WorldWideScience

Sample records for space environments measurements

  1. Assessing Built Environment Walkability using Activity-Space Summary Measures.

    Science.gov (United States)

    Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R

    There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.

  2. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  3. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2015-12-01

    Full Text Available In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton’s laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  4. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  5. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  6. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  7. Design of Compact Particle Detector System Using FPGA for Space Particle Environment Measurement

    Directory of Open Access Journals (Sweden)

    K. Ryu

    2007-06-01

    Full Text Available We have designed a high resolution proton and electron telescope for the detection of high energy particles, which constitute a major part of the space environment. The flux of the particles, in the satellite orbits, can vary abruptly according to the position and solar activities. In this study, a conceptual design of the detector, for adapting these variations with a high energy resolution, was made and the performance was estimated. In addition, a parallel processing algorithm was devised and embodied using FPGA for the high speed data processing, capable of detecting high flux without losing energy resolution, on board a satellite.

  8. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  9. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  10. Environment monitoring from space

    International Nuclear Information System (INIS)

    Takagi, M.

    1994-01-01

    Environmental problems such as acid rain, ozone depletion, deforestation, erosion, and the greenhouse effect are of increasing concern, and continuous earth observation from artificial satellites has been contributing significant information on the environment since the 1960s. Earth observation from space has the advantages of wide area coverage at potentially high resolutions, periodic and long-term observation capability, data acquisition with uniform quality and repeatability, and ability to observe using different types of sensors. Problems to be solved in earth observation include the need for preprocessing of satellite data, understanding the relationship between observed physical parameters and objects, and the high volume of data for processing. In Japan, a research project on the higher-order utilization of remote sensing data from space was organized in 1985, and the results led to recognition of the importance of satellite observation. It was then decided to undertake a program to improve the understanding of the earth environment by satellite. Five research plans were selected: a basic study on earth observation by microwaves; global change analysis of the biosphere; a study of the physical process of the water cycle over land; a study of air-sea interaction; and higher-order processing of earth observation information. In recognition of the international nature of satellite data, as well as the capabilities of Canada and Japan in computer, communication, and multimedia technologies, bilateral cooperation is proposed in the area of earth environment information systems based on satellite observation

  11. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  12. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  13. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  14. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  15. Space Based Measurements for Atmospheric Carbon Dioxide: a New Tool for Monitoring Our Environment

    Science.gov (United States)

    Crisp, David

    2015-01-01

    Fossil fuel combustion, deforestation, and other human activities are now adding almost 40 billion tons of carbon dioxide (CO2) to the atmosphere each year. Interestingly, as these emissions have increased over time, natural "sinks" in land biosphere and oceans have absorbed roughly half of this CO2, reducing the rate of atmospheric buildup by a half. Measurements of the increasing acidity (pH) of seawater indicate that the ocean absorbs one quarter of this CO2. Another quarter is apparently being absorbed by the land biosphere, but the identity and location of these natural land CO2 "sinks" are still unknown. The existing ground-based greenhouse gas monitoring network provides an accurate record of the atmospheric buildup, but still does not have the spatial resolution or coverage needed to identify or quantify CO2 sources and sinks.

  16. Considering the space environment

    International Nuclear Information System (INIS)

    Boudenot, J.C.; Fillon, T.; Barrillot, C.; Calvet, M.C.

    1999-01-01

    The high levels of radiation encountered in space and in the upper atmosphere can affect the onboard electronics in satellites, launch vehicles and aircraft. The main categories of radiation in space have been classified into four distinct types; radiation belts, solar flares, cosmic radiation and the solar wind. Most of the risk to modern electronic systems arises from heavy ions. In geostationary and low polar orbits, these originate mainly as protons from solar flares. In medium earth orbits, the main source is trapped protons and the South Atlantic anomaly. (authors)

  17. High Fidelity Measurement of Free Space Solar Particle Event and Galactic Cosmic Ray Environments at Intermediate Energies

    Science.gov (United States)

    Leitgab, M.

    2018-02-01

    A charged particle measurement experiment mounted externally to the Deep Space Gateway is proposed, contributing to improving astronaut radiation exposure management during Solar Particle Events and Extra Vehicular Activities.

  18. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  19. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  20. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    International Nuclear Information System (INIS)

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  1. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  2. Book Review: Physics of the Space Environment

    Science.gov (United States)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  3. System survivability in nuclear and space environments

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  4. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  5. Human Pathophysiological Adaptations to the Space Environment

    Directory of Open Access Journals (Sweden)

    Gian C. Demontis

    2017-08-01

    Full Text Available Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning to months (i.e., loss of bone density and muscle atrophy of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  6. Measuring Social Relations in New Classroom Spaces: Development and Validation of the Social Context and Learning Environments (SCALE) Survey

    Science.gov (United States)

    Walker, J. D.; Baepler, Paul

    2017-01-01

    This study addresses the need for reliable and valid information concerning how innovative classrooms on college and university campuses affect teaching and learning. The Social Context and Learning Environments (SCALE) survey was developed though a three-stage process involving approximately 1300 college students. Exploratory and confirmatory…

  7. Information Space, Information Field, Information Environment

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-08-01

    Full Text Available The article analyzes information space, information field and information environment; shows that information space can be natural and artificial; information field is substantive and processual object and articulates the space property; information environment is concerned with some object and acts as the surrounding in relation to it and is considered with regard to it. It enables to define information environment as a subset of information space. It defines its passive description. Information environment can also be defined as a subset of information field. It corresponds to its active description.

  8. Space Analogue Environments: Are the Populations Comparable?

    Science.gov (United States)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  9. Physics of the Space Environment

    Science.gov (United States)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  10. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  11. Solar/Space Environment Data (Satellites)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  12. GOES Space Environment Monitor, Magnetometer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three orthogonal flux-gate magnetometer elements, (spinning twin fluxgate magnetometer prior to GOES-8) provide magnetic field measurements in three mutually...

  13. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  14. Space environments and their effects on space automation and robotics

    Science.gov (United States)

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  15. Measurement environments and testing

    Science.gov (United States)

    Marvin, A. C.

    1991-06-01

    The various methods used to assess both the emission (interference generation) performance of electronic equipment and the immunity of electronic equipment to external electromagnetic interference are described. The measurement methods attempt to simulate realistic operating conditions for the equipment being tested, yet at the same time they must be repeatable and practical to operate. This has led to the development of a variety of test methods, each of which has its limitations. Concentration is on the most common measurement methods such as open-field test sites, screened enclosures and transverse electromagnetic (TEM) cells. The physical justification for the methods, their limitations, and measurement precision are described. Ways of relating similar measurements made by different methods are discussed, and some thoughts on future measurement improvements are presented.

