploring the way for economic policy EIAs

    Mao, Xianqiang, E-mail: maoxq@bnu.edu.cn [Center for Global Environmental Policy, School of Environment, Beijing Normal University, Beijing 100875 (China); Song, Peng, E-mail: songpeng_ee@163.com [Center for Global Environmental Policy, School of Environment, Beijing Normal University, Beijing 100875 (China); Kørnøv, Lone, E-mail: lonek@plan.aau.dk [The Danish Centre for Environmental Assessment, Department of Planning, Aalborg University, Skibbrogade 5, B1-04, 9000 Aalborg (Denmark); Corsetti, Gabriel, E-mail: gabriel.corsetti@gmail.com [Center for Global Environmental Policy, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2015-01-15

    During the discussion on the “Environmental Protection Law Amendment (draft)” in 2011, it was decided to drop the proposed clauses related to environmental impact assessments (EIAs) on policy, which means that there remained no provisions for policy EIAs, and China's strategic environmental assessment system stayed limited to the planning level. However, considering that economic policy making is causing significant direct and indirect environmental problems and that almost every aspect of governmental policy has an economic aspect, EIAs on economic policies are of the utmost urgency. The purpose of this study is to review the EIA work that has been carried out on trade policy in China through four case studies, and illustrate how trade policy EIAs can be helpful in achieving better environmental outcomes in the area of trade. Through the trade policy EIA case studies we try to argue for the feasibility of conducting EIAs on economic policies in China. We also discuss the implications of the case studies from the point of view of how to proceed with EIAs on economic policy and how to promote their practice. - Highlights: • SEA system is incomplete and stays limited to the plan EIA level in China. • EIA on economic policy is of utmost importance for all the developing countries. • Four case studies of trade policy EIA in China are reviewed for policy implications. • Departmental competition for political power impedes economic policy EIAs in China. • Legislative regulation on policy EIA is the first thing needed to overcome barrier.

  10. A review of EIAs on trade policy in China: Exploring the way for economic policy EIAs

    Mao, Xianqiang; Song, Peng; Kørnøv, Lone; Corsetti, Gabriel

    2015-01-01

    During the discussion on the “Environmental Protection Law Amendment (draft)” in 2011, it was decided to drop the proposed clauses related to environmental impact assessments (EIAs) on policy, which means that there remained no provisions for policy EIAs, and China's strategic environmental assessment system stayed limited to the planning level. However, considering that economic policy making is causing significant direct and indirect environmental problems and that almost every aspect of governmental policy has an economic aspect, EIAs on economic policies are of the utmost urgency. The purpose of this study is to review the EIA work that has been carried out on trade policy in China through four case studies, and illustrate how trade policy EIAs can be helpful in achieving better environmental outcomes in the area of trade. Through the trade policy EIA case studies we try to argue for the feasibility of conducting EIAs on economic policies in China. We also discuss the implications of the case studies from the point of view of how to proceed with EIAs on economic policy and how to promote their practice. - Highlights: • SEA system is incomplete and stays limited to the plan EIA level in China. • EIA on economic policy is of utmost importance for all the developing countries. • Four case studies of trade policy EIA in China are reviewed for policy implications. • Departmental competition for political power impedes economic policy EIAs in China. • Legislative regulation on policy EIA is the first thing needed to overcome barrier

  11. Exploring the Model Design Space for Battery Health Management

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  12. Use of antarctic analogs to support the space exploration initiative

    Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale

    1990-01-01

    This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.

  13. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  14. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  15. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  16. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  17. Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme

    Monreal, Timothy

    2016-01-01

    Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…

  18. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  19. A Flexible Cognitive Architecture for Space Exploration Agents, Phase I

    National Aeronautics and Space Administration — In space operations, carrying out the activities of mission plans by executing procedures often requires close collaboration between ground controllers who have deep...

  20. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  1. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  2. Exploring space-time structure of human mobility in urban space

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  3. Dress Codes Blues: An Exploration of Urban Students' Reactions to a Public High School Uniform Policy

    DaCosta, Kneia

    2006-01-01

    This qualitative investigation explores the responses of 22 U.S. urban public high school students when confronted with their newly imposed school uniform policy. Specifically, the study assessed students' appraisals of the policy along with compliance and academic performance. Guided by ecological human development perspectives and grounded in…

  4. An Exploration of Linguistic Neo-Colonialism through Educational Language Policy--An Irish Perspective

    Dillon, Anna

    2016-01-01

    In this paper, educational language policy is explored through the lens of linguistic neo-colonialism in Ireland in the case of learners of English as an Additional Language. The perspective of Ireland as a decolonized nation may have an impact on current language policy. Arguments for an additive approach to language and identity, language…

  5. Research on the Field of Education Policy: Exploring Different Levels of Approach and Abstraction

    Mainardes, Jefferson; Tello, César

    2016-01-01

    This paper, of theoretical nature, explores the levels of approach and abstraction of research in the field of education policy: description, analysis and understanding. Such categories were developed based on concepts of Bourdieu's theory and on the grounds of epistemological studies focused on education policy and meta-research. This paper…

  6. Optical Mining of Asteroids, Moons, and Planets to Enable Sustainable Human Exploration and Space Industrialization

    National Aeronautics and Space Administration — PROBLEM, DEEP SPACE HUMAN EXPLORATION IS UNAFFORDABLE: In 2014 the NASA Advisory Council issued a finding that “The mismatch between NASA’s aspirations for human...

  7. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase II

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  8. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase I

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  9. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase II

    National Aeronautics and Space Administration — The World is Not Enough (WINE) is a new generation of CubeSats that take advantage of ISRU to explore space. The WINE takes advantage of existing CubeSat technology...

  10. High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

    National Aeronautics and Space Administration — NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop...

  11. Exploring the Interweaving of Contrary Currents: Transnational Policy Enactment and Path-Dependent Policy Implementation in Australia and Japan

    Takayama, Keita

    2012-01-01

    This article explores the neo-institutional theory of global policy convergence, or "isomorphism", by comparatively examining one of its most recent manifestations--the global diffusion of national standardised testing--in Australia and Japan. By understanding the particular configurations of national testing as being conditioned by both…

  12. Measuring the Value of AI in Space Science and Exploration

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  13. Recent advances in nuclear powered electric propulsion for space exploration

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  14. Recent advances in nuclear powered electric propulsion for space exploration

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  15. Exploration of the utility of military man in space in the year 2025

    Hansen, Daniel L.

    1992-03-01

    It is absolutely essential for the well being of today's space forces as well as the future space forces of 2025, that DOD develop manned advanced technology space systems in lieu of or in addition to unmannned systems to effectively utilize mulitary man's compelling and aggressive warfighting abilities to accomplish the critical wartime mission elements of space control and force application. National space policy, military space doctrine and common all dictate they should do so if space superiority during future, inevitable conflict with enemy space forces is the paramount objective. Deploying military man in space will provide that space superiority and he will finally become the 'center of gravity' of the U.S. space program.

  16. Multi-Objective Design Space Exploration of Embedded System Platforms

    Madsen, Jan; Stidsen, Thomas K.; Kjærulff, Peter

    2006-01-01

    on local memory sizes and interface buffer sizes. Our approach allows for mapping onto a fixed platform or onto a flexible platform where architectural changes are explored during the mapping. We demonstrate our approach through an exploration of a smart phone, where five task graphs with a total of 530...

  17. Multi-Objective Design Space Exploration of Embedded System Platfoms

    Madsen, Jan; Stidsen, Thomas K.; Kjærulff, Peter

    on local memory sizes and interface buffer sizes. Our approach allows for mapping onto a fixed platform or onto a flexible platform where architectural changes are explored during the mapping. We demonstrate our approach through an exploration of a smart phone, where five task graphs with a total of 530...

  18. Geothermal Exploration Policy Mechanisms: Lessons for the United States from International Applications

    Speer, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Economy, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Regenthal, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-01

    This report focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal (geothermal) resources in the United States: (1) drilling failure insurance, (2) loan guarantees, (3) subsidized loans, (4) capital subsidies, and (5) government-led exploration. It describes each policy type and its application in other countries and regions. It offers policymakers a guide for drafting future geothermal support mechanisms for the exploration-drilling phase of geothermal development.

  19. Interrogating the Contested Spaces of Rural Aging: Implications for Research, Policy, and Practice.

    Skinner, Mark W; Winterton, Rachel

    2018-01-18

    Informed by a critical turn underway in rural gerontology, this article explores how the intersection of global and local trends relating to population aging and rural change create contested spaces of rural aging. The aim is to build our understanding of rural as a dynamic context within which the processes, outcomes, and experiences of aging are created, confronted, and contested by older adults and their communities. A review of key developments within gerontology and rural studies reveals how competing policies, discourses, and practices relating to healthy aging and aging in place, rural citizenship and governmentality, and social inclusion and inequality combine in particular ways to empower or disempower a diverse range of older rural adults aging in a diverse range of rural communities. The article provides a contextually sensitive perspective on potential sources of conflict and exclusion for older adults in dynamic rural spaces and further enhances our understanding of how rural physical and social environments are constructed and experienced in older age. A framework for interrogating emergent questions about aging in rural contexts is developed and implications for advancing research, policy, and practice are discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Dialogic Spaces: A Critical Policy Development Perspective of Educational Leadership Qualifications

    Smith, Déirdre; Kelly, Darron; Allard, Carson

    2017-01-01

    The critical exploration of policy development processes employed to construct leadership qualifications is the focus of this inquiry. This exploration is made through specific application of the necessary conditions of Habermasian "practical discourse" to current dialogic procedures used to develop policies for principal, supervisory…

  1. Modular, Fault-Tolerant Electronics Supporting Space Exploration, Phase II

    National Aeronautics and Space Administration — Modern electronic systems tolerate only as many point failures as there are redundant system copies, using mere macro-scale redundancy. Fault Tolerant Electronics...

  2. High Performance Arm for an Exploration Space Suit, Phase I

    National Aeronautics and Space Administration — Final Frontier Design (FFD) proposes to develop and deliver an advanced pressure garment arm with low torque and high Range of Motion (ROM), and increased...

  3. Metamaterial-Backed Conformal Antennas for Space Exploration

    National Aeronautics and Space Administration — The purpose of this experiment is to demonstrate a successful X-band antenna array fabricated on a high-permittivity substrate together with bandgap metamaterials...

  4. Hamiltonian flow over saddles for exploring molecular phase space structures

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  5. Individualized Fatigue Meter for Space Exploration, Phase II

    National Aeronautics and Space Administration — To ensure mission success, astronauts must maintain a high level of performance even when work-rest schedules result in chronic sleep restriction and circadian...

  6. Individualized Fatigue Meter for Space Exploration, Phase I

    National Aeronautics and Space Administration — To ensure mission success, astronauts must maintain a high level of performance even when work-rest schedules result in chronic sleep restriction and circadian...

  7. Colour scheme an exploration of the indeterminate space of colour

    Varga, Tania Elke

    2017-01-01

    Colour Scheme examines the potential for colour to be understood as a relational and therefore, indeterminate space. The CMYK process colour model is reworked to investigate the idea of colour as an indeterminate space. In proposing that process colour can be understood as a fluid and relational system I draw attention to the unquantifiable and qualitative nature of colour. Colour can be understood as a verb, and as such may be thought of as an active substance. This understanding of col...

  8. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  9. Exploring the Contribution of Fiscal Transfers to Protected Area Policy

    Maud Borie

    2014-03-01

    Full Text Available Biodiversity payments have become an increasingly proposed tool to promote conservation measures. An unexplored issue concerns the potential role of fiscal transfers between the state and infra-national authorities potentially as direct financial incentives for biodiversity conservation. We explore how protected areas can be taken into account in a redistributive fiscal transfer system between the state and local authorities, i.e., municipalities. Different simulations were made in the Mediterranean region of southern France, a major biodiversity hotspot subject to increasing threats. We examined two methods for fiscal transfer: first, a "per hectare" method, based on the surface of the protected area within the boundaries of the municipality and second a "population equivalent" method, in which we convert the surface of protected areas into relative numbers of inhabitants. Our results show that consideration of the population of the municipality in addition to its protected areas' surface can provide a strong incentive to encourage municipalities to designate protected areas. However, this will require increased public funding to buffer financial losses incurred by large municipalities that have a low proportion of their territory within protected areas. We discuss the social feasibility of this tool for green infrastructure implementation and future protected area designation.

  10. Exploring the use of research evidence in health-enhancing physical activity policies

    Hämäläinen, Riitta-Maija; Aro, Arja R.; van de Goor, Ien

    2015-01-01

    informed by research evidence compared to others. The aims of the present article are to explore the use of research evidence in health-enhancing physical activity (HEPA) policies, identify when research evidence was used, and find what other types of evidence were employed in HEPA policymaking. Methods......Background The gaps observed between the use of research evidence and policy have been reported to be based on the different methods of using research evidence in policymaking by researchers and actual policymakers. Some policies and policymaking processes may therefore be particularly well...... Multidisciplinary teams from six EU member states analysed the use of research evidence and other kinds of evidence in 21 HEPA policies and interviewed 86 key policymakers involved in the policies. Qualitative content analysis was conducted on both policy documents and interview data. Results Research evidence...

  11. Exploring Implementation of the Ontario School Food and Beverage Policy at the Secondary-School Level: A Qualitative Study.

    Vine, Michelle M; Elliott, Susan J; Raine, Kim D

    2014-09-01

    The purpose of this study was to explore the implementation of the Ontario School Food and Beverage Policy (P/PM 150) from the perspective of secondary-school students. This research, informed by the ANGELO framework, undertook three focus groups with secondary students (n = 20) in 2 school boards representing both high- and low-income neighbourhoods in fall 2012. Focus groups were transcribed verbatim for subsequent analysis. Key themes were generated deductively from the research objectives and inductively as they emerged from transcripts. Perceived impacts of P/PM 150 included high-priced policy-compliant food for sale, lower revenue generation, and food purchased off-campus. Limited designated eating spaces, proximity to external, nonpolicy-compliant food, and time constraints acted as key local level barriers to healthy eating. Pricing strategies are needed to ensure that all students have access to nutritious food, particularly in the context of vulnerable populations. Recognition of the context and culture in which school nutrition policies are being implemented is essential. Future research to explore the role of public health dietitians in school nutrition policy initiatives and how to leverage local resources and stakeholder support in low income, rural and remote populations is needed.

  12. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  13. Space Travel is Utter Bilge: Early Ideas on Interplanetary Exploration

    Yeomans, D. K.

