WorldWideScience

Sample records for space exploration impacts

  1. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  2. Water: A Critical Material Enabling Space Exploration

    Science.gov (United States)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  3. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  4. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  5. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  6. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  7. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  8. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  9. The New National Vision for Space Exploration

    Science.gov (United States)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that

  10. Wernher von Braun: Reflections on His Contributions to Space Exploration

    Science.gov (United States)

    Goldman, Arthur E.

    2012-01-01

    In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.

  11. Molpher: a software framework for systematic chemical space exploration

    Czech Academy of Sciences Publication Activity Database

    Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, Daniel

    2014-01-01

    Roč. 6, č. 1 (2014) ISSN 1758-2946 R&D Projects: GA TA ČR TA02010212; GA ČR(CZ) GAP202/11/0968; GA ČR(CZ) GP14-29032P Keywords : Chemical space exploration * De-novo design * In silico ligand design * Chemical biology tools Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.547, year: 2014

  12. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    these other objects. In Chapter 3, Marov describes the planets Mercury, Venus, Earth, and Mars, their history and origin, and their environmental conditions, and in Chapter 4 Owen provides similar information about Jupiter, Saturn, Uranus, Neptune, and Pluto, "The Outer Planets of the Solar System." Morrison provides a thorough discussion of "Asteroids, Comets, and Other Small Bodies" in Chapter 5. The understanding of these relics of the formation of the solar system may form the center of our ability to understand the origin of solar systems in general, and of the critical role that the beginning of the solar system had on the prospects for the origin of life and its continued survival and evolution in the face of their recurrent impacts on Earth. In Chapter 6, the first chapter of the third part, Rummel describes the area of "Exobiology," the study of the origin, evolution, and distribution of life in the context of the origin and evolution of the universe. The same processes that have given rise to life on Earth may have given rise to life elsewhere. In Chapter 7, the "Earth and the Biosphere," the nature and function of the Earth are discussed as a specific instance of planetary and biological evolution. The effects of biological processes on the Earth under the influence of human activities are also addressed by Moore and Bartlett in Chapter 7. The final chapter in this section concerns the prospects that life in the universe may be widespread; "SETI," the Search for Extraterrestrial Intelligence, by Billingham and Tarter, presents the arguments for conducting a search for evidence of life elsewhere in the galaxy, and describes the various methods proposed for conducting such a search. While SETI has a distinctly exploration al character, more direct means are available for exploring the solar system around us. The fourth part of the volume addresses this subject of space exploration. Considering the prospects for research on space biology and medicine, the means

  13. Why We Explore: The Value of Space Exploration for Future Generations

    Science.gov (United States)

    Cook, Stephen A.; Armstrong, Robert C., Jr.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) and its industry partners are making measurable progress toward delivering new human space transportation capabilities to serve as the catalyst for a new era of discovery, as directed by the U.S. Vision for Space Exploration. In the interest of ensuring prolonged support, the Agency encourages space advocates of all stripes to accurately portray both the tangible and intangible benefits of space exploration, especially its value for future generations. This may be done not only by emphasizing the nation's return on its aerospace investment, but also by highlighting enabling security features and by promoting the scientific and technological benefits that accrue from the human exploration of space. As America embarks on a new era of leadership and international partnership on the next frontier, we are poised to master space by living off-planet on the Moon to prepare astronauts for longer journeys to Mars. These and other relevant facts should be clearly in the view of influential decision-makers and the American taxpayers, and we must increasingly involve those on whom the long-term sustainability of space exploration ultimately depends: America's youth. This paper will examine three areas of concrete benefits for future generations: fundamental security, economic enterprise, and high-technology advancements spurred by the innovation that scientific discovery demands.

  14. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  15. Hibernation for space travel: Impact on radioprotection

    Science.gov (United States)

    Cerri, Matteo; Tinganelli, Walter; Negrini, Matteo; Helm, Alexander; Scifoni, Emanuele; Tommasino, Francesco; Sioli, Maximiliano; Zoccoli, Antonio; Durante, Marco

    2016-11-01

    Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.

  16. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  17. Rendezvous and Docking for Space Exploration

    Science.gov (United States)

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  18. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  19. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  20. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  1. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  2. Exploring the Concept of Healing Spaces.

    Science.gov (United States)

    DuBose, Jennifer; MacAllister, Lorissa; Hadi, Khatereh; Sakallaris, Bonnie

    2018-01-01

    Evidence-based design (EBD) research has demonstrated the power of environmental design to support improved patient, family, and staff outcomes and to minimize or avoid harm in healthcare settings. While healthcare has primarily focused on fixing the body, there is a growing recognition that our healthcare system could do more by promoting overall wellness, and this requires expanding the focus to healing. This article explores how we can extend what we know from EBD about health impacts of spatial design to the more elusive goal of healing. By breaking the concept of healing into antecedent components (emotional, psychological, social, behavioral, and functional), this review of the literature presents the existing evidence to identify how healthcare spaces can foster healing. The environmental variables found to directly affect or facilitate one or more dimension of healing were organized into six groups of variables-homelike environment, access to views and nature, light, noise control, barrier-free environment, and room layout. While there is limited scientific research confirming design solutions for creating healing spaces, the literature search revealed relationships that provide a basis for a draft definition. Healing spaces evoke a sense of cohesion of the mind, body, and spirit. They support healing intention and foster healing relationships.

  3. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  4. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  5. SpaceExplorer

    DEFF Research Database (Denmark)

    Hansen, Thomas Riisgaard

    2007-01-01

    Web pages are designed to be displayed on a single screen, but as more and more screens are being introduced in our surroundings a burning question becomes how to design, interact, and display web pages on multiple devices and displays. In this paper I present the SpaceExplorer prototype, which...... is able to display standard HTML web pages on multiple displays with only a minor modification to the language. Based on the prototype a number of different examples are presented and discussed and some preliminary findings are presented....

  6. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  7. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  8. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  9. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  10. Exploring Engaged Spaces in Community-University Partnership

    Science.gov (United States)

    Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie

    2016-01-01

    The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…

  11. The Social and Economic Impacts of Space Weather (US Project)

    Science.gov (United States)

    Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.

    2017-12-01

    The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.

  12. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  13. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  14. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  15. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  16. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew

  17. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  18. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  19. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  20. A Compositional Sweep-Line State Space Exploration Method

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  1. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  2. The Space Medicine Exploration Medical Condition List

    Science.gov (United States)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  3. Modular Power Standard for Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  4. Applications of MEMS for Space Exploration

    Science.gov (United States)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  5. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  6. Space exploration - Present and future challenges

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Our future deep-space exploration faces many daunting challenges, but three of them loom high above the rest: physiological debilitation, radiation sickness and psychological stress. Many measures are presently being developed to reduce these difficulties. However, in the long run, two important new developments are required: abundant supply of power, and advanced space propulsion. The future looks bright, however. While the road is a long one, it is now well defined and many exciting explorations are within near-term reach.BiographyDr. Chang-Diaz graduated from MIT in the field of applied plasma physics and fusion research. He has been a NASA space shuttle astronaut on seven missions between 1986 and 2002. As director of the ASP Laboratory in Houston, he continues research on plasma rockets.For more details: see www.jsc.nasa.gov/Bios/htmlbios/chang.htmlNote: Tea and coffee will be served at 16:00 hrs.

  7. The Impact of Regional Higher Education Spaces on the Security of International Students

    Science.gov (United States)

    Forbes-Mewett, Helen

    2016-01-01

    The security of international students in regional higher education spaces in Australia has been overlooked. Contingency theory provides the framework for this case study to explore the organisational structure and support services relevant to a regional higher education space and how this impacts the security of international students. In-depth…

  8. Towards human exploration of space: The THESEUS review series on immunology research priorities.

    Science.gov (United States)

    Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander

    2016-01-01

    Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.

  9. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  10. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  11. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  12. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  13. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  14. From space exploration to commercialisation

    NARCIS (Netherlands)

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without

  15. Complexity in Simplicity: Flexible Agent-based State Space Exploration

    DEFF Research Database (Denmark)

    Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2007-01-01

    In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...

  16. Variable Vector Countermeasure Suit for Space Habitation and Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a visionary system concept that will revolutionize space missions by...

  17. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  18. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  19. An integrated mission approach to the space exploration initiative will ensure success

    Science.gov (United States)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  20. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  1. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  2. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  3. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  4. The possible environmental impacts of petroleum exploration activities on the Georges Bank ecosystem

    International Nuclear Information System (INIS)

    Boudreau, P.R.; Gordon, D.C.; Harding, G.C.

    1999-01-01

    This document contains a description of the Georges Bank ecosystem, the potential environmental impacts from petroleum exploration activities and the scientific information gathered to support a series of recommendations offered by the review panel. Input has been provided by Canadian and US government scientists, external reviewers, representatives of commercial fishing and petroleum industries. The overall consensus is that petroleum exploration activity might affect fish catch rates and spawning behaviour, however, such impacts are likely to be temporary and localized. Exploration drilling would cause a temporary loss of access to some fishing grounds, while seismic activity is likely to lead to some temporary space conflicts with fishing activity, especially during the summer months. Seismic activity could also impact on eggs and larvae of aquatic organisms, the extent depending on time of year and location. Large release of petroleum products from well blowout was considered unlikely. If occurred, it might affect population and ecosystem levels. Environmental impacts from production activities were not included in this assessment, however, they are believed to be substantially different from exploratory activities. Such impacts will be dependent upon the product being produced, the market, and the available technology. 140 refs., tabs., figs

  5. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  6. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  7. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  8. Space Exploration: Challenges in Medicine, Research, and Ethics

    Science.gov (United States)

    Davis, Jeffrey R.

    2007-01-01

    This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.

  9. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  10. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  11. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  12. Different spaces : Exploring Facebook as heterotopia

    NARCIS (Netherlands)

    Rymarczuk, R.; Derksen, Maarten

    2014-01-01

    In this paper we explore the space of Facebook, and use Michel Foucault’s concept of heterotopia to describe it. We show that the heterotopic nature of Facebook explains not only much of its attraction, but even more the discomfort that many people, users as well as non–users, experience in it.

  13. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    Science.gov (United States)

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  14. A Situation Awareness Assistant for Human Deep Space Exploration

    Science.gov (United States)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  15. Vision of Space Exploration Possibilities and limits of a human space conquest.

    Science.gov (United States)

    Zelenyi, Lev

    Few generations of a schoolboys, which later become active and productive space researchers, have been brought up on a science fiction books. These books told us about travels to other Galaxies with velocities larger then velocity of light, meetings with friendly aliens (necessarily with communistic mentalities in Soviet Union books), star wars with ugly space monsters (in the western hemisphere books), etc. Beginning of Space age (4/10/1957) opened the door to a magic box, full of scientific discoveries, made mostly by robotic satellites and spacecraft. However, already the first human space trips clearly demonstrated that space is vigorously hostile to a human beings. Space medicine during the years since Gagarin flight, made an outstanding progress in supporting human presence at orbital stations, but the radiation hazards and problem of hypomagnetism are still opened and there is no visible path to their solution. So the optimistic slogan of 60-ies “Space is Our Place” is not supported by an almost half a century practice. Space never will be a comfortable place for soft and vulnerable humans? There is a general consensus that man will be on Mars during this century (or even its first part). This is very difficult but task it seems to be realistic after the significant advance of modern technologies will be made. But, is there any real need for humans to travel beyond the Mars orbit or to the inner regions of the Solar system? Will the age of Solar system exploration comes to its logical as it was described by Stanislav Lem in his famous book “Return from stars”? The author of this talk has more questions than answers, and thinks that PEX1 Panel on Exploration is just a right place to discuss these usually by passed topics.

  16. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  17. Ethics and public integrity in space exploration

    Science.gov (United States)

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  18. A space exploration strategy that promotes international and commercial participation

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  19. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  20. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Science.gov (United States)

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  1. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  2. Preaching to the converted? An analysis of the UK public for space exploration.

    Science.gov (United States)

    Entradas, Marta; Miller, Steve; Peters, Hans Peter

    2013-04-01

    This article presents the results of a survey carried out at two space outreach events in the UK aimed at characterising "the public for space exploration" and measuring public support for space exploration. Attitude towards space exploration and policy preferences were used as measures of public support. The sample involved 744 respondents and was mainly composed of adults between 25 and 45 years old, with men slightly over-represented compared with women. Findings revealed that males appeared to be stronger supporters than females - men had a more positive attitude towards space exploration and stronger space policy preferences. Because mixed groups tend to come together to such events we argue that male respondents would be more likely to be part of the "attentive" and "interested" public who come to outreach activities and bring a less interested public with them.

  3. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  4. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  5. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  6. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  7. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  8. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  9. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  10. Environmental Impact Assessment and Space Activities

    Science.gov (United States)

    Viikari, L.

    these developments in way or another. In addition to national EIA regulations, there are also international agreements on EIA (i.a. the Espoo Convention) which establish their own EIA systems. In international law of outer space, environmental impact assessment is, however, not a well-established tool. The UN space treaties were drafted during a time when such consideratio ns were still not among the highest ranking items on national agendas. Therefore, these instruments fail to contain provisions regarding impact assessment, and also rest of the environmental content found in them is rather modest. The nearest equivalent to any impact assessment is contained in the Outer Space Treaty Article IX, namely the requirement of prior consultations in case of planned space activity or experiment that might cause "potentially harmful interference" with space activities of other St ates Parties. There also exist some applicable provisions on national level, such as the requirement of "formal assessment" on NASA programs of "[orbital] debris generation potential and debris mitigation options" in NASA Policy for Limiting Orbital Debris Generation (Art. 1.b). Also the national legislation of some space faring countries provides at least for the supply of some kind of information assessing the possible environmental consequences of proposed space activities. For instance, the Russian Statute on Lisencing Space Operations requires that for obtaining a license for space operation in the Russian Federation, the applicant has to supply, i.a. "documents confirming the safety of space operations (including ecological, fire and explosion safety) and the reliability of space equipment'"(Art.5.h). However, such provisions are obviously not enough for ensuring effective international regulation of the issue. The goal of this paper is to consider the usefulness of international environmental impact assessment for space activities. The space environment, however, is a unique arena in many ways

  11. Novelty Search for Soft Robotic Space Exploration

    NARCIS (Netherlands)

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  12. Novelty search for soft robotic space exploration

    NARCIS (Netherlands)

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  13. Charge distributions in transverse coordinate space and in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)], E-mail: dshwang@slac.stanford.edu; Kim, Dong Soo [Department of Physics, Kangnung National University, Kangnung 210-702 (Korea, Republic of); Kim, Jonghyun [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2008-11-27

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  14. Charge distributions in transverse coordinate space and in impact parameter space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  15. Explaining public support for space exploration funding in America: A multivariate analysis

    Science.gov (United States)

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  16. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  17. Epoxy/UHMWPE Composite Hybridized with Gadolinium Nanoparticles for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract Deep space radiations pose a major threat to the astronauts and their space craft during the long duration space exploration expeditions [1]. Ultra High...

  18. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  19. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  20. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  1. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  2. Farside explorer

    DEFF Research Database (Denmark)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon

    2012-01-01

    the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from...... the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar......Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded...

  3. The impact of earth resources exploration from space

    Science.gov (United States)

    Nordberg, W.

    1976-01-01

    Remote sensing of the earth from satellite systems such as Landsat, Nimbus, and Skylab has demonstrated the potential influence of such observations on a number of major human concerns. These concerns include the management of food, water and fiber resources, the exploration and management of mineral and energy resources, the protection of the environment, the protection of life and property, and improvements in shipping and navigation.

  4. Moral Geography and Exploration of the Moral Possibility Space

    Directory of Open Access Journals (Sweden)

    Bongrae Seok

    2017-12-01

    Full Text Available This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017. By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world, Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and building practical views on living good life. The goal of this geographical exploration of the moral possibility space is surveying different traditions of morality and finding tractable ways of human flourishing. This article, by following the chapters of his book, explains his views on moral diversity and his interdisciplinary and naturalistic approach to ethics. It also discusses interactive and dynamic ways to expand the moral possibility space.

  5. The Impact of Green Open Space on Community Attachment—A Case Study of Three Communities in Beijing

    Directory of Open Access Journals (Sweden)

    Yuemei Zhu

    2017-04-01

    Full Text Available With the development of urbanization in China, the quality of urban life and community attachment have attracted increasing attention of the governments and society. Existing research on community attachment has mainly examined how individual characteristics affect community attachment, such as their length of residence and socioeconomic status. However, some scholars have become interested in exploring the effects of green open space on community attachment. This research examined whether the distribution of green open space in communities had significant effects on community attachment, and both the impact and path were also investigated. Through a questionnaire survey, relevant data in three communities of Beijing were collected. The impact of green open space layout on community attachment was evaluated by using hierarchical regression, and the impact path was examined by using a structural equation model. The results showed that green open space in a community had significant effects on the community attachment, with centralized green open space layout having a greater effect than that of dispersed green open space. Moreover, the more complex the shape of green open space is, the greater the impact is. The degree of satisfaction with the green open space had direct effects on the community attachment. The accessibility and perceived area of green open space could indirectly have an impact on the community attachment by affecting the degree of satisfaction with the green open space. Nevertheless, residents’ perceived importance of green open space could affect the community attachment directly and indirectly, as it affects the degree of satisfaction.

  6. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  7. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  8. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    Science.gov (United States)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  9. Three near term commercial markets in space and their potential role in space exploration

    Science.gov (United States)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  10. Design space pruning through hybrid analysis in system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  11. High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop...

  12. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  13. A Management Model for International Participation in Space Exploration Missions

    Science.gov (United States)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  14. Enabling MPSoC design space exploration on FPGAs

    NARCIS (Netherlands)

    Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H.; Hussain, D.M.A.; Rajput, A.Q.K.; Chowdhry, B.S.; Gee, Q.

    2009-01-01

    Future applications for embedded systems demand chip multiprocessor designs to meet real-time deadlines. These multiprocessors are increasingly becoming heterogeneous for reasons of cost and power. Design space exploration (DSE) of application mapping becomes a major design decision in such systems.