  16. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  17. Space Ethics and Protection of the Space Environment

    Science.gov (United States)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  18. Situative Space Tracking within Smart Environments

    DEFF Research Database (Denmark)

    Surie, Dipak; Jäckel, Florian; Janlert, Lars-Erik

    2010-01-01

    This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking syste......-laboratory smart home environment where a global precision of 83.4% and a global recall of 88.6% were obtained.......This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking system...

  19. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  20. Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  1. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  2. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  3. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  4. Teamwork in high-risk environments analogous to space

    Science.gov (United States)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  5. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  6. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  7. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  8. Reading space characteristics in campus environment

    Science.gov (United States)

    Tampubolon, A. C.; Kusuma, H. E.

    2018-03-01

    Reading activity is a part of daily learning activities that are usually done by college students and takes place in the facilities that are provided by the campus. However, students tend to have a perception of a particular location that is considered appropriate with the activities undertaken. This study identified students’ perceptions of reading space characteristics in campus environment which are considered able to accommodate reading activity. Exploratory qualitative research methods were used to collect data from selected types of space and the reasons for the students in choosing the specifics space to do their reading. The results showed that students do not only use library facilities as a support unit of academic activities. This study found that students tend to use some places with non-library function, such as students’ union room, hallway, and classroom. Students perceive reading space by its physical and social characteristics. The physical consist of ambiance, quiet place, tranquility, availability of facilities, the level of coolness, lighting, location accessibility, connection with nature, convenience furniture, air quality, aesthetics, the flexibility of activities, the crowd of place, the level of shade, outdoor, ownership, and indoor. While the social characteristics of the reading space are to have privacy, favorable reading position, and the presence of others.

  9. Pressure measurements in harsh environments

    International Nuclear Information System (INIS)

    Cook, C.W.; Ames, E.S.

    1979-01-01

    A fluid coupled plate (FCP) gage was designed which allows pressure measurements to be made in harsh environments (including debris) using conventional pressure transducers. The pressure transducer is isolated by means of a rigid force plate which is supported by a bellows having one corrugation. This portion of the gage is machined from a single piece of material. The interior of the gage is filled with a phenol fluid which has a low compressibility

  10. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  11. The ESA Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  12. Environment-assisted precision measurement

    DEFF Research Database (Denmark)

    Goldstein, G.; Cappellaro, P.; Maze, J. R.

    2011-01-01

    We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which...... are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method...... achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond...

  13. Space environment studies for the SZ-4 spacecraft

    International Nuclear Information System (INIS)

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  14. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  15. Microorganisms and biomolecules in space hard environment

    Science.gov (United States)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  16. Radiation measurement on the International Space Station

    International Nuclear Information System (INIS)

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  17. Space missiles start-up impact on environment and dermatosis distribution for population residing areas adjacent to the 'Baikanur' space spot and to that of worked out stages of missile carriers fall: development and immunoprophylaxis measures

    International Nuclear Information System (INIS)

    Kozlovskij, V.A.; Mukhamedzhanov, Eh.K.

    2005-01-01

    This paper presents review of literary data of missile start-ups impact on environment and human health, condition of dermatological diseases in the regions adjacent to 'Baikanur' missile-space complex. It is reported that in-depth study upon assessment of dermatosis distribution for adults and children, development mechanisms of a number dermatological diseases under effect of excess ultraviolet radiation condition and that of asymmetrical dimethylhydrazine (heptyl) in the regions of possible impact of missile carrier's start-ups on dermatosis development epidemic process will be carried out. The study results will be compared with assessment of general level of population life within the last 20 years and adequacy of medicine, including dermatological care for the population. (author)

  18. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  19. Natural Hazards of the Space Environment

    Science.gov (United States)

    Evans, Steven W.; Kross, Dennis A. (Technical Monitor)

    2000-01-01

    Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.

  20. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  1. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  2. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  3. The Living With a Star Space Environment Testbed Payload

    Science.gov (United States)

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  4. Modelling the near-Earth space environment using LDEF data

    Science.gov (United States)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  5. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  6. Space environment effects on polymers in low earth orbit

    International Nuclear Information System (INIS)

    Grossman, E.; Gouzman, I.

    2003-01-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment

  7. Measuring Presence in Virtual Environments

    Science.gov (United States)

    1994-10-01

    viewpoint to change what they see, or to reposition their head to affect binaural hearing, or to search the environment haptically, they will experience a...increase presence in an alternate environment. For example a head mounted display that isolates the user from the real world may increase the sense...movement interface devices such as treadmills and trampolines , different gloves, and auditory equipment. Even as a low end technological implementation of

  8. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  9. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  10. BUSEFL: The Boston University Space Environment Forecast Laboratory

    International Nuclear Information System (INIS)

    Contos, A.R.; Sanchez, L.A.; Jorgensen, A.M.

    1996-01-01

    BUSEFL (Boston University Space Environment Forecast Laboratory) is a comprehensive, integrated project to address the issues and implications of space weather forecasting. An important goal of the BUSEFL mission is to serve as a testing ground for space weather algorithms and operational procedures. One such algorithm is the Magnetospheric Specification and Forecast Model (MSFM), which may be implemented in possible future space weather prediction centers. Boston University Student-satellite for Applications and Training (BUSAT), the satellite component of BUSEFL, will incorporate four experiments designed to measure (1) the earth close-quote s magnetic field, (2) distribution of energetic electrons trapped in the earth close-quote s radiation belts, (3) the mass and charge composition of the ion fluxes along the magnetic field lines and (4) the auroral forms at the foot of the field line in the auroral zones. Data from these experiments will be integrated into a ground system to evaluate space weather prediction codes. Data from the BUSEFL mission will be available to the scientific community and the public through media such as the World Wide Web (WWW). copyright 1996 American Institute of Physics

  11. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  12. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  13. Peat exploitation - Environment. Effects and measures

    International Nuclear Information System (INIS)

    Stenbeck, G.