    2003-12-01

    Until a few decades ago, interplanetary travel was the stuff of dreams but the dreamers often turned out to be farsighted while the predictions of some eminent scientists were far too conservative. The prescient dreamers include the Russian schoolteacher, Konstanin Tsiolkovsky who, in 1883, was the first to note that only rockets could serve the needs of space travel. In 1923, Herman Oberth published a treatise discussing various aspects of interplanetary travel including the impulse necessary to escape the Earth's gravitational pull. In his spare time, a German civil engineer, Walter Hohmann, established in 1925 that the optimal energy transfer orbit between planets is an ellipse that is tangent to the orbits of both bodies. Four year later, an Austrian army officer, Hermann Potocnik outlined the benefits of space stations including those in geosynchronous orbits. Whereas Tsiolkovsky, Oberth, Hohmann, and Potocnik provided ideas and theories, the American, Robert H. Goddard, was testing liquid fueled rockets by as early as 1925. By the time he was finished in 1941, Goddard flew liquid fueled rockets that reached speeds of 700 mph and altitudes above 8,000 feet. In direct contrast to the advances by these mostly amateur engineers, many respected authorities scoffed at space travel because of the insurmountable technological difficulties. One year prior to the launch of Sputnik, the British Astronomer Royal, Sir Richard Wooley, declared, "space travel is utter bilge." While the theories of space travel were well developed by the late 1920's, space travel technology was still a poorly funded, mostly amateur, endeavor until the German army hired Oberth's student, Werner von Braun, and others to develop long range rockets for military purposes. In the early 1940's, Von Braun's team developed the rocket propulsion and guidance systems that would one day form the basis of the American space program.

  14. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    Kinnan, C

    2001-01-01

    .... Democratization and globalization, the proliferation of information technologies, the availability of commercial space high-resolution imagery, and the growing influence of NGOs invite this question: What is (space-derived...

  15. The role of community policies in defensible space compliance

    Greg Winter; Sarah McCaffrey; Christine A. Vogt

    2009-01-01

    Recently enacted federal and state policies provide incentives, including financial assistance, for local jurisdictions to manage risks associated with wildland fire. This has led to an array of local-level policies designed to encourage homeowners to create fire-safe landscapes. This qualitative study collected data from focus group interviews with homeowners in three...

  16. The Space Elevator and Its Promise for Next Generation Exploration

    Laubscher, Bryan E.

    2006-01-01

    Bryan E. Laubscher received his Ph.D. in physics in 1994 from the University of New Mexico with a concentration in astrophysics. He is currently on entrepreneurial leave from Los Alamos National Laboratory where he is a project leader and he has worked in various capacities for 16 years. His past projects include LANL's portion of the Sloan Digital Sky Survey, Magdalena Ridge Observatory and a project developing concepts and technologies for space situational awareness. Over the years Bryan has participated in research in astronomy, lidar, non-linear optics, space mission design, space-borne instrumentation design and construction, spacecraft design, novel electromagnetic detection concepts and technologies, detector/receiver system development, spectrometer development, interferometry and participated in many field experiments. Bryan led space elevator development at LANL until going on entrepreneurial leave in 2006. On entrepreneurial leave, Bryan is starting a company to build the strongest materials ever created. These materials are based upon carbon nanotubes, the strongest structures known in nature and the first material identified with sufficient strength-to-weight properties to build a space elevator.

  17. Human exploration of space: why, where, what for?

    Vernikos, J

    2008-08-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".

  18. Community wildlife sites in Oxfordshire: an exploration of ecological and social meanings for green spaces

    Anna Lawrence

    2009-09-01

    Full Text Available The paper explores the experiences and meanings that participants attribute to community wildlife sites, a new kind of space created through the initiative and commitment of local residents, often without any wider organisational involvement. The study focuses on six case studies in Oxfordshire, England. It is exploratory and discusses the findings as points of departure for further research. In all the sites, community was an important part of the motivation for starting the work, social relations a rewarding aspect of engaging in it, and personal connection with the site and its experiences of nature, a widely and emotionally expressed outcome. The sites offer spaces for the active enactment of participation in nature. While access is essential, property rights appear to be less important than the sense of ownership generated through interaction with the site. Likewise, formal organisation and governance is less important to the participants, than the social interactions of the group, and new friendships. The primary purpose in each case, is to give people more access to ‘the countryside’ or ‘nature’ or ‘orchids’. In doing so, however, the participants have given themselves experiences that are personally meaningful. There is potential for contribution to resilient landscapes through networks of habitats, and to wider social objectives of government policy, but these will have to be balanced carefully with the important of local initiative in contributing to the sites’ meanings.

  19. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  20. Exploration of Unknown Spaces by People Who Are Blind Using a Multi-sensory Virtual Environment

    Lahav, Orly; Mioduser, David

    2004-01-01

    The ability to explore unknown spaces independently, safely and efficiently is a combined product of motor, sensory, and cognitive skills. Normal exercise of this ability directly affects an individual?s quality of life. Mental mapping of spaces and of the possible paths for navigating these spaces is essential for the development of efficient…

  1. A Sweep-Line Method for State Space Exploration

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...

  2. From Early Exploration to Space Weather Forecasts: Canada's Geomagnetic Odyssey

    Lam, Hing-Lan

    2011-05-01

    Canada is a region ideally suited for the study of space weather: The north magnetic pole is encompassed within its territory, and the auroral oval traverses its vast landmass from east to west. Magnetic field lines link the country directly to the outer magnetosphere. In light of this geographic suitability, it has been a Canadian tradition to install ground monitors to remotely sense the space above Canadian territory. The beginning of this tradition dates back to 1840, when Edward Sabine, a key figure in the “magnetic crusade” to establish magnetic observatories throughout the British Empire in the nineteenth century, founded the first Canadian magnetic observatory on what is now the campus of the University of Toronto, 27 years before the birth of Canada. This observatory, which later became the Toronto Magnetic and Meteorological Observatory, marked the beginning of the Canadian heritage of installing magnetic stations and other ground instruments in the years to come. This extensive network of ground-based measurement devices, coupled with space-based measurements in more modern times, has enabled Canadian researchers to contribute significantly to studies related to space weather.

  3. Digital Cities in the making: exploring perceptions of space, agency of actors and heterotopia

    Asne Kvale Handlykken

    2011-12-01

    Full Text Available

    This paper is an attempt to explore how we imagine, sense and experience spaces in digital cities by a study of the hybrid relations between digital media, users' bodies, architecture and the city. Digital and physical spaces of the city are intertwined, the city and urban places and things become sentient, embedded with sensors and digital infrastructure, challenging traditional notions of space, and how we perceive and experience urban space.  Crucial issues to explore are how interactions and agency operating amongst actors in these spaces; between sentient non-human actors, places and people?  How are spaces of interaction embedded in the city, what characterizes these spaces, can they be explored as heterotopias (Foucault? These processes are a mutual shaping of society and technology, where the role of the imaginary, of mental representations and creation are being transformed.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  5. An overview of the United States government's space and science policy-making process

    CERN. Geneva

    2008-01-01

    A brief overview of the basic elements of the US space and science policy-making apparatus will be presented, focussing on insights into the interactions among the principal organizations, policy-making bodies and individual participants and their respective impact on policy outcomes. Several specific examples will be provided to illustrate the points made, and in the conclusion there will be some observations on current events in the US that may shape the outcome for the near-term future of US space and science policy in several areas.

  6. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  7. Automation and Robotics for space operation and planetary exploration

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  8. Balancing Exploration, Uncertainty Representation and Computational Time in Many-Objective Reservoir Policy Optimization

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.

    2016-12-01

    As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS

  9. Minimizing Warehouse Space with a Dedicated Storage Policy

    Andrea Fumi

    2013-07-01

    inevitably be supported by warehouse management system software. On the contrary, the proposed methodology relies upon a dedicated storage policy, which is easily implementable by companies of all sizes without the need for investing in expensive IT tools.

  10. Tourist Spaces and Tourism Policy in Spain and Portugal

    Almeida-Garcia, Fernando; Cortes-Macias, Rafael; Balbuena Vázquez, Antonia

    2013-01-01

    This study analyses the relationship between the development of the tourism policy of Spain and Portugal and their effects on regional imbalances. Despite the proximity of the two countries and their specialisation in tourism, there are few comparative studies on tourism of the two Iberian countries. The study focuses on the two major phases of tourism policy: the period of mass tourism and post-Fordist stage. In the conclusions we refer the debate on the existence of a model of development b...

  11. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    Kinnan, C

    2001-01-01

    Space-derived transparency will become a common means of monitoring, preventing, and mitigating crises, verifying compliance with treaties and law, and enabling confidence and security building measures...

  12. Exploring the Design Space of Longitudinal Censorship Measurement Platforms

    Razaghpanah, Abbas; Li, Anke; Filastò, Arturo; Nithyanand, Rishab; Ververis, Vasilis; Scott, Will; Gill, Phillipa

    2016-01-01

    Despite the high perceived value and increasing severity of online information controls, a data-driven understanding of the phenomenon has remained elusive. In this paper, we consider two design points in the space of Internet censorship measurement with particular emphasis on how they address the challenges of locating vantage points, choosing content to test, and analyzing results. We discuss the trade offs of decisions made by each platform and show how the resulting data provides compleme...

  13. Predictions of space radiation fatality risk for exploration missions.

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  14. Portrait of a rural health graduate: exploring alternative learning spaces.

    Ross, Andrew; Pillay, Daisy

    2015-05-01

    Given that the staffing of rural facilities represents an international challenge, the support, training and development of students of rural origin at institutions of higher learning (IHLs) should be an integral dimension of health care provisioning. International studies have shown these students to be more likely than students of urban origin to return to work in rural areas. However, the crisis in formal school education in some countries, such as South Africa, means that rural students with the capacity to pursue careers in health care are least likely to access the necessary training at an IHL. In addition to challenges of access, throughput is relatively low at IHLs and is determined by a range of learning experiences. Insight into the storied educational experiences of health care professionals (HCPs) of rural origin has the potential to inform the training and development of rural-origin students. Six HCPs of rural origin were purposively selected. Using a narrative inquiry approach, data were generated from long interviews and a range of arts-based methods to create and reconstruct the storied narratives of the six participants. Codes, categories and themes were developed from the reconstructed stories. Reid's four-quadrant model of learning theory was used to focus on the learning experiences of one participant. Alternative learning spaces were identified, which were made available through particular social spaces outwith formal lecture rooms. These offered opportunities for collaboration and for the reconfiguring of the participants' agency to be, think and act differently. Through the practices enacted in particular learning spaces, relationships of caring, sharing, motivating and mentoring were formed, which contributed to personal, social, academic and professional development and success. Learning spaces outwith the formal lecture theatre are critical to the acquisition of good clinical skills and knowledge in the development of socially accountable

  15. Sleeping in Space: An Unexpected Challenge for Future Mars Explorers

    Flynn-Evans, Erin

    2018-01-01

    This talk will serve as the keynote address for a research symposium being held at Washington State University. The purpose of the talk is to provide researchers and students at WSU with an overview about what it is like to sleep in space. Dr. Flynn-Evans will begin by highlighting how sleep is different in movies and science fiction compared to real life. She will next cover basic information about sleep and circadian rhythms, including how sleep works on earth. She will explain how people have circadian rhythms of different lengths and how the circadian clock has to be re-set each day. She will also describe how jet-lag works as an example of what happens during circadian misalignment. Dr. Flynn-Evans will also describe how sleep is different in space and will highlight the challenges that astronauts face in low-earth orbit. She will discuss how astronauts have a shorter sleep duration in space relative to on the ground and how their schedules can shift due to operational constraints. She will also describe how these issues affect alertness and performance. She will then discuss how sleep and scheduling may be different on a long-duration mission to Mars. She will discuss the differences in light and day length on earth and mars and illustrate how those differences pose significant challenges to sleep and circadian rhythms.

  16. Growing crops for space explorers on the moon, Mars, or in space

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  17. Private ground infrastructures for space exploration missions simulations

    Souchier, Alain

    2010-06-01

    The Mars Society, a private non profit organisation devoted to promote the red planet exploration, decided to implement simulated Mars habitat in two locations on Earth: in northern Canada on the rim of a meteoritic crater (2000), in a US Utah desert, location of a past Jurassic sea (2001). These habitats have been built with large similarities to actual planned habitats for first Mars exploration missions. Participation is open to everybody either proposing experimentations or wishing only to participate as a crew member. Participants are from different organizations: Mars Society, Universities, experimenters working with NASA or ESA. The general philosophy of the work conducted is not to do an innovative scientific work on the field but to learn how the scientific work is affected or modified by the simulation conditions. Outside activities are conducted with simulated spacesuits limiting the experimenter abilities. Technology or procedures experimentations are also conducted as well as experimentations on the crew psychology and behaviour.

  18. The impact of earth resources exploration from space

    Nordberg, W.

    1976-01-01

    Remote sensing of the earth from satellite systems such as Landsat, Nimbus, and Skylab has demonstrated the potential influence of such observations on a number of major human concerns. These concerns include the management of food, water and fiber resources, the exploration and management of mineral and energy resources, the protection of the environment, the protection of life and property, and improvements in shipping and navigation.

  19. The U.S. Needs a Coherent Space Policy.

    Pressler, Larry

    1983-01-01

    Despite the possibility that efforts to prevent an arms race in space between the United States and the Soviet Union might fail, a serious attempt should be made to develop an arms control agreement because of the great risks of war in space and the expense of developing new weapons. (IS)

  20. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  1. Exploring Information Security and Shared Encrypted Spaces in Libraries

    Keith Engwall

    2015-07-01

    Full Text Available Libraries are sensitive to the need to protect patron data, but may not take measures to protect the data of the library. However, in an increasingly collaborative online environment, the protection of data is a concern that merits attention. As a follow-up to a new patron privacy policy, the Oakland University William Beaumont Medical Library evaluated information security tools for use in day-to-day operations in an attempt to identify ways to protect private information in communication and shared storage, as well as a means to manage passwords in a collaborative team environment. This article provides an overview of encryption measures, outlines the Medical Library’s evaluation of encryption tools, and reflects on the benefits and challenges in their adoption and use.

  2. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  3. Performance/Power Space Exploration for Binary64 Division Units

    Nannarelli, Alberto

    2016-01-01

    The digit-recurrence division algorithm is used in several high-performance processors because it provides good tradeoffs in terms of latency, area and power dissipation. In this work we develop a minimally redundant radix-8 divider for binary64 (double-precision) aiming at obtaining better energy...... efficiency in the performance-per-watt space. The results show that the radix-8 divider, when compared to radix-4 and radix-16 units, requires less energy to complete a division for high clock rates....

  4. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  5. The use of Antarctic analogs for the Space Exploration Initiative

    Roberts, Barney; Lynch, John T.

    1991-01-01

    Potential approaches to the use of the Antarctic as an analog to the lunar and Mars planetary surface segments of the SEI are reviewed. It is concluded that a well-planned and sustained program of ground-based research and testing in environments analogous to the moon and Mars is a rational method for reducing the risks associated with human space missions. Antarctica may provide an ideal setting for testing critical technologies (habitat design, life support, and advanced scientific instrumentation), studying human factors and physiology, and conducting basic scientific research similar to and directly relevant to that planned for the SEI.

  6. Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration

    Randolph, Richard O.; McKay, Christopher P.