  15. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Science.gov (United States)

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design

    Science.gov (United States)

    Basith, Shaherin; Cui, Minghua; Macalino, Stephani J. Y.; Park, Jongmi; Clavio, Nina A. B.; Kang, Soosung; Choi, Sun

    2018-01-01

    The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families. These receptors serve as increasingly attractive drug targets due to their relevance in the treatment of various diseases, such as inflammatory disorders, metabolic imbalances, cardiac disorders, cancer, monogenic disorders, etc. In the last decade, multitudes of three-dimensional (3D) structures were solved for diverse GPCRs, thus referring to this period as the “golden age for GPCR structural biology.” Moreover, accumulation of data about the chemical properties of GPCR ligands has garnered much interest toward the exploration of GPCR chemical space. Due to the steady increase in the structural, ligand, and functional data of GPCRs, several cheminformatics approaches have been implemented in its drug discovery pipeline. In this review, we mainly focus on the cheminformatics-based paradigms in GPCR drug discovery. We provide a comprehensive view on the ligand– and structure-based cheminformatics approaches which are best illustrated via GPCR case studies. Furthermore, an appropriate combination of ligand-based knowledge with structure-based ones, i.e., integrated approach, which is emerging as a promising strategy for cheminformatics-based GPCR drug design is also discussed. PMID:29593527

  17. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  18. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  19. Space Exploration

    Science.gov (United States)

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  20. Biomimetics on seed dispersal: survey and insights for space exploration

    International Nuclear Information System (INIS)

    Pandolfi, Camilla; Izzo, Dario

    2013-01-01

    Seeds provide the vital genetic link and dispersal agent between successive generations of plants. Without seed dispersal as a means of reproduction, many plants would quickly die out. Because plants lack any sort of mobility and remain in the same spot for their entire lives, they rely on seed dispersal to transport their offspring throughout the environment. This can be accomplished either collectively or individually; in any case as seeds ultimately abdicate their movement, they are at the mercy of environmental factors. Thus, seed dispersal strategies are characterized by robustness, adaptability, intelligence (both behavioral and morphological), and mass and energy efficiency (including the ability to utilize environmental sources of energy available): all qualities that advanced engineering systems aim at in general, and in particular those that need to enable complex endeavors such as space exploration. Plants evolved and adapted their strategy according to their environment, and taken together, they enclose many desirable characteristics that a space mission needs to have. Understanding in detail how plants control the development of seeds, fabricate structural components for their dispersal, build molecular machineries to keep seeds dormant up to the right moment and monitor the environment to release them at the right time could provide several solutions impacting current space mission design practices. It can lead to miniaturization, higher integration and packing efficiency, energy efficiency and higher autonomy and robustness. Consequently, there would appear to be good reasons for considering biomimetic solutions from plant kingdom when designing space missions, especially to other celestial bodies, where solid and liquid surfaces, atmosphere, etc constitute and are obviously parallel with the terrestrial environment where plants evolved. In this paper, we review the current state of biomimetics on seed dispersal to improve space mission design

  1. Phase-space exploration in nuclear giant resonance decay

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.

    1995-01-01

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space

  2. Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report - Extended Summary

    Science.gov (United States)

    2009-01-01

    The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D

  3. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  4. The impact of culture on human and space development—New millennial challenge

    Science.gov (United States)

    Harris, Philip R.

    The Space Age is causing new applications to the concept of culture, a human coping tool. The exploration and exploitation of outer space resources are altering human culture both on Earth and in orbit. For the first time in history, our species need not merely react and adapt to environment, but plan for a space culture appropriate for extraterrestrial migration. The impact of culture can be analyzed in terms of how space developments alter human perceptions and behavior on this planet; the emergence of a new culture to suit the orbital environment; the organizations that build spacecraft and deploy people aloft; and the technological systems created for spacefaring. This article presents a paradigm for analyzing some of the non-technical human factors involved in space undertakings. It also offers a method for classifying a culture according to ten categories which may be applied both to a macroculture, such as a lunar base; or a microculture, such as a space agency or crew. Human enterprise in space is viewed as both altering the species, and providing a challenge for expanded behavioral and biological scientific research on living and working in space.

  5. Exploring technology impacts of Healthcare 2.0 initiatives.

    Science.gov (United States)

    Randeree, Ebrahim

    2009-04-01

    As Internet access proliferates and technology becomes more accessible, the number of people online has been increasing. Web 2.0 and the social computing phenomena (such as Facebook, Friendster, Flickr, YouTube, Blogger, and MySpace) are creating a new reality on the Web: Users are changing from consumers of Web-available information and resources to generators of information and content. Moving beyond telehealth and Web sites, the push toward Personal Health Records has emerged as a new option for patients to take control of their medical data and to become active participants in the push toward widespread digitized healthcare. There is minimal research on the impact of Web 2.0 in healthcare. This paper reviews the changing patient-physician relationship in the Healthcare 2.0 environment, explores the technological challenges, and highlights areas for research.

  6. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  7. Impact loading of a space nuclear powerplant

    Directory of Open Access Journals (Sweden)

    Evgeny I. Kraus

    2013-04-01

    Full Text Available Preferred formulation of the problem in two space dimensions are described for solving the three fundamental equations of mechanics (conservation of mass, conservation of momentum, and conservation of energy. Models of the behavior of materials provide the closure to the three fundamentals equations for applications to problems in compressible fluid flow and solid mechanics. Models of fracture and damage are described. A caloric model of the equation of state is proposed to describe thermodynamic properties of solid materials with the phase transitions. Two-dimensional problems of a high-velocity impact of a space nuclear propulsion system reactor are solved. High-velocity impact problems of destruction of reactor are solved for the two cases: 1 at its crash landing on the Earth surface (the impact velocity being up to 400 m/s; 2 at its impact (with velocity up to 16 km/s with the space debris fragments.

  8. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper

  9. Space Exploration as a Human Enterprise: The Scientific Interest

    Science.gov (United States)

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  10. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  11. Digital Cities in the making: exploring perceptions of space, agency of actors and heterotopia

    Directory of Open Access Journals (Sweden)

    Asne Kvale Handlykken

    2011-12-01

    Full Text Available

    This paper is an attempt to explore how we imagine, sense and experience spaces in digital cities by a study of the hybrid relations between digital media, users' bodies, architecture and the city. Digital and physical spaces of the city are intertwined, the city and urban places and things become sentient, embedded with sensors and digital infrastructure, challenging traditional notions of space, and how we perceive and experience urban space.  Crucial issues to explore are how interactions and agency operating amongst actors in these spaces; between sentient non-human actors, places and people?  How are spaces of interaction embedded in the city, what characterizes these spaces, can they be explored as heterotopias (Foucault? These processes are a mutual shaping of society and technology, where the role of the imaginary, of mental representations and creation are being transformed.

  12. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  13. Scalable and near-optimal design space exploration for embedded systems

    CERN Document Server

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  14. NASA's Space Launch System: A New Capability for Science and Exploration

    Science.gov (United States)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  15. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  16. Safe Exploration of State and Action Spaces in Reinforcement Learning

    OpenAIRE

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  17. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  18. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  19. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  20. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    Science.gov (United States)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  1. Class Explorations in Space: From the Blackboard and History to the Outdoors and Future

    Science.gov (United States)

    Cavicchi, Elizabeth

    2011-11-01

    Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!

  2. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    Science.gov (United States)

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  3. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  4. The politics and perils of space exploration who will compete, who will dominate?

    CERN Document Server

    Dawson, Linda

    2017-01-01

    Written by a former Aerodynamics Officer on the space shuttle program, this book provides a complete overview of the “new” U. S. space program, which has changed considerably over the past 50 years.The future of space exploration has become increasingly dependent on other countries and private enterprise. Can private enterprise can fill the shoes of NASA and provide the same expertise and safety measures and lessons learned from NASA? In order to tell this story, it is important to understand the politics of space as well as the dangers, why it is so difficult to explore and utilize the resources of space. Some past and recent triumphs and failures will be discussed, pointing the way to a successful space policy that includes taking risks but also learning how to mitigate them.

  5. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  6. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  7. Chart links solar, geophysical events with impacts on space technologies

    Science.gov (United States)

    Davenport, George R.

    While developing a Space Weather Training Program for Air Force Space Command and the 50th Weather Squadron, both based in Colorado, ARINC Incorporated produced a flowchart that correlates solar and geophysical events with their impacts on Air Force systems.Personnel from both organizations collaborated in the development of the flowchart and provided many comments and suggestions. The model became the centerpiece of the Space Environment Impacts Reference Pamphlet, as well as the formal Space Weather Training Program. Although it is not a numerical or computer model, the flowchart became known as the “Space Environmental Impacts Model.”

  8. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Science.gov (United States)

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    Science.gov (United States)

    Oughton, Edward J.; Skelton, Andrew; Horne, Richard B.; Thomson, Alan W. P.; Gaunt, Charles T.

    2017-01-01

    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.

  11. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  12. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  13. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  14. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  15. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  16. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  17. Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme

    Science.gov (United States)

    Monreal, Timothy

    2016-01-01

    Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…

  18. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  19. Study of space reactors for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  20. Study of space reactors for exploration missions

    International Nuclear Information System (INIS)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  1. Space 2000 Symposium

    Science.gov (United States)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  2. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  3. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  4. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    simulation inputs are most important and which have negligible influence on the model output. Popular sensitivity methods include the Morris method, variance-based methods (e.g. Sobol’s), and regression methods (e.g. SRC). However, all these methods only address one output at a time, which makes it difficult...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring......Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...

  5. Essential elements of a framework for future space exploration and use: the role of science

    Science.gov (United States)

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  6. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  7. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Science.gov (United States)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  8. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  9. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  10. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    Science.gov (United States)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  11. Private space exploration: A new way for starting a spacefaring society?

    Science.gov (United States)

    Genta, Giancarlo

    2014-11-01

    Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.

  12. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  13. Cyber threat impact assessment and analysis for space vehicle architectures

    Science.gov (United States)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  14. Benefits of Microalgae for Human Space Exploration

    Science.gov (United States)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  15. DIPS space exploration initiative safety

    International Nuclear Information System (INIS)

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  16. NASA Virtual Institutes: International Bridges for Space Exploration

    Science.gov (United States)

    Schmidt, Gregory K.

    2016-01-01

    NASA created the first virtual institute, the NASA Astrobiology Institute (NAI), in 2009 with an aim toward bringing together geographically disparate and multidisciplinary teams toward the goal of answering broad questions in the then-new discipline of astrobiology. With the success of the virtual institute model, NASA then created the NASA Lunar Science Institute (NLSI) in 2008 to address questions of science and human exploration of the Moon, and then the NASA Aeronautics Research Institute (NARI) in 2012 which addresses key questions in the development of aeronautics technologies. With the broadening of NASA's human exploration targets to include Near Earth Asteroids and the moons of Mars as well as the Moon, the NLSI morphed into the Solar System Exploration Research Virtual Institute (SSERVI) in 2012. SSERVI funds domestic research teams to address broad questions at the intersection of science and human exploration, with the underlying principle that science enables human exploration, and human exploration enables science. Nine domestic teams were funded in 2014 for a five-year period to address a variety of different topics, and nine international partners (with more to come) also work with the U.S. teams on a variety of topics of mutual interest. The result is a robust and productive research infrastructure that is not only scientifically productive but can respond to strategic topics of domestic and international interest, and which develops a new generation of researchers. This is all accomplished with the aid of virtual collaboration technologies which enable scientific research at a distance. The virtual institute model is widely applicable to a range of space science and exploration problems.

  17. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  18. Liquid Hydrogen Sensor Considerations for Space Exploration

    Science.gov (United States)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  19. Towards human exploration of space: The THESEUS review series on immunology research priorities

    DEFF Research Database (Denmark)

    Jean-Pol, Frippiat; Crucian, Brian E; de Quervain, Dominique

    2016-01-01

    to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent...

  20. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    Science.gov (United States)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  1. Space: A new frontier

    Science.gov (United States)

    Cutolo, Mona; Miranda, Denis M.

    1986-08-01

    The challenges and the promises of space colonization present an exciting opportunity for exploring and analyzing the values, the institutions and the physical environments we have created on Earth. Here we describe an interdisciplinary course, team-taught, that examines the current state of space exploration and the innovative technologies spawned by space research. The course also explores the possible social, economic, political and international impacts of migration to space of people and industries. A course project is to design a space colony for a community of 10,000 people. Given the technical design parameters and other details, the students are to engineer socially an ideal community, bearing in mind the short lifetimes of utopian communities of the past. The process is intended to help the students gain a fair understanding of the dynamics of human societies and of the technologies we have developed that enable us to change our world and to design new worlds.

  2. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  3. Pruning techniques for multi-objective system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.

    2014-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  4. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  5. Space Exploration: Issues Concerning the Vision for Space Exploration

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2006-01-01

    .... Bush announced new goals for the National Aeronautics and Space Administration (NASA), directing the agency to focus on returning humans to the Moon by 2020, and eventually sending them to Mars and worlds beyond...

  6. The Now Age, New Space, and Transforming the Exploration of Geospace

    Science.gov (United States)

    Paxton, L. J.

    2017-12-01

    In this talk I will discuss: 1) Changing our description of how and why we do Heliophysics (NASA) and Geospace Science (NSF) research 2) How we can take advantage of the New Space industry capabilities 3) How and why we can use the technology that has begun the transformation of our society into the "Now Age" I will discuss trends that I see that enable, if we have the will, a fundamental revitalization of the science that we aspire to do. I will focus on our opportunities to revolutionize the exploration of geospace (the region below about 1000km) and how that addresses fundamental questions about our place in the universe. Exploration of space, in particular exploration of geospace, is at a cusp - we can either attempt to continue to move forward using the same, tried and true techniques or we can embrace the "Now Age" and the capabilities enabled by the New Space industry to move forward to a fuller understanding of our world's place in the solar system. Heliophysics at NASA and Geospace Science at NSF can be recast as fundamental exploratory basic research that asks and answers questions that everyone can understand. We are in the Now Age because the human race has enabled and embraced a fundamentally different way of accessing information and, potentially gaining knowledge. For the first time, we have the capability to provide essentially all of recorded human knowledge immediately and to anyone - and people want that access "now". Even in the scientific community we expect to be able to see the latest data right now. This is enabled by the internet and ubiquitous connectivity; low cost data storage and memory; fast, low-cost computing; the means to visualize the information; advances in the way we store, catalog and retrieve information; and advances in modeling and simulation. Concomitant with the Now Age, and providing an impetus to do things "now", the New Space industry has enabled low cost access to space and has embraced a vision of human presence in

  7. Low-Impact Exploration for Gold in the Scottish Caledonides.

    Science.gov (United States)

    Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew; Broetto, Gabriele

    2017-04-01

    The Caledonian orogenic belt of the northern British Isles hosts some significant gold deposits. However, gold mineralization in the region is underexplored. Some of the most prospective areas identified by rich alluvial gold anomalies are environmentally and culturally sensitive. Traditional mineral exploration methods can have a range of negative environmental, social and economic impacts. The regional tourism economy is dependent on outdoor activities, landscape quality, wildlife and industrial heritage and has the potential to be disrupted by mineral resource developments. Low-cost, low-impact exploration strategies are therefore, key to sustainably developing the mineral resource potential. Research currently in progress in part of the Scottish Caledonides aims to develop protocols for more sustainable exploration. We are using a range of geoscience techniques to characterize the mineral system, improve exploration targeting and reduce negative impacts. To do this we targeted an area with a large preexisting dataset (e.g. stream sediment geochemistry, geomorphology, structural geology, petrology, geophysics, mine data) that can be synthesized and analyzed in a GIS. Part of the work aims to develop and test a model for gold dispersion in the surface environment that accounts for climatic and anthropogenic influences in order to locate bedrock sources. This multidisciplinary approach aims to reduce the target areas for subsequent exploration activities such as soil sampling, excavation and drilling.

  8. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  9. Single Step to Orbit; a First Step in a Cooperative Space Exploration Initiative

    Science.gov (United States)

    Lusignan, Bruce; Sivalingam, Shivan

    1999-01-01

    At the end of the Cold War, disarmament planners included a recommendation to ease reduction of the U.S. and Russian aerospace industries by creating cooperative scientific pursuits. The idea was not new, having earlier been suggested by Eisenhower and Khrushchev to reduce the pressure of the "Military Industrial Complex" by undertaking joint space exploration. The Space Exploration Initiative (SEI) proposed at the end of the Cold War by President Bush and Premier Gorbachev was another attempt to ease the disarmament process by giving the bloated war industries something better to do. The engineering talent and the space rockets could be used for peaceful pursuits, notably for going back to the Moon and then on to Mars with human exploration and settlement. At the beginning of this process in 1992 staff of the Stanford Center for International Cooperation in Space attended the International Space University in Canada, met with Russian participants and invited a Russian team to work with us on a joint Stanford-Russian Mars Exploration Study. A CIA student and Airforce and Navy students just happened to join the Stanford course the next year and all students were aware that the leader of the four Russian engineers was well versed in Russian security. But, as long as they did their homework, they were welcome to participate with other students in defining the Mars mission and the three engineers they sent were excellent. At the end of this study we were invited to give a briefing to Dr. Edward Teller at Stanford's Hoover Institution of War and Peace. We were also encouraged to hold a press conference on Capitol Hill to introduce the study to the world. At a pre-conference briefing at the Space Council, we were asked to please remind the press that President Bush had asked for a cooperative exploration proposal not a U.S. alone initiative. The Stanford-Russian study used Russia's Energia launchers, priced at $300 Million each. The mission totaled out to $71.5 Billion

  10. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  11. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    Science.gov (United States)

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  12. The impact of price reduction on exploration-production strategies

    International Nuclear Information System (INIS)

    Perrin, F.

    1994-01-01

    Six trends seem to be prevailing: a best ratio cost-efficiency in exploration-production; a certain geographical concentration; the impact of technological advance; the opening to exploration of areas closed in the past to the western companies; accent put on natural gas

  13. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  14. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Science.gov (United States)

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  15. PDB-Explorer: a web-based interactive map of the protein data bank in shape space.

    Science.gov (United States)

    Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis

    2015-10-23

    The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3

  16. Identifying Sociological Factors for the Success of Space Exploration

    Science.gov (United States)

    Lundquist, C. A.; Tarter, D.; Coleman, A.

    Astrosociology factors relevant to success of future space exploration may best be identified through studies of sociological circumstances of past successful explorations, such as the Apollo-Lunar Missions. These studies benefit from access to primary records of the past programs. The Archives and Special Collections Division of the Salmon Library at the University of Alabama Huntsville (UAH) houses large collections of material from the early periods of the space age. The Huntsville campus of the University of Alabama System had its birth in the mid-1950s at the time when the von Braun rocket team was relocated from Texas to Huntsville. The University, the City of Huntsville and the US Government rocket organizations developed in parallel over subsequent years. As a result, the University has a significant space heritage and focus. This is true not only for the engineering and science disciplines, but also for the social sciences. The life of the University spans the period when Huntsville government and industrial organizations were responsible for producing the rocket vehicles to first take mankind to the Moon. That endeavor was surely as significant sociologically as technologically. In the 1980s, Donald E. Tarter, conducted a series of video interviews with some leading members of the original von Braun team. Although the interviews ranged over many engineering subjects, they also recorded personal features of people involved in the Apollo lunar exploration program and the interactions between these people. Such knowledge was of course an objective. These interviews are now in the collections of the UAH Library Archives, along with extensive documentation from the same period. Under sponsorship of the Archives and the NASA-Marshall Retiree Association, the interview series was restarted in 2006 to obtain comparable oral-history interviews with more than fifty US born members of the rocket team from the 1960s. Again these video interviews are rich with

  17. Comparison of Historic Exploration with Contemporary Space Policy Suggests a Retheorisation of Settings

    Science.gov (United States)

    Cokely, J.; Rankin, W.; Heinrich, P.; McAuliffe, M.