    1996-01-01

    This report gives a detailed description of the influence of peat exploitation on the land-, water- and atmospheric environments. Proposals for mitigatory measures to minimize damage to the environment are also given

  14. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Science.gov (United States)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  15. Women's Health Issues in the Space Environment

    Science.gov (United States)

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  16. Young Measures and Compactness in Measure Spaces

    CERN Document Server

    Florescu, Liviu C

    2012-01-01

    Many problems in science can be formulated in the language of optimization theory, in which case an optimal solution or the best response to a particular situation is required. In situations of interest, such classical optimal solutions are lacking, or at least, the existence of such solutions is far from easy to prove. So, non-convex optimization problems may not possess a classical solution because approximate solutions typically show rapid oscillations. This phenomenon requires the extension of such problems' solution often constructed by means of Young measures. This book is written to int

  17. Mutagenic effects of space environment and protons on rice

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei

    1998-07-01

    Dry seeds of 5 rice varieties were carried by recoverable satellite for space mutation, and were irradiated by 4∼8 MeV protons with various doses. The mutagenic effects was studied. The results indicated that the space environment could cause chromosomal structure aberration and had stimulating mitosis action in root tip cells. As compared with γ-rays and protons, the effects of space environment flight were lower on chromosomal aberration but were significantly higher on mitosis index. Space environment and protons induce high frequency of chlorophyll deficient mutation and mutation in plant height and heading date in M 2 generation. Frequency of beneficial mutation induced by space environment and protons were higher than those induced by γ-rays

  18. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  19. Do Inner Planets Modulate the Space Environment of the Earth?

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-03-01

    Full Text Available Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth’s neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets’ wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth’s neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.

  20. Overview of fiber optics in the natural space environment

    International Nuclear Information System (INIS)

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences

  1. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1

  2. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  3. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  4. Space Particle Hazard Measurement and Modeling

    Science.gov (United States)

    2007-11-30

    the spacecraft and perturbations of the environment generated by the spacecraft. Koons et al. (1999) compiled and studied all spacecraft anomalies...unrealistic for D12 than for Dα0p). However, unlike the stability problems associated with the original cross diffusion terms, they are quite manageable ...E), to mono-energetic beams of charged particles of known energies which enables one, in principle , to unfold the space environment spectrum, j(E

  5. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  6. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    Science.gov (United States)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  7. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  8. Dust Measurements Onboard the Deep Space Gateway

    Science.gov (United States)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  9. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  10. GOES Space Environment Monitor, Energetic Particles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solid state detectors with pulse height discrimination measure proton, alpha-particle, and electron fluxes. E1 and I1 channels are responding primarily to trapped...

  11. Economic measurement of environment damages

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.

    1980-05-01

    The densities, energy consumption, and economic development of the increasing population exacerbate environmental degradation. Air and water pollution is a major environmental problem affecting life and health, outdoor recreation, household soiling, vegetation, materials, and production. The literature review indicated that numerous studies have assessed the physical and monetary damage to populations at risk from excessive concentrations of major air and water pollutants-sulfur dioxide, total suspended particulate matter, oxidants, and carbon monoxide in air; and nutrients, oil, pesticides, and toxic metals and others in water. The measurement of the damages was one of the most controversial issues in pollution abatement. The methods that have been used to estimate the societal value of pollution abatement are: (1) chain of effects, (2) market approaches, and (3) surveys. National gross damages of air pollution of $20.2 billion and of water pollution of $11.1 billion for 1973 are substantial. These best estimates, updated for the economic and demographic conditions, could provide acceptable control totals for estimating and predicting benefits and costs of abating air and water pollution emissions. The major issues to be resolved are: (1) lack of available noneconomic data, (2) theoretical and empirical difficulties of placing a value on human life and health and on benefits such as aesthetics, and (3) lack of available demographic and economic data.

  12. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  13. Space environment durability of beta cloth in LDEF thermal blankets

    Science.gov (United States)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  14. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  15. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) MANUAL PRECIPITATION MEASUREMENTS GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Manual Precipitation Measurements GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  16. Fiber-based laser MOPA transmitter packaging for space environment

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  17. Optimization of application execution in the GridSpace environment

    NARCIS (Netherlands)

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  18. ISS External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  19. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  20. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  1. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  2. Vestibular function in the space environment

    Science.gov (United States)

    Von Baumgarten, R. J.; Harth, O.; Thuemler, R.; Baldrighi, G.; Shillinger, G. L., Jr.

    1975-01-01

    The present work presents new results about the interdependence of optical illusory sensations and eye movements in man. To establish to what degree certain illusions previously obtained during centrifugation and parabolic flight can be explained by eye movements and by neuronal integration in the brain, real eye movements were measured as they occurred in the dark without optical fixation, during rectilinear accelerations on the ground, and during weightlessness in parabolic flight. Results provide valuable insight into normal vestibular function as well as resolution of within-the-eye and behind-the-eye contributions to the above illusions.

  3. Public spaces and urban sustainability in the tropical built environment

    Science.gov (United States)

    Yusof, Y. M.; Kozlowski, M.

    2018-01-01

    Sustainability is an overarching sense of responsibility towards the future. On a city-wide level, urban sustainability incorporates a wide body of changes especially as they relate to the built environment, all of which intended at creating a livable place. This paper discusses existing public spaces in view of their achievement against a set of criteria for the built environment. The paper introduces performance design criteria for the tropical built environment. The key findings indicate that long-term strategies, guidance and directions for the city and region can achieve development which corresponds to local climate, synergies and provide a higher proportion of public spaces that offer something for everyone.

  4. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  5. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  6. Fictional space in participatory design of engaging interactive environments

    DEFF Research Database (Denmark)

    Dindler, Christian

    2010-01-01

    practices of visitors and museum knowledge. The second and larger part of the contribution addresses the issue of shaping design inquiries. This part is summarized through the overarching notion of fictional space denoting a perspective on the creation of a design space where established norms...... spaces for museums and science centres. The dissertation is composed of seven research papers framed by a general overview that summarises the arguments made in the papers and outlines related work and research method. The contribution reflects a dual yet intertwined concern for understanding engagement...... in exhibition spaces and shaping design inquiries around the notion of engaging interactive environments. The first part of the contribution relates to conceptualising aspects of engagement in relation to interactive environments. The perspective of participatory engagement is presented as an overarching...

  7. Lead-Free Experiment in a Space Environment

    Science.gov (United States)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  8. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  9. A study of dynamical behavior of space environment

    Science.gov (United States)

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  10. Electro-Mechanical Systems for Extreme Space Environments

    Science.gov (United States)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  11. The Effects of Space Environment on Wireless Communication Devices' Performance

    OpenAIRE

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  12. Space - A unique environment for process modeling R&D

    Science.gov (United States)

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  13. Standard deviation of scatterometer measurements from space.

    Science.gov (United States)

    Fischer, R. E.

    1972-01-01

    The standard deviation of scatterometer measurements has been derived under assumptions applicable to spaceborne scatterometers. Numerical results are presented which show that, with sufficiently long integration times, input signal-to-noise ratios below unity do not cause excessive degradation of measurement accuracy. The effects on measurement accuracy due to varying integration times and changing the ratio of signal bandwidth to IF filter-noise bandwidth are also plotted. The results of the analysis may resolve a controversy by showing that in fact statistically useful scatterometer measurements can be made from space using a 20-W transmitter, such as will be used on the S-193 experiment for Skylab-A.