    2014-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  7. Protecting and Expanding the Richness and Diversity of Life, An Ethic for Astrobiology Research and Space Exploration

    Randolph, Richard O.; McKay, Chris P.

    2011-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  8. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  9. Regenerative Energy Storage System for Space Exploration Missions

    Wærnhus Ivar

    2017-01-01

    The breadboard was operated for 1250 hours alternating between electrolyser mode and fuel cell mode with H2/H2O as reactants. During the tests, as long as the mechanical integrity of the system was maintained, no degradation effect was observed. At the end of the test period, the fuel cell was operated for three full cycles (approx. 50 hours with CO/CO2 as reactants. The performance on CO/CO2 was lower than for hydrogen, but sufficient to be used in a compact energy storage system for Mars exploration.

  10. Mutual Transformation and the Development of European Policy Spaces : the Case of Medicine Licensing

    Boris Hauray, Philippe Urfalino

    2006-01-01

    This article pleads for a systemic approach to European policy spaces formation. The termmutual transformation is used to underline three observations concerning how Europeanpolicy spaces are formed: 1) influence among the levels composing the Union runssimultaneously from Brussels to the lower levels, from the lower levels to the EUauthorities, and from country to country; 2) sources of change are both exogenous andendogenous; 3) the nature of the policies under study and the issues and inte...

  11. Public policies for managing urban growth and protecting open space: policy instruments and lessons learned in the United States

    David N. Bengston; Jennifer O. Fletcher

    2003-01-01

    The public sector in the United States has responded to growing concern about the social and environmental costs of sprawling development patterns by creating a wide range of policy instruments designed to manage urban growth and protect open space. These techniques have been implemented at the local, regional, state and, to a limited extent, national levels. This...

  12. Advances in geospatial analysis platforms and tools: Creating space for differentiated policy and investment responses

    Maritz, Johan

    2010-09-01

    Full Text Available be targeted in planning and policy development, and a new "reading" of the South African space economy. The latter for example highlighting the importance of the policy centric network of densely settled clusters, local towns and service centres, regional...

  13. "Educational Regionalization" and the Gated Global: The Construction of the Caribbean Educational Policy Space

    Jules, Tavis D.

    2015-01-01

    This article draws on "regime theory," particularly on the concepts of cooperation, compatibility of interests, and proclivity to compromise, to examine the rise of the Caribbean Educational Policy Space (CEPS). In making this argument, with the aid of a content analysis of 26 educational policies from the 15 member states of the…

  14. Exploring the Design Space of Shape-Changing Objects

    Merritt, Timothy; Petersen, Marianne Graves; Nørgaard, Mie

    2015-01-01

    In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape- changing prototypes, generatively working with Rasmussen et al’s [31] eight unique types of shape change. Seeing that shape-changing ......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape- changing prototypes, generatively working with Rasmussen et al’s [31] eight unique types of shape change. Seeing that shape...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call “Imagined Physics.” This concept is described along with additional insights into the qualities of shape...

  15. Exploring the design space of shape-changing objects

    Nørgaard, Mie; Merritt, Timothy Robert; Rasmussen, Majken

    2013-01-01

    In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape-changing prototypes, generatively working with Rasmussen et al's [31] eight unique types of shape change. Seeing that shape-changing i......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape-changing prototypes, generatively working with Rasmussen et al's [31] eight unique types of shape change. Seeing that shape...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call "Imagined Physics." This concept is described along with additional insights into the qualities of shape...

  16. Peapods: Exploring the inner space of carbon nanotubes

    Shinohara, Hisanori

    2018-02-01

    During the past quarter century, the development of nanoscience and nanotechnology has been very much influenced and substantiated by the emergence of real nanometer-scale materials headed by fullerenes, carbon nanotubes (CNTs), and graphene, the so-called nanocarbons. This review article deals with some of the recent progress in the syntheses, characterization, and applications of the hybrid materials composed of nanopeapods (CNTs encapsulating atoms, molecules, nanowires, and nanoribbons). All of these studies are closely related to the characteristic usages of the internal nanospace prepared by the CNTs. Furthermore, the two-dimensional (2D) space prepared by two sheets of graphene has also been used as a 2D template for observing some dynamical phenomena of liquidus materials by transmission electron microscopy even under high-vacuum conditions.

  17. Tourism Policies and the Space Economy of the Eastern Cape ...

    The key objective of this paper is to x-ray the situation in the tourism development process of the post-1994 tourism sector of the Eastern Cape Province. This paper uses empirical data to examine the extent to which actors in the Eastern Cape tourism sector interpreted the national tourism policies. The White Paper on ...

  18. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  19. Exploring the Moral and Distributive Levers for Teacher Empowerment in the Finnish Policy Culture

    Paulsen, Jan Merok; Hjertø, Kjell Brynjulf; Tihveräinen, Saku Petteri

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between school leadership practices and teacher empowerment in the Finnish policy culture. Specifically, moral leadership and distributed leadership enacted by school principals are tested in a simultaneous design as predictor to two distinct yet related aspects of teachers' sense…

  20. Exploring National Environmental Policy Act processes across federal land management agencies

    Marc J. Stern; Michael J. Mortimer

    2009-01-01

    Broad discretion is granted at all levels throughout federal land management agencies regarding compliance with the National Environmental Policy Act (NEPA). We explored the diversity of procedures employed in NEPA processes across four agencies, the USDA Forest Service, The USDI National Park Service and Bureau of Land Management, and the U.S. Army Corps of Engineers...

  1. Homeless Educational Policy: Exploring a Racialized Discourse Through a Critical Race Theory Lens

    Aviles de Bradley, Ann

    2015-01-01

    A qualitative research study conducted in two public high schools in an urban area of the Midwest sought to explore the issue of race as it pertains to educational policy implementation for unaccompanied homeless youth of color. Critical Race Theory (CRT) served as the guiding frame and method, uncovering the underlying theme of race in school…

  2. Idea Generation and Exploration: Benefits and Limitations of the Policy Delphi Research Method

    Franklin, Kathy K.; Hart, Jan K.

    2007-01-01

    Researchers use the policy Delphi method to explore a complex topic with little historical context that requires expert opinion to fully understand underlying issues. The benefit of this research technique is the use of experts who have more timely information than can be gleamed from extant literature. Additionally, those experts place…

  3. Policy Poison or Promise: Exploring the Dual Nature of California School District Collective Bargaining Agreements

    Strunk, Katharine O.

    2012-01-01

    Purpose: This study examines policies set in the collective bargaining agreements (CBAs) negotiated between teachers' unions and school boards and explores what kinds of districts have contract provisions that restrict district administrators, enhance administrative flexibility, and/or improve teachers' professional work lives and that have…

  4. Exploring Staff-Less Libraries as Social Space

    Engström, Lisa

    Today, public libraries in several countries have introduced staff-less opening hours. The term “staff-less library” refers to a public library that during some of the opening hours are without library staff available to the users, but the library is open for users to enter and use its services....... In staff-less libraries, users need to manage the library on their own. In this paper the following question is explored; how is increased self-management related to users self-governing and to users being governed in the library. In addition, methodological issues and the utilization of interviews...... and observations in relation to the library as place are investigated. The governing of users, or governmentality, is situated at the physical library and the library as place is vital to the research. One early finding discussed in this paper is the notion of the library as meeting place and how users actually...

  5. Exploring the design space of immersive urban analytics

    Zhutian Chen

    2017-06-01

    Full Text Available Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft HoloLens. These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence. In this paper, we propose a theoretical model to characterize the visualizations in immersive urban analytics. Furthermore, based on our comprehensive and concise model, we contribute a typology of combination methods of 2D and 3D visualizations that distinguishes between linked views, embedded views, and mixed views. We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations. Finally, based on existing work, possible future research opportunities are explored and discussed.

  6. Exploring Open-Ended Design Space of Mechatronic Systems

    Fan, Zhun; Wang, J.; Goodman, E.

    2004-01-01

    To realize design automation of mechatronic systems, there are two major issues to be dealt with: open-topology generation of mechatronic systems and simulation or analysis of those models. For the first issue, we exploit the strong topology exploration capability of genetic programming to create...... and evolve structures representing mechatronic systems. With the help of ERCs (ephemeral random constants) in genetic programming, we can also evolve the sizing of mechatronic system components along with the structures. The second issue, simulation and analysis of those system models, is made more complex...... when they represent mixed-energy-domain systems. We take advantage of bond graphs as a tool for multi- or mixed-domain modeling and simulation of mechatronic systems. Because there are many considerations in mechatronic system design that are not completely captured by a bond graph, we would like...

  7. Class Explorations in Space: From the Blackboard and History to the Outdoors and Future

    Cavicchi, Elizabeth

    2011-11-01

    Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!

  8. Access and Definition: Exploring how STEM Faculty, Department Heads, and University Policy Administrators Navigate the Implementation of a Parental Leave Policy

    Schimpf, Corey T; Santiago, Marisol Mercado; Pawley, Alice L.

    2012-01-01

    Access and Definition: Exploring how STEM Faculty, Department Heads and University Policy Administrators Navigate the Enactment of a Parental Leave Policy A key feature in various reports exploring women’s persisting underrepresentation in STEM faculty positions in the US is the need to disseminate policy information to all stakeholders involved in issues relating to women STEM faculty underrepresentation and retention. Indeed, the National Academies of Science Beyond Barriers and Bias: Fulfi...

  9. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase I

    National Aeronautics and Space Administration — The paradigm of exploration is changing. Smaller, smarter, and more efficient systems are being developed that could do as well as large, expensive, and heavy...

  10. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  11. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C

    2014-01-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories. (paper)

  12. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.

    2014-07-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.

  13. Defensible Spaces in Philadelphia: Exploring Neighborhood Boundaries Through Spatial Analysis

    Rory Kramer

    2017-02-01

    Full Text Available Few spatial scales are as important to individual outcomes as the neighborhood. However, it is nearly impossible to define neighborhoods in a generalizable way. This article proposes that by shifting the focus to measuring neighborhood boundaries rather than neighborhoods, scholars can avoid the problem of the indefinable neighborhood and better approach questions of what predicts racial segregation across areas. By quantifying an externality space theory of neighborhood boundaries, this article introduces a novel form of spatial analysis to test where potential physical markers of neighborhood boundaries (major roads, rivers, railroads, and the like are associated with persistent racial boundaries between 1990 and 2010. Using Philadelphia as a case study, the paper identifies neighborhoods with persistent racial boundaries. It theorizes that local histories of white reactions to black in-migration explain which boundaries persistently resisted racial turnover, unlike the majority of Philadelphia’s neighborhoods, and that those racial boundaries shape the location, progress, and reaction to new residential development in those neighborhoods.

  14. Exploring Inpatients' Experiences of Healing and Healing Spaces

    Lorissa MacAllister PhD, AIA

    2016-12-01

    Full Text Available In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment.

  15. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  16. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique

    Schut, Marc; Paassen, Annemarie van; Leeuwis, Cees; Bos, Sandra; Leonardo, Wilson; Lerner, Anna

    2011-01-01

    This paper provides insights and recommendations for policy on the opportunities and constrains that influence the space for innovation for sustainable community-based biofuel production and use. Promoted by the Mozambican government, Nhambita community established jatropha trials in 2005. Initial results were promising, but crop failure and the absence of organized markets led to scepticism amongst farmers. We start from the idea that the promotion of community-based biofuel production and use requires taking interactions between social-cultural, biophysical, economic, political and legal subsystems across different scales and levels of analysis through time into account. Our analysis demonstrates that heterogeneous farming strategies and their synergies at community level should be carefully assessed. Furthermore, national and international political and legal developments, such as the development of biofuel sustainability criteria, influence the local space in which community-based biofuel developments take place. We conclude that ex-ante integrated assessment and creating an enabling environment can enhance space for sustainable community-based biofuel production and use. It may provide insights into the opportunities and constraints for different types of smallholders, and promote the development of adequate policy mechanisms to prevent biofuels from becoming a threat rather than an opportunity for smallholders. - Highlights: → This paper explores space for innovation for community-based biofuel production and use. → Heterogeneous farming strategies and their synergies at community level are key. → Farmers have little trust in jatropha due to crop failure and absence of markets. → (Inter)national biofuel policies influence space for local biofuel production and use. → Policies should focus on ex-ante integrated assessment and creating an enabling environment.

  17. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  18. Geodiversity: Exploration of 3D geological model space

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    important geometrical characteristics. The configuration of the model space is determined through identifying ‘outlier’ model examples, which potentially represent undiscovered model ‘species’.

  19. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  20. Public health within the EU policy space: a qualitative study of Organized Civil Society (OCS) and the Health in All Policies (HiAP) approach.

    Franklin, P K

    2016-07-01

    This article reviews how Organized Civil Society (OCS) groups in the field of public health work across the boundaries between European institutions and policy areas. In particular, it explores 1) how the Health in All Policies (HiAP) approach is conducted by these groups informally within the formal governance structures, and 2) how this advocacy work creates space for public health within the broader political determinants of health. A qualitative mixed-methods framework. Political ethnography, including 20 semi-structured interviews conducted with EU health strategy stakeholders and participant observations in public health events (n = 22) in Brussels over a three-year period (2012-2015), as well as four interviews with EU Member State representatives. Three additional semi-structured interviews were conducted with World Health Organization Regional Office for Europe staff members who had been involved in the drafting of the Health 2020 framework and strategy and the accompanying main implementation pillar, European Action Plan for Strengthening Public Health Capacities and Services (EAP-PHS). The findings provide an insight into OCS work in the field of European public health, offering an account of the experiences of HiAP work conducted by the research participants. The OCS groups perceive themselves as communicators between policy areas within European institutions and between local and supranational levels. The structures and political determinants of health that impose limitations on a public institution can at points be transcended by stakeholders, who conduct HiAP work at supranational level, thus negotiating space for public health within the competitive, globalized policy space. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  1. Fusion-Driven Space Plane for Lunar Exploration

    Kammash, T.; Cassenti, B.

    A fusion hybrid reactor where the fusion component is the gasdynamic mirror (GDM) is proposed as the driver of a rocket that would allow a space vehicle of the size of Boeing 747 to travel to the moon in about one day. The energy produced by the reactor is induced by fusion neutrons that impinge on a thorium-232 blanket where they breed uranium-233 and simultane- ously burn it to produce power. For a vehicle of mass 500 metric tons (mT), the thrust required to accelerate it at 1 g is 5 MN, and the specific impulse, Isp, necessary to accelerate 90% of the launch mass to the escape velocity of 11,200 m/sec is found to be 10,182 seconds. For these propulsion parameters, the coolant mass flow rate would be 49 kg/sec. We note that the time it takes the launch mass, initially at rest and accelerated at 1g, to reach the escape velocity is 1,020 seconds. At the above noted rate, the total propellant mass is approximately 50 mT, which is about 10% of the launch mass, validating the Isp needed to accelerate the remainder to the escape velocity. If we assume that the trajectory to the moon is linear, and we account for the deceleration of the vehicle by the earth's gravitational force, and its acceleration by the moon's gravitational force, we can calculate the average velocity and the time it takes to reach the moon. We find that the travel time is about 1.66 days, which in this model is effectively the time for a fly-by. A more rigorous calculation using the restricted three body approach with the third body being the spacecraft, and allowing for a coordinate system that rotates at the circular frequency of the larger masses, shows that the transit time is about 0.65 days, which is comparable to the flight time between New York and Sidney, Australia.