    The 2008 NASA Astrobiology Roadmap provides one way of theorising this developing field, a way which has become the normative model for the discipline: science-and scholarship-driven funding for space. By contrast, a novel re-evaluation of funding policies is undertaken in this article to reframe astrobiology, terraforming and associated space travel and research. Textual visualisation, discourse and numeric analytical methods, and value theory are applied to historical data and contemporary sources to re-investigate significant drivers and constraints on the mechanisms of enabling space exploration. Two data sets are identified and compared: the business objectives and outcomes of major 15th-17th century European joint-stock exploration and trading companies and a case study of a current space industry entrepreneur company. Comparison of these analyses suggests that viable funding policy drivers can exist outside the normative science and scholarship-driven roadmap. The two drivers identified in this study are (1) the intrinsic value of space as a territory to be experienced and enjoyed, not just studied, and (2) the instrumental, commercial value of exploiting these experiences by developing infrastructure and retail revenues. Filtering of these results also offers an investment rationale for companies operating in, or about to enter, the space business marketplace.

  18. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature

    Directory of Open Access Journals (Sweden)

    Tamlyn Eslie Roman

    2017-07-01

    Full Text Available Background The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. Methods A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. Results The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. Conclusion The literature supports Bossert’s conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning.

  19. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  20. Habitat Particle Impact Monitoring System

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is the development of particle impact detection technology for application to habitable space exploration modules, both in space and on...

  1. The Value of Humans in the Biological Exploration of Space

    Science.gov (United States)

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  2. Planetary exploration with nanosatellites: a space campus for future technology development

    Science.gov (United States)

    Drossart, P.; Mosser, B.; Segret, B.

    2017-09-01

    Planetary exploration is at the eve of a revolution through nanosatellites accompanying larger missions, or freely cruising in the solar system, providing a man-made cosmic web for in situ or remote sensing exploration of the Solar System. A first step is to build a specific place dedicated to nanosatellite development. The context of the CCERES PSL space campus presents an environment for nanosatellite testing and integration, a concurrent engineering facility room for project analysis and science environment dedicated to this task.

  3. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  4. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  5. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  6. Exploring Intra-Urban Accessibility and Impacts of Pollution Policies with an Agent-Based Simulation Platform: GaMiroD

    Directory of Open Access Journals (Sweden)

    Pierre Fosset

    2016-01-01

    Full Text Available In this work we address the issue of sustainable cities by focusing on one of their very central components: daily mobility. Indeed, if cities can be interpreted as spatial organizations allowing social interactions, the number of daily movements needed to reach this goal is continuously increasing. Therefore, improving urban accessibility merely results in increasing traffic and its negative externalities (congestion, accidents, pollution, noise, etc., while eventually reducing the quality of life of people in the city. This is why several urban-transport policies are implemented in order to reduce individual mobility impacts while maintaining equitable access to the city. This challenge is however non-trivial and therefore we propose to investigate this issue from the complex systems point of view. The real spatial-temporal urban accessibility of citizens cannot be approximated just by focusing on space and implies taking into account the space-time activity patterns of individuals, in a more dynamic way. Thus, given the importance of local interactions in such a perspective, an agent based approach seems to be a relevant solution. This kind of individual based and “interactionist” approach allows us to explore the possible impact of individual behaviors on the overall dynamics of the city but also the possible impact of global measures on individual behaviors. In this paper, we give an overview of the Miro Project and then focus on the GaMiroD model design from real data analysis to model exploration tuned by transportation-oriented scenarios. Among them, we start with the the impact of a LEZ (Low Emission Zone in the city center.

  7. The potential of space exploration for the fine arts

    Science.gov (United States)

    Mclaughlin, William I.

    1993-01-01

    Art provides an integrating function between the 'upper' and 'lower' centers of the human psyche. The nature of this function can be made more specific through the triune model of the brain. The evolution of the fine arts - painting, drawing, architecture, sculpture, literature, music, dance, and drama, plus cinema and mathematics-as-a-fine-art - are examined in the context of their probable stimulations by space exploration: near term and long term.

  8. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics.

    Science.gov (United States)

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types ( r s (14) = 0.525, p = 0.037) and geometry ( r s (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  9. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics

    Directory of Open Access Journals (Sweden)

    Maryam Banaei

    2017-09-01

    Full Text Available Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants’ emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers’ affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI approach recording the electroencephalogram (EEG of participants while they naturally walk through different interior forms in virtual reality (VR. The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC. Theta band activity in ACC correlated with specific feature types (rs (14 = 0.525, p = 0.037 and geometry (rs (14 = −0.579, p = 0.019, providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  10. Optical Mining of Asteroids, Moons, and Planets to Enable Sustainable Human Exploration and Space Industrialization

    Data.gov (United States)

    National Aeronautics and Space Administration — PROBLEM, DEEP SPACE HUMAN EXPLORATION IS UNAFFORDABLE: In 2014 the NASA Advisory Council issued a finding that “The mismatch between NASA’s aspirations for human...

  11. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  12. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  13. Exploration of Stellarator Configuration Space with Global Search Methods

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.; Ethier, S.

    2001-01-01

    An exploration of stellarator configuration space z for quasi-axisymmetric stellarator (QAS) designs is discussed, using methods which provide a more global view of that space. To this end, we have implemented a ''differential evolution'' (DE) search algorithm in an existing stellarator optimizer, which is much less prone to become trapped in local, suboptimal minima of the cost function chi than the local search methods used previously. This search algorithm is complemented by mapping studies of chi over z aimed at gaining insight into the results of the automated searches. We find that a wide range of the attractive QAS configurations previously found fall into a small number of classes, with each class corresponding to a basin of chi(z). We develop maps on which these earlier stellarators can be placed, the relations among them seen, and understanding gained into the physics differences between them. It is also found that, while still large, the region of z space containing practically realizable QAS configurations is much smaller than earlier supposed

  14. Exploiting Domain Knowledge in System-level MPSoC Design Space Exploration

    NARCIS (Netherlands)

    Thompson, M.; Pimentel, A.D.

    2013-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded multimedia systems. During system-level DSE, system parameters like, e.g., the number and type of processors, and the mapping of

  15. An open-source job management framework for parameter-space exploration: OACIS

    Science.gov (United States)

    Murase, Y.; Uchitane, T.; Ito, N.

    2017-11-01

    We present an open-source software framework for parameter-space exporation, named OACIS, which is useful to manage vast amount of simulation jobs and results in a systematic way. Recent development of high-performance computers enabled us to explore parameter spaces comprehensively, however, in such cases, manual management of the workflow is practically impossible. OACIS is developed aiming at reducing the cost of these repetitive tasks when conducting simulations by automating job submissions and data management. In this article, an overview of OACIS as well as a getting started guide are presented.

  16. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Science.gov (United States)

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  17. Moral Geography and Exploration of the Moral Possibility Space

    OpenAIRE

    Bongrae Seok

    2017-01-01

    This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017). By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world), Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and build...

  18. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  19. Exploration of Unknown Spaces by People Who Are Blind Using a Multi-sensory Virtual Environment

    Science.gov (United States)

    Lahav, Orly; Mioduser, David

    2004-01-01

    The ability to explore unknown spaces independently, safely and efficiently is a combined product of motor, sensory, and cognitive skills. Normal exercise of this ability directly affects an individual?s quality of life. Mental mapping of spaces and of the possible paths for navigating these spaces is essential for the development of efficient…

  20. Interleaving methods for hybrid system-level MPSoC design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.; McAllister, J.; Bhattacharyya, S.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system architectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size of

  1. Nuclear data needs for the space exploration initiative

    International Nuclear Information System (INIS)

    Howe, S.D.; Auchampaugh, G.

    1991-01-01

    On July 20, 1989, the President of the United States announced a new direction for the US Space Program. The new Space Exploration Initiative (SEI) is intended to emplace a permanent base on the Lunar surface and a manned outpost on the Mars surface by 2019. In order to achieve this ambitious challenge, new, innovative and robust technologies will have to be developed to support crew operations. Nuclear power and propulsion have been recognized as technologies that are at least mission enhancing and, in some scenarios, mission enabling. Because of the extreme operating conditions present in a nuclear rocket core, accurate modeling of the rocket will require cross section data sets which do not currently exist. In order to successfully achieve the goals of the SEI, major obstacles inherent in long duration space travel will have to be overcome. One of these obstacles is the radiation environment to which the astronauts will be exposed. In general, an unshielded crew will be exposed to roughly one REM per week in free space. For missions to Mars, the total dose could exceed more than one-half the total allowed lifetime level. Shielding of the crew may be possible, but accurate assessments of shield composition and thickness are critical if shield masses are to be kept at acceptable levels. In addition, the entire ship design may be altered by the differential neutron production by heavy ions (Galactic Cosmic Rays) incident on ship structures. The components of the radiation environment, current modeling capability and envisioned experiments will be discussed

  2. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.

    2008-01-01

    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.

  3. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  4. Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Directory of Open Access Journals (Sweden)

    Gianfranco Ciardo

    2009-12-01

    Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.

  5. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  6. Medical impact analysis for the space station.

    Science.gov (United States)

    Nelson, B D; Gardner, R M; Ostler, D V; Schulz, J M; Logan, J S

    1990-02-01

    Since the Space Station Health Maintenance Facility can house only a relatively limited quantity of supplies and equipment, the decisions about what should be included must be based on documented research. In this study, Space Station medical care priorities were determined by a medical impact analysis of two analog populations, U.S. Army and U.S. Navy personnel. Diseases and injuries in the International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) were ranked, using a Medical Impact Score (MIS) combining modified incidence rate and a function of disease outcome. The validity of the analysis method was tested by measuring rank order correlation between the two analog populations. Despite virtually identical age and sex distributions, Army and Navy incidence rates differed significantly for half of the ICD-9-CM categories, p less than 0.05. Disability rates differed for 76%, p less than 0.05. Nevertheless, Army and Navy MIS rank orders for categories and sections were not significantly different, p less than 0.001. In critical ways, the Space Station will be a safer environment than Earth. Cardiac events, musculoskeletal injuries, affective psychoses, and renal calculi were among the highest scoring categories.

  7. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.

  8. Biosputniks: The use by the Soviet Union and Russia of dogs, monkeys and other animals in the exploration of space, 1949-93

    Science.gov (United States)

    Harvey, B.

    1993-10-01

    The Soviet Union used animals in the exploration of space from 1949 onwards. Russia has continued the use of animals in the exploration of space with the launch on 30 December 1992 of Bion-10 (Cosmos 2229). Animals in the space program is an important theme in the Soviet exploration of space. The use of animals in the exploration of space has four main phases: (1) Suborbital missions 1949-1959; (2) Preparation for man's first flight into space 1960-1; (3) Preparation for man's flight to the Moon 1968-1970; (4) The international biomedical program 1962- . Each is dealt with in turn. The use of animals or biological specimens on board manned orbital space stations is not discussed.

  9. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Down-to-Earth Benefits of Space Exploration: Past, Present, Future

    Science.gov (United States)

    Neumann, Benjamin

    2005-01-01

    A ventricular device that helps a weakened heart keep pumping while awaiting a transplant. A rescue tool for extracting victims from dangerous situations such as car wrecks. A video analysis tool used to investigate the bombing at the 1996 Olympics in Atlanta. A sound-differentiation tool for safer air traffic control. A refrigerator that run without electricity or batteries. These are just a few of the spin-offs of NASA technology that have benefited society in recent years. Now, as NASA sets its vision on space exploration, particularly of the moon and Mars, even more benefits to society are possible. This expansion of societal benefits is tied to a new emphasis on technology infusion or spin-in. NASA is seeking partners with industry, universities, and other government laboratories to help the Agency address its specific space exploration needs in five areas: (1) advanced studies, concepts, and tools; (2) advanced materials; (3) communications, computing, electronics, and imaging; (4) software, intelligent systems, and modeling; and (5) power, propulsion, and chemical systems. These spin-in partnerships will offer benefits to U.S. economic development as well as new products for the global market. As a complement to these spin-in benefits, NASA also is examining the possible future spin-outs of the innovations related to its new space exploration mission. A matrix that charts NASA's needs against various business sectors is being developed to fully understand the implications for society and industry of spin-in and spin-out. This matrix already has been used to help guide NASA s efforts to secure spin-in partnerships. This paper presents examples of NASA spin-offs, discusses NASA s present spin-in/spin-out projects for pursuing partnerships, and considers some of the future societal benefits to be reaped from these partnerships. This paper will complement the proposed paper by Frank Schowengerdt on the Innovative Partnerships Program structure and how to work

  11. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with

  12. Modeling Physarum space exploration using memristors

    International Nuclear Information System (INIS)

    Ntinas, V; Sirakoulis, G Ch; Vourkas, I; Adamatzky, A I

    2017-01-01

    Slime mold Physarum polycephalum optimizes its foraging behaviour by minimizing the distances between the sources of nutrients it spans. When two sources of nutrients are present, the slime mold connects the sources, with its protoplasmic tubes, along the shortest path. We present a two-dimensional mesh grid memristor based model as an approach to emulate Physarum’s foraging strategy, which includes space exploration and reinforcement of the optimally formed interconnection network in the presence of multiple aliment sources. The proposed algorithmic approach utilizes memristors and LC contours and is tested in two of the most popular computational challenges for Physarum, namely maze and transportation networks. Furthermore, the presented model is enriched with the notion of noise presence, which positively contributes to a collective behavior and enables us to move from deterministic to robust results. Consequently, the corresponding simulation results manage to reproduce, in a much better qualitative way, the expected transportation networks. (paper)

  13. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  14. Environmental impact of atomic minerals exploration and exploitation

    International Nuclear Information System (INIS)

    Dwivedy, K.K.

    1998-01-01

    Terrestrial radiation in the earth's environment is existing since its formation and is shared by all types of rocks, minerals, gases, and water, and to some extent aided by the interstellar radiation. Environmental radiation is ubiquitous and the man and other living beings have been living in such environment for thousands of years. Today they are much concerned about health and environmental risks so that a balance must be achieved between the activities that promote economic growth and the preservation of the natural environment. Atomic minerals are one of the main sources of natural environmental radiation and they are being explored by Atomic Minerals Division (AMD). Mining and milling activities sometimes may cause some radiological impacts but proper monitoring and remedial measures keep them under check. Some of the important aspects related to environmental impacts of uranium exploration and exploitation are presented

  15. In-Space Structural Assembly: Applications and Technology

    Science.gov (United States)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  16. Exploring the Functioning of Decision Space: A Review of the Available Health Systems Literature.

    Science.gov (United States)

    Roman, Tamlyn Eslie; Cleary, Susan; McIntyre, Diane

    2017-02-27

    The concept of decision space holds appeal as an approach to disaggregating the elements that may influence decision-making in decentralized systems. This narrative review aims to explore the functioning of decision space and the factors that influence decision space. A narrative review of the literature was conducted with searches of online databases and academic journals including PubMed Central, Emerald, Wiley, Science Direct, JSTOR, and Sage. The articles were included in the review based on the criteria that they provided insight into the functioning of decision space either through the explicit application of or reference to decision space, or implicitly through discussion of decision-making related to organizational capacity or accountability mechanisms. The articles included in the review encompass literature related to decentralisation, management and decision space. The majority of the studies utilise qualitative methodologies to assess accountability mechanisms, organisational capacities such as finance, human resources and management, and the extent of decision space. Of the 138 articles retrieved, 76 articles were included in the final review. The literature supports Bossert's conceptualization of decision space as being related to organizational capacities and accountability mechanisms. These functions influence the decision space available within decentralized systems. The exact relationship between decision space and financial and human resource capacities needs to be explored in greater detail to determine the potential influence on system functioning. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  17. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Directory of Open Access Journals (Sweden)

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  18. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  19. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  20. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe

    Science.gov (United States)

    Ehrenfreund, P.; Peter, N.; Billings, L.

    2010-08-01

    Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.

  1. Space weather impact on radio device operation

    Directory of Open Access Journals (Sweden)

    Berngardt O.I.

    2017-09-01

    Full Text Available This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  2. Space weather impact on radio device operation

    Science.gov (United States)

    Berngardt, Oleg

    2017-09-01

    This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  3. The role of nuclear reactors in space exploration and development

    International Nuclear Information System (INIS)

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  4. Psychology of Learning Spaces: Impact on Teaching and Learning

    Science.gov (United States)

    Granito, Vincent J.; Santana, Mary E.

    2016-01-01

    New research is emerging that focuses on the role the physical classroom space plays in the teaching-learning dynamic. The purpose of this exploratory research is to describe the students' and instructors' perspectives of how the classroom space and environment impact teaching and learning. Focus groups were utilized with data points coming from…

  5. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  6. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  7. Hematopoietic Stem Cell Therapy as a Counter-Measure for Human Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Roach, A.-N.; Ramsahai, S.; Kim, B. C.; Fitzgerald, W.; Riley, D. A.; Gonda, S. R.