  14. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  15. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  16. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  17. Reproduction in the space environment: Part I. Animal reproductive studies

    Science.gov (United States)

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  18. Measuring Customer Profitability in Complex Environments

    DEFF Research Database (Denmark)

    Holm, Morten; Kumar, V.; Rohde, Carsten

    2012-01-01

    Customer profitability measurement is an important element in customer relationship management and a lever for enhanced marketing accountability. Two distinct measurement approaches have emerged in the marketing literature: Customer Lifetime Value (CLV) and Customer Profitability Analysis (CPA...... propositions. Additionally, the framework provides design and implementation guidance for managers seeking to implement customer profitability measurement models for resource allocation purposes....... that the degree of sophistication deployed when implementing customer profitability measurement models is determined by the type of complexity encountered in firms’ customer environments. This gives rise to a contingency framework for customer profitability measurement model selection and five research...

  19. Analysis on Space Environment from the Anomalies of Geosynchronous Satellites

    Directory of Open Access Journals (Sweden)

    Jaejin Lee

    2009-12-01

    Full Text Available While it is well known that space environment can produce spacecraft anomaly, defining space environment effects for each anomalies is difficult. This is caused by the fact that spacecraft anomaly shows various symptoms and reproducing it is impossible. In this study, we try to find the conditions of when spacecraft failures happen more frequently and give satellite operators useful information. Especially, our study focuses on the geosynchronous satellites which cost is high and required high reliability. We used satellite anomaly data given by Satellite News Digest which is internet newspaper providing space industry news. In our analysis, 88 anomaly cases occurred from 1997 to 2008 shows bad corelation with Kp index. Satellite malfunctions were likely to happen in spring and fall and in local time from midnight to dawn. In addition, we found the probability of anomaly increase when high energy electron flux is high. This is more clearly appeared in solar minimum than maximum period.

  20. Space Use in the Commons: Evaluating a Flexible Library Environment

    Directory of Open Access Journals (Sweden)

    Andrew D. Asher

    2017-06-01

    Full Text Available Abstract Objective – This article evaluates the usage and user experience of the Herman B Wells Library’s Learning Commons, a newly renovated technology and learning centre that provides services and spaces tailored to undergraduates’ academic needs at Indiana University Bloomington (IUB. Methods – A mixed-method research protocol combining time-lapse photography, unobtrusive observation, and random-sample surveys was employed to construct and visualize a representative usage and activity profile for the Learning Commons space. Results – Usage of the Learning Commons by particular student groups varied considerably from expectations based on student enrollments. In particular, business, first and second year students, and international students used the Learning Commons to a higher degree than expected, while humanities students used it to a much lower degree. While users were satisfied with the services provided and the overall atmosphere of the space, they also experienced the negative effects of insufficient space and facilities due to the space often operating at or near its capacity. Demand for collaboration rooms and computer workstations was particularly high, while additional evidence suggests that the Learning Commons furniture mix may not adequately match users’ needs. Conclusions – This study presents a unique approach to space use evaluation that enables researchers to collect and visualize representative observational data. This study demonstrates a model for quickly and reliably assessing space use for open-plan and learning-centred academic environments and for evaluating how well these learning spaces fulfill their institutional mission.

  1. Towards the Next Generation of Space Environment Prediction Capabilities.

    Science.gov (United States)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  2. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  3. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  4. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  5. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  6. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent times long-term stay has become a common occurrence in the International Space Station (ISS). However adaptation to the space environment can sometimes...

  7. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  8. Crew behavior and performance in space analog environments

    Science.gov (United States)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  9. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  10. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  11. Research Progress and Prospect of GNSS Space Environment Science

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  12. Results of dosimetric measurements in space missions

    Science.gov (United States)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.

    Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.

  13. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Science.gov (United States)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  14. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  15. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  16. Artificial intelligence and the space station software support environment

    Science.gov (United States)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  17. The effects of the space environment on two aramid materials

    International Nuclear Information System (INIS)

    Kiefer, R.L.

    1990-01-01

    Two aramid fibers having closely related chemical structures were chosen for important roles in the first tether to be used to connect pairs of orbiting vehicles. The protective outer jackets of the tethers will consist of woven fibers of poly(m-phenylene isophthalamide), commercially available from du Pont as Nomex. A cylindrical sheath of woven Kevlar 29, whose principal constituent is poly(p-phenylene terephthalamide), will be the load-bearing component for the tethers. Orbiting tethers will be in a hostile environment in which short wavelength electromagnetic radiation and energetic charged particles degrade exposed organic materials. At lower orbiting altitudes atomic oxygen is an especially serious hazard. Studies on the effects of ultraviolet radiation and atomic oxygen on fibers and films of Kevlar and Nomex are in progress. In an experiment to simulate the effects of atomic oxygen in space, small tows of Kevlar and Nomex were mounted in a commercial ashing device filled with oxygen at low pressure. An RF discharge in the instrument dissociated the molecular oxygen producing a strongly oxidizing atmosphere containing O(3P)(sup 4). Erosion was measured in terms of mass loss. Kevlar films were exposed to UV radiation in an apparatus consisting of a small vacuum chamber, 23 cm in diameter, into which a mass spectrometer and a quartz window were incorporated. Samples were exposed under vacuum with a 1000 watt xenon-arc lamp. Volatile products could be monitored with the mass spectrometer during the exposures. Transmission infrared spectra were taken before and after exposure to monitor chemical changes in the films

  18. National network of radioactivity measurement in environment

    International Nuclear Information System (INIS)

    2006-01-01

    This document constitutes the report of management for the year 2006 of the national network of measurement of radioactivity in environment, instituted by the article R.1333-11 of the Public Health code. According to the 5. of the decree of 27. june 2005, the Institute of radiation protection and nuclear safety (I.R.S.N.) has for mission to write every year a report of management of the national network of radioactivity measurement in environment. This report has for principal objectives: to do an evaluation on organisation and functioning of the piloting committee; to realize a synthesis on the different tasks lead by the working groups; as well as on the human and financial resources devoted to this project; to debrief on the development project of the national network information system. This report must allow to the network actors, as to the professional people and the public, to understand the functioning of the national network and the process implemented for the development of centralization, management and public diffusion tools, of the radioactivity data in environment. The year 2006 was marked by the opening of an Internet gate of the national network. (N.C.)

  19. Specification of the near-Earth space environment with SHIELDS

    International Nuclear Information System (INIS)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; Godinez, Humberto C.; Jeffery, Christopher Andrew Munn

    2017-01-01

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.