  2. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  3. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  4. Towards human exploration of space: The THESEUS review series on immunology research priorities

    Jean-Pol, Frippiat; Crucian, Brian E; de Quervain, Dominique

    2016-01-01

    to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent...

  5. Inequities in coverage of smokefree space policies within the United States

    Christopher Lowrie

    2017-05-01

    Full Text Available Abstract Background Previous studies have found extensive geographic and demographic differences in tobacco use. These differences have been found to be reduced by effective public policies, including banning smoking in public spaces. Smokefree indoor and outdoor spaces reduce secondhand smoke exposure and denormalize smoking. Methods We evaluated regional and demographic differences in the proportion of the population covered by smokefree policies enacted in the United States prior to 2014, for both adults and children. Results Significant differences in coverage were found by ethnicity, region, income, and education (p < 0.001. Smokefree policy coverage was lower for jurisdictions with higher proportions of poor households, households with no high school diploma and the Southeast region. Increased ethnic heterogeneity was found to be a significant predictor of coverage in indoor “public spaces generally”, meaning that diversity is protective, with differential effect by region (p = 0.004 – which may relate to urbanicity. Children had a low level of protection in playgrounds and schools (~10% covered nationwide – these spaces were found to be covered at lower rates than indoor spaces. Conclusions Disparities in smokefree space policies have potential to exacerbate existing health inequities. A national increase in smokefree policies to protect children in playgrounds and schools is a crucial intervention to reduce such inequities.

  6. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  7. Colombia's space policy: An analysis of six years of progress and challenges

    Becerra, Jairo

    2014-07-01

    This paper analyzes Colombia's space policy: its successes, its failures and what it still needs to achieve. The paper examines the interaction among the different players, and how this policy contributes to economic and social development of the country. And postulates that, unless a real national plan of action, with specific milestones and budget as well as a managing agency are developed, this policy may be in danger of disappearing. The Colombian Space Commission (Comisión Colombiana del Espacio, or CCE) was created by Presidential Decree 2442 in 2006. It is a multi-sectorial entity, in charge of coordinating, planning, and leading in the implementation of national policies for the development and application of space technologies. The CCE was also charged with the drafting of plans and programs in this field. The CCE began with only a few members (15) and today is comprised of 47 members: 13 ministries, 4 administrative departments, another 21 governmental entities and 9 universities, the latter acting as consultants. The Vice-President of the Republic is the President of the CCE. These different actors gave great importance to the development of Colombia's space sector, and 6 years later, they are continuing support and development the country's space policy. This analysis takes into account three aspects: first, achieving the objectives of the CCE: the creation and development of a national space policy for Colombia; secondly, focussing on “target groups” and “end users”; and thirdly, the “outcomes” or achievements to date. Some conclusions are worth highlighting: first, the warm reception and support of the CCE by both the public and private sectors on high levels, but the poor knowledge of the national space policy by the Colombian people and the small and medium companies. Secondly, in the context of public policy [9], the strategic plan called “National Policy in regard to Space Activities”, is caught between two phases: the formulation

  8. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An exploration of the alcohol policy environment in post-conflict countries.

    Wallace, Karen; Roberts, Bayard

    2014-01-01

    Populations in countries emerging from armed conflict may have elevated levels of harmful alcohol use due to risk factors such as trauma exposure, increased daily stressors, elevated levels of mental health disorders, urbanization, and weak alcohol control policies and institutions. This study explores the challenges and opportunities for strengthening alcohol control policies in post-conflict countries. Exploratory qualitative approach: experts (from United Nations agencies, non-governmental organizations, academic institutions and independent consultants) selected on the basis of their experience were interviewed. Thematic analysis identified key emergent themes. Perceived challenges to addressing harmful alcohol use in post-conflict countries included: lack of priority and recognition among key actors; limited resources and capacity, including in policy enforcement; and the role of the alcohol industry. Perceived opportunities included: increasing recognition of the harmful health and social effects of alcohol globally; sharing information, experience, and expertise to more effectively strengthen alcohol control policies; and collecting better data to advocate and inform stronger alcohol policies. This exploratory study provides a starting point to better understand the alcohol policy environment in post-conflict settings but considerably more research is required.

  10. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  11. Advocacy coalitions involved in California's menu labeling policy debate: Exploring coalition structure, policy beliefs, resources, and strategies.

    Payán, Denise D; Lewis, LaVonna B; Cousineau, Michael R; Nichol, Michael B

    2017-03-01

    Advocacy coalitions often play an important role in the state health policymaking process, yet little is known about their structure, composition, and behavior. In 2008, California became the first state to enact a menu labeling law. Using the advocacy coalition framework, we examine different facets of the coalitions involved in California's menu labeling policy debate. We use a qualitative research approach to identify coalition members and explore their expressed beliefs and policy arguments, resources, and strategies by analyzing legislative documents (n = 87) and newspaper articles (n = 78) produced between 1999 and 2009. Between 2003 and 2008, six menu labeling bills were introduced in the state's legislature. We found the issue received increasing media attention during this period. We identified two advocacy coalitions involved in the debate-a public health (PH) coalition and an industry coalition. State organizations acted as coalition leaders and participated for a longer duration than elected officials. The structure and composition of each coalition varied. PH coalition leadership and membership notably increased compared to the industry coalition. The PH coalition, led by nonprofit PH and health organizations, promoted a clear and consistent message around informed decision making. The industry coalition, led by a state restaurant association, responded with cost and implementation arguments. Each coalition used various resources and strategies to advance desired outcomes. PH coalition leaders were particularly effective at using resources and employing advocacy strategies, which included engaging state legislators as coalition members, using public opinion polls and information, and leveraging media resources to garner support. Policy precedence and a local policy push emerged as important policymaking strategies. Areas for future research on the state health policymaking process are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Advocacy Coalitions involved in California’s Menu Labeling Policy Debate: Exploring Coalition Structure, Policy Beliefs, Resources, and Strategies

    Payán, Denise D.; Lewis, LaVonna B.; Cousineau, Michael R.; Nichol, Michael B.

    2017-01-01

    Advocacy coalitions often play an important role in the state health policymaking process, yet little is known about their structure, composition, and behavior. In 2008, California became the first state to enact a menu labeling law. Using the advocacy coalition framework, we examine different facets of the coalitions involved in California’s menu labeling policy debate. We use a qualitative research approach to identify coalition members and explore their expressed beliefs and policy arguments, resources, and strategies by analyzing legislative documents (n=87) and newspaper articles (n=78) produced between 1999 and 2009. Between 2003 and 2008, six menu labeling bills were introduced in the state’s legislature. We found the issue received increasing media attention during this period. We identified two advocacy coalitions involved in the debate—a public health (PH) coalition and an industry coalition. State organizations acted as coalition leaders and participated for a longer duration than elected officials. The structure and composition of each coalition varied. PH coalition leadership and membership notably increased compared to the industry coalition. The PH coalition, led by nonprofit PH and health organizations, promoted a clear and consistent message around informed decision making. The industry coalition, led by a state restaurant association, responded with cost and implementation arguments. Each coalition used various resources and strategies to advance desired outcomes. PH coalition leaders were particularly effective at using resources and employing advocacy strategies, which included engaging state legislators as coalition members, using public opinion polls and information, and leveraging media resources to garner support. Policy precedence and a local policy push emerged as important policymaking strategies. Areas for future research on the state health policymaking process are discussed. PMID:28161674

  13. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature

    Tamlyn Eslie Roman

    2017-07-01

    Full Text Available Background The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. Methods A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. Results The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. Conclusion The literature supports Bossert’s conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning.

  14. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  15. Corporate risk tolerance and capital allocation: A practical approach to implementing an exploration risk policy

    Walls, M.R.

    1995-01-01

    Petroleum exploration companies are confronted regularly with the issue of allocating scarce capital among a set of available exploration projects, which are generally characterized by a high degree of financial risk and uncertainty. Commonly used methods for evaluating alternative investments consider the amount and timing of the monetary flows associated with a project and ignore the firm's ability or willingness to assume the business risk of the project. The preference-theory approach combines the traditional means of project valuation, net present value (NPV) analysis, with a decision-science-based approach to risk management. This integrated model provides a means for exploration firms to measure and to manage the financial risks associated with petroleum exploration, consistent with the firm's desired risk policy

  16. US Interpretation of International Space Policies Regarding Commercial Resource Acquisitions

    2015-06-12

    Russia, India, China, and the U.S. to gain access to the moon’s Helium 3 (He3), an extremely rare commodity believed to be ideal for fusion reactors .53...international treaties that conceptualize ‘The Common Heritage of all Mankind,’ specifically the UN 3 Convention on the Law of the Sea (UNCLOS) and the...between current and proposed Space Laws with other international treaties that conceptualize ‘The Common Heritage of all Mankind,’ specifically

  17. Space Station logistics policy - Risk management from the top down

    Paules, Granville; Graham, James L., Jr.

    1990-01-01

    Considerations are presented in the area of risk management specifically relating to logistics and system supportability. These considerations form a basis for confident application of concurrent engineering principles to a development program, aiming at simultaneous consideration of support and logistics requirements within the engineering process as the system concept and designs develop. It is shown that, by applying such a process, the chances of minimizing program logistics and supportability risk in the long term can be improved. The problem of analyzing and minimizing integrated logistics risk for the Space Station Freedom Program is discussed.

  18. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Exploring the Roots of Contested Public Spaces of Cairo : Using Self-organization as Alternative Lens

    Saleh, Mohamed; Rokem, Jonathan; Boano, Camillo

    2017-01-01

    For decades, public space as a concept in Egypt has been systematically deprived of its essential symbolic functions. Upon integrating the country into the global model of neoliberalism, the state has adopted public policies on various scales which resulted in a deep-rooted crisis of participation

  20. Exploring Health-Promotion and Policy Synergies in Education in Bhutan

    Yezer, Yezer; Schmidt, Johannes Dragsbæk; Christensen, Line Kikkenborg

    and the actual wish for keeping up tradition and a specific culturalized understanding of knowledge and well-being production by the government? The paper is divided into five sections. The introduction has outlined the context and the nexus between health and education; some theoretical remarks about the links......Paper for the International Workshop “Development Challenges in Bhutan”, Aalborg University, Copenhagen, 29-30 May, 2013 Abstract This contribution focuses on how the existing resources and policy objectives for social development activities within the area of health promotion through education...... is utilized and whether intentions conflict with outcomes. It will furthermore explore whether there are relevant synergies in the policy flow from center to local levels in terms of delivering efficient health through educational policies. The focus lies on the implementation level of health in education...

  1. Exploring evidence-policy linkages in health research plans: A case study from six countries

    Oladepo Oladimeji

    2008-03-01

    Full Text Available Abstract The complex evidence-policy interface in low and middle income country settings is receiving increasing attention. Future Health Systems (FHS: Innovations for Equity, is a research consortium conducting health systems explorations in six Asian and African countries: Bangladesh, India, China, Afghanistan, Uganda, and Nigeria. The cross-country research consortium provides a unique opportunity to explore the research-policy interface. Three key activities were undertaken during the initial phase of this five-year project. First, key considerations in strengthening evidence-policy linkages in health system research were developed by FHS researchers through workshops and electronic communications. Four key considerations in strengthening evidence-policy linkages are postulated: development context; research characteristics; decision-making processes; and stakeholder engagement. Second, these four considerations were applied to research proposals in each of the six countries to highlight features in the research plans that potentially strengthen the research-policy interface and opportunities for improvement. Finally, the utility of the approach for setting research priorities in health policy and systems research was reflected upon. These three activities yielded interesting findings. First, developmental consideration with four dimensions – poverty, vulnerabilities, capabilities, and health shocks – provides an entry point in examining research-policy interfaces in the six settings. Second, research plans focused upon on the ground realities in specific countries strengthens the interface. Third, focusing on research prioritized by decision-makers, within a politicized health arena, enhances chances of research influencing action. Lastly, early and continued engagement of multiple stakeholders, from local to national levels, is conducive to enhanced communication at the interface. The approach described has four main utilities: first

  2. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  3. Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping

    Gilbert, Paul; Bows, Alice

    2012-01-01

    For a high probability of avoiding dangerous interference with the climate system, all sectors must decarbonise over coming decades. Although shipping is an energy efficient transport mode, its emissions continue to grow. Compounding this, the sector's complexity, exclusion from emission inventories and slow progress towards a mitigation strategy, limit drivers towards meaningful change. Whilst there remains a preference within the industry for global mitigation policies, the urgency of required emission cuts necessitates exploration of complimentary sub-global measures. The debate surrounding such measures tends to focus on apportioning global shipping emissions to nations. To explore the policy implications of apportionment, the UK is used in this paper to illustrate how available apportionment regimes produce a wide range of emission estimates. Moreover, in the absence of transparent fuel consumption and freight data, they have limited sensitivity, rendering them currently obsolete for monitoring purposes. Nations, regions and organisations influence shipping, particularly in relation to operations, yet debate surrounding apportionment has arguably delayed consideration of sub-global polices and indicators. This paper makes a case for putting the apportionment debate aside in the short-term to open out the full span of options, consider influence over aspects of the shipping system, and how to monitor success. - Highlights: ► Debate on sub-global CO 2 policies for shipping focuses on emission apportionment. ► Data limitations prevent apportionment regimes from monitoring policy success. ► Nations, regions and organisations directly influence shipping at sub-global levels. ► Sub-global policies influence demand and operations in ports/waters. ► Policy should focus on what can be influenced and consider how to monitor progress.

  4. Exploring technology diffusion in emerging markets – the role of public policy for wind energy

    Friebe, Christian A.; Flotow, Paschen von; Täube, Florian A.