    2004-01-01

    Human exploration of deep space depends, in part, on our ability to counter severe/invasive disorders that astronauts experience in space environments. The known symptoms include hematological/cardiac abnormalities,bone and muscle losses, immunodeficiency, neurological disorders, and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, we have advanced a hypothesis that ome of the space-caused disorders maybe amenable to hematopoietis stem cell therapy(HSCT) so as to maintain promote human exploration of deep space. Using mouse models of human anemia beta-thaiassemia) as well as spaceflight (hindlimb unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, in the case of HSCT for muscle loss, the beta-galactosidese marked HSCs were detected in the hindlimbs of unloaded mouse following transplantation by -X-gal wholemaunt staining procedure. Histochemicaland physical analyses indicated structural contribution of HSCs to the muscle. HSCT for immunodeficiency was investigated ising beta-galactosidese gene-tagged Escherichia coli as the infectious agent. Results of the X-gal staining procedure indicated the rapeutic role of the HSCT. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  8. Mars Wars: The Rise and Fall of the Space Exploration Initiative

    Science.gov (United States)

    Hogan, Thor

    2007-08-01

    The rise of Space Exploration Initiative (SEI) and its eventual demise represents one of the landmark episodes in the history of the American space program ranking with the creation of NASA, the decision to go to the Moon, the post-Apollo planning process, and the space station decision. The story of this failed initiative is one shaped by key protagonists and critical battles. It is a tale of organizational, cultural, and personal confrontation. Organizational skirmishes involved the Space Council versus NASA, the White House versus congressional appropriators, and the Johnson Space Center versus the rest of the space agency all seeking control of the national space policy process. Cultural struggles pitted the increasingly conservative engineering ethos of NASA against the faster, better, cheaper philosophy of a Space Council looking for innovative solutions to technical problems. Personality clashes matched Vice President Dan Quayle and Space Council Executive Secretary Mark Albrecht against NASA Administrator Dick Truly and Johnson Space Center Director Aaron Cohen. In the final analysis, the demise of SEI was a classic example of a defective decision-making process one that lacked adequate high-level policy guidance, failed to address critical fiscal constraints, developed inadequate programmatic alternatives, and garnered no congressional support. Some space policy experts have argued that SEI was doomed to fail, due primarily to the immense budgetary pressures facing the nation during the early 1990's. This book will argue, however, that the failure of the initiative was not predetermined; instead, it was the result of a deeply flawed policy process that failed to develop (or even consider) policy options that may have been politically acceptable given the existing political environment.

  9. Energy Management of the Multi-Mission Space Exploration Vehicle Using a Goal-Oriented Control System

    Science.gov (United States)

    Braman, Julia M. B.; Wagner, David A.

    2010-01-01

    Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.

  10. The Impact Analysis of Direct Public R&D and Innovation Investments in Turkish Space Sector

    Science.gov (United States)

    Kaya, Derya; Cakir, Serhat

    2016-07-01

    According to The Organisation for Economic Co-operation and Development (OECD), space sector plays a pivotal role in the functioning of modern societies and their economic development. It is in the scope of OECD's International Futures Programme. The global space economy, as defined by the OECD Space Forum, comprises the space industry's core activities in space manufacturing and in satellite operations, plus other consumer activities that have been derived over the years from governmental research and development. In 2013 commercial revenues generated by the space economy amounted to USD 256.2 billion globally that is huge amount of space investment in the world. Recently, Turkey has also entered to the sector and it has growing strategic interest in space. First satellite project was started with a technology transfer from UK by TUBITAK Space Technologies Research Institute in 2001 and it launched to its orbit in 2003. Then RASAT and GÖKTÜRK-2 satellites were developed and launched to their orbits respectively in 2011 and 2012. Today, we have other satellite projects that are going on, too. However, we do not have a mechanism or a model to assess the impacts of those projects. What kind of model can be used to measure the impact of direct public R&D and innovation investments in Turkish space sector? The aim of this study is to develop a model which would be useful for monitoring the performance of R&D and Innovation investments that are conducted through government policies and strategies and so on to give feedback for effective strategy making. When we look at the impact analysis studies in Turkey, we see a few such as TUBITAK (Özçelik and Taymaz, 2008; Erden, 2010; Tandoǧan, 2011), İşkur (World Bank Report, 2013), Ministry of Economy (TTGV, 2013), Development Agencies (İZKA, 2011; Elçi vd., 2011; Pınar, 2014; Meydan, 2014). There is need for a systematic approach to impact analysis. Since there is no data for this study, we would develop a model with

  11. Hypervelocity impact of tungsten cubes on spaced armour

    International Nuclear Information System (INIS)

    Chandel, Pradeep S; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-01-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 – 4000 ms −1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 – 4000 m/s. The simulation results are in good agreement with the experimental findings.

  12. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  13. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The World is Not Enough (WINE) is a new generation of CubeSats that take advantage of ISRU to explore space. The WINE takes advantage of existing CubeSat technology...

  14. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  15. Enabling Fast ASIP Design Space Exploration: An FPGA-Based Runtime Reconfigurable Prototyper

    Directory of Open Access Journals (Sweden)

    Paolo Meloni

    2012-01-01

    Full Text Available Application Specific Instruction-set Processors (ASIPs expose to the designer a large number of degrees of freedom. Accurate and rapid simulation tools are needed to explore the design space. To this aim, FPGA-based emulators have recently been proposed as an alternative to pure software cycle-accurate simulator. However, the advantages of on-hardware emulation are reduced by the overhead of the RTL synthesis process that needs to be run for each configuration to be emulated. The work presented in this paper aims at mitigating this overhead, exploiting a form of software-driven platform runtime reconfiguration. We present a complete emulation toolchain that, given a set of candidate ASIP configurations, identifies and builds an overdimensioned architecture capable of being reconfigured via software at runtime, emulating all the design space points under evaluation. The approach has been validated against two different case studies, a filtering kernel and an M-JPEG encoding kernel. Moreover, the presented emulation toolchain couples FPGA emulation with activity-based physical modeling to extract area and power/energy consumption figures. We show how the adoption of the presented toolchain reduces significantly the design space exploration time, while introducing an overhead lower than 10% for the FPGA resources and lower than 0.5% in terms of operating frequency.

  16. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  17. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Science.gov (United States)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  18. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    Science.gov (United States)

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  19. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  20. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    Science.gov (United States)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  1. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  2. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    Science.gov (United States)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  3. Reproduction in the space environment: Part II. Concerns for human reproduction

    Science.gov (United States)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  4. Exploring and linking biomedical resources through multidimensional semantic spaces.

    Science.gov (United States)

    Berlanga, Rafael; Jiménez-Ruiz, Ernesto; Nebot, Victoria

    2012-01-25

    integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.

  5. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  6. Social Sciences and Space Exploration

    Science.gov (United States)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  7. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  8. An Exploration of Hybrid Spaces for Place-Based Geomorphology with Latino Bilingual Children

    Science.gov (United States)

    Martínez-Álvarez, Patricia; Bannan, Brenda

    2014-01-01

    Latino bilingual children hold rich understandings, which are underexplored and underutilized in the geoscience classroom. Oftentimes, young Latinos possess unique cultural land experiences shaping their place identities. We consider science as language and culture, and propose place-based geoscience hybrid space explorations that are culturally…

  9. Crew Roles and Interactions in Scientific Space Exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  10. Breaking Reality: Exploring Pervasive Cheating in Foursquare

    NARCIS (Netherlands)

    Glas, R.

    2011-01-01

    This paper explores the notion of cheating in location-based mobile applications. Using the popular smartphone app Foursquare as main case study, I address the question if and how devious practices impact the boundaries between play and reality as a negotiated space of interaction. After

  11. Development of a bio-chip dedicated to planetary exploration. First step: resistance studies to space conditions

    International Nuclear Information System (INIS)

    Le Postollec, A.; Dobrijevic, M.; Incerti, S.; Moretto, Ph.; Seznec, H.; Desorgher, L.; Santin, G.; Nieminen, P.; Dartnell, L.; Vandenabeele-Trambouze, O.; Coussot, G.

    2008-02-01

    For upcoming exploration missions, space agencies advocate the development of a new promising technique to search for traces of extent or extinct life: the bio-chip use. A bio-chip is a miniaturized device composed of biological sensitive systems fixed on a solid substrate. As space is a hazardous environment, a main concern relies on the resistance of a bio-chip to a panel of harsh constraints among which the resistance to radiations. Within the framework of the BiOMAS (Bio-chip for Organic Matter Analysis in Space) project, our team is currently developing a bio-chip especially designed for planetary exploration. We present here the methodology adopted and the beginning experiments to select the best constituents, to determine resistance levels and to define well-adapted protection for the bio-chip

  12. Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections

    Science.gov (United States)

    Mckay, David S.

    1989-01-01

    The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.

  13. Testing Realistic Disaster Scenarios for Space Weather: The Economic Impacts of Electricity Transmission Infrastructure Failure in the UK

    Science.gov (United States)

    Gibbs, M.; Oughton, E. J.; Hapgood, M. A.

    2017-12-01

    The socio-economic impacts of space weather have been under-researched, despite this threat featuring on the UK's National Risk Register. In this paper, a range of Realistic Disaster Scenarios due to failure in electricity transmission infrastructure are tested. We use regional Geomagnetically Induced Current (GIC) studies to identify areas in the UK high-voltage power system deemed to be high-risk. The potential level of disruption arising from a large geomagnetic disturbance in these `hot spots' on local economic activity is explored. Electricity is a necessary factor of production without which businesses cannot operate, so even short term power loss can cause significant loss of value. We utilise a spatially disaggregated approach that focuses on quantifying employment disruption by industrial sector, and relating this to direct Gross Value Added loss. We then aggregate this direct loss into a set of shocks to undertake macroeconomic modelling of different scenarios, to obtain the total economic impact which includes both direct and indirect supply chain disruption effects. These results are reported for a range of temporal periods, with the minimum increment being a one-hour blackout. This work furthers our understanding of the economic impacts of space weather, and can inform future reviews of the UK's National Risk Register. The key contribution of the paper is that the results can be used in the future cost-benefit analysis of investment in space weather forecasting.

  14. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  15. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    Science.gov (United States)

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that

  16. You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.

    Science.gov (United States)

    Eldridge, Alice

    2015-01-01

    Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.

  17. Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC

    Science.gov (United States)

    Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.

    2015-01-01

    The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.

  18. NASA: A generic infrastructure for system-level MP-SoC design space exploration

    NARCIS (Netherlands)

    Jia, Z.J.; Pimentel, A.D.; Thompson, M.; Bautista, T.; Núñez, A.

    2010-01-01

    System-level simulation and design space exploration (DSE) are key ingredients for the design of multiprocessor system-on-chip (MP-SoC) based embedded systems. The efforts in this area, however, typically use ad-hoc software infrastructures to facilitate and support the system-level DSE experiments.

  19. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    International Nuclear Information System (INIS)

    Katayama, Masahide; Takeba, Atsushi; Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa; Kitazawa, Yukihito

    2010-01-01

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  20. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Masahide, E-mail: masahide.katayama@ctc-g.co.jp [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503 (Japan); Takeba, Atsushi [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Kitazawa, Yukihito [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Aero-Engine and Space Operations, IHI Corporation, 3-1-1, Toyosu, Koto-ku, Tokyo 135-8710 (Japan)

    2010-10-15

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  1. Minimizing Human Risk: Human Performance Models in the Space Human Factors and Habitability and Behavioral Health and Performance Elements

    Science.gov (United States)

    Gore, Brian F.

    2016-01-01

    Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.

  2. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.

  3. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Science.gov (United States)

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  4. Exploring links between foundation phase teachers’ content knowledge and their example spaces

    Directory of Open Access Journals (Sweden)

    Samantha Morrison

    2013-12-01

    Full Text Available This paper explores two foundation phase teachers’ example spaces (a space in the mind where examples exist when teaching number-related topics in relation to snapshots of their content knowledge (CK. Data was collected during a pilot primary maths for teaching course that included assessments of teacher content knowledge (CK. An analysis of a content-knowledge focused pre-test developed for the larger study indicated a relatively high score for one teacher and a low score for the other. Using Rowland’s (2008 framework, an analysis of classroom practice showed associations between a higher CK and the extent of a teacher’s example space and more coherent connections between different representational forms. Although no hard claims or generalisations of the link between teachers’ example spaces and their level of mathematics content knowledge can be made here, this study reinforces evidence of the need to increase teachers’ CK from a pedagogic perspective in order to raise the level of mathematics teaching and learning in the South African landscape.

  5. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    Science.gov (United States)

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  6. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    Science.gov (United States)

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  7. The role of nuclear power and nuclear propulsion in the peaceful exploration of space

    International Nuclear Information System (INIS)

    2005-09-01

    This publication has been produced within the framework of the IAEA's innovative reactor and fuel cycle technology development activities. It elucidates the role that peaceful space related nuclear power research and development could play in terrestrial innovative reactor and fuel cycle technology development initiatives. This review is a contribution to the Inter-Agency Meeting on Outer Space Activities, and reflects the stepped up efforts of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space to further strengthen cooperation between international organizations in space related activities. Apart from fostering information exchange within the United Nations organizations, this publication aims at finding new potential fields for innovative reactor and fuel cycle technology development. In assessing the status and reviewing the role of nuclear power in the peaceful exploration of space, it also aims to initiate a discussion on the potential benefits of space related nuclear power technology research and development to the development of innovative terrestrial nuclear systems

  8. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  9. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  10. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    Energy Technology Data Exchange (ETDEWEB)

    Plesko, Catherine S [Los Alamos National Laboratory; Clement, R Ryan [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Huebner, Walter F [Los Alamos National Laboratory

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  11. Socio–economic and environmental impact of crude oil exploration ...

    African Journals Online (AJOL)

    Socio–economic and environmental impact of crude oil exploration and production on agricultural production: a case study of Edjeba and Kokori communities in Delta State of ... The results also showed an increase in the occurrence of health hazard, air/noise pollution and heightened deforestation in these communities.

  12. Lasers, Clocks and Drag-Free Control Exploration of Relativistic Gravity in Space

    CERN Document Server

    Dittus, Hansjorg; Turyshev, Slava G

    2008-01-01

    Over the next decade the gravitational physics community will benefit from dramatic improvements in many technologies critical to testing gravity. Highly accurate deep space navigation, interplanetary laser communication, interferometry and metrology, high precision frequency standards, precise pointing and attitude control, together with drag-free technologies, will revolutionize the field of experimental gravitational physics. The centennial of the general theory of relativity in 2015 will motivate a significant number of experiments designed to test this theory with unprecedented accuracy. The purpose of the contributions in this book, written by international experts, is to explore the possibilities for the next 20 years for conducting gravitational experiments in space that would utilize both entirely new and highly improved existing capabilities.

  13. Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration

    International Nuclear Information System (INIS)

    Lee, Kerry; Wilson, Thomas; Zapp, Neal; Pinsky, Lawrence

    2007-01-01

    NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics

  14. Space Agriculture, Tourism and Health - Lessons from British Imperial History

    Science.gov (United States)

    Sivier, D. J.

    Advocates of space commercialisation and colonisation have drawn on previous centuries' experience of the exploration and exploitation of terrestrial New Worlds. Although so far chiefly confined to the colonisation of the Americas and exploration of the Antarctic, a proper examination of the problems and solutions faced and found by the late 19th - early 20th century Jamaican tourist trade, mid-Victorian planter agriculturalists in Sri Lanka and the impact of climatic theories of health on early 20th century White colonists in Kenya and Rhodesia, can, if properly applied to today's conditions affecting modern space businesses, offer important insights to the psychological impact and aetiology of disease amongst future space colonists, and the success- ful establishment and management of tourism and agriculture in space. By following the precedents set by the imperial pioneers, it should be possible to apply their founding principles in these sectors successfully, while avoiding the pitfalls and excesses of terrestrial imperialism.

  15. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Science.gov (United States)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  16. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Science.gov (United States)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  17. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    Science.gov (United States)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  18. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  19. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    Science.gov (United States)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  20. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    Science.gov (United States)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  1. Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study

    Science.gov (United States)

    Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.

    2016-12-01

    Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.

  2. Exploration and guidance in media-rich information spaces : the implementation and realization of guided tours in digital dossiers

    NARCIS (Netherlands)

    Riel, van C.; Wang, Y.; Eliëns, A.; Guerrero-Bote, V.P.

    2006-01-01

    Confronted with media-rich information spaces involves interfaces that are usually designed to facilitate personal exploration to locate information of interest. Navigating such media-rich information spaces, where information structures can be complex, may result in disorientation and demotivation.

  3. A System-level Infrastructure for Multi-dimensional MP-SoC Design Space Co-exploration

    NARCIS (Netherlands)

    Jia, Z.J.; Bautista, T.; Nunez, A.; Pimentel, A.D.; Thompson, M.

    2013-01-01

    In this article, we present a flexible and extensible system-level MP-SoC design space exploration (DSE) infrastructure, called NASA. This highly modular framework uses well-defined interfaces to easily integrate different system-level simulation tools as well as different combinations of search

  4. Technology Assessment in Support of the Presidential Vision for Space Exploration

    Science.gov (United States)

    Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert

    2006-01-01

    This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.

  5. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  6. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  7. Future superconductivity applications in space - A review

    Science.gov (United States)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  8. The Ionospheric Connection Explorer Mission: Mission Goals and Design

    Science.gov (United States)

    Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.

    2018-02-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

  9. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  10. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Science.gov (United States)

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  11. A newer simultaneous space creation, eruption, and adjacent root control spring for the management of impacted tooth

    Directory of Open Access Journals (Sweden)

    Dipti Shastri

    2014-01-01

    Full Text Available Usually, treatment of impaction includes: Welcome preparation (to create space, surgical exposure and attachment to the impacted tooth and the orthodontic guidance for the eruption of the impacted tooth. Sometimes, due to deficiency of space, creation of space for impacted tooth requires first, and space regaining efforts may require the distal movement of posterior teeth and or mesial movement of anterior teeth in the arch, but it may create some problems. To overcome the unwanted problem in this clinical situation and to reduce overall treatment duration of the patient, we have developed the Simultaneous space creation, Eruption and Adjacent root control spring to control crown as well as root movement.

  12. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  13. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  14. Requirements for high level models supporting design space exploration in model-based systems engineering

    NARCIS (Netherlands)

    Haveman, Steven; Bonnema, Gerrit Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during

  15. Space activity impact on science and technology. Proceedings of the twenty-fourth international astronautical congress, Baku, USSR, October 7--13, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, L G; Contensou, P; Hilton, W F [eds.

    1976-01-01

    Topics covered include: Soviet automatic vehicles for lunar exploration and their influence on the progress of automatics and control theory; the problems of space technology and their influence on science and technics; industrial use of aerospace technology; development of liquid-propellant rocket engine engineering and its influence on science and technology in the USSR; space medicine and public health; impact of space activity on technology in a country the size of France; astronautics as a stimulus for celestial mechanics; space activity impact on the science and technology of rotating bodies; skylab systems flight performance, an interim report; the design and utilization of a spacelab for sortie missions; the spacelab program; man and the environment, remote sensing from space; EOLE application program for meteorological experiments, complementary experiences; machine processing methods for earth observational data; recent advances in geologic applications of remote sensing from space; infrared scanning for meteorological purposes; spatial antartic glaciology; reflection spectra usage in recognition of plant covers; experimental investigation of aeronautical and maritime communications and surveillance using satellites; the ESRO MAROTS program; the problem of habitability in spaceships; atmosphere revitalization for manned spacecraft; prospects of international cooperation in medical sciences; developing a technology base in planetary entry aerothermodynamics; scientific results of the automatic ionospheric laboratory Yantar 4 flight; nonlinear unsteady motions in solid propellant rockets with application to large motors; investigation of the physical and mechanical properties of the lunar sample brought by Luna 20 and along the route of motion of Lunokhod 2; orbiting astronomical observatory Copernicus; the delta launch vehicle model 2914 series; space tug mission and program planning; space and education; and safety in youth rocket experiments. (GHT)

  16. Risky bodies, risky spaces, maternal ‘instincts’

    DEFF Research Database (Denmark)

    Evans, Adam Brian; Allen-Collinson, Jacquelyn; K. Williams, Rachel

    2017-01-01

    meanings associated with space impact upon women’s embodied experiences of participating in swimming, specifically in the presence of their young children. Using semi-structured interviews and non-participant observations, this qualitative study employed a Foucauldian-feminist framework to explore self-perceptions...