  20. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  1. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  2. Urban green spaces assessment approach to health, safety and environment

    Directory of Open Access Journals (Sweden)

    B. Akbari Neisiani

    2016-04-01

    Full Text Available The city is alive with dynamic systems, where parks and urban green spaces have high strategic importance which help to improve living conditions. Urban parks are used as visual landscape with so many benefits such as reducing stress, reducing air pollution and producing oxygen, creating opportunities for people to participate in physical activities, optimal environment for children and decreasing noise pollution. The importance of parks is such extent that are discussed as an indicator of urban development. Hereupon the design and maintenance of urban green spaces requires integrated management system based on international standards of health, safety and the environment. In this study, Nezami Ganjavi Park (District 6 of Tehran with the approach to integrated management systems have been analyzed. In order to identify the status of the park in terms of the requirements of the management system based on previous studies and all Tehran Municipality’s considerations, a check list has been prepared and completed by park survey and interview with green space experts. The results showed that the utility of health indicators were 92.33 % (the highest and environmental and safety indicators were 72 %, 84 % respectively. According to SWOT analysis in Nezami Ganjavi Park some of strength points are fire extinguishers, first aid box, annual testing of drinking water and important weakness is using unseparated trash bins also as an opportunities, there are some interesting factors for children and parents to spend free times. Finally, the most important threat is unsuitable park facilities for disabled.

  3. Absolute measurement method of environment radon content

    International Nuclear Information System (INIS)

    Ji Changsong

    1989-11-01

    A portable environment radon content device with a 40 liter decay chamber based on the method of Thomas double filter radon content absolute measurement has been developed. The correctness of the method of Thomas double filter absolute measurement has been verified by the experiments to measure the sampling gas density of radon that the theoretical density has been known. In addition, the intrinsic uncertainty of this method is also determined in the experiments. The confidence of this device is about 95%, the sensitivity is better than 0.37 Bqm -3 and the intrinsic uncertainty is less than 10%. The results show that the selected measuring and structure parameters are reasonable and the experimental methods are acceptable. In this method, the influence on the measured values from the radioactive equilibrium of radon and its daughters, the ratio of combination daughters to the total daughters and the fraction of charged particles has been excluded in the theory and experimental methods. The formula of Thomas double filter absolute measuring radon is applicable to the cylinder decay chamber, and the applicability is also verified when the diameter of exit filter is much smaller than the diameter of inlet filter

  4. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  5. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  6. Avaliando desempenho de espaços de trabalho sob o enfoque da ergonomia do ambiente construído: an ergonomic assessment of the constructed environment Measuring performance of work spaces

    Directory of Open Access Journals (Sweden)

    Vilma Villarouco

    2008-12-01

    Full Text Available Representando segmento recente da ergonomia, os estudos que cuidam da adequabilidade do ambiente construído à realização das tarefas que abriga, vem agregando profissionais preocupados com a satisfação do usuário/trabalhador e com o incremento da produtividade focada em melhores condições de trabalho. Embora apresentando preocupações presentes em outras áreas do conhecimento, a ergonomia do ambiente extrapola as questões puramente arquitetônicas, focando seu posicionamento na adaptabilidade e conformidade do espaço ao trabalho que nele é desenvolvido. Nesse sentido, evoca elementos do conforto ambiental, da antropometria, da psicologia ambiental, da ergonomia cognitiva e da AET (Análise Ergonômica do Trabalho. Nesse contexto, este artigo propõe uma metodologia de Avaliação Ergonômica do Ambiente Construído, seguida de sua aplicação através de um estudo de caso, que busca inclusive a identificação da interferência da configuração espacial de ambientes de trabalho na produtividade de um sistema de produção, a partir de uma análise ergonômica do ambiente construído.Representing a recent segment of ergonomics, studies that address the suitability of the constructed environment to the tasks performed within it have been uniting professionals concerned with the user/worker satisfaction and increased productivity focused on better working conditions. Although it presents concerns from other fields of knowledge, environment ergonomics extrapolates purely architectural issues and focuses its positioning on the adaptability and conformity of the physical space to the work developed within it. It therefore addresses elements of environment comfort, anthropometry, environmental psychology, cognitive ergonomics and ergonomic work analysis. The present article proposes a methodology for an Ergonomic Assessment of the Constructed Environment, followed by its application through a case study that also aims to identify the

  7. The Design Space of Multi-Language Development Environments

    DEFF Research Database (Denmark)

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  8. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  9. Anatomy education environment measurement inventory: A valid tool to measure the anatomy learning environment.

    Science.gov (United States)

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-09-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11-factor, 132-items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale-level content validity index [total] = 0.646); good response process evidence (scale-level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604-0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X 2  = 415.67, P education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423-432. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  10. DISILICIDE BASE REFRACTORY METAL COATINGS IN SPACE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bocarsly, Sidney I.

    1963-03-15

    Studies of probable effects of space environment exposure of Durak B'' (a Chromizing Corp. proprietary disilicide coating) coated Mo are described. It was concluded that, in a high-temperature environment, solar radiation will not affect the material system. Sputtering will not cause a structural problem, but it may cause a change in optical properties. Meteoroids may cause coating spalling and minimum to possibly total failure. Some protection system will probably be necessary. Vacuum will cause some coating evaporation. The rate will be temperature-dependent and probably of a low order. The possible problem area is that the evaporation appears to occur preferentially at crack sites. Ionized nitrogen and hydrogen may react with the coating and charge physical or mechanical properties. (A.G.W.)

  11. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  12. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  13. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  14. The Future of Carbon Monoxide Measurements from Space

    Science.gov (United States)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  15. Metrics for measuring distances in configuration spaces

    International Nuclear Information System (INIS)

    Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-01-01

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices

  16. MURI Center for Materials Chemistry in the Space Environment

    Science.gov (United States)

    2006-11-30

    ionic species in relevant reaction environments, surface photochemistry expertise, synchrotron-based measurement and irradiation, synthesis of structural...and Ne+ ions with dodecanethiolate and semifluorinated dodecanethiolate self-assembled monolayers (SAM), polyhedral oligomeric silsesquioxane (POSS...POSS/Kapton models as gas phase species, and with alkane thiol self assembled monolayers on gold surfaces, and with liquid squalane. We have also

  17. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-07-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  18. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-01-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  19. Culture and error in space: implications from analog environments.