    2014-01-01

    This study challenges the implicit assumption of homogeneity in national institutional contexts made in past studies of (renewable) energy policy. We propose that institutional differences matter by focusing on several technology-specific and generic policy factors that can foster technology diffusion through private sector activity. More specifically, we explore perceptions of early adopters in emerging economy contexts using wind park project developers as an example. By applying a parsimonious method for our questionnaire as well as qualitative data we make several contributions: Methodologically, we introduce Maximum Difference Scaling to the energy policy domain. Empirically, we identify several public influences on private investment, and assess their relative importance. This leads to new insights challenging findings from industrialized economies; we identified additional institutional barriers to diffusion, hence, the requirement of a combination of technology-specific and generic policy measures. - Highlights: • Explorative qualitative and quantitative study of project developers in emerging markets. • Identifies influencing factors for technology diffusion regarding wind farms. • Predictable public authorities and well-implemented public processes attract intern. project developers. • Feed-in-Tariffs and grid access guarantees are particularly appealing

  5. Commercial Space Policy in the 1980s: Proceedings of a Roundtable Discussion

    Dahlstrom, Neil (Editor)

    2000-01-01

    The Space Business Archives and the NASA History Office signed a Memorandum of Understanding in March of 1999. The MOU outlines several opportunities for cooperative endeavors between the two agencies in historical programming. This oral history, and subsequently this publication, are the first products of that cooperation. In accordance with the purpose of the Space Business Archives--to provide an impartial forum for lessons learned in the development of the commercial space industry--the idea for this roundtable discussion seemed appropriate as the Archives first public program. With the combined resources of the Archives and the NASA History Office we were fortunate to assemble a panel of individuals that served in both industry and government during the 1980s, many working in both sectors during that time. When envisioning the focus of this oral history, we decided that it was appropriate to highlight space policy in the 1980s, with an emphasis on the emerging commercial industry. Panelists were sent several documents in preparation, such as the Land Remote Sensing Commercialization Act and the Commercial Space Launch Act of 1984, President Reagan's 1982 National Space Policy, and other memoranda and letters that outline important policy issues of the decade. This discussion, we think, fills in some of the gaps that would otherwise be left unfilled when simply reading through the documents themselves. Some of these gaps include: how were these policy directives, legislation and decisions introduced and developed, by whom, and at what political and financial cost? This transcript is meant to serve as a reference to some of the issues, organizations and individuals involved in the creation and development of space policy during the 1980s. It is also the result of the first of many future roundtable discussions aimed at providing an open exchange of ideas concerning past success and failure in order to provide a stronger base for future endeavors in governmental

  6. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  7. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  8. Technology Needs of Future Space Infrastructures Supporting Human Exploration and Development of Space

    Carrington, Connie; Howell, Joe

    2001-01-01

    The path to human presence beyond near-Earth will be paved by the development of infrastructure. A fundamental technology in this infrastructure is energy, which enables not only the basic function of providing shelter for man and machine, but also enables transportation, scientific endeavors, and exploration. This paper discusses the near-term needs in technology that develop the infrastructure for HEDS.

  9. EXPLORING TAX HOLIDAY POLICY IMPLEMENTATION FOR INDONESIAN INVESTMENT CLIMATE: HAS IT BEEN EFFECTIVE?

    Mulyono R.D.P.

    2017-07-01

    Full Text Available This study aims to explore the reasons for the ineffectiveness of tax holiday policy implementation in Indonesia as well as the government’s strategies to improve the investment climate. This research uses exploratory study type which does not test theory or hypothesis by using preliminary survey method, conducting direct or indirect interview via e-mail to certain informant by giving questionnaire and direct observation passively observing the field and related websites supporting statistical data in this study in depth. In testing the validity of research data used source triangulation and method triangulation. The progress that has been achieved to date in the implementation of tax holiday policy is to provide ease of bureaucracy administration and simplicity of licensing services in investing by improving coordination among government to improve foreign investors' confidence when investing in Indonesia. So technically, the implementation of tax holiday policy is quite effective in attracting foreign direct investment because it can perform the right obligations according to the regulations. In the investment point of view, tax holiday policy is not effective in attracting foreign direct investment or not becoming the main factor of investor's goal in investment. The cause of the ineffectiveness of the tax holiday policy in attracting foreign direct investment in Indonesia is another indicator that becomes an assessment among others the ease of investment licensing, infrastructure, electricity supply, investor protection, minority and tax administration. Indonesian government's strategy to improve the investment climate is through deregulation, debureaucracy, law enforcement and business certainty for investors.

  10. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  11. The role of nuclear power and nuclear propulsion in the peaceful exploration of space

    2005-09-01

    This publication has been produced within the framework of the IAEA's innovative reactor and fuel cycle technology development activities. It elucidates the role that peaceful space related nuclear power research and development could play in terrestrial innovative reactor and fuel cycle technology development initiatives. This review is a contribution to the Inter-Agency Meeting on Outer Space Activities, and reflects the stepped up efforts of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space to further strengthen cooperation between international organizations in space related activities. Apart from fostering information exchange within the United Nations organizations, this publication aims at finding new potential fields for innovative reactor and fuel cycle technology development. In assessing the status and reviewing the role of nuclear power in the peaceful exploration of space, it also aims to initiate a discussion on the potential benefits of space related nuclear power technology research and development to the development of innovative terrestrial nuclear systems

  12. Exploration

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  13. Using Multi-Objective Optimization to Explore Robust Policies in the Colorado River Basin

    Alexander, E.; Kasprzyk, J. R.; Zagona, E. A.; Prairie, J. R.; Jerla, C.; Butler, A.

    2017-12-01

    The long term reliability of water deliveries in the Colorado River Basin has degraded due to the imbalance of growing demand and dwindling supply. The Colorado River meanders 1,450 miles across a watershed that covers seven US states and Mexico and is an important cultural, economic, and natural resource for nearly 40 million people. Its complex operating policy is based on the "Law of the River," which has evolved since the Colorado River Compact in 1922. Recent (2007) refinements to address shortage reductions and coordinated operations of Lakes Powell and Mead were negotiated with stakeholders in which thousands of scenarios were explored to identify operating guidelines that could ultimately be agreed on. This study explores a different approach to searching for robust operating policies to inform the policy making process. The Colorado River Simulation System (CRSS), a long-term water management simulation model implemented in RiverWare, is combined with the Borg multi-objective evolutionary algorithm (MOEA) to solve an eight objective problem formulation. Basin-wide performance metrics are closely tied to system health through incorporating critical reservoir pool elevations, duration, frequency and quantity of shortage reductions in the objective set. For example, an objective to minimize the frequency that Lake Powell falls below the minimum power pool elevation of 3,490 feet for Glen Canyon Dam protects a vital economic and renewable energy source for the southwestern US. The decision variables correspond to operating tiers in Lakes Powell and Mead that drive the implementation of various shortage and release policies, thus affecting system performance. The result will be a set of non-dominated solutions that can be compared with respect to their trade-offs based on the various objectives. These could inform policy making processes by eliminating dominated solutions and revealing robust solutions that could remain hidden under conventional analysis.

  14. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  15. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  16. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Crew systems: integrating human and technical subsystems for the exploration of space

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  18. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  19. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  20. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  1. Planetary exploration with nanosatellites: a space campus for future technology development

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  2. Exercise during long term exposure to space: Value of exercise during space exploration

    1990-01-01

    There appear to be two general physiological reasons why exercise will be beneficial to space travelers who will experience a weightless and isolated environment for many months or a few years: (1) to alleviate or prevent tissue atrophy (principally bone and muscle), to maintain cardiovascular function, and to prevent deleterious changes in extracellular and cellular fluid volumes and plasma constituents, especially electrolytes; and (2) to maintain whole organism functional physical and physiological status with special reference to neuromuscular coordination (physical skill) and physical fitness (muscle strength and power, flexibility, and aerobic endurance). The latter reason also relates well to the ability of the crew members to resist both general and local fatigue and thus ensure consistent physical performance. Various forms of exercise, performed regularly, could help alleviate boredom and assist the travelers in coping with stress, anxiety, and depression. The type, frequency, duration and intensity of exercise and ways of ensuring that crew members engage in it are discussed.

  3. Music, Policy, and Place-Centered Education: Finding Space for Adaptability

    Schmidt, Patrick K.

    2012-01-01

    As a volatile educative space, musical education must be interwoven with other concerns and other more encompassing constructs if it is to build robust, meaningful, and complex learning outcomes. This paper attempts to do this by placing music education and a complex understanding of policy side by side, and outlining what people can learn from…

  4. In the Shadows of the Mission: Education Policy, Urban Space, and the "Colonial Present" in Sydney

    Gulson, Kalervo N.; Parkes, Robert J.

    2009-01-01

    This paper is concerned with enduring histories and micro-geographies of the (post)colonial Australian nation, played out through contemporary connections between Aboriginality, inner Sydney and educational policy change. This paper traces the "racialization" of space and place in the Sydney inner city suburb of Redfern, including the…

  5. Political economy of the energy-groundwater nexus in India: exploring issues and assessing policy options

    Shah, Tushaar; Giordano, Mark; Mukherji, Aditi

    2012-08-01

    Indian agriculture is trapped in a complex nexus of groundwater depletion and energy subsidies. This nexus is the product of past public policy choices that initially offered opportunities to India's small-holder-based irrigation economy but has now generated in its wake myriad economic, social, and environmental distortions. Conventional `getting-the-price-right' solutions to reduce these distortions have consistently been undermined by the invidious political economy that the nexus has created. The historical evolution of the nexus is outlined, the nature and scale of the distortions it has created are explored, and alternative approaches which Indian policy makers can use to limit, if not eliminate, the damaging impacts of the distortions, are analysed.

  6. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  7. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  8. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  9. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  10. NASA: A generic infrastructure for system-level MP-SoC design space exploration

    Jia, Z.J.; Pimentel, A.D.; Thompson, M.; Bautista, T.; Núñez, A.

    2010-01-01

    System-level simulation and design space exploration (DSE) are key ingredients for the design of multiprocessor system-on-chip (MP-SoC) based embedded systems. The efforts in this area, however, typically use ad-hoc software infrastructures to facilitate and support the system-level DSE experiments.

  11. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  12. Requirements for high level models supporting design space exploration in model-based systems engineering

    Haveman, Steven; Bonnema, Gerrit Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during

  13. Exploiting Domain Knowledge in System-level MPSoC Design Space Exploration

    Thompson, M.; Pimentel, A.D.

    2013-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded multimedia systems. During system-level DSE, system parameters like, e.g., the number and type of processors, and the mapping of

  14. An Exploration of Hybrid Spaces for Place-Based Geomorphology with Latino Bilingual Children

    Martínez-Álvarez, Patricia; Bannan, Brenda

    2014-01-01

    Latino bilingual children hold rich understandings, which are underexplored and underutilized in the geoscience classroom. Oftentimes, young Latinos possess unique cultural land experiences shaping their place identities. We consider science as language and culture, and propose place-based geoscience hybrid space explorations that are culturally…

  15. Interleaving methods for hybrid system-level MPSoC design space exploration

    Piscitelli, R.; Pimentel, A.D.; McAllister, J.; Bhattacharyya, S.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  16. Pruning techniques for multi-objective system-level design space exploration

    Piscitelli, R.

    2014-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  17. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  18. Obstacles and Enablers on the Way towards Integrated Physical Activity Policies for Childhood Obesity Prevention: An Exploration of Local Policy Officials’ Views

    Anna-Marie Hendriks

    2016-01-01

    Full Text Available Background. Limited physical activity (PA is a risk factor for childhood obesity. In Netherlands, as in many other countries worldwide, local policy officials bear responsibility for integrated PA policies, involving both health and nonhealth domains. In practice, its development seems hampered. We explore which obstacles local policy officials perceive in their effort. Methods. Fifteen semistructured interviews were held with policy officials from health and nonhealth policy domains, working at strategic, tactic, and operational level, in three relatively large municipalities. Questions focused on exploring perceived barriers for integrated PA policies. The interviews were deductively coded by applying the Behavior Change Ball framework. Findings. Childhood obesity prevention appeared on the governmental agenda and all officials understood the multicausal nature. However, operational officials had not yet developed a tradition to develop integrated PA policies due to insufficient boundary-spanning skills and structural and cultural differences between the domains. Tactical level officials did not sufficiently support intersectoral collaboration and strategic level officials mainly focused on public-private partnerships. Conclusion. Developing integrated PA policies is a bottom-up innovation process that needs to be supported by governmental leaders through better guiding organizational processes leading to such policies. Operational level officials can assist in this by making progress in intersectoral collaboration visible.

  19. NASA's Space Launch System: A New Capability for Science and Exploration

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  20. Scalable and near-optimal design space exploration for embedded systems

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  1. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  2. Hematopoietic Stem Cell Therapy as a Counter-Measure for Human Exploration of Deep Space

    Ohi, S.; Roach, A.-N.; Ramsahai, S.; Kim, B. C.; Fitzgerald, W.; Riley, D. A.; Gonda, S. R.

    2004-01-01

    Human exploration of deep space depends, in part, on our ability to counter severe/invasive disorders that astronauts experience in space environments. The known symptoms include hematological/cardiac abnormalities,bone and muscle losses, immunodeficiency, neurological disorders, and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, we have advanced a hypothesis that ome of the space-caused disorders maybe amenable to hematopoietis stem cell therapy(HSCT) so as to maintain promote human exploration of deep space. Using mouse models of human anemia beta-thaiassemia) as well as spaceflight (hindlimb unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, in the case of HSCT for muscle loss, the beta-galactosidese marked HSCs were detected in the hindlimbs of unloaded mouse following transplantation by -X-gal wholemaunt staining procedure. Histochemicaland physical analyses indicated structural contribution of HSCs to the muscle. HSCT for immunodeficiency was investigated ising beta-galactosidese gene-tagged Escherichia coli as the infectious agent. Results of the X-gal staining procedure indicated the rapeutic role of the HSCT. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  3. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  4. An integrated mission approach to the space exploration initiative will ensure success

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  5. Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010

    Ó Broin, Eoin; Nässén, Jonas; Johnsson, Filip

    2015-01-01

    Highlights: • Space heating demand between 1990 and 2010 modelled using a panel of 14 EU countries. • The impacts of 260 efficiency polices affecting space heating demand are examined. • Regulatory policies found to have had a greater success than financial or informative. • High priority should be given to regulatory policies for space heating energy goals. - Abstract: We present an empirical analysis of the more than 250 space heating-focused energy efficiency policies that have been in force at the EU and national levels in the period 1990–2010. This analysis looks at the EU-14 residential sector (Pre-2004 EU-15, excluding Luxembourg) using a panel data regression analysis on unit consumption of energy for space heating (kWh/m 2 /year). The policies are represented as a regression variable using a semi-quantitative impact estimation obtained from the MURE Policy Database. The impacts of the policies as a whole, and subdivided into financial, regulatory, and informative policies, are examined. The correlation between the actual reductions in demand and the estimated impact of regulatory policies is found to be stronger than the corresponding correlations with the respective impacts of financial policies and informative polices. Together with the well-known market barriers to energy efficiency that exist in the residential sector, these findings suggest that regulatory policy measures be given a high priority in the design of an effective pathway towards the EU-wide goals for space heating energy

  6. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  7. Exploring the Relationship between State Financial Aid Policy and Postsecondary Enrollment Choices: A Focus on Income and Race Differences

    Kim, Jiyun

    2012-01-01

    This study explores the relationship between state financial aid policies and postsecondary enrollment for high school graduates (or equivalent diploma holders). Utilizing an event history modeling for a nationally representative sample from the National Education Longitudinal Study (NELS:88/2000) in addition to state-level policy variables, this…

  8. 75 FR 29996 - Review of MMS NEPA Policies, Practices, and Procedures for OCS Oil and Gas Exploration and...