  17. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    Science.gov (United States)

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  18. Exploring available options in characterising the health impact of industrially contaminated sites.

    Science.gov (United States)

    Pasetto, Roberto; Martin-Olmedo, Piedad; Martuzzi, Marco; Iavarone, Ivano

    2016-01-01

    Industrially contaminated sites (ICS) are of high concern from an environmental public health perspective, since industrial plants may produce a widespread contamination that can result in several health impacts on the populations living in their neighbourhood. The objective of this contribution is to briefly explore available options in studying the health impact of ICS, mainly referring to information provided by documents and activities developed by the WHO and the WHO Collaborating Center for Environmental Health in Contaminated Sites. In current practice the health impact of ICS is evaluated using studies and assessments falling in two broad types of strategies: one based on epidemiology and the other on risk assessment methods. In recent years, traditional approaches to assess relationships between environmental risks and health has been evolved considering the intricate nature between them and other factors. New developments should be explored in the context of ICS to find common strategies and tools to assess their impacts and to guide public health interventions.

  19. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  20. Computational methods in the exploration of the classical and statistical mechanics of celestial scale strings: Rotating Space Elevators

    Science.gov (United States)

    Knudsen, Steven; Golubovic, Leonardo

    2015-04-01

    With the advent of ultra-strong materials, the Space Elevator has changed from science fiction to real science. We discuss computational and theoretical methods we developed to explore classical and statistical mechanics of rotating Space Elevators (RSE). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a motion which is nearly a superposition of two rotations: geosynchronous rotation around the Earth, and yet another faster rotational motion of the string which goes on around a line perpendicular to the Earth at its equator. Strikingly, objects sliding along the RSE loop spontaneously oscillate between two turning points, one of which is close to the Earth (starting point) whereas the other one is deeply in the outer space. The RSE concept thus solves a major problem in space elevator science which is how to supply energy to the climbers moving along space elevator strings. The exploration of the dynamics of a floppy string interacting with objects sliding along it has required development of novel finite element algorithms described in this presentation. We thank Prof. Duncan Lorimer of WVU for kindly providing us access to his computational facility.

  1. The World is Not Enough (WINE): Harvesting Local Resources for Eternal Exploration of Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The paradigm of exploration is changing. Smaller, smarter, and more efficient systems are being developed that could do as well as large, expensive, and heavy...

  2. Transition in the Human Exploration of Space at NASA

    Science.gov (United States)

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  3. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  4. Mass Reduction: The Weighty Challenge for Exploration Space Flight

    Science.gov (United States)

    Kloeris, Vickie L.

    2014-01-01

    Meeting nutritional and acceptability requirements is critical for the food system for an exploration class space mission. However, this must be achieved within the constraints of available resources such as water, crew time, stowage volume, launch mass and power availability. ? Due to resource constraints, exploration class missions are not expected to have refrigerators or freezers for food storage, and current per person food mass must be reduced to improve mission feasibility. ? The Packaged Food Mass Reduction Trade Study (Stoklosa, 2009) concluded that the mass of the current space food system can be effectively reduced by decreasing water content of certain foods and offering nutrient dense substitutes, such as meal replacement bars and beverages. Target nutrient ranges were established based on the nutritional content of the current breakfast and lunch meals in the ISS standard menu. A market survey of available commercial products produced no viable options for meal replacement bar or beverage products. New prototypes for both categories were formulated to meet target nutrient ranges. Samples of prototype products were packaged in high barrier packaging currently used for ISS and underwent an accelerated shelf life study at 31 degC and 41 degC (50% RH) for 24 weeks. Samples were assessed at the following time points: Initial, 6 weeks, 12 weeks, and 24 weeks. Testing at each time point included the following: color, texture, water activity, acceptability, and hexanal analysis (for food bars only). Proof of concept prototypes demonstrated that meal replacement food bars and beverages can deliver a comparable macronutrient profile while reducing the overall mass when compared to the ISS Standard Menu. Future work suggestions for meal replacement bars: Reformulation to include ingredients that reduce hardness and reduce browning to increase shelf life. Micronutrient analysis and potential fortification. Sensory evaluation studies including satiety tests and

  5. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  6. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  7. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  8. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    Science.gov (United States)

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  9. Impact of Anthropogenic Factor on Urboecological Space Development

    Directory of Open Access Journals (Sweden)

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  10. NASA Astrophysics Education and Public Outreach: The Impact of the Space Telescope Science Institute Office of Public Outreach

    Science.gov (United States)

    Smith, Denise Anne; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray; Green, Joel David

    2015-08-01

    As the science operations center for the Hubble Space Telescope and the James Webb Space Telescope, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity’s quest to understand fundamental questions about our universe and our place in it. This presentation will provide an overview of the impact of the STScI’s Office of Public Outreach’s efforts to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs.At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble’s scientific capabilities, majestic imagery, and our deep commitment to create effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  11. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  12. Exploring Sustainability Using images from Space

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks

  13. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  14. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  15. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    Science.gov (United States)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  16. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  17. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  18. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  19. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  20. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  1. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  2. Veganism In Star Trek : A Comic Reformatting Of Plant-Based Space Exploration

    OpenAIRE

    Tamminen, Tiariia

    2017-01-01

    My thesis revolves around collecting references to veganism and animal rights in five different science fiction TV series of the Star Trek franchise. I especially concentrate on how the character creation, setting and spoken lines express development and implementation of food technology and ethics. My objective is to show how our relationship to food and animal rights is presented in the main canon of the Star Trek franchise in terms of exploration in space. I will express this further t...

  3. Humans in space the psychological hurdles

    CERN Document Server

    Kanas, Nick

    2015-01-01

    Using anecdotal reports from astronauts and cosmonauts, and the results from studies conducted in space analog environments on Earth and in the actual space environment, this book broadly reviews the various psychosocial issues that affect space travelers.  Unlike other books that are more technical in format, this text is targeted for the general public.  With the advent of space tourism and the increasing involvement of private enterprise in space, there is now a need to explore the impact of space missions on the human psyche and on the interpersonal relationships of the crewmembers. Separate chapters of the book deal with psychosocial stressors in space and in space analog environments; psychological, psychiatric, interpersonal, and cultural issues pertaining to space missions; positive growth-enhancing aspects of space travel; the crew-ground interaction; space tourism; countermeasures for dealing with space; and unique aspects of a trip to Mars, the outer solar system, and interstellar travel. .

  4. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  5. NASA Kennedy Space Center Educator Workshops: Exploring Their Impact on Teacher Attitudes and Concerns

    Science.gov (United States)

    Dreschel, Thomas W.

    1996-01-01

    The National Aeronautics and Space Administration holds summer teacher workshops to motivate teachers to use space science in their lessons. In evaluating these workshops, the areas of interest were participant beliefs about science and science teaching and concerns about educational change and innovation. The teachers attending workshops in 1995, past participants, teachers that received materials but had not attended a workshop, and science researchers were surveyed using the Beliefs about Science and Science Education Survey and/or the Stages of Concern Questionnaire. Comparisons were made by workshop length, time since workshop, and highest grade taught. Reductions in concerns were most evident in the four week workshop. Changes in beliefs were also observed relative to teaching approach and ability. Differences in beliefs were observed between teachers and science researchers. Differences were also observed relative to time since attendance and by grade level taught. It is recommended that the workshops be at least four weeks in length and in length and target specific grade levels, that refresher workshops be offered.

  6. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Science.gov (United States)

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  7. Space weather in the EU’s FP7 Space Theme

    Directory of Open Access Journals (Sweden)

    Chiarini Paola

    2013-11-01

    Full Text Available Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7 of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic “Security of space assets from space weather events” of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic “Exploitation of space science and exploration data”, which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth’s surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects’ outcomes.

  8. In-Space Manufacturing (ISM): Pioneering Space Exploration

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions. This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

  9. Applied Drama and the Higher Education Learning Spaces: A Reflective Analysis

    Science.gov (United States)

    Moyo, Cletus

    2015-01-01

    This paper explores Applied Drama as a teaching approach in Higher Education learning spaces. The exploration takes a reflective analysis approach by first examining the impact that Applied Drama has had on my career as a Lecturer/Educator/Teacher working in Higher Education environments. My engagement with Applied Drama practice and theory is…

  10. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  11. The Impact of Apollo-Era Microbiology on Human Space Flight

    Science.gov (United States)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  12. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    Science.gov (United States)

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  13. TDA Assessment of Recommendations for Space Data System Standards

    Science.gov (United States)

    Posner, E. C.; Stevens, R.

    1984-01-01

    NASA is participating in the development of international standards for space data systems. Recommendations for standards thus far developed are assessed. The proposed standards for telemetry coding and packet telemetry provide worthwhile benefit to the DSN; their cost impact to the DSN should be small. Because of their advantage to the NASA space exploration program, their adoption should be supported by TDA, JPL, and OSTDS.

  14. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  15. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  16. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    Science.gov (United States)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  17. Humans and machines in space: The vision, the challenge, the payoff; Proceedings of the 29th Goddard Memorial Symposium, Washington, Mar. 14, 15, 1991

    Science.gov (United States)

    Johnson, Bradley; May, Gayle L.; Korn, Paula

    The present conference discusses the currently envisioned goals of human-machine systems in spacecraft environments, prospects for human exploration of the solar system, and plausible methods for meeting human needs in space. Also discussed are the problems of human-machine interaction in long-duration space flights, remote medical systems for space exploration, the use of virtual reality for planetary exploration, the alliance between U.S. Antarctic and space programs, and the economic and educational impacts of the U.S. space program.

  18. Estimation of environmental noise impacts within architectural spaces

    International Nuclear Information System (INIS)

    Chang, Y. S.; Liebich, R. E.; Chun, K. C.

    2002-01-01

    Public Law 91-596, ''Occupational Safety and Health Act of 1970,'' Dec. 29, 1970, stimulated interest in modeling the impacts of interior noise on employees, as well as the intelligibility of interior public-address and other speech intra-communication systems. The classical literature on this topic has primarily featured a statistical uniform diffuse-field model. This was pioneered by Leo L. Beranek in the 1950s, based on energy-density formulations at the former Bell Telephone (AT and T) Laboratories in the years from 1930 to 1950. This paper compares the classical prediction approach to the most recent statistical methods. Such models were developed in the late 1970s and included innovations such as consideration of irregularly shaped (e.g., L-shaped) interior room spaces and coupled spaces

  19. Economic benefits of commercial space activities

    Science.gov (United States)

    Stone, Barbara A.

    Space is not only an endless frontier for exploration, but also a potentially rich arena for profitable commerce to benefit all mankind. Access to the unique environment of space provides opportunities for unprecedented kinds of research to develop new products and services. This research can lead to commercially viable enterprises, which will become permanent businesses, which will provide good jobs for workers, pay taxes to their governments, and return dividends to their investors. Seeking superior products and processes is vital if the economy is to grow and prosper. This paper discusses the current and potential impact on the economy of selected private sector space activities.

  20. Urban Green Space and Its Impact on Human Health

    Science.gov (United States)

    Kondo, Michelle C.; Fluehr, Jaime M.; McKeon, Thomas; Branas, Charles C.

    2018-01-01

    Background: Over half of the world’s population now lives in urban areas, and this proportion is expected to increase. While there have been numerous reviews of empirical studies on the link between nature and human health, very few have focused on the urban context, and most have examined almost exclusively cross-sectional research. This review is a first step toward assessing the possibility of causal relationships between nature and health in urban settings. Methods: Through systematic review of published literature, we explored the association between urban green space and human health. Results: We found consistent negative association between urban green space exposure and mortality, heart rate, and violence, and positive association with attention, mood, and physical activity. Results were mixed, or no association was found, in studies of urban green space exposure and general health, weight status, depression, and stress (via cortisol concentration). The number of studies was too low to generalize about birth outcomes, blood pressure, heart rate variability, cancer, diabetes, or respiratory symptoms. Conclusions: More studies using rigorous study design are needed to make generalizations, and meta-analyses, of these and other health outcomes possible. These findings may assist urban managers, organizations, and communities in their efforts to increase new or preserve existing green space. PMID:29510520

  1. Repurchase intentions in a retail store - exploring the impact of colours

    Directory of Open Access Journals (Sweden)

    Anja Varga

    2014-12-01

    Full Text Available The purpose of the paper is to explore the elements that influence customer loyalty in different dominant colour environments in a retail store that sells groceries. The paper explores the relationship between customer satisfaction, exploring the store environment, communications with sales personnel and repurchase intentions in different colour environments. Furthermore, it explores the gender impact on creating customer loyalty in warm, cool and neutral colour environments. Empirical research is conducted using three different colour environments in a retail store that sells groceries. Based on research findings, exploring store environment is found to be the most influential element that boosts repurchase intentions. Gender stimulated differences are also found. For women, in warm, cool and neutral colour environment the dominant influence on repurchase intentions is exploring the store environment. For men, in both warm and cool colour environment communication with sales personnel influences their repurchase intentions. The research contributes to the existing body of knowledge on the influence of colours on repurchase intentions in the context of South-East European culture. Managerial implications are offered and suggestions for further research provided.

  2. Application of Emerging Pharmaceutical Technologies for Therapeutic Challenges of Space Exploration Missions

    Science.gov (United States)

    Putcha, Lakshmi

    2011-01-01

    An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.

  3. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    Science.gov (United States)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development

  4. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    Science.gov (United States)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  5. The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration

    Directory of Open Access Journals (Sweden)

    Kevin R Duda

    2015-04-01

    Full Text Available The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs and control moment gyroscopes (CMGs within miniaturized modules placed on body segments to provide a viscous resistance during movements against a specified direction of down – initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from down initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  6. 'It makes you think' - exploring the impact of qualitative films on pain clinicians.

    Science.gov (United States)

    Toye, Francine; Jenkins, Sue

    2015-02-01

    Researchers need to consider the impact and utility of their findings. Film is an accessible medium for qualitative research findings and can facilitate learning through emotional engagement. We aimed to explore the usefulness of a short film presenting findings from a published qualitative synthesis of adults' experience of chronic musculoskeletal pain for pain education. In particular, we were interested in the impact of the film on clinician's understanding of patients' experience of chronic pain and how this knowledge might be used for improved healthcare for people with pain. Focus groups with healthcare professionals enrolled in a pain management foundation course explored healthcare professionals' experience of watching the film. A constructivist grounded theory approach was adopted by the researchers. This article presents one thematic exemplar from a wider study. Participants reflected upon the pitfalls of judging by appearances and the value of seeing the person beneath his or her performance. There is a danger that the impact of qualitative findings is under-valued in clinical education. We present one exemplar from a study exploring knowledge mobilisation, which demonstrates that qualitative research, specifically qualitative films, can make us think about the care that we provide to people with chronic pain.

  7. Impact mitigation using kinematic constraints and the full space parameterization method

    Energy Technology Data Exchange (ETDEWEB)

    Morgansen, K.A.; Pin, F.G.

    1996-02-01

    A new method for mitigating unexpected impact of a redundant manipulator with an object in its environment is presented. Kinematic constraints are utilized with the recently developed method known as Full Space Parameterization (FSP). System performance criterion and constraints are changed at impact to return the end effector to the point of impact and halt the arm. Since large joint accelerations could occur as the manipulator is halted, joint acceleration bounds are imposed to simulate physical actuator limitations. Simulation results are presented for the case of a simple redundant planar manipulator.

  8. Exploring the triplet parameters space to optimise the final focus of the FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2141109; Abelleira, Jose; Seryi, Andrei; Cruz Alaniz, Emilia

    2017-01-01

    One of the main challenges when designing final focus systems of particle accelerators is maximising the beam stay clear in the strong quadrupole magnets of the inner triplet. Moreover it is desirable to keep the quadrupoles in the triplet as short as possible for space and costs reasons but also to reduce chromaticity and simplify corrections schemes. An algorithm that explores the triplet parameter space to optimise both these aspects was written. It uses thin lenses as a first approximation and MADX for more precise calculations. In cooperation with radiation studies, this algorithm was then applied to design an alternative triplet for the final focus of the Future Circular Collider (FCC-hh).

  9. Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time

    CERN Document Server

    Petkov, Vesselin

    2010-01-01

    This volume is dedicated to the centennial anniversary of Minkowski's discovery of spacetime. It contains selected papers by physicists and philosophers on the Nature and Ontology of Spacetime. The first six papers, comprising Part I of the book, provide examples of the impact of Minkowski's spacetime representation of special relativity on the twentieth century physics. Part II also contains six papers which deal with implications of Minkowski's ideas for the philosophy of space and time. The last part is represented by two papers which explore the influence of Minkowski's ideas beyond the philosophy of space and time.

  10. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock

    Directory of Open Access Journals (Sweden)

    Natalie Leys

    2017-04-01

    Full Text Available Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50% and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES, showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.

  11. Petroleum exploration in Africa from space

    Science.gov (United States)

    Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco

    2017-10-01

    Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.

  12. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    for space exploration and life on earth. Several examples will be provided that demonstrate the application of a technology to solve a space exploration need and to provide a positive impact to the quality of life on earth.

  13. The project of documentary space 'ExploRe' Opened pluri-disciplinary exploration of reversibility: multiple-point of view access to exploratory works of Andra on reversibility

    International Nuclear Information System (INIS)

    Cahier, Jean-Pierre; Desfriches, Orelie; Zacklad, Manuel

    2009-01-01

    The authors present a digital space (a web site - 'ExploRe') which would allows a community to share a set of pluri-disciplinary information items concerning reversibility, and in which the community members describe the items by using attributes and themes belonging to different points of view

  14. Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles.

    Science.gov (United States)

    Kearsley, A. T.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.