    Science.gov (United States)

    Helmreich, R L

    2000-09-01

    An ongoing study investigating national, organizational, and professional cultures in aviation and medicine is described. Survey data from 26 nations on 5 continents show highly significant national differences regarding appropriate relationships between leaders and followers, in group vs. individual orientation, and in values regarding adherence to rules and procedures. These findings replicate earlier research on dimensions of national culture. Data collected also isolate significant operational issues in multi-national flight crews. While there are no better or worse cultures, these cultural differences have operational implications for the way crews function in an international space environment. The positive professional cultures of pilots and physicians exhibit a high enjoyment of the job and professional pride. However, a negative component was also identified characterized by a sense of personal invulnerability regarding the effects of stress and fatigue on performance. This misperception of personal invulnerability has operational implications such as failures in teamwork and increased probability of error. A second component of the research examines team error in operational environments. From observational data collected during normal flight operations, new models of threat and error and their management were developed that can be generalized to operations in space and other socio-technological domains. Five categories of crew error are defined and their relationship to training programs in team performance, known generically as Crew Resource Management, is described. The relevance of these data for future spaceflight is discussed.

  20. Role of Green Spaces in Favorable Microclimate Creating in Urban Environment (Exemplified by Italian Cities)

    Science.gov (United States)

    Finaeva, O.

    2017-11-01

    The article represents a brief analysis of factors that influence the development of an urban green space system: territorial and climatic conditions, cultural and historical background as well as the modern strategy of historic cities development. The introduction defines the concept of urban greening, green spaces and green space distribution. The environmental parameters influenced by green spaces are determined. By the example of Italian cities the principles of the urban greening system development are considered: the historical aspects of formation of the urban greening system in Italian cities are analyzed, the role of green spaces in the formation of the urban environment structure and the creation of a favorable microclimate is determined, and a set of measures aimed at its improvement is highlighted. The modern principles of urban greening systems development and their characteristic features are considered. Special attention is paid to the interrelation of architectural and green structures in the formation of a favorable microclimate and psychological comfort in the urban environment; various methods of greening are considered by the example of existing architectural complexes depending on the climate of the area and the landscape features. The examples for the choice of plants and the application of compositional techniques are given. The results represent the basic principles of developing an urban green spaces system. The conclusion summarizes the techniques aimed at the microclimate improvement in the urban environment.

  1. Alkylating agent (MNU)-induced mutation in space environment

    Science.gov (United States)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  2. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  3. Farming of Vegetables in Space-Limited Environments

    Science.gov (United States)

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  4. Measuring competitive fitness in dynamic environments.

    Science.gov (United States)

    Razinkov, Ivan A; Baumgartner, Bridget L; Bennett, Matthew R; Tsimring, Lev S; Hasty, Jeff

    2013-10-24

    Most yeast genes are dispensable for optimal growth in laboratory cultures. However, this apparent lack of fitness contribution is difficult to reconcile with the theory of natural selection. Here we use stochastic modeling to show that environmental fluctuations can select for a genetic mechanism that does not affect growth in static laboratory environments. We then present a novel experimental platform for measuring the fitness levels of specific genotypes in fluctuating environments. We test this platform by monitoring a mixed culture of two yeast strains that differ in their ability to respond to changes in carbon source yet exhibit the same fitness level in static conditions. When the sugar in the growth medium was switched between galactose and glucose, the wild-type strain gained a growth advantage over the mutant strain. Interestingly, both our computational and experimental results show that the strength of the adaptive advantage conveyed by the wild-type genotype depends on the total number of carbon source switches, not on the frequency of these fluctuations. Our results illustrate the selective power of environmental fluctuations on seemingly slight phenotypic differences in cellular response dynamics and underscore the importance of dynamic processes in the evolution of species.

  5. Nuclear isotope measurement in the Hanford environment

    International Nuclear Information System (INIS)

    Wacker, J.F.; Stoffel, J.J.; Kelley, J.M.

    1995-01-01

    The Pacific Northwest Laboratory (PNL) is located at the federal government's Hanford Site in southeastern Washington State, which was built during World War II as part of the secret Manhattan Project to develop the atomic bomb. Monitoring of the Site itself and surrounding environs for Hanford-related radionuclides has been a routine part of the operations since 1944. One of the most sensitive analytical methods used is thermal ionization mass spectrometry (TIMS) with triple-sector mass spectrometers. Normal geometry instruments have an abundance sensitivity of 10 -9 for uranium while the authors' newest Triple-Sector Isotope Mass Spectrometer (TRISM), utilizing a new ion-optical design developed at PNL, has an abundance sensitivity of 10 -11 . In favorable cases, sensitivity is such that complete isotopic analyses are obtained on total samples in the femtogram range; and minor isotopes in the attogram range are measured

  6. Protection from Induced Space Environments Effects on the International Space Station

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  7. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  8. Apparent rotation properties of space debris extracted from photometric measurements

    Science.gov (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  9. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  10. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  11. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  12. Veterinary students' perceptions of their learning environment as measured by the Dundee Ready Education Environment Measure.

    Science.gov (United States)

    Pelzer, Jacquelyn M; Hodgson, Jennifer L; Werre, Stephen R

    2014-03-24

    The Dundee Ready Education Environment Measure (DREEM) has been widely used to evaluate the learning environment within health sciences education, however, this tool has not been applied in veterinary medical education. The aim of this study was to evaluate the reliability and validity of the DREEM tool in a veterinary medical program and to determine veterinary students' perceptions of their learning environment. The DREEM is a survey tool which quantitatively measures students' perceptions of their learning environment. The survey consists of 50 items, each scored 0-4 on a Likert Scale. The 50 items are subsequently analysed within five subscales related to students' perceptions of learning, faculty (teachers), academic atmosphere, and self-perceptions (academic and social). An overall score is obtained by summing the mean score for each subscale, with an overall possible score of 200. All students in the program were asked to complete the DREEM. Means and standard deviations were calculated for the 50 items, the five subscale scores and the overall score. Cronbach's alpha was determined for the five subscales and overall score to evaluate reliability. Confirmatory factor analysis was used to evaluate construct validity. 224 responses (53%) were received. The Cronbach's alpha for the overall score was 0.93 and for the five subscales were; perceptions of learning 0.85, perceptions of faculty 0.79, perceptions of atmosphere 0.81, academic self-perceptions 0.68, and social self-perceptions 0.72. Construct validity was determined to be acceptable (p education programs. Four individual items of concern were identified by students. In this setting the DREEM was a reliable and valid tool to measure veterinary students' perceptions of their learning environment. The four items identified as concerning originated from four of the five subscales, but all related to workload. Negative perceptions regarding workload is a common concern of students in health education

  13. Secondary electron emission and its role in the space environment

    Science.gov (United States)

    Němeček, Z.; Pavlů, J.; Richterová, I.; Šafránková, J.; Vaverka, J.