    2010-05-28

    ... Environmental Policy Act (NEPA) policies, practices, and procedures for the Minerals Management Service (MMS... applies NEPA in its management of Outer Continental Shelf oil and gas exploration and development and make recommendations for revisions. The scope of the review is intended to be holistic, i.e. from leasing decisions to...

  9. Private space exploration: A new way for starting a spacefaring society?

    Genta, Giancarlo

    2014-11-01

    Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.

  10. Drilling through Conservation Policy: Oil Exploration in Murchison Falls Protected Area, Uganda

    Catrina A MacKenzie

    2017-01-01

    Full Text Available Approximately 2.5 billion barrels of commercially-viable oil, worth $2 billion in annual revenue for 20 years, were discovered under the Ugandan portion of the Albertine Rift in 2006. The region also contains seven of Uganda's protected areas and a growing ecotourism industry. We conducted interviews and focus groups in and around Murchison Falls Protected Area, Uganda's largest, oldest, and most visited protected area, to assess the interaction of oil exploration with the three primary conservation policies employed by Uganda Wildlife Authority: protectionism, neoliberal capital accumulation, and community-based conservation. We find that oil extraction is legally permitted inside protected areas in Uganda, like many other African countries, and that the wildlife authority and oil companies are adapting to co-exist inside a protected area. Our primary argument is that neoliberal capital accumulation as a conservation policy actually makes protected areas more vulnerable to industrial exploitation because nature is commodified, allowing economic value and profitability of land uses to determine how nature is exploited. Our secondary argument is that the conditional nature of protected area access inherent within the protectionist policy permits oil extraction within Murchison Falls Protected Area. Finally, we argue that community-based conservation, as operationalized in Uganda, has no role in defending protected areas against oil industrialisation.

  11. Understanding the cost bases of Space Shuttle pricing policies for commercial and foreign customers

    Stone, Barbara A.

    1984-01-01

    The principles and underlying cost bases of the 1977 and 1982 Space Shuttle Reimbursement Policies are compared and contrasted. Out-of-pocket cost recovery has been chosen as the base of the price for the 1986-1988 time period. With this cost base, it is NASA's intent to recover the total cost of consumables and the launch and flight operations costs added by commercial and foreign customers over the 1986-1988 time period. Beyond 1988, NASA intends to return to its policy of full cost recovery.

  12. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  13. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  14. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  15. Single Step to Orbit; a First Step in a Cooperative Space Exploration Initiative

    Lusignan, Bruce; Sivalingam, Shivan

    1999-01-01

    At the end of the Cold War, disarmament planners included a recommendation to ease reduction of the U.S. and Russian aerospace industries by creating cooperative scientific pursuits. The idea was not new, having earlier been suggested by Eisenhower and Khrushchev to reduce the pressure of the "Military Industrial Complex" by undertaking joint space exploration. The Space Exploration Initiative (SEI) proposed at the end of the Cold War by President Bush and Premier Gorbachev was another attempt to ease the disarmament process by giving the bloated war industries something better to do. The engineering talent and the space rockets could be used for peaceful pursuits, notably for going back to the Moon and then on to Mars with human exploration and settlement. At the beginning of this process in 1992 staff of the Stanford Center for International Cooperation in Space attended the International Space University in Canada, met with Russian participants and invited a Russian team to work with us on a joint Stanford-Russian Mars Exploration Study. A CIA student and Airforce and Navy students just happened to join the Stanford course the next year and all students were aware that the leader of the four Russian engineers was well versed in Russian security. But, as long as they did their homework, they were welcome to participate with other students in defining the Mars mission and the three engineers they sent were excellent. At the end of this study we were invited to give a briefing to Dr. Edward Teller at Stanford's Hoover Institution of War and Peace. We were also encouraged to hold a press conference on Capitol Hill to introduce the study to the world. At a pre-conference briefing at the Space Council, we were asked to please remind the press that President Bush had asked for a cooperative exploration proposal not a U.S. alone initiative. The Stanford-Russian study used Russia's Energia launchers, priced at $300 Million each. The mission totaled out to $71.5 Billion

  16. Exploring the triplet parameters space to optimise the final focus of the FCC-hh

    AUTHOR|(CDS)2141109; Abelleira, Jose; Seryi, Andrei; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider (FCC-hh).

  17. You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.

    Eldridge, Alice

    2015-01-01

    Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.

  18. An open-source job management framework for parameter-space exploration: OACIS

    Murase, Y.; Uchitane, T.; Ito, N.

    2017-11-01

    We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.

  19. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  20. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  1. The incidence of the criminal policy in the conformation of the public space

    Monroy, Carla

    2016-01-01

    Mexican Criminal Policy is distinguished by its historical repression, the strategies implemented by the current government affected directly the violence and crime index. These facts beat and modified the conformation of the public space. Recreational places, parks, streets, squares, etc., stopped having the dynamism that used to have. On the other hand, the global postmodern speech changes the conception of the city, nowadays is privileged the consumption, so the city has transform in order...

  2. The genesis of the AIDS policy and AIDS Space in Brazil (1981-1989)

    de Barros, Sandra Garrido; Vieira-da-Silva, Ligia Maria

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the genesis of the policy for controlling AIDS in Brazil. METHODS Socio-historical study (1981-1989), based on Bordieu’s genetic sociology, by document analysis, bibliographical review, and in-depth interviews. It consisted of a connection between the analysis of the paths of 33 agents involved in the creation of a social space focusing on AIDS-related issues and the historical possibility conditions of the drafting of a specific policy. RESULTS AIDS Space is a gathering point for the paths of agents from several social fields (medical, scientific, political, and bureaucratic fields). A specific space for relationships, which enabled the drafting of a policy for controlling the AIDS epidemic, but also a place where the authority to talk about the meaning of the disease, the methods to prevent and treat it was under dispute. The analysis showed how the various structures (democratic administrations in Sao Paulo and at the national level, with public health officers taking important positions) and the lack of a specific therapy contributed to social agents of different ranks and backgrounds to initially set prevention as a priority. CONCLUSIONS The rise of the sanitary movement, the organization of SUS, and the dominance of the medical field at the AIDS Space contributed to foster treatment as a part of the measures to control the epidemic. These conditions allowed drafting a policy based on the integrality of care, by linking prevention and treatment in the following decade, with important participation from state bureaucracy and researchers. PMID:27463255

  3. The genesis of the AIDS policy and AIDS Space in Brazil (1981-1989

    Sandra Garrido de Barros

    2016-01-01

    Full Text Available ABSTRACT OBJECTIVE To analyze the genesis of the policy for controlling AIDS in Brazil. METHODS Socio-historical study (1981-1989, based on Bordieu’s genetic sociology, by document analysis, bibliographical review, and in-depth interviews. It consisted of a connection between the analysis of the paths of 33 agents involved in the creation of a social space focusing on AIDS-related issues and the historical possibility conditions of the drafting of a specific policy. RESULTS AIDS Space is a gathering point for the paths of agents from several social fields (medical, scientific, political, and bureaucratic fields. A specific space for relationships, which enabled the drafting of a policy for controlling the AIDS epidemic, but also a place where the authority to talk about the meaning of the disease, the methods to prevent and treat it was under dispute. The analysis showed how the various structures (democratic administrations in Sao Paulo and at the national level, with public health officers taking important positions and the lack of a specific therapy contributed to social agents of different ranks and backgrounds to initially set prevention as a priority. CONCLUSIONS The rise of the sanitary movement, the organization of SUS, and the dominance of the medical field at the AIDS Space contributed to foster treatment as a part of the measures to control the epidemic. These conditions allowed drafting a policy based on the integrality of care, by linking prevention and treatment in the following decade, with important participation from state bureaucracy and researchers.

  4. Veganism In Star Trek : A Comic Reformatting Of Plant-Based Space Exploration

    Tamminen, Tiariia

    2017-01-01

    My thesis revolves around collecting references to veganism and animal rights in five different science fiction TV series of the Star Trek franchise. I especially concentrate on how the character creation, setting and spoken lines express development and implementation of food technology and ethics. My objective is to show how our relationship to food and animal rights is presented in the main canon of the Star Trek franchise in terms of exploration in space. I will express this further t...

  5. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  6. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  7. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  8. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    Lee, Kerry; Wilson, Thomas; Zapp, Neal; Pinsky, Lawrence

    2007-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics

  9. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  10. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  11. Human factors and nuclear space technology in long-term exploration

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  12. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  13. Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Gianfranco Ciardo

    2009-12-01

    Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.

  14. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  15. U.S. tax policies distorting economics of exploration, development ventures

    Goodman, C.G.

    1991-01-01

    Since the Tax Reform Act of 1986, crude oil production in the United States has declined over 1.5 million b/d despite interim price increases of over 100%. Exploration and development in the U.S., measured by the drilling rig count, footage drilled, reserves replaced, and seismic crew activity, remain near record lows. Two major factors determine the level of U.S. crude oil production: the price of crude oil and the expected return on investments to find and produce new reserves. This article discusses the impact of the U.S. take (tax and fiscal) system generally, and the alternative minimum tax (AMT) system specifically on new investments to find and produce crude oil in the U.S. Over the last 20 years, important policy concerns have motivated U.S. tax reform. Yet its impact on the petroleum resource base of the country was never fully anticipated. The U.S. tax reform movement dramatically and adversely changed the time within which new oil and gas investments can be recovered. In the process, America's new capital recovery policies have produced both regressive and anticompetitive impacts. The charts presented in this article demonstrate these impacts as crude oil prices, revenues, or profitability decline and as the costs of production increase

  16. Exploring the characteristics of innovation alliances of Dutch Biotechnology SMEs and their policy implications

    Philipp J.P. Garbade

    2013-05-01

    Full Text Available Policy makers are becoming increasingly aware of the fact that R&D intensive SMEs play a pivotal role in providing sustainable economic growth by maintaining a high rate of innovation. To compensate for their financial vulnerability, these SMEs increasingly conduct innovation in alliances. This paper aims to explore the impact of different alliance characteristics on the performance of Dutch biotechnology SMEs. The conceptual model was tested using a sample of 18 biotech SMEs reporting about 40 alliances. The main findings indicate that alliance performance is positively related to the level of complementarity, the cognitive distance and tacit knowledge transfer by the human resources exchanges. Policy makers are recommended to support innovation alliances by providing the infrastructure in which alliances can flourish, e.g. through stimulating the foundation of cluster organizations that can function as innovation brokers. These cluster organizations can provide network formation, demand articulation, internationalization and innovation process support to their member companies and can act as a go-between among alliance partners. As part of the innovation process support activities, they can organize special workshops for biotech SMEs on how to successfully behave in an innovation alliance.

  17. The Now Age, New Space, and Transforming the Exploration of Geospace

    Paxton, L. J.

    2017-12-01

    In this talk I will discuss: 1) Changing our description of how and why we do Heliophysics (NASA) and Geospace Science (NSF) research 2) How we can take advantage of the New Space industry capabilities 3) How and why we can use the technology that has begun the transformation of our society into the "Now Age" I will discuss trends that I see that enable, if we have the will, a fundamental revitalization of the science that we aspire to do. I will focus on our opportunities to revolutionize the exploration of geospace (the region below about 1000km) and how that addresses fundamental questions about our place in the universe. Exploration of space, in particular exploration of geospace, is at a cusp - we can either attempt to continue to move forward using the same, tried and true techniques or we can embrace the "Now Age" and the capabilities enabled by the New Space industry to move forward to a fuller understanding of our world's place in the solar system. Heliophysics at NASA and Geospace Science at NSF can be recast as fundamental exploratory basic research that asks and answers questions that everyone can understand. We are in the Now Age because the human race has enabled and embraced a fundamentally different way of accessing information and, potentially gaining knowledge. For the first time, we have the capability to provide essentially all of recorded human knowledge immediately and to anyone - and people want that access "now". Even in the scientific community we expect to be able to see the latest data right now. This is enabled by the internet and ubiquitous connectivity; low cost data storage and memory; fast, low-cost computing; the means to visualize the information; advances in the way we store, catalog and retrieve information; and advances in modeling and simulation. Concomitant with the Now Age, and providing an impetus to do things "now", the New Space industry has enabled low cost access to space and has embraced a vision of human presence in

  18. An integrated mission approach to the space exploration initiative will ensure success

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  19. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  20. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  1. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  2. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  3. Activating Built Pedagogy: A Genealogical Exploration of Educational Space at the University of Auckland Epsom Campus and Business School

    Locke, Kirsten

    2015-01-01

    Inspired by a new teaching initiative that involved a redesign of conventional classroom spaces at the University of Auckland's Epsom Campus, this article considers the relationship between architecture, the built environment and education. It characterises the teaching space of the Epsom Campus as the embodiment of educational policy following…

  4. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  5. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  6. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  7. Towards human exploration of space: The THESEUS review series on immunology research priorities.

    Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander

    2016-01-01

    Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.

  8. Enabling Fast ASIP Design Space Exploration: An FPGA-Based Runtime Reconfigurable Prototyper

    Paolo Meloni

    2012-01-01

    Full Text Available Application Specific Instruction-set Processors (ASIPs expose to the designer a large number of degrees of freedom. Accurate and rapid simulation tools are needed to explore the design space. To this aim, FPGA-based emulators have recently been proposed as an alternative to pure software cycle-accurate simulator. However, the advantages of on-hardware emulation are reduced by the overhead of the RTL synthesis process that needs to be run for each configuration to be emulated. The work presented in this paper aims at mitigating this overhead, exploiting a form of software-driven platform runtime reconfiguration. We present a complete emulation toolchain that, given a set of candidate ASIP configurations, identifies and builds an overdimensioned architecture capable of being reconfigured via software at runtime, emulating all the design space points under evaluation. The approach has been validated against two different case studies, a filtering kernel and an M-JPEG encoding kernel. Moreover, the presented emulation toolchain couples FPGA emulation with activity-based physical modeling to extract area and power/energy consumption figures. We show how the adoption of the presented toolchain reduces significantly the design space exploration time, while introducing an overhead lower than 10% for the FPGA resources and lower than 0.5% in terms of operating frequency.

  9. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with

  10. Exploring maintenance policy selection using the Analytic Hierarchy Process : an application for naval ships

    Goossens, A.J.M.; Basten, R.J.I.