    A Post-Flight Investigation was initiated by the European Space Agency to analyze impact fluxes on solar arrays of the Hubble Space Telescope (HST), exposed to space for 8.25 years at approximately 600 km altitude. The solar cells were deployed during servicing mission SM-1 (December 1993), and retrieved by shuttle orbiter Columbia in March 2002 (SM-3B). A sub-panel of 2 m2 was cut from the --V2 wing and cells were selected for in-depth analysis. Twelve cells (9.6x10-3 m2) were surveyed for flux of all craters of sizes greater than 5 microns Dco; six at the NHM, and six at ONERA. Cumulative flux plots reveal slightly greater abundance of very small craters than in a comparable survey of SM-1 cells. Analytical scanning electron microscopy was used to locate impact features and to analyse residues at the NHM. 103 features of 3 -- 4000 micron conchoidal detachment diameter (Dco) were located on a total of 17 solar cells. 78 features show identifiable residue: 36 are Space Debris impacts and 42 Micrometeoroid impacts. Of the remaining 25: 4 contain residue of ambiguous origin, 1 is a minor manufacturing flaw, 1 is obscured by contamination, and 19 are unresolved, lacking recognizable residue. Space debris impacts on the SM-3B cells are all less than 80 microns Dco, dominated by Al- rich residue, probably of solid rocket motor origin, some may be unburnt fuel. Three craters may be sodium metal droplet impacts. No residues from paint pigment, aluminium or ferrous alloys, or copper- and tin-bearing metal were found. All craters larger than 100 microns are of micrometeoroid origin, or unresolved. Most residues are magnesium-iron silicate or iron sulfide. A few craters show vesicular Mg, S, Fe and Ni residue. A single Fe Ni metal residue was found, as well as enigmatic Mg- and S-bearing residues, all considered of micrometeoroid origin. A few Fe-, O- and C-bearing residues were classified as of ambiguous origin. The quality and quantity of residue is clearly linked to the

  15. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  16. Exploring the impact of the constructs of the three-domain approach ...

    African Journals Online (AJOL)

    This article explores the constructs of private social and commercial hospitality in a panoramic examination of the impact and potential future development of the three-domain approach. Focused primarily (but not exclusively) on the books In Search of Hospitality: theoretical perspectives and debates, and Hospitality: A ...

  17. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  18. Fusion of Built in Test (BIT) Technologies with Embeddable Fault Tolerant Techniques for Power System and Drives in Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA develops next generation space exploration systems as part of the Constellation program, new prognostics and health management tools are needed to ensure...

  19. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  20. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  1. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  2. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    Science.gov (United States)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  3. A systematic exploration of the micro-blog feature space for teens stress detection.

    Science.gov (United States)

    Zhao, Liang; Li, Qi; Xue, Yuanyuan; Jia, Jia; Feng, Ling

    2016-01-01

    In the modern stressful society, growing teenagers experience severe stress from different aspects from school to friends, from self-cognition to inter-personal relationship, which negatively influences their smooth and healthy development. Being timely and accurately aware of teenagers psychological stress and providing effective measures to help immature teenagers to cope with stress are highly valuable to both teenagers and human society. Previous work demonstrates the feasibility to sense teenagers' stress from their tweeting contents and context on the open social media platform-micro-blog. However, a tweet is still too short for teens to express their stressful status in a comprehensive way. Considering the topic continuity from the tweeting content to the follow-up comments and responses between the teenager and his/her friends, we combine the content of comments and responses under the tweet to supplement the tweet content. Also, such friends' caring comments like "what happened?", "Don't worry!", "Cheer up!", etc. provide hints to teenager's stressful status. Hence, in this paper, we propose to systematically explore the micro-blog feature space, comprised of four kinds of features [tweeting content features (FW), posting features (FP), interaction features (FI), and comment-response features (FC) between teenagers and friends] for teenager' stress category and stress level detection. We extract and analyze these feature values and their impacts on teens stress detection. We evaluate the framework through a real user study of 36 high school students aged 17. Different classifiers are employed to detect potential stress categories and corresponding stress levels. Experimental results show that all the features in the feature space positively affect stress detection, and linguistic negative emotion, proportion of negative sentences, friends' caring comments and teen's reply rate play more significant roles than the rest features. Micro-blog platform provides

  4. Talk in Blended-Space Speech Communities: An Exploration of Discursive Practices of a Professional Development Group

    Science.gov (United States)

    Garvin, Tabitha Ann

    2011-01-01

    This study is an exploration of alternative teacher professional development. While using symbolic interactionism for a research lens, it characterizes the discursive practices commonly found in formal, informal, and blended-space speech communities based on the talk within a leadership-development program comprised of five female, church-based…

  5. Optimizing Light for Long Duration Space Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our work is to optimize lighting that supports vision and serves as a circadian countermeasure for astronauts and ground crew during space missions. Due...

  6. Uncertainty propagation for statistical impact prediction of space debris

    Science.gov (United States)

    Hoogendoorn, R.; Mooij, E.; Geul, J.

    2018-01-01

    Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.

  7. Design study of nuclear power systems for deep space explorers. (2) Electricity supply capabilities of solid cores

    International Nuclear Information System (INIS)

    Yamaji, Akifumi; Takizuka, Takakazu; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

    2009-01-01

    This study has been carried out in series with the other study, 'Criticality of Low Enriched Uranium Fueled Core' to explore the possibilities of a solid reactor electricity generation system for supplying propulsion power of a deep space explorer. The design ranges of two different systems are determined with respect to the electric power, the radiator mass, and the operating temperatures of the heat-pipes and thermoelectric converters. The two systems are the core surface cooling with heat-pipe system (CSHP), and the core direct cooling with heat-pipe system (CDHP). The evaluated electric powers widely cover the 1 to 100 kW range, which had long been claimed to be the range that lacked the power sources in space. Therefore, the concepts shown by this study may lead to a breakthrough of the human activities in space. The working temperature ranges of the main components, namely the heat-pipes and thermoelectric converters, are wide and covers down to relatively low temperatures. This is desirable from the viewpoints of broadening the choices, reducing the development needs, and improving the reliabilities of the devices. Hence, it is advantageous for an early establishment of the concept. (author)

  8. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  9. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Science.gov (United States)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  10. Hot-Fire Test of Liquid Oxygen/Hydrogen Space Launch Mission Injector Applicable to Exploration Upper Stage

    Science.gov (United States)

    Barnett, Greg; Turpin, Jason; Nettles, Mindy

    2015-01-01

    This task is to hot-fire test an existing Space Launch Mission (SLM) injector that is applicable for all expander cycle engines being considered for the exploration upper stage. The work leverages investment made in FY 2013 that was used to additively manufacture three injectors (fig. 1) all by different vendors..

  11. Learning to Take an Inquiry Stance in Teacher Research: An Exploration of Unstructured Thought-Partner Spaces

    Science.gov (United States)

    Lawton-Sticklor, Nastasia; Bodamer, Scott F.

    2016-01-01

    This article explores a research partnership between a university-based researcher and a middle school science teacher. Our partnership began with project-based inquiry and continued with unstructured thought-partner spaces: meetings with no agenda where we wrestled with problems of practice. Framed as incubation periods, these meetings allowed us…

  12. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  13. The Explorer's Guide to the Universe: A Reading List for Planetary and Space Science. Revised

    Science.gov (United States)

    French, Bevan M. (Compiler); McDonagh, Mark S. (Compiler)

    1984-01-01

    During the last decade, both scientists and the public have been engulfed by a flood of discoveries and information from outer space. Distant worlds have become familiar landscapes. Instruments in space have shown us a different Sun by the "light" of ultraviolet radiation and X-rays. Beyond the solar system, we have detected a strange universe of unsuspected violence, unexplained objects, and unimaginable energies. We are completely remarking our picture of the universe around us, and scientists and the general public alike are curious and excited about what we see. The public has participated in this period of exploration and discovery to an extent never possible before. In real time, TV screens show moonwalks, the sands of Mars, the volcanoes of Io, and the rings of Saturn. But after the initial excitement, it is hard for the curious non-scientist to learn more details or even to stay in touch with what is going on. Each space mission or new discovery is quickly skimmed over by newspapers and TV and then preserved in technical journals that are neither accessible nor easily read by the average reader. This reading list is an attempt to bridge the gap between the people who make discoveries in space and the people who would like to read about them. The aim has been to provide to many different people--teachers, students, scientists, other professionals, and curious citizens of all kinds--a list of readings where they can find out what the universe is like and what we have learned about it. We have included sections on the objects that seem to be of general interest--the Moon, the planets, the Sun, comets, and the universe beyond. We have also included material on related subjects that people are interested in--the history of space exploration, space habitats, extraterrestrial life, and U F O ' s . The list is intended to be self-contained; it includes both general references to supply background and more specific sources for new discoveries. Although the list can

  14. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  15. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  16. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  17. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  18. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  19. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  20. Ecological Literacy, Urban Green Space, and Mobile Technology: Exploring the Impacts of an Arboretum Curriculum Designed for Undergraduate Biology Courses

    Science.gov (United States)

    Phoebus, Patrick E.

    Increasing individual ecological literacy levels may help citizens make informed choices about the environmental challenges facing society. The purpose of this study was to explore the impacts of an arboretum curriculum incorporating mobile technology and an urban greenspace on the ecological knowledge, environmental attitudes and beliefs, and environmental behaviors of undergraduate biology students and pre-service K-8 teachers during a summer course. Using a convergent parallel mixed-methods design, both quantitative and qualitative data were collected, analyzed, and later merged to create an enhanced understanding of the impact of the curriculum on the environmental attitudes and beliefs of the participants. Quantitative results revealed a significant difference between pre- and post-survey scores for ecological knowledge, with no significant differences between pre- and post-scores for the other variables measured. However, no significant difference in scores was found between experimental and comparison groups for any of the three variables. When the two data sets were compared, results from the quantitative and qualitative components were found to converge and diverge. Quantitative data indicated the environmental attitudes and beliefs of participants were unaffected by the arboretum curriculum. Similarly, qualitative data indicated participants' perceived environmental attitudes and beliefs about the importance of nature remained unchanged throughout the course of the study. However, qualitative data supporting the theme connecting with the curriculum suggested experiences with the arboretum curriculum helped participants develop an appreciation for trees and nature and led them to believe they increased their knowledge about trees.

  1. The Hudson River Plume: Exploring Human Impact on the Coastal Environment

    Science.gov (United States)

    McDonnell, Janice; Duncan, Ravit; Lichtenwalner, C. Sage; Dunbar, Laura

    2010-01-01

    The Hudson River Watershed contains a variety of geologic, topographic, climatic, and hydrologic features and a diversity of land-use patterns--making it an ideal model for studying human impact on the coastal environment. In this article, the authors present the Hudson River Plume (HRP), a problem-based online module that explores nonpoint-source…

  2. Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective

    Science.gov (United States)

    Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri

    2013-01-01

    National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits

  3. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  4. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  5. Exploring the Model Design Space for Battery Health Management

    Science.gov (United States)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  6. Protecting and expanding the richness and diversity of life, an ethic for astrobiology research and space exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Christopher P.

    2014-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  7. Protecting and Expanding the Richness and Diversity of Life, An Ethic for Astrobiology Research and Space Exploration

    Science.gov (United States)

    Randolph, Richard O.; McKay, Chris P.

    2011-01-01

    The ongoing search for life on other worlds and the prospects of eventual human exploration of the Moon and Mars indicate the need for new ethical guidelines to direct our actions as we search and how we respond if we discover microbial life on other worlds. Here we review how life on other worlds presents a novel question in environmental ethics. We propose a principle of protecting and expanding the richness and diversity of life as the basis of an ethic for astrobiology research and space exploration. There are immediate implications for the operational policies governing how we conduct the search for life on Mars and how we plan for human exploration throughout the Solar System.

  8. NASA Astrophysics E/PO: The Impact of the Space Telescope Science Institute Office of Public Outreach

    Science.gov (United States)

    Smith, Denise A.; Jirdeh, Hussein; Eisenhamer, Bonnie; Villard, Ray

    2015-01-01

    As the science operations center for Hubble and Webb, the Space Telescope Science Institute (STScI) is uniquely positioned to captivate the imagination and inspire learners of all ages in humanity's quest to understand fundamental questions about our universe and our place in it. With the 25th anniversary of Hubble's launch and deployment approaching in April 2015, this presentation will provide an overview of the impact of the STScI's Office of Public Outreach's programs to engage students, educators, and the public in exploring the universe through audience-based news, education, and outreach programs. At the heart of our programs lies a tight coupling of scientific, education, and communications expertise. By partnering scientists and educators, we assure current, accurate science content and education products and programs that are classroom-ready and held to the highest pedagogical standards. Likewise, news and outreach programs accurately convey cutting-edge science and technology in a way that is attuned to audience needs. The combination of Hubble's scientific capabilities and majestic imagery, together with a deep commitment to creating effective programs to share Hubble science with the education community and the public, has enabled the STScI Office of Public Outreach programs to engage 6 million students and ½ million educators per year, and 24 million online viewers per year. Hubble press releases generate approximately 5,000 online news articles per year with an average circulation of 125 million potential readers per press release news story. We will also share how best practices and lessons learned from this long-lived program are already being applied to engage a new generation of explorers in the science and technology of the James Webb Space Telescope.

  9. Space in Space: Designing for Privacy in the Workplace

    Science.gov (United States)

    Akin, Jonie

    2015-01-01

    Privacy is cultural, socially embedded in the spatial, temporal, and material aspects of the lived experience. Definitions of privacy are as varied among scholars as they are among those who fight for their personal rights in the home and the workplace. Privacy in the workplace has become a topic of interest in recent years, as evident in discussions on Big Data as well as the shrinking office spaces in which people work. An article in The New York Times published in February of this year noted that "many companies are looking to cut costs, and one way to do that is by trimming personal space". Increasingly, organizations ranging from tech start-ups to large corporations are downsizing square footage and opting for open-office floorplans hoping to trim the budget and spark creative, productive communication among their employees. The question of how much is too much to trim when it comes to privacy, is one that is being actively addressed by the National Aeronautics and Space Administration (NASA) as they explore habitat designs for future space missions. NASA recognizes privacy as a design-related stressor impacting human health and performance. Given the challenges of sustaining life in an isolated, confined, and extreme environment such as Mars, NASA deems it necessary to determine the acceptable minimal amount for habitable volume for activities requiring at least some level of privacy in order to support optimal crew performance. Ethnographic research was conducted in 2013 to explore perceptions of privacy and privacy needs among astronauts living and working in space as part of a long-distance, long-duration mission. The allocation of space, or habitable volume, becomes an increasingly complex issue in outer space due to the costs associated with maintaining an artificial, confined environment bounded by limitations of mass while located in an extreme environment. Privacy in space, or space in space, provides a unique case study of the complex notions of

  10. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  11. The Necessity of Functional Analysis for Space Exploration Programs

    Science.gov (United States)

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    for space exploration programs.

  12. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  13. Potential Applications of Modularity to Enable a Deep Space Habitation Capability for Future Human Exploration Beyond Low-Earth Orbit

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Smitherman, David

    2012-01-01

    Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.

  14. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  15. Performative Research in Art Education: Scenes from the Seminar "Exploring Performative Rituals in City Space"

    Directory of Open Access Journals (Sweden)

    Ulrike Stutz

    2008-05-01

    Full Text Available In my contribution, I lay the foundations for a performative approach to art education research and then apply it to three examples from a performance seminar conducted with university students. In the process, I subject video documentaries produced during performative exploration of everyday rituals in public space, to a fresh performative analysis using media techniques. My research interest targets the reactions of passers-by as an expanded audience, i.e., it targets the qualitative changes of social space brought about by these actions of site specific art. The contribution is presented as a multimedia document with videos and animations. The parallel presentation of different media formats produces differentiating and activating readings. URN: urn:nbn:de:0114-fqs0802514

  16. Language Multiplicity and Dynamism: Emergent Bilinguals Taking Ownership of Language Use in a Hybrid Curricular Space

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-01-01

    This study explores the impact of hybrid instructional spaces on the purposeful and expansive use of translanguaging practices. Utilizing technology, the study explores the role of multimodality in bilinguals' language multiplicity and dynamism. The research addresses: (a) how do emergent bilinguals in dual language programs deploy their full…

  17. Exploring the Impact of Gambling Advertising: An Interview Study of Problem Gamblers

    Science.gov (United States)

    Binde, Per

    2009-01-01

    This study qualitatively explored the impact of gambling advertising on problem gambling by interviewing twenty-five people with current or past gambling problems. Interviews were relatively long and involved the participants' viewing numerous examples of gambling advertising. A quarter of the participants reported that gambling advertising had no…

  18. Robotic Design Choice Overview using Co-simulation and Design Space Exploration

    DEFF Research Database (Denmark)

    Christiansen, Martin Peter; Larsen, Peter Gorm; Nyholm Jørgensen, Rasmus

    2015-01-01

    . Simulations are used to evaluate the robot model output response in relation to operational demands. An example of a load carrying challenge in relation to the feeding robot is presented and a design space is defined with candidate solutions in both the mechanical and software domains. Simulation results......Rapid robotic system development has created a demand for multi-disciplinary methods and tools to explore and compare design alternatives. In this paper, we present a collaborative modelling technique that combines discrete-event models of controller software with continuous-time models of physical...... robot components. The proposed co-modelling method utilises Vienna Development Method (VDM) and Matlab for discrete-event modelling and 20-sim for continuous-time modelling. The model-based development of a mobile robot mink feeding system is used to illustrate the collaborative modelling method...

  19. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  20. Conversion to organic wine production: exploring the economic performance impacts

    OpenAIRE

    Nisén, Pia

    2014-01-01

    This study focuses on understanding the relationship between organic wine production and economic performance. The aim of this study is to clarify, what are the economic impacts that result from the conversion of wine production from conventional to organic. This is an interesting topic to be explored in more detail because despite the increasing demand of organic wine and share of vineyard area used for organic winemaking, the economic consequences of the conversion are still somewhat unclea...