    2018-01-01

    The role of dust in the space environment is of increasing interest in recent years and also the fast development of fusion devices with a magnetic confinement brought new issues in the plasma-surface interaction. Among other processes, secondary electron emission plays an important role for dust charging in interplanetary space and its importance increases at and above the surfaces of airless bodies like planets, moons, comets or asteroids. A similar situation can be found in many industrial applications where the dust is a final product or an unintentional impurity. The present paper reviews the progress in laboratory investigations of the secondary emission process as well as an evolution of the modeling of the interaction of energetic electrons with dust grains of different materials and sizes. The results of the model are discussed in view of latest laboratory simulations and they are finally applied on the estimation of an interaction of the solar wind and magnetospheric plasmas with the dust attached to or levitating above the lunar surface.

  14. OverView of Space Applications for Environment (SAFE) initiative

    Science.gov (United States)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  15. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  16. OverView of Space Applications for Environment (SAFE) initiative

    International Nuclear Information System (INIS)

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  17. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  18. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    Science.gov (United States)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  19. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  20. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  1. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    Science.gov (United States)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  2. SPACE, COLOR AND QUALITY OF LIFE IN A NUBIAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Diana Kamel

    2012-03-01

    Full Text Available The Egyptian Nubians relocated after the construction of the High Dam South of Aswan to a completely different setting, adjusted with difficulty to their new environment and changed part of it to suit their needs. This paper is a longitudinal study; it deals with the issue of continuity in the patterns of lifestyle within the present Egyptian Nubian community. The aim is to seek evidence on such continuity and to explain the repercussions of previous socio-economic values on the actual residential built and lived-in environment. The methodology is based on earlier studies that were done before relocation and immediately after, also on site visits made by the authors to detect the current aspects of the built-environment. The field study focuses on changes made to the interior and exterior spaces, on the use of decorative patterns and color of the walls and on the residents’ lifestyle. The tools for data gathering are annotated photographs and semi-structured interviews. The cases are chosen from a random sample in one of the 33 villages that constitute the Kom-Ombo site – the village of Eneba (Aniba. Results show evidence of change in all investigated aspects with a slight continuity in some of the culturally related values.

  3. VirtualSpace: A vision of a machine-learned virtual space environment

    Science.gov (United States)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  4. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    ) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS

  5. The rhesus measurement system: A new instrument for space research

    Science.gov (United States)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  6. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  7. Obesogenic environments: complexities, perceptions, and objective measures

    National Research Council Canada - National Science Library

    Lake, Amelia A; Townshend, Tim G; Alvanides, Seraphim

    2010-01-01

    ... are to successfully address the issue. Beginning with an overarching introduction to obesity and its implications for health and wellbeing, the book will move on to consider such crucial areas as eating behaviours and food environments...

  8. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  9. The Objectives of NASA's Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  10. Measurement of joint space width and erosion size

    NARCIS (Netherlands)

    Sharp, JI; van der Heijde, D; Angwin, J; Duryea, J; Moens, HJB; Jacobs, JWG; Maillefert, JF; Strand, CV

    2005-01-01

    Measurement of radiographic abnormalities in metric units has been reported by several investigators during the last 15 years. Measurement of joint space in large joints has been employed in a few trials to evaluate therapy in osteoarthritis. Measurement of joint space width in small joints has been

  11. Measuring Intrinsic Curvature of Space with Electromagnetism

    Science.gov (United States)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-01-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface,…

  12. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  13. Free-space optical channel characterization in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-12-28

    Recently, FSO (Free-Space Optical Communication) has received a lot of attention thanks to its high data-rate transmission via unbounded unlicensed bandwidth. However, some weather conditions lead to significant degradation of the FSO link performance. Based on this context and in order to have a better understanding of the capabilities of FSO communication in a coastal environment, the effects of temperature and humidity on an FSO system are investigated in this study. An experiment is conducted using an open source FSO system that achieves a transmission rate of 1 Gbit/s at a distance of 70 m. Two new mathematical models are proposed to represent the effects of temperature and humidity on our developed FSO system operating at a wavelength of 1 550 nm. The first model links the FSO attenuation coeffcient to the air temperature in coastal regions, while the second model links the FSO attenuation coeffcient to the humidity and the dew-point temperature. The key finding of this study is that FSO links can achieve maximum availability in a coastal city with normal variations in temperature and humidity.

  14. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  15. Measuring Galactic Feedback with the Origins Space Telescope

    Science.gov (United States)

    Armus, Lee; Bolatto, Alberto; Pope, Alexandra; Bradford, Charles Matt; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    Since a significant fraction of star formation and black hole growth occurs behind dust, our understanding of how and why galaxies evolve will remain incomplete until deep, wide area spectroscopic surveys in the FIRcan be carried out from space. The Origins Space Telescope (OST), a mission concept being studied for presentation to the 2020 Decadal Survey, represents an enormous leap over any existing infrared mission, and will uniquely measure black hole growth and star formation in dusty galaxies over more than 95% of cosmic history. Energetic feedback from AGN, young stars, and supernovae can regulate galaxy growth over a wide range in mass and be important for the enrichment of the interstellar and circumgalactic medium, yet the existence and type of feedback as a function of redshift, luminosity, and environment is poorly constrained. With wide wavelength coverage (5-600 microns), a large primary mirror actively cooled to ~4K, and a capable suite of imagers and spectrometers, OST will be an extremely sensitive probe of the effects of feedback on the multi-phase ISM in galaxies, through measurement of key feedback tracers such as OH and H2O absorption lines, fine structure emission lines, and PAH dust features. With OST we can directly observe the role of feedback in quenching galaxies, derive the wind kinetic energy and mass outflow rates, and correlate these with key galaxy properties (AGN or starburst power, environment, mass, age). In this poster we will explain how blind and targeted surveys with OST will have an enormous impact on our understanding of the duty cycle and basic physical properties of feedback in AGN and starburst galaxies over the last 12 Gyr.

  16. Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.

    2000-01-01

    To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.

  17. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Science.gov (United States)

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  18. Measuring the clinical learning environment in anaesthesia.

    Science.gov (United States)

    Smith, N A; Castanelli, D J

    2015-03-01

    The learning environment describes the way that trainees perceive the culture of their workplace. We audited the learning environment for trainees throughout Australia and New Zealand in the early stages of curriculum reform. A questionnaire was developed and sent electronically to a large random sample of Australian and New Zealand College of Anaesthetists trainees, with a 26% final response rate. This new instrument demonstrated good psychometric properties, with Cronbach's α ranging from 0.81 to 0.91 for each domain. The median score was equivalent to 78%, with the majority of trainees giving scores in the medium range. Introductory respondents scored their learning environment more highly than all other levels of respondents (P=0.001 for almost all comparisons). We present a simple questionnaire instrument that can be used to determine characteristics of the anaesthesia learning environment. The instrument can be used to help assess curricular change over time, alignment of the formal and informal curricula and strengths and weaknesses of individual departments.