    2015-01-01

    In this paper we investigate maintenance policy selection (MPS) through the use of the Analytic Hierarchy Process (AHP). A maintenance policy is a policy that dictates which parameter triggers a maintenance action. In practice, selecting the right maintenance policy appears to be a difficult

  11. Protecting policy space for public health nutrition in an era of international investment agreements.

    Thow, Anne Marie; McGrady, Benn

    2014-02-01

    Philip Morris has recently brought claims against Australia (2011) and Uruguay (2010) under international investment agreements (IIAs). The claims allege that Philip Morris is entitled to compensation following the introduction of innovative tobacco packaging regulations to reduce smoking and prevent noncommunicable diseases (NCDs). Since tobacco control measures are often viewed as a model for public health nutrition measures, the claims raise the question of how investment law governs the latter. This paper begins to answer this question and to explain how governments can proactively protect policy space for public health nutrition in an era of expanding IIAs. The authors first consider the main interventions proposed to reduce diet-related NCDs and their intersection with investment in the food supply chain. They then review the nature of investment regimes and relevant case law and examine ways to maximize policy space for public health nutrition intervention within this legal context. As foreign investment increases across the food-chain and more global recommendations discouraging the consumption of unhealthful products are issued, investment law will increase in importance as part of the legal architecture governing the food supply. The implications of investment law for public health nutrition measures depend on various factors: the measures themselves, the terms of the applicable agreements, the conditions surrounding the foreign investment and the policies governing agricultural support. This analysis suggests that governments should adopt proactive measures--e.g. the clarification of terms and reliance on exceptions--to manage investment and protect their regulatory autonomy with respect to public health nutrition.

  12. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  13. The Architecture of Investment Climate Surveillance and the Space for Non- Orthodox Policy

    Håvard Haarstad

    2012-03-01

    Full Text Available The purpose of this article is to take preliminary steps towards a critical theory of what is termed an ‘architecture of investment climate surveillance’. The paper outlines the contours of this architecture, which it suggests is made up of various private and publicagents that have authoritative positions in the market for evaluating investment opportunities and risks. By way of illustrating basic linkages and mechanisms, it examines the way in which these agents ‘read’ the implementation of a piece of non-orthodox policy: Bolivia’s nationalisation of gas. Though not unproblematic, Bolivia’s policy of nationalisation has significantly increased state revenue and allowed new social spending on poverty reduction. Yet despite these positive developmental effects, readings of this policy shift within the investment community have been highly critical, illustrating the investor-centred values on which these evaluations are based. The article concludes bysuggesting that scholars of globalisation must pay more attention to whether and how such discursive responses are able to delimit the space for non-orthodox policy in the global South.

  14. Regional integration and Brazilian Foreign Policy: Strategies in the South American space

    Cristina Soreanu Pecequilo

    2013-12-01

    Full Text Available The aim of the article is to present, based on theoretical studies of integration, the evolution of this process in Latin America and, most recently, in South America. Based on these studies, the goal is to analyze the role played by Brazil in the process, which defines as priorities of its foreign policy a regional and global framework for its international action that is based on both cooperation and power projection.The research has been conducted based on theories of integration, an historical background on Latin American integration and in Brazilian foreign policy, through its contemporary agenda. The answer was based on a comparative agenda and in a bibliographical critical analysis of the research material.The main findings of the paper point out that Latin American integration has specific features linked to the economic, political and stragetic realities of the continent that show the limitations of some theories applied to the European process, also that it depends on Brazilian foreign policy actions, that still sees the region as instrumental to its interests. So, Brazil sometimes fail to fulfill some requisites of integration that are essential to sustain its projects. Therefore, there is a cycle of enlargement and deepening of regional integration process in this political space that point out to the need of a more sustained compromise of Brazilian foreign policy towards these projects. If Brazil continues not to sustain these projects, they will lose momentum and significance once more, increasing power asymmetries in the region.

  15. Performative Research in Art Education: Scenes from the Seminar "Exploring Performative Rituals in City Space"

    Ulrike Stutz

    2008-05-01

    Full Text Available In my contribution, I lay the foundations for a performative approach to art education research and then apply it to three examples from a performance seminar conducted with university students. In the process, I subject video documentaries produced during performative exploration of everyday rituals in public space, to a fresh performative analysis using media techniques. My research interest targets the reactions of passers-by as an expanded audience, i.e., it targets the qualitative changes of social space brought about by these actions of site specific art. The contribution is presented as a multimedia document with videos and animations. The parallel presentation of different media formats produces differentiating and activating readings. URN: urn:nbn:de:0114-fqs0802514

  16. Lasers, Clocks and Drag-Free Control Exploration of Relativistic Gravity in Space

    Dittus, Hansjorg; Turyshev, Slava G

    2008-01-01

    Over the next decade the gravitational physics community will benefit from dramatic improvements in many technologies critical to testing gravity. Highly accurate deep space navigation, interplanetary laser communication, interferometry and metrology, high precision frequency standards, precise pointing and attitude control, together with drag-free technologies, will revolutionize the field of experimental gravitational physics. The centennial of the general theory of relativity in 2015 will motivate a significant number of experiments designed to test this theory with unprecedented accuracy. The purpose of the contributions in this book, written by international experts, is to explore the possibilities for the next 20 years for conducting gravitational experiments in space that would utilize both entirely new and highly improved existing capabilities.

  17. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  18. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  19. Down-to-Earth Benefits of Space Exploration: Past, Present, Future

    Neumann, Benjamin

    2005-01-01

    A ventricular device that helps a weakened heart keep pumping while awaiting a transplant. A rescue tool for extracting victims from dangerous situations such as car wrecks. A video analysis tool used to investigate the bombing at the 1996 Olympics in Atlanta. A sound-differentiation tool for safer air traffic control. A refrigerator that run without electricity or batteries. These are just a few of the spin-offs of NASA technology that have benefited society in recent years. Now, as NASA sets its vision on space exploration, particularly of the moon and Mars, even more benefits to society are possible. This expansion of societal benefits is tied to a new emphasis on technology infusion or spin-in. NASA is seeking partners with industry, universities, and other government laboratories to help the Agency address its specific space exploration needs in five areas: (1) advanced studies, concepts, and tools; (2) advanced materials; (3) communications, computing, electronics, and imaging; (4) software, intelligent systems, and modeling; and (5) power, propulsion, and chemical systems. These spin-in partnerships will offer benefits to U.S. economic development as well as new products for the global market. As a complement to these spin-in benefits, NASA also is examining the possible future spin-outs of the innovations related to its new space exploration mission. A matrix that charts NASA's needs against various business sectors is being developed to fully understand the implications for society and industry of spin-in and spin-out. This matrix already has been used to help guide NASA s efforts to secure spin-in partnerships. This paper presents examples of NASA spin-offs, discusses NASA s present spin-in/spin-out projects for pursuing partnerships, and considers some of the future societal benefits to be reaped from these partnerships. This paper will complement the proposed paper by Frank Schowengerdt on the Innovative Partnerships Program structure and how to work

  20. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  1. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  2. Exploring links between foundation phase teachers’ content knowledge and their example spaces

    Samantha Morrison

    2013-12-01

    Full Text Available This paper explores two foundation phase teachers’ example spaces (a space in the mind where examples exist when teaching number-related topics in relation to snapshots of their content knowledge (CK. Data was collected during a pilot primary maths for teaching course that included assessments of teacher content knowledge (CK. An analysis of a content-knowledge focused pre-test developed for the larger study indicated a relatively high score for one teacher and a low score for the other. Using Rowland’s (2008 framework, an analysis of classroom practice showed associations between a higher CK and the extent of a teacher’s example space and more coherent connections between different representational forms. Although no hard claims or generalisations of the link between teachers’ example spaces and their level of mathematics content knowledge can be made here, this study reinforces evidence of the need to increase teachers’ CK from a pedagogic perspective in order to raise the level of mathematics teaching and learning in the South African landscape.

  3. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities.

    Bergouignan, Audrey; Stein, T Peter; Habold, Caroline; Coxam, Veronique; O' Gorman, Donal; Blanc, Stéphane

    2016-01-01

    Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance.

  4. [Social participation in mental health: space of construction of citizenship, policy formulation and decision making].

    Guimarães, José Maria Ximenes; Jorge, Maria Salete Bessa; Maia, Regina Claudia Furtado; de Oliveira, Lucia Conde; Morais, Ana Patrícia Pereira; Lima, Marcos Paulo de Oliveira; Assis, Marluce Maria Araújo; dos Santos, Adriano Maia

    2010-07-01

    The article approaches the comprehension of professionals that act in the mental health area about the movement of construction of social participation in the health system of Fortaleza, Ceará State. The methodology adopted is based upon qualitative approach. The study was developed with semi-structured interviews with 17 mental health professionals of the city above mentioned. The empirical data was analyzed through the technique of thematic content analysis, where it was identified three cores of analysis: social participation as space of citizenship and policy formulation; oriented to attention of collective needs; and decision taking. The study reveals that social participation represents a possibility of amplifying X the relations between the Civil Society and the State, which makes possible the social intervention in proposals of the health policies. It is highlighted the right to health linked to the consolidation of democracy in the attention to the needs and collective edification.

  5. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  6. Technology Assessment in Support of the Presidential Vision for Space Exploration

    Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert

    2006-01-01

    This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.

  7. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  8. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that

  9. The USA Space Policy in the Context of the Termination of the Arms Race

    L. V. Zhuravlova

    2017-06-01

    Full Text Available The USA Space Policy as one of the leading factors in the process of the arms race’ stop in late 80’s and early 90’s has been examined in the article. American Presidential Directives, international agreements and a wide range of research provided an opportunity to make informative conclusions about the positive role of space topics in the process of a detente and «Cold War» ending. It is important to note that the development of astronautics became one of the spin-offs from «Cold War» and the arms race, as it was the nuclear race logic that stimulated the development of weapons. At the same time, in the process of US-Soviet competition, space became a new sphere of international relations. Therefore, the cooperation in the space sphere became a symbol of the compromise and good will that were required during the most difficult negotiations about arms reduction. The warming and detente periods of international relations have been indicated. Furthermore, the majority of American and Russian researchers conclude that the Strategic Defense Initiative of Reagan became an important element of the USA strategy on the Soviet Union’s pressure, pushing it to more constructive position in negotiations on disarmament. Further results showed the effectiveness of the detente policies’ process of the USA government in this sphere. In addition, the uncertainty in the possibilities of the Soviet economy to respond to the challenge of a new stage of the space systems’ scientific and technological rivalry led to the reduction of armaments of the Soviet Union. At the same time, it was space topics discussion that provided the deepening of the detente process. It is worth to note, that space cooperation relations, which recovered during 80’s-early 90’s, have turned into an important political signal transmission channel between the two countries and caused the facilitating interaction between the parties on wider range of problems. And in the

  10. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  11. Main geologic characteristics of paleochannel-type sandstone-hosted uranium deposits and relevant prospecting and exploration policy

    Chen Zuyi

    1999-01-01

    The author summarizes main prospecting and exploration-related geologic characteristics of paleochannel-type sandstone-hosted uranium deposits such as the structural control over the spatial emplacement of the deposit, the near-source occurrence, the phreatic oxidation origin, the occurrence of the uranium mineralization mostly in one horizon etc. On the basis of analyzing the above characteristics the prospecting and exploration policy of such uranium deposits is proposed

  12. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  13. Deep Space Exploration: Will We Be Ready? Infectious Diseases, Microgravity and Other Forces Affecting Health Pose Challenges for Humans Planning to Explore Space

    LaRocco, Mark T.; Pierson, Duane L.

    1999-01-01

    In contemplating space travel beyond earth orbits, we humans face significant barriers and major challenges. Although researchers involved in several scientific subdisciplines, including space medicine and space life sciences, may provide insights to help overcome those barriers, their efforts are at an early stage of development, leaving open many questions of potentially major consequence.

  14. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  15. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    Eckman, Richard S.; Stackhouse, Paul W.

    2012-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  16. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  17. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  18. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    Abstract In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios

  19. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  20. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  1. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  2. The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration

    Kevin R Duda

    2015-04-01

    Full Text Available The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs and control moment gyroscopes (CMGs within miniaturized modules placed on body segments to provide a viscous resistance during movements against a specified direction of down – initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from down initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  3. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  4. The health policy pathfinder: an innovative strategy to explore interest group politics.

    Nannini, Angela

    2009-10-01

    Moving a specific nursing health policy agenda forward depends on skill in building coalitions with other interest or stakeholder groups, including consumers. Often, nursing students study health policy in a discipline-specific environment without experiential opportunities to argue their views with other stakeholders in policy arenas. The health policy pathfinder, an innovative learning strategy for understanding interest group politics, will assist nursing students in meeting the following objectives: 1) analyze and articulate diverse policy arguments from various stakeholder groups; 2) identify opportunities for collaborations between stakeholder groups; 3) identify the influence of interest groups on the policy making process; and 4) critically evaluate evidence from a variety of sources ranging from peer-reviewed publications to grey literature to Internet blogs. This article describes the health policy pathfinder, including design, execution, and evaluation steps, and provides a brief excerpt from a student pathfinder. Copyright 2009, SLACK Incorporated.

  5. An approach to developing the market for space shuttle payloads: Business/public policy issues and international marketing considerations

    Krebs, W. A. W.

    1974-01-01

    The business and public policies were assessed that were determined to be important for NASA to consider in the design of a program for stimulating use of the space transportation system (STS) among potential users in the U.S. private sector and in foreign countries, in preparation for operations of the space shuttle in the early 1980's. Salient factors related to international cooperation in space are identified for special consideration in the development of user potential of the STS.

  6. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Esper, Jaime

    2004-01-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS

  7. Modular, Adaptive, Reconfigurable Systems: Technology for Sustainable, Reliable, Effective, and Affordable Space Exploration

    Esper, Jaime

    2005-02-01

    In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a

  8. Exploring Nurse Leaders' Policy Participation Within the Context of a Nursing Conceptual Framework.

    Waddell, Ashley; Adams, Jeffrey M; Fawcett, Jacqueline

    2017-11-01

    This study was designed to describe and quantify the experiences of nurse leaders working to influence policy and to build consensus for priority skills and knowledge useful in policy efforts within the context of a nursing conceptual framework. The conceptual model for nursing and health policy and the Adams influence model were combined into a conceptual framework used to guide this two-round modified Delphi study. Twenty-two nurse leaders who were members of a state action coalition participated in the Round 1 focus group; 15 of these leaders completed the Round 2 electronic survey. Round 1 themes indicated the value of a passion for policy, the importance of clear communication, and an understanding the who and when of policy work. Round 2 data reinforced the importance of clear communication regarding policy engagement; knowing the who and when of policy closely followed, and having a passion for policy work was identified as least important. These themes inform learning objectives for nursing education and preparation for interactions with public officials because influencing policy requires knowledge, skills, and persistence. Study findings begin to describe how nurse leaders influence policy within the context of a nursing conceptual framework and generate implications for research, education, and professional practice.

  9. Exploration and guidance in media-rich information spaces : the implementation and realization of guided tours in digital dossiers

    Riel, van C.; Wang, Y.; Eliëns, A.; Guerrero-Bote, V.P.

    2006-01-01

    Confronted with media-rich information spaces involves interfaces that are usually designed to facilitate personal exploration to locate information of interest. Navigating such media-rich information spaces, where information structures can be complex, may result in disorientation and demotivation.