  1. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  2. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  3. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Science.gov (United States)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  4. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  5. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    Science.gov (United States)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  6. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  7. The Impact Imperative: A Space Infrastructure Enabling a Multi-Tiered Earth Defense

    Science.gov (United States)

    Campbell, Jonathan W.; Phipps, Claude; Smalley, Larry; Reilly, James; Boccio, Dona

    2003-01-01

    Impacting at hypervelocity, an asteroid struck the Earth approximately 65 million years ago in the Yucatan Peninsula a m . This triggered the extinction of almost 70% of the species of life on Earth including the dinosaurs. Other impacts prior to this one have caused even greater extinctions. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important immediate space challenge facing human civilization. This is the Impact Imperative. We now believe that while there are about 2000 earth orbit crossing rocks greater than 1 kilometer in diameter, there may be as many as 200,000 or more objects in the 100 m size range. Can anything be done about this fundamental existence question facing our civilization? The answer is a resounding yes! By using an intelligent combination of Earth and space based sensors coupled with an infrastructure of high-energy laser stations and other secondary mitigation options, we can deflect inbound asteroids, meteoroids, and comets and prevent them &om striking the Earth. This can be accomplished by irradiating the surface of an inbound rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun. One-kilometer size rocks can be moved sufficiently in about a month while smaller rocks may be moved in a shorter time span. We recommend that space objectives be immediately reprioritized to start us moving quickly towards an infrastructure that will support a multiple option defense capability. Planning and development for a lunar laser facility should be initiated immediately in parallel with other options. All mitigation options are greatly enhanced by robust early warning, detection, and tracking resources to find objects sufficiently prior to Earth orbit passage in time to allow significant intervention. Infrastructure options should include ground, LEO, GEO, Lunar, and libration point

  8. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  9. Impact test characterization of carbon-carbon composites for the thermoelectric space power system

    International Nuclear Information System (INIS)

    Romanoski, G.R.; Pih, Hui.

    1995-01-01

    Thirty-eight unique carbon-carbon composite materials of cylindrical architecture were fabricated by commercial vendors for evaluation as alternative impact shell materials for the modular heat source of the thermoelectric space power system. Characterization of these materials included gas gun impact tests where cylindrical specimens containing a mass simulant were fired at 55 m/s to impact a target instrumented to measure force. The force versus time output was analyzed to determine: peak force, acceleration, velocity, and displacement. All impact tests exhibited an equivalence between preimpact momentum and measured impulse. In addition, energy was conserved based on a comparison of preimpact kinetic energy and measured work. Impact test results showed that the currently specified material provided impact energy absorption comparable to the best alternatives considered to date

  10. GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Loo, Sven Van [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Bruderer, Simon, E-mail: benwu@phys.ufl.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2015-09-20

    We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.

  11. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  12. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.

    Science.gov (United States)

    Kim, Eun-Mi; Park, Joon Ho; Kim, Byung-Gee; Seo, Joo-Hyun

    2018-03-01

    Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  14. Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter

    International Nuclear Information System (INIS)

    Baltz, Edward A.; Gondolo, Paolo

    2004-01-01

    We explore the full parameter space of Minimal Supergravity (mSUGRA), allowing all four continuous parameters (the scalar mass m 0 , the gaugino mass m 1/2 , the trilinear coupling A 0 , and the ratio of Higgs vacuum expectation values tan β) to vary freely. We apply current accelerator constraints on sparticle and Higgs masses, and on the b→sγ branching ratio, and discuss the impact of the constraints on g μ -2. To study dark matter, we apply the WMAP constraint on the cold dark matter density. We develop Markov Chain Monte Carlo (MCMC) techniques to explore the parameter regions consistent with WMAP, finding them to be considerably superior to previously used methods for exploring supersymmetric parameter spaces. Finally, we study the reach of current and future direct detection experiments in light of the WMAP constraint. (author)

  15. Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter

    International Nuclear Information System (INIS)

    Baltz, E

    2004-01-01

    We explore the full parameter space of Minimal Supergravity (mSUGRA), allowing all four continuous parameters (the scalar mass m 0 , the gaugino mass m 1/2 , the trilinear coupling A 0 , and the ratio of Higgs vacuum expectation values tan β) to vary freely. We apply current accelerator constraints on sparticle and Higgs masses, and on the b → sγ branching ratio, and discuss the impact of the constraints on g μ -2. To study dark matter, we apply the WMAP constraint on the cold dark matter density. We develop Markov Chain Monte Carlo (MCMC) techniques to explore the parameter regions consistent with WMAP, finding them to be considerably superior to previously used methods for exploring supersymmetric parameter spaces. Finally, we study the reach of current and future direct detection experiments in light of the WMAP constraint

  16. Impact of Whole Body Irradiation on the Intestinal Microbiome- Considerations for Space Flight

    Science.gov (United States)

    Karouia, Fathi; Santos, Orlando; Valdivia-Silva, Julio E.; Jones, Jeffrey; Greenberger, Joel S.; Epperly, Michael W.

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems to just name a few. However, to date, radiation exposure is one of the main limiting factors for long duration space exploration missions and especially a mission to Mars. Over the past few years through advances in technology, the characterization of the microbiome has revealed a large and complex community of microorganisms living in symbiosis with the human host. However, heterogeneity of the intestinal microbial spectrum in humans has been associated with a variety of diseases and susceptibility to infectious and toxic agents. Limited information is known about the influence of space environment in general and radiation in particular on the microbiome. Furthermore, multiple spaceflight and simulated microgravity experiments have shown changes in phenotypic microbial characteristics such as microbial growth, morphology, metabolism, genetic transfer, antibiotic and stress susceptibility, and an increase in virulence factors. We now report a study of the bacterial composition of the intestine in C57BL/6NTAC mice and the types of microbes entering the body at two time points after the LD 50/30 dose of total body irradiation using microarray-based assay, G3 PhyloChip 16S rRNA, and bioinformatics methods. Bacteria and archaea taxon richness was determined at the genus level and ranged from 2 to 107 and 0 to 3 respectively. As expected, pre-exposure blood samples exhibited less bacterial and archaeal genus richness compared to all other samples. However, the study shows a significant shift in the mouse gut microbial speciation in several bacterial families, with increases in the Turicibacteraceae and Enterobacteriaceae and decreases in the Lachnospiraceae and Ruminococcaceae families. The findings most relevant to occupational

  17. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity.

    Science.gov (United States)

    Sailem, Heba; Bousgouni, Vicky; Cooper, Sam; Bakal, Chris

    2014-01-22

    One goal of cell biology is to understand how cells adopt different shapes in response to varying environmental and cellular conditions. Achieving a comprehensive understanding of the relationship between cell shape and environment requires a systems-level understanding of the signalling networks that respond to external cues and regulate the cytoskeleton. Classical biochemical and genetic approaches have identified thousands of individual components that contribute to cell shape, but it remains difficult to predict how cell shape is generated by the activity of these components using bottom-up approaches because of the complex nature of their interactions in space and time. Here, we describe the regulation of cellular shape by signalling systems using a top-down approach. We first exploit the shape diversity generated by systematic RNAi screening and comprehensively define the shape space a migratory cell explores. We suggest a simple Boolean model involving the activation of Rac and Rho GTPases in two compartments to explain the basis for all cell shapes in the dataset. Critically, we also generate a probabilistic graphical model to show how cells explore this space in a deterministic, rather than a stochastic, fashion. We validate the predictions made by our model using live-cell imaging. Our work explains how cross-talk between Rho and Rac can generate different cell shapes, and thus morphological heterogeneity, in genetically identical populations.

  18. Impact of Spacing of Practice on Learning Brand Name and Generic Drugs.

    Science.gov (United States)

    Terenyi, James; Anksorus, Heidi; Persky, Adam M

    2018-02-01

    Objective. To test the impact of schedules of retrieval practice on learning brand and generic name drug information in a self-paced course. Methods. Students completed weekly quizzes on brand and generic name conversions for 100 commonly prescribed drugs. Each student completed part of the drug list on a schedule of equal, expanding, or contracting spacing, one practice (massed) or study only in a partial block design. Results. On measures of long-term retention, the contracting spacing schedule led to superior retention (67%) compared to the massed practice (50%) and study-only condition (46%); contracting practice also was significantly higher than expanding practice (58%,) or equal practice (59%). Overall performance decreased by almost 50% (final exam 95%, long-term retention 55%) over a 6-week period. Conclusion. A contracting spacing schedule was the most effective schedule of practice, and all spacing schedules were superior to massed practice or study-only conditions.

  19. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  20. Welcoming the Dark Side?: Exploring Whitelash and Actual Space Nazis in TFA Fanfiction

    Directory of Open Access Journals (Sweden)

    Cait Coker

    2017-12-01

    Full Text Available From the release of its first trailer, Star Wars: The Force Awakens received a racist backlash in response to the character of Finn, a black Stormtrooper turned hero. Nonetheless, after the film’s debut, slash fans across the Internet joined to make the Finn/Poe and Finn/Poe/Rey relationships (known as ‘ships among the most popular in both art and fiction, in what seemed to be a welcome sign of fandom’s evolution from the usual orgy of white cis-bodies. However, by the time TFA was available for legal download, the Kylo/Hux ‘ship had overtaken the others significantly, despite their lack of screentime and actual lines, and the fact that they were “actual space Nazis” and “evil space boyfriends.” This essay will explore the intersections of racism and misogyny in TFA fanfiction and discuss why these most problematic ‘ships have become the most popular, and consider how the mainstreaming of the Empire in the popular imagination is a form of political whitelash.

  1. Advanced micro-reactor for space and deep sea exploration: a scientific Brazilian vision

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca; Lobo, Paulo D.C.

    2011-01-01

    Humankind is at the point to initiate a new adventure in its evolutionary journey, the colonization of other planets of our solar system and space travels. Also, there is still another frontier where the human presence is scarce, the oceans and the Earth seabed. To have success in the exploration of these new frontiers a fundamental requirement must be satisfied: secure availability of energy for life support and others processes. This work deals with the establishment of a basis for a Brazilian nuclear research and development (R and D) program to develop micro-reactor (MR) technologies that may be used in the seabed, the space or another hostile environment on Earth. The work presents a set of basic requirements that is used to define the best reactor type to be used in these environments. Also, the limits and dimensions that define the class of micro-reactors are discussed. The fast neutron spectrum was chosen as the best for the MR and the limits for the active core volume and thermal power are 30 liters and 5 MW. (author)

  2. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  3. Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.

    Science.gov (United States)

    Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew

    2016-08-01

    This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.

  4. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  5. Growing crops for space explorers on the moon, Mars, or in space

    Science.gov (United States)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars

  6. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    DEFF Research Database (Denmark)

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  7. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  8. Investigating the Impact of Lighting Educational Spaces on Learning and Academic Achievement of Elementary Students

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-05-01

    Full Text Available Background In modern education, physical space is considered as a dynamic factor in students' educational activities. This study was conducted to investigating the impact of lighting educational spaces on learning and academic achievement of elementary students. Materials and Methods At a cross-sectional study (2015-2016, a total of 210 students were selected randomly as sample of study. Cluster sampling was done by appropriate allocation and questionnaires were randomly divided among students. Data collection tools included Hermance’s achievement motivation questionnaire and researcher-constructed questionnaire (observation checklist to examine the physical parameters of learning environment lighting and interviews with students. Data of study were analyzed using SPSS- 21 software. Results Results of this study showed that lighting educational spaces has a significant impact on learning and academic achievement of elementary school students in Ahvaz, Iran (P

  9. Investigating the Impact of Schools' Open Space on Learning and Educational Achievement of Elementary Students

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-04-01

    Full Text Available Background It is obvious that most of informal learnings of social skills and constructive plays occur in school yards and play-fields where children spend much of their non-official time of teaching. This study aimed to investigate the impact of schools' open space on learning and educational achievement of elementary students in Ahvaz, Southwest of Iran. Materials and Methods At a cross-sectional study, 210 students were selected randomly as sample of study. Data collection tools included Hermance’s achievement motivation questionnaire and researcher-constructed questionnaire (observation checklist to examine the physical parameters of learning schools' open space and interviews with students. Data of study were analyzed in SPSS- 21 software. Results Results of this study showed that schools' open space has a significant impact on learning and academic achievement of elementary school students in Ahvaz- Iran (P

  10. Reloading Pupils’ Batteries: Impact of Green Spaces on Cognition and Wellbeing

    Directory of Open Access Journals (Sweden)

    Peter Wallner

    2018-06-01

    Full Text Available Cognitive functioning and academic performance of pupils depend on regular breaks from classroom work. However, it is unclear which settings during such breaks provide the best environment to restore cognitive performance and promote wellbeing of adolescent pupils. Therefore, we investigated the effects of staying in different urban green spaces during breaks. Sixty-four pupils (16–18 years old participated in a cross-over experiment. They were placed into one of three settings (small park, larger park, forest for one hour during a lunch break. Wellbeing was assessed four times (Nitsch scale, and a cognitive test (d2-R Test of Attention was applied in the classrooms before and after the break. Wellbeing was almost always highest after the stay in the green spaces. However, a sustained effect was only found for the forest. Concentration performance values of the d2-R test were significantly higher after the pupils’ stay in green spaces for all sites. The highest increase of performance was found for the larger park type. In conclusion, this pilot study showed that study breaks in green spaces improved wellbeing and cognitive performance of adolescents. It also found that larger green spaces, either parks or forests, have stronger positive impacts on wellbeing and cognitive performance than small parks.

  11. Exploring galaxy evolution with latent space walks

    Science.gov (United States)

    Schawinski, Kevin; Turp, Dennis; Zhang, Ce

    2018-01-01

    We present a new approach using artificial intelligence to perform data-driven forward models of astrophysical phenomena. We describe how a variational autoencoder can be used to encode galaxies to latent space, independently manipulate properties such as the specific star formation rate, and return it to real space. Such transformations can be used for forward modeling phenomena using data as the only constraints. We demonstrate the utility of this approach using the question of the quenching of star formation in galaxies.

  12. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  13. ‘It makes you think’ – exploring the impact of qualitative films on pain clinicians

    Science.gov (United States)

    Jenkins, Sue

    2015-01-01

    Background: Researchers need to consider the impact and utility of their findings. Film is an accessible medium for qualitative research findings and can facilitate learning through emotional engagement. Aim: We aimed to explore the usefulness of a short film presenting findings from a published qualitative synthesis of adults’ experience of chronic musculoskeletal pain for pain education. In particular, we were interested in the impact of the film on clinician’s understanding of patients’ experience of chronic pain and how this knowledge might be used for improved healthcare for people with pain. Methods: Focus groups with healthcare professionals enrolled in a pain management foundation course explored healthcare professionals’ experience of watching the film. A constructivist grounded theory approach was adopted by the researchers. Findings: This article presents one thematic exemplar from a wider study. Participants reflected upon the pitfalls of judging by appearances and the value of seeing the person beneath his or her performance. Conclusion: There is a danger that the impact of qualitative findings is under-valued in clinical education. We present one exemplar from a study exploring knowledge mobilisation, which demonstrates that qualitative research, specifically qualitative films, can make us think about the care that we provide to people with chronic pain. PMID:26516558

  14. Does the Health Impact of Exposure to Neighbourhood Green Space Differ between Population Groups? An Explorative Study in Four European Cities

    Science.gov (United States)

    Ruijsbroek, Annemarie; Droomers, Mariël; Kruize, Hanneke; van Kempen, Elise; Gidlow, Christopher J.; Hurst, Gemma; Andrusaityte, Sandra; Nieuwenhuijsen, Mark J.; Maas, Jolanda; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    It has been suggested that certain residents, such as those with a low socioeconomic status, the elderly, and women, may benefit more from the presence of neighbourhood green space than others. We tested this hypothesis for age, gender, educational level, and employment status in four European cities. Data were collected in Barcelona (Spain; n = 1002), Kaunas (Lithuania; n = 989), Doetinchem (The Netherlands; n = 847), and Stoke-on-Trent (UK; n = 933) as part of the EU-funded PHENOTYPE project. Surveys were used to measure mental and general health, individual characteristics, and perceived neighbourhood green space. Additionally, we used audit data about neighbourhood green space. In Barcelona, there were positive associations between neighbourhood green space and general health among low-educated residents. In the other cities and for the other population groups, there was little evidence that the association between health and neighbourhood green space differed between population groups. Overall, our study does not support the assumption that the elderly, women, and residents who are not employed full-time benefit more from neighbourhood green space than others. Only in the highly urbanised city of Barcelona did the low-educated group benefit from neighbourhood green spaces. Perhaps neighbourhood green spaces are more important for the health of low-educated residents in particularly highly urbanised areas. PMID:28594390

  15. Does the Health Impact of Exposure to Neighbourhood Green Space Differ between Population Groups? An Explorative Study in Four European Cities.

    Science.gov (United States)

    Ruijsbroek, Annemarie; Droomers, Mariël; Kruize, Hanneke; van Kempen, Elise; Gidlow, Christopher J; Hurst, Gemma; Andrusaityte, Sandra; Nieuwenhuijsen, Mark J; Maas, Jolanda; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P

    2017-06-08

    It has been suggested that certain residents, such as those with a low socioeconomic status, the elderly, and women, may benefit more from the presence of neighbourhood green space than others. We tested this hypothesis for age, gender, educational level, and employment status in four European cities. Data were collected in Barcelona (Spain; n = 1002), Kaunas (Lithuania; n = 989), Doetinchem (The Netherlands; n = 847), and Stoke-on-Trent (UK; n = 933) as part of the EU-funded PHENOTYPE project. Surveys were used to measure mental and general health, individual characteristics, and perceived neighbourhood green space. Additionally, we used audit data about neighbourhood green space. In Barcelona, there were positive associations between neighbourhood green space and general health among low-educated residents. In the other cities and for the other population groups, there was little evidence that the association between health and neighbourhood green space differed between population groups. Overall, our study does not support the assumption that the elderly, women, and residents who are not employed full-time benefit more from neighbourhood green space than others. Only in the highly urbanised city of Barcelona did the low-educated group benefit from neighbourhood green spaces. Perhaps neighbourhood green spaces are more important for the health of low-educated residents in particularly highly urbanised areas.

  16. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  17. On How physics Could impact on the Metaphysics of Space and Time

    Directory of Open Access Journals (Sweden)

    Alireza Mansouri

    2015-03-01

    Full Text Available This paper aims to illustrate the mutual inter-relation of physics and metaphysics in the context of the philosophy of space and time. We especially emphasize, in this paper, that scientific development could impact on our position regarding the reality of space and time. To illustrate this point, we investigate the mutual inter-relation of physics and metaphysics in the modern developments of physics, i.e. neo-Newtonian structure, special and general relativity (GR. This paper ends up anticipating that it is likely, by considering modern physics, especially GR, that substantivalism to be a more defensible position.

  18. In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration

    Science.gov (United States)

    Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki

    2015-01-01

    NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.

  19. Exploring the Impact of Network Structure and Demand Collaboration on the Dynamics of a Supply Chain Network Using a Robust Control Approach

    Directory of Open Access Journals (Sweden)

    Yongchang Wei

    2015-01-01

    uncertain environment. The impact of network structure and collaboration on the dynamics and robustness of supply chain network, however, remains to be explored. In this paper, a unified state space model for a two-layer supply chain network composed of multiple distributors and multiple retailers is developed. A robust control algorithm is advocated to reduce both order and demand fluctuations for unknown demand. Numerical simulations demonstrate that the robust control approach has the advantage to reduce both inventory and order fluctuations. In the simulation experiment, it is interesting to notice that complex network structure and collaborations might contribute to the reduction of inventory and order oscillations. This paper yields new insights into the overestimated bullwhip effect problem and helps us understand the complexities of supply chain networks.