  10. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  11. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  12. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  13. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  14. Mathematical modeling for exploring the effects of overtime option, rework, and discontinuous inventory issuing policy on EMQ model

    Singa Wang Chiu

    2018-09-01

    Full Text Available This study employs mathematical modeling to explore the effects of overtime option, rework, and discontinuous end-item issuing policy on the economic manufacturing quantity (EMQ model. Conventional EMQ model assumed that all products fabricated are of good quality and are issued under continuous policy. In real world, however, nonconforming items are randomly produced, due to diverse unexpected factors in fabrication process. When finished items are to be distributed to outside locations, discontinuous multi-shipment policy is often used rather than continuous rule. In addition, with the intention of increasing short-term capacity or shortening replenishment cycle length to smooth the production planning, adopting overtime option can be an effective strategy. To cope with the aforementioned features in real production systems, this study incorporates overtime option, rework, and multi-shipment policy into the EMQ model and explores their joint effects on optimal lot size and number of shipments, and on other relevant system parameters. Mathematical modeling and Hessian matrix equations enable us to derive the optimal policies to the problem. Through the use of numerical example, the applicability of research result is exhibited and a variety of significant effects of these features on the proposed system are revealed.

  15. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  16. Robotic Design Choice Overview using Co-simulation and Design Space Exploration

    Christiansen, Martin Peter; Larsen, Peter Gorm; Nyholm Jørgensen, Rasmus

    2015-01-01

    . Simulations are used to evaluate the robot model output response in relation to operational demands. An example of a load carrying challenge in relation to the feeding robot is presented and a design space is defined with candidate solutions in both the mechanical and software domains. Simulation results......Rapid robotic system development has created a demand for multi-disciplinary methods and tools to explore and compare design alternatives. In this paper, we present a collaborative modelling technique that combines discrete-event models of controller software with continuous-time models of physical...... robot components. The proposed co-modelling method utilises Vienna Development Method (VDM) and Matlab for discrete-event modelling and 20-sim for continuous-time modelling. The model-based development of a mobile robot mink feeding system is used to illustrate the collaborative modelling method...

  17. Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space

    Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.

    2015-01-01

    The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.

  18. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-02-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice

  19. The project of documentary space 'ExploRe' Opened pluri-disciplinary exploration of reversibility: multiple-point of view access to exploratory works of Andra on reversibility

    Cahier, Jean-Pierre; Desfriches, Orelie; Zacklad, Manuel

    2009-01-01

    The authors present a digital space (a web site - 'ExploRe') which would allows a community to share a set of pluri-disciplinary information items concerning reversibility, and in which the community members describe the items by using attributes and themes belonging to different points of view

  20. Application of Emerging Pharmaceutical Technologies for Therapeutic Challenges of Space Exploration Missions

    Putcha, Lakshmi

    2011-01-01

    An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.

  1. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  2. Advanced micro-reactor for space and deep sea exploration: a scientific Brazilian vision

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca; Lobo, Paulo D.C.

    2011-01-01

    Humankind is at the point to initiate a new adventure in its evolutionary journey, the colonization of other planets of our solar system and space travels. Also, there is still another frontier where the human presence is scarce, the oceans and the Earth seabed. To have success in the exploration of these new frontiers a fundamental requirement must be satisfied: secure availability of energy for life support and others processes. This work deals with the establishment of a basis for a Brazilian nuclear research and development (R and D) program to develop micro-reactor (MR) technologies that may be used in the seabed, the space or another hostile environment on Earth. The work presents a set of basic requirements that is used to define the best reactor type to be used in these environments. Also, the limits and dimensions that define the class of micro-reactors are discussed. The fast neutron spectrum was chosen as the best for the MR and the limits for the active core volume and thermal power are 30 liters and 5 MW. (author)

  3. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  4. Welcoming the Dark Side?: Exploring Whitelash and Actual Space Nazis in TFA Fanfiction

    Cait Coker

    2017-12-01

    Full Text Available From the release of its first trailer, Star Wars: The Force Awakens received a racist backlash in response to the character of Finn, a black Stormtrooper turned hero. Nonetheless, after the film’s debut, slash fans across the Internet joined to make the Finn/Poe and Finn/Poe/Rey relationships (known as ‘ships among the most popular in both art and fiction, in what seemed to be a welcome sign of fandom’s evolution from the usual orgy of white cis-bodies. However, by the time TFA was available for legal download, the Kylo/Hux ‘ship had overtaken the others significantly, despite their lack of screentime and actual lines, and the fact that they were “actual space Nazis” and “evil space boyfriends.” This essay will explore the intersections of racism and misogyny in TFA fanfiction and discuss why these most problematic ‘ships have become the most popular, and consider how the mainstreaming of the Empire in the popular imagination is a form of political whitelash.

  5. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.

    Kim, Eun-Mi; Park, Joon Ho; Kim, Byung-Gee; Seo, Joo-Hyun

    2018-03-01

    Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Phenomenology of dark energy: exploring the space of theories with future redshift surveys

    Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian

    2014-01-01

    We use the effective field theory of dark energy to explore the space of modified gravity models which are capable of driving the present cosmic acceleration. We identify five universal functions of cosmic time that are enough to describe a wide range of theories containing a single scalar degree of freedom in addition to the metric. The first function (the effective equation of state) uniquely controls the expansion history of the universe. The remaining four functions appear in the linear cosmological perturbation equations, but only three of them regulate the growth history of large scale structures. We propose a specific parameterization of such functions in terms of characteristic coefficients that serve as coordinates in the space of modified gravity theories and can be effectively constrained by the next generation of cosmological experiments. We address in full generality the problem of the soundness of the theory against ghost-like and gradient instabilities and show how the space of non-pathological models shrinks when a more negative equation of state parameter is considered. This analysis allows us to locate a large class of stable theories that violate the null energy condition (i.e. super-acceleration models) and to recover, as particular subsets, various models considered so far. Finally, under the assumption that the true underlying cosmological model is the Λ Cold Dark Matter (ΛCDM) scenario, and relying on the figure of merit of EUCLID-like observations, we demonstrate that the theoretical requirement of stability significantly narrows the empirical likelihood, increasing the discriminatory power of data. We also find that the vast majority of these non-pathological theories generating the same expansion history as the ΛCDM model predict a different, lower, growth rate of cosmic structures

  7. Towards human exploration of space: the THESEUS review series on muscle and bone research priorities.

    Lang, Thomas; Van Loon, Jack J W A; Bloomfield, Susan; Vico, Laurence; Chopard, Angele; Rittweger, Joern; Kyparos, Antonios; Blottner, Dieter; Vuori, Ilkka; Gerzer, Rupert; Cavanagh, Peter R

    2017-01-01

    Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.

  8. An exploration of potential directions for climate change policy in Northern Canada

    Newton, J.

    2001-01-01

    The challenges facing decision and policy makers for climate change actions in the Canadian North were described. While Northern Canada contributes only a small fraction of the world's greenhouse gas (GHG) emissions, the impacts are already being felt there, and scientists forecast changes in average annual temperatures to be among the highest in the world. Canada is well positioned to take a lead role in addressing climate change in northern regions. This paper examined the policy choices in the North and outlined the policy directions worthy of further consideration and development. The objective of the paper is to provide a catalyst for on-going discussion and deliberation on climate change actions and policy options in Northern Canada. The paper also addressed the global context that influences national framework and local initiatives. Some tentative policy choices were proposed and described within the general context of the global challenge that climate change presents for the design of coherent regional public policy. It was suggested that integration and mitigation measures should not be approached in isolation from other environmental and socio-economic changes, such as pollution abatement and economic and social development. It was emphasized that building on the sound foundation of current policy frameworks in these areas is essential to the integration of climate change initiatives within established and complementary processes. It was concluded that the evolution of policy options for climate change in the North will be driven by a political willingness to take deliberate actions. 13 refs., 2 tabs., 1 fig

  9. Steering the National: Exploring the Education Policy Uses of PISA in Spain

    Engel, Laura C.

    2015-01-01

    This article presents findings from a recent study of the education policy uses and impact of international large-scale assessments, namely the Programme for International Student Assessment (PISA). The paper focuses on two overlapping dimensions of PISA's education policy use in the context of Spain. These include political dimensions, such as…

  10. Boys, Books and Homophobia: Exploring the Practices and Policies of Masculinities in School

    Kehler, Michael

    2010-01-01

    Disturbed by a proliferation of quick-fix literacy strategies to "help the boys" increase achievement levels in the midst of a policy shift that acknowledges gay, lesbian, bi and transgender, questioning (GLBTQ) youth, the author examines how masculinities are connected to literacy practices and negotiated through a safe school policy.…

  11. Exploring the use of research evidence in health-enhancing physical activity policies

    Hämäläinen, Riitta-Maija; Aro, Arja R; van de Goor, L.A.M.; Lau, Cathrine Juel; Jakobsen, Mette Winge; Chereches, Razvan M; Syed, Ahmed M

    2015-01-01

    BACKGROUND: The gaps observed between the use of research evidence and policy have been reported to be based on the different methods of using research evidence in policymaking by researchers and actual policymakers. Some policies and policymaking processes may therefore be particularly well

  12. Analog Testing of Operations Concepts for Mitigation of Communication Latency During Human Space Exploration

    Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.

    2016-01-01

    OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that

  13. NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration

    Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher

    2016-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be

  14. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    Binyahib, Roba S.

    2013-05-13

    With an increase in processing power, more complex simulations have resulted in larger data size, with higher resolution and more variables. Many techniques have been developed to help the user to visualize and analyze data from such simulations. However, dealing with a large amount of multivariate data is challenging, time- consuming and often requires high-end clusters. Consequently, novel visualization techniques are needed to explore such data. Many users would like to visually explore their data and change certain visual aspects without the need to use special clusters or having to load a large amount of data. This is the idea behind explorable images (EI). Explorable images are a novel approach that provides limited interactive visualization without the need to re-render from the original data [40]. In this work, the concept of EI has been used to create a workflow that deals with explorable iso-surfaces for scalar fields in a multivariate, time-varying dataset. As a pre-processing step, a set of iso-values for each scalar field is inferred and extracted from a user-assisted sampling technique in time-parameter space. These iso-values are then used to generate iso- surfaces that are then pre-rendered (from a fixed viewpoint) along with additional buffers (i.e. normals, depth, values of other fields, etc.) to provide a compressed representation of iso-surfaces in the dataset. We present a tool that at run-time allows the user to interactively browse and calculate a combination of iso-surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces, modify their color map, and interactively re-light the surfaces. We demonstrate the effectiveness of our approach over a multi-terabyte combustion dataset. We also illustrate the efficiency and accuracy of our

  15. Model of refrigerated display-space allocation for multi agro-perishable products considering markdown policy

    Satiti, D.; Rusdiansyah, A.

    2018-04-01

    Problems that need more attention in the agri-food supply chain are loss and waste as consequences from improper quality control and excessive inventories. The use of cold storage is still being one of favourite technologies in controlling product quality by majority of retailers. We considerate the temperature of cold storage in determining the inventory and pricing strategies based on identified product quality. This study aims to minimize the agri-food waste, utility of cold storage facilities and maximize retailer’s profit through determining the refrigerated display-space allocation and markdown policy based on identified food shelf life. The proposed model evaluated with several different scenarios to find out the right strategy.

  16. Policy for Robust Space-based Earth Science, Technology and Applications

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  17. The Colonial Strained in Java 1870-1930: Public Spaces Versus Public Policies

    Arief Akhyat

    2015-12-01

    Full Text Available Proses kolonialisasi pada akhir abad XIX dan awal abad XX bukan hanya rnenimbulkan persoalan internal di kalangan pemerintahan Hindia-Belanda, tetapi jugs berdampakpada proses aplikasi kebijakan dengan dalih Etis". Periode 1870-1930-an adalah merupakan periode dalam sejarah politik pembangunan Indonesia yang sangat penting untuk melihat betapa krusialga proses kolonialisme di Indonesia. Pertama, bahwa mekanisme kebijakan lebih diarahkan sebagai bentuk recovering pembangunan akibat Kebijakan Tanam Paksa 1830-1870. Kedua, bahwa dalam praktiknya, kebijakan yang digulirkan justru sangat pradoks pada tingkat publik. Munculnya berbagai ketegangan sosial, ekonomi bahkan politik (Colonial Strained bersamaan proses pembangunan pada awal abad 0( memberikan nuansa lain. Artinya antara kebjakanpublik (public policies dengan ranah publik (public spaces belum menjadi konstruksi kebijakan kolonial secara menyeluruh dan sangat bias kolonial.

  18. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  19. Estimating end-use emissions factors for policy analysis: the case of space cooling and heating.

    Jacobsen, Grant D

    2014-06-17

    This paper provides the first estimates of end-use specific emissions factors, which are estimates of the amount of a pollutant that is emitted when a unit of electricity is generated to meet demand from a specific end-use. In particular, this paper provides estimates of emissions factors for space cooling and heating, which are two of the most significant end-uses. The analysis is based on a novel two-stage regression framework that estimates emissions factors that are specific to cooling or heating by exploiting variation in cooling and heating demand induced by weather variation. Heating is associated with similar or greater CO2 emissions factor than cooling in all regions. The difference is greatest in the Midwest and Northeast, where the estimated CO2 emissions factor for heating is more than 20% larger than the emissions factor for cooling. The minor differences in emissions factors in other regions, combined with the substantial difference in the demand pattern for cooling and heating, suggests that the use of overall regional emissions factors is reasonable for policy evaluations in certain locations. Accurately quantifying the emissions factors associated with different end-uses across regions will aid in designing improved energy and environmental policies.

  20. Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships

    Goossens, Adriaan J.M.; Basten, Rob J.I.

    2015-01-01

    In this paper we investigate maintenance policy selection (MPS) through the use of the Analytic Hierarchy Process (AHP). A maintenance policy is a policy that dictates which parameter triggers a maintenance action. In practice, selecting the right maintenance policy appears to be a difficult decision. We investigate MPS for naval ships, but our results have wider applicability. For our study we cooperate with the owner and operator of the ships, as well as with a shipbuilder and an original equipment manufacturer of naval ships. We apply a structured five step approach to obtain the relevant criteria that may make one policy preferable over another. The criteria are drawn from both literature and a series of interviews at several navy related companies and are structured into a hierarchy of criteria usable with the AHP. Additionally, we organize three workshops at the three different companies to test the AHP-based MPS approach in practice. We conclude that the AHP is well suited for maintenance policy selection in this broad setting, and that it provides a structured and detailed approach for MPS. Adding to that, it facilitates discussions during and after the sessions, creating a better understanding of the policy selection process. - Highlights: • We use the Analytic Hierarchy Process (AHP) for maintenance policy selection (MPS). • Using both interviews and case studies from the literature, we construct a hierarchy. • In sessions at 3 companies, we find that 1 hierarchy can be used for multiple assets. • The AHP creates a better understanding of the maintenance policy selection process. • Our work is on naval ships, but our approach and findings have wider applicability