  20. Discovery: Under the Microscope at Kennedy Space Center

    Science.gov (United States)

    Howard, Philip M.

    2013-01-01

    The National Aeronautics & Space Administration (NASA) is known for discovery, exploration, and advancement of knowledge. Since the days of Leeuwenhoek, microscopy has been at the forefront of discovery and knowledge. No truer is that statement than today at Kennedy Space Center (KSC), where microscopy plays a major role in contamination identification and is an integral part of failure analysis. Space exploration involves flight hardware undergoing rigorous "visually clean" inspections at every step of processing. The unknown contaminants that are discovered on these inspections can directly impact the mission by decreasing performance of sensors and scientific detectors on spacecraft and satellites, acting as micrometeorites, damaging critical sealing surfaces, and causing hazards to the crew of manned missions. This talk will discuss how microscopy has played a major role in all aspects of space port operations at KSC. Case studies will highlight years of analysis at the Materials Science Division including facility and payload contamination for the Navigation Signal Timing and Ranging Global Positioning Satellites (NA VST AR GPS) missions, quality control monitoring of monomethyl hydrazine fuel procurement for launch vehicle operations, Shuttle Solids Rocket Booster (SRB) foam processing failure analysis, and Space Shuttle Main Engine Cut-off (ECO) flight sensor anomaly analysis. What I hope to share with my fellow microscopists is some of the excitement of microscopy and how its discoveries has led to hardware processing, that has helped enable the successful launch of vehicles and space flight missions here at Kennedy Space Center.

  1. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  2. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  3. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  4. Does the Health Impact of Exposure to Neighbourhood Green Space Differ between Population Groups? An Explorative Study in Four European Cities

    Directory of Open Access Journals (Sweden)

    Annemarie Ruijsbroek

    2017-06-01

    Full Text Available It has been suggested that certain residents, such as those with a low socioeconomic status, the elderly, and women, may benefit more from the presence of neighbourhood green space than others. We tested this hypothesis for age, gender, educational level, and employment status in four European cities. Data were collected in Barcelona (Spain; n = 1002, Kaunas (Lithuania; n = 989, Doetinchem (The Netherlands; n = 847, and Stoke-on-Trent (UK; n = 933 as part of the EU-funded PHENOTYPE project. Surveys were used to measure mental and general health, individual characteristics, and perceived neighbourhood green space. Additionally, we used audit data about neighbourhood green space. In Barcelona, there were positive associations between neighbourhood green space and general health among low-educated residents. In the other cities and for the other population groups, there was little evidence that the association between health and neighbourhood green space differed between population groups. Overall, our study does not support the assumption that the elderly, women, and residents who are not employed full-time benefit more from neighbourhood green space than others. Only in the highly urbanised city of Barcelona did the low-educated group benefit from neighbourhood green spaces. Perhaps neighbourhood green spaces are more important for the health of low-educated residents in particularly highly urbanised areas.

  5. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  6. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  7. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  8. Generating and exploring good building layouts

    KAUST Repository

    Bao, Fan

    2013-07-16

    Good building layouts are required to conform to regulatory guidelines, while meeting certain quality measures. While different methods can sample the space of such good layouts, there exists little support for a user to understand and systematically explore the samples. Starting from a discrete set of good layouts, we analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. We represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. We use our framework on a variety of different test scenarios to showcase an intuitive design, navigation, and exploration interface. Copyright © ACM. Copyright © ACM 2013.

  9. Exploring local perceptions and attributions of 'extreme' wildfire impacts in Rural Montana

    Science.gov (United States)

    Carroll, M.; Paveglio, T.; Kallman, D.

    2013-12-01

    To date there have been few systematic efforts to uncover the criteria that local stakeholders use to perceive of and make judgments about the severity of wildfire impacts to the social-ecological systems they are a part of. The study presented here sought to uncover expanded understandings of perceived social and ecological impacts from a wildfire in rural Montana and the underlying causes for those perceived impacts. Such efforts could lead to more comprehensive social impact assessment concerning wildfires or other hazards and help better understand how local perceptions might influence residents' ongoing attitudes toward fire risk or mitigation efforts. The study presented here explored local perceptions of impact from the 2012 Dahl fire near Roundup, MT. The Dahl Fire burned 73 permanent structures, 150 outbuilding and 22,000 acres of predominantly private lands in the rural Bull Mountains. Members of the project team interviewed approximately 50 stakeholders impacted by or involved in the management for the Dahl Fire. Interviews took place in the summer of 2013 and included a variety of residents, emergency personnel, firefighters, local community officials and land management professionals. Results suggest that residents considered the Dahl fire especially impactful given the number of private residences and structures that were burned and the number of people displaced or disrupted by the event (either directly, through efforts to help those affected, or through indirect impacts to community function). The extremity of the firefighting conditions (e.g. wind, relative humidity, terrain), the rapidity of fire spread through populated areas and the damages sustained given previous fires in the area all surprised stakeholders and contributed to their perceptions of impact severity. Conflicts over access to properties during and immediately following the fire, and the variable perception that personal wildfire mitigations did little to reduce damages from the

  10. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth- Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for

  11. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Science.gov (United States)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  12. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

    CERN Document Server

    Käufl, H.U; ESO/VUB Conference

    2009-01-01

    In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.

  13. Preparing future space leaders - International Space University

    Science.gov (United States)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  14. European Space Agency's Fluorescence Explorer Mission: Concept and Applications

    Science.gov (United States)

    Mohammed, G.; Moreno, J. F.; Goulas, Y.; Huth, A.; Middleton, E.; Miglietta, F.; Nedbal, L.; Rascher, U.; Verhoef, W.; Drusch, M.

    2012-12-01

    The Fluorescence Explorer (FLEX) is a dedicated satellite for the detection and measurement of solar-induced fluorescence (SIF). It is one of two candidate missions currently under evaluation by ESA for deployment in its Earth Explorer 8 program, with Phase A/B1 assessments now underway. FLEX is planned as a tandem mission with ESA's core mission Sentinel-3, and would carry an instrument, FLORIS, optimized for discrimination of the fluorescence signal in terrestrial vegetation. The FLEX mission would be the first to be focussed upon optimization of SIF detection in terrestrial vegetation, and using finer spatial resolution than is available with current satellites. It would open up a novel avenue for monitoring photosynthetic function from space, with diverse potential applications. Plant photosynthetic tissues absorbing sunlight in the wavebands of photosynthetically active radiation (400 to 700 nm) emit fluorescence in the form of red and far-red light. This signal confers a small but measurable contribution to apparent reflectance spectra, and with appropriate analysis it may be detected and quantified. Over the last 15-20 years, techniques for SIF detection have progressed from contact or near-contact methods using single leaves to remote techniques using airborne sensors and towers over plant canopies. Ongoing developments in instrumentation, atmospheric correction procedures, signal extraction techniques, and utilization of the SIF signal itself are all critical aspects of progress in this area. The FLEX mission would crystallize developments to date into a state-of-the-art pioneering mission targeting actual photosynthetic function. This compares to existing methods which address only potential function. Thus, FLEX could serve to provide real-time data on vegetation health and stress status, and inputs for parameterization of photosynthetic models (e.g. with measures of light-use efficiency). SIF might be correlated or modelled to photosynthetic rates or

  15. Architecture for the silver generation: exploring the meaning of appropriate space for ageing in a Swedish municipality.

    Science.gov (United States)

    Andersson, Jonas E

    2011-03-01

    This paper focuses on an architecture competition for the silver generation, namely those aged 65 years and older. Twenty-seven Swedish informants were interviewed using an interviewing guide that included a photographic survey. The informants emphasised aesthetic dimensions in architecture for the prolongation of ageing in place and independent living in a residential home. This study highlights the individual adjustment of space, and the integrated location in existing urban settings near nature. Based on the findings, a habitational model for exploring the appropriate space for ageing is formulated. It suggests that architecture through location and spatial features needs to generate positive associations with the users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    Science.gov (United States)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  17. Use of Parallel Micro-Platform for the Simulation the Space Exploration

    Science.gov (United States)

    Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen

    The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.

  18. Human exploration of space: why, where, what for?

    Science.gov (United States)

    Vernikos, J

    2008-08-01

    "Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".

  19. Exploring the Impact of Role-Playing on Peer Feedback in an Online Case-Based Learning Activity

    Science.gov (United States)

    Ching, Yu-Hui

    2014-01-01

    This study explored the impact of role-playing on the quality of peer feedback and learners' perception of this strategy in a case-based learning activity with VoiceThread in an online course. The findings revealed potential positive impact of role-playing on learners' generation of constructive feedback as role-playing was associated with higher…

  20. Exploration Laboratory Analysis

    Science.gov (United States)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  1. The Impact of E-Commerce Development on the Warehouse Space Market in Poland

    Directory of Open Access Journals (Sweden)

    Dembińska Izabela

    2016-12-01

    Full Text Available The subject of discussion in the article is the impact of e-commerce sector on the warehouse space market. On the basis of available reports, the development of e-commerce has been characterized in Poland, showing the dynamics and the type of change. The needs of e-commerce sector in the field of logistics, in particular in the area of storage, have been presented in the paper. These needs have been characterized and at the same time, how representatives of the warehouse space market are prepared to support companies in the e-commerce sector is also discussed. The considerations are illustrated by the changes that occur as a result of the development of e-commerce on the warehouse space market in Poland.

  2. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  3. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  4. Development of methodology for component testing under impact loading for space applications

    Science.gov (United States)

    Church, Phillip; Taylor, Nicholas; Perkinson, Marie-Claire; Wishart, Alex; Vijendran, Sanjay; Braithwaite, Chris

    2017-06-01

    A number of recent studies have highlighted the scientific benefits of penetrator technology in conducting exploration on other planetary bodies and moons within the solar system. Such a ``hard landing'' approach is cheaper and easier than the traditional ``soft landing'' method. However it is necessary for the science package of such a mission to withstand the rapid decelerations that will occur upon impact. This paper outlines an approach that has been developed to simulate the loading appropriate to Europa and also to monitor component performance before, during and after the impact.

  5. Food in the City: Review of Psychological Impact of Growing Food in Urban Spaces

    Directory of Open Access Journals (Sweden)

    Surabhika Maheshwari

    2017-02-01

    Full Text Available The activity of growing food is an integral part of human civilization and survival. The present paper attempts at exploring the psychological impact of growing edible greens in the context of urban environment. The review focuses on the impact of growing food, with primary focus on psychological impact and mental health. The findings indicate an encouraging trend in urban farming, though research activity and academic interest in the area of psychological impact of growing food seems limited. Additionally, the review throws light on the sparse research in developing countries on the said topic.

  6. Exploration Medical Capability - Technology Watch

    Science.gov (United States)

    Krihak, Michael; Watkins, Sharmila; Barr, Yael; Barsten, Kristina; Fung, Paul; Baumann, David

    2011-01-01

    The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents.

  7. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  8. Deep Space Exploration: Will We Be Ready? Infectious Diseases, Microgravity and Other Forces Affecting Health Pose Challenges for Humans Planning to Explore Space

    Science.gov (United States)

    LaRocco, Mark T.; Pierson, Duane L.

    1999-01-01

    In contemplating space travel beyond earth orbits, we humans face significant barriers and major challenges. Although researchers involved in several scientific subdisciplines, including space medicine and space life sciences, may provide insights to help overcome those barriers, their efforts are at an early stage of development, leaving open many questions of potentially major consequence.

  9. Exploring the Human Ecology of the Younger Dryas Extraterrestrial Impact Event

    Science.gov (United States)

    Kennett, D. J.; Erlandson, J. M.; Braje, T. J.; Culleton, B. J.

    2007-05-01

    Several lines of evidence now exist for a major extraterrestrial impact event in North America at 12.9 ka (the YDB). This impact partially destabilized the Laurentide and Cordilleran ice sheets, triggered abrupt Younger Dryas cooling and extensive wildfires, and contributed to megafaunal extinction. This event also occurred soon after the well established colonization of the Americas by anatomically modern humans. Confirmation of this event would represent the first near-time extraterrestrial impact with significant effects on human populations. These likely included widespread, abrupt human mortality, population displacement, migration into less effected or newly established habitats, loss of cultural traditions, and resource diversification in the face of the massive megafaunal extinction and population reductions in surviving animal populations. Ultimately, these transformations established the context for the special character of plant and animal domestication and the emergence of agricultural economies in North America. We explore the Late Pleistocene archaeological record in North America within the context of documented major biotic changes associated with the YDB in North America and of the massive ecological affects hypothesized for this event.

  10. Emotion regulation: Exploring the impact of stress and sex

    Directory of Open Access Journals (Sweden)

    Valerie L. Kinner

    2014-11-01

    Full Text Available Emotion regulation is a major prerequisite for adaptive behavior. The capacity to regulate emotions is particularly important during and after the encounter of a stressor. However the impact of acute stress and its associated neuroendocrine alterations on emotion regulation have received little attention so far. This study aimed to explore how stress-induced cortisol increases affect three different emotion regulation strategies. 72 healthy men and women were either exposed to a stressor or a control condition. Subsequently participants viewed positive and negative images and were asked to up- or down-regulate their emotional responses or simultaneously required to solve an arithmetic task (distraction. The factors stress, sex and strategy were operationalized as between group factors (n = 6 per cell. Stress caused an increase in blood pressure and higher subjective stress ratings. An increase in cortisol was observed in male participants only. In contrast to controls, stressed participants were less effective in distracting themselves from the emotional pictures. The results further suggest that in women stress enhances the ability to decrease negative emotions. These findings characterize the impact of stress and sex on emotion regulation and provide initial evidence that these factors may interact.

  11. Exploring the impact of positive and negative emotions on cooperative behaviour in a Prisoner's Dilemma Game.

    Science.gov (United States)

    Kjell, Oscar N E; Thompson, Sam

    2013-12-19

    Objective. To explore the influences of discrete positive and negative emotions on cooperation in the context of a social dilemma game. Design. Two controlled studies were undertaken. In Study 1, 69 participants were randomly assigned to an essay emotion manipulation task designed to induce either guilt, joy or no strong emotion. In Study 2, 95 participants were randomly assigned to one of the same three tasks, and the impact of emotional condition on cooperation was explored using a repeated Prisoner's Dilemma Game. Results. Study 1 established that the manipulation task was successful in inducing the specified emotions. The analysis from Study 2 revealed no significant main effects for emotions, in contrast to previous research. However, there was a significant effect for participants' pre-existing tendency to cooperate (social value orientation; SVO). Conclusion. Methodological explanations for the result are explored, including the possible impact of trial-and-error strategies, different cooperation games and endogenous vs exogenous emotions.

  12. Towards human exploration of space: The THESEUS review series on nutrition and metabolism research priorities.

    Science.gov (United States)

    Bergouignan, Audrey; Stein, T Peter; Habold, Caroline; Coxam, Veronique; O' Gorman, Donal; Blanc, Stéphane

    2016-01-01

    Nutrition has multiple roles during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Nutrition is central to the functioning of the body; poor nutrition compromises all the physiological systems. Nutrition is therefore likely to have a key role in counteracting the negative effects of space flight (e.g., radiation, immune deficits, oxidative stress, and bone and muscle loss). As missions increase in duration, any dietary/nutritional deficiencies will become progressively more detrimental. Moreover, it has been recognized that the human diet contains, in addition to essential macronutrients, a complex array of naturally occurring bioactive micronutrients that may confer significant long-term health benefits. It is therefore critical that astronauts be adequately nourished during missions. Problems of nutritional origin are often treatable by simply providing the appropriate nutrients and adequate recommendations. This review highlights six key issues that have been identified as space research priorities in nutrition field: in-flight energy balance; altered feeding behavior; development of metabolic stress; micronutrient deficiency; alteration of gut microflora; and altered fluid and electrolytes balance. For each of these topics, relevance for space exploration, knowledge gaps and proposed investigations are described. Finally, the nutritional questions related to bioastronautics research are very relevant to multiple ground-based-related health issues. The potential spin-offs are both interesting scientifically and potentially of great clinical importance.

  13. SMART-1 technology, scientific results and heritage for future space missions

    Science.gov (United States)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive

  14. Cannabis Withdrawal Among Detained Adolescents: Exploring the Impact of Nicotine and Race

    OpenAIRE

    Soenksen, Shayna; Stein, L.A.R.; Brown, Joanna D.; Stengel, JoAnn R.; Rossi, Joseph S.; Lebeau, Rebecca

    2015-01-01

    Rates of marijuana use among detained youths are exceptionally high. Research suggests a cannabis withdrawal syndrome is valid and clinically significant; however, these studies have mostly been conducted in highly controlled laboratory settings with treatment-seeking, White adults. The present study analyzed archival data to explore the magnitude of cannabis withdrawal symptoms within a diverse sample of detained adolescents while controlling for tobacco use and investigating the impact of r...

  15. Black Bodies, White Rural Spaces: Disturbing Practices of Unbelonging for "Refugee" Students

    Science.gov (United States)

    Edgeworth, Kathryn

    2015-01-01

    In global times, when the forced migration of refugees from war-torn countries like Sudan impacts the demography of once ethnically homogenous schooling spaces, I consider the need to better understand the geographical making of racism. This article explores the lived experience of two newly arrived Sudanese students studying at a rural high…

  16. Evolution to Space

    Science.gov (United States)

    Cohen, Jacob

    2013-01-01

    This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.

  17. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  18. Teaching peace, transforming conflict? : exploring participants' perceptions of the impact of informal peace education training in Uganda

    NARCIS (Netherlands)

    May, A.

    2008-01-01

    Peace education has recemtly become very fashionable but little is known about he outcome and impact of both formal and informal peace-education programmes. This book is an attempt to fill the gap between well-meant intentions and reality by exploring the impact of an informal workshop-style

  19. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  20. Conserving Space Heritage - The Case for Tranquillity Base

    Science.gov (United States)

    Fewer, G.

    One of the most important and spectacular events in the history of space exploration was the first Moon Landing of 1969. Safe from the ravages of erosion, agriculture, industry or the expansion of human settlement, the greatest threat to the site of this momentous event - Tranquillity Base - is likely to be from a meteor impact. However, with the advent of space tourism and commercial space travel, the site of humankind's first visit to a celestial body may come under threat of a different kind - that of souvenir hunters and miners. In this paper, the historical background to the Apollo programme is outlined and the sequence of events that made up the Apollo 11 mission, which conducted the first Moon landing, is described before concluding with a consideration of the heritage conservation issues of Tranquillity Base.