  19. Obesogenic environments: complexities, perceptions, and objective measures

    National Research Council Canada - National Science Library

    Lake, Amelia A; Townshend, Tim G; Alvanides, Seraphim

    2010-01-01

    ..., physical activity and food access. This groundbreaking book brings together for the first time the knowledge of dietitians, epidemiologists and town planners in order to offer a multidisciplinary approach to public health, suggesting new and exciting ways to shape our environment to better support healthful decisions"--Provided by publisher.

  20. Manche centre. Environment surveillance. Measurement results

    International Nuclear Information System (INIS)

    1998-11-01

    This booklet reports on the environmental radioactivity measurements performed around the Manche plant (France) during the third quarter of 1998 in rainwater, surface and underground waters, air and grass. Measurements concern the alpha and beta activity, tritium, 137 Cs, 241 Am, 7 Be and 40 K. Other pollutant (metals) measurements on rainwater, rivers surface water and sediments are given. (J.S.)

  1. Telemetric measurement system of beehive environment conditions

    Science.gov (United States)

    Walendziuk, Wojciech; Sawicki, Aleksander

    2014-11-01

    This work presents a measurement system of beehive environmental conditions. The purpose of the device is to perform measurements of parameters such as ambient temperature, atmospheric pressure, internal temperature, humidity and sound level. The measured values were transferred to the MySQL database, which is located on an external server, with the use of GPRS protocol. A website presents the measurement data in the form of tables and graphs. The study also shows exemplary results of environmental conditions measurements recorded in the beehive by hour cycle.

  2. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  3. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  4. Space Environment Automated Alerts and Anomaly Analysis Assistant (SEA^5) for NASA

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a comprehensive analysis and dissemination system (Space Environment Automated Alerts  & Anomaly Analysis Assistant: SEA5) that will...

  5. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  6. "Prime" Advertising Space: Measuring Implict Memory Online

    OpenAIRE

    Barratt, Madeleine

    2012-01-01

    In marketing literature, click-through-rates are generally employed to measure the success of banner advertisements online. This measure has led to the banner blindness hypothesis, which posits that internet users ignore banner advertisements. However, this measurement does not take into account the consumer action which may result from memory for advertised brands. This study illustrates that although there may not be explicit memory for these advertisements, consumers can be primed for adve...

  7. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  8. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  9. Studies of Earth Space Environment and Sudden Disappearances of Solar Prominences

    National Research Council Canada - National Science Library

    Huang, Tian-Sen

    2005-01-01

    With the support from AFOSR's Minority University Program, we worked on research of Sun-Earth space environment, conducted daily solar observation programs, improved solar instruments, and established...

  10. Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.

    2013-01-01

    A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.

  11. MEASURING ECONOMIC GROWTH FROM OUTER SPACE

    Science.gov (United States)

    Henderson, J. Vernon; Storeygard, Adam; Weil, David N.

    2013-01-01

    GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which “empirical growth” need no longer be synonymous with “national income accounts.” PMID:25067841

  12. Measuring the educational environment in ambulatory settings

    Directory of Open Access Journals (Sweden)

    Arnoldo Riquelme

    2015-04-01

    Conclusions: The 50-item ACLEEM inventory is a multidimensional and valid instrument requiring only 15 respondents for reliable results. We recommend using it to measure the EE in the ambulatory postgraduate Spanish-speaking programs.

  13. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  14. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  15. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  16. Research on the Design of Public Space Environment for Aging Society

    Science.gov (United States)

    Fang, Gu; Soo, Kim Chul

    2018-03-01

    This paper studies the living space environment suitable for the elderly, because the elderly and the disabled have become increasingly prominent social problems. Through the discussion of the humanistic environment design method of the elderly and the disabled, the paper puts forward a new environment design which has the traditional characteristics and adapts to the new society to care for the elderly (the disabled).By studying and analyzing the background of social aging, the theory of public space environment design and the needs of the elderly, it is pointed out that the design of public space environment in the aged society needs to be implemented in detail design. The number of elderly people in public space will increase, give full attention to the public space outdoor environment quality, for the elderly to provide a variety of environmental facilities have long-term significance.

  17. Evaluation of protection measurements for rural environments

    International Nuclear Information System (INIS)

    Silva, Diogo N.G.; Silva, Fernanda L.; Conti, Luiz F.; Wasserman, Maria Angelica V.; Rochedo, Elaine R.R.

    2011-01-01

    Among the planning activities of actuation in nuclear/radiological emergences, it is included the efficiency evaluation of protection and remediation measurements. From the development of a data base on such measurements for the agricultural areas, the program SIEM was used for effectuation the simulations involving the 137 Cs, 131 I and 90 Sr radionuclides, in scenery previously established for simulation those areas of a 50 km surrounding the Admiral Alvaro Alberto nuclear power plant. The obtained results indicate that the scenery is determinant of efficiency measurements involving various specific factors of each place, such as: agricultural and cattle breeding products, consumption habits of population and the grade of subsistence by the diet items, making not practical the elaboration of predefined generic sceneries. The great dependence on seasoning related to the moment of accident makes inadequate any previous evaluation what soever for evaluation of efficiency of protection and remediation measurements. Therefore, previous decisions are not recommended about the relevance of protection measurements for rural areas. Two classification criteria were defined: (i) the efficiency in reduction the doses in the firs year; and, (i i) efficiency in reduction the dose at long term

  18. Evaluation of protective measures for tropical environments

    International Nuclear Information System (INIS)

    Silva, D. N. G.; Rochedo, E. R. R.; Wasserman, M. A. V.; Conti, L. F. C.

    2012-01-01

    Nuclear and radiological accidents have demonstrated the need for prior planning for exposure assessment as well as guidelines for the implementation of protection and remediation measures of contaminated areas. Typically, the description of the efficiency of the measures in the literature is associated with the reduction of the concentration of the environmental media where they are applied. In order to verify the efficiency related to the reduction in doses, some basic scenarios were established, taking into account aspects of a typical tropical climate, such as building materials (urban areas) and types of crops and farming practices, considering the seasonality and soil type typical of the southeastern region of Brazil. The Integrated System for Emergency (SIEM) program was used to perform the simulations. The results indicate that decision-making processes must be made in accordance with the actual conditions of contamination and use of the affected area. For rural areas, the effectiveness of measures depends on many factors specific to each site, such as seasonality, produced crops, diet habits and degree of subsistence on the items in the diet, which make it unfeasible to develop generic predefined scenarios. The criteria for classification of measurements were defined as: (i) the efficiency in reducing the doses in the first year, in which largest dose rates are observed; (ii) the efficiency in reducing the long-term dose, considering 50 y for adults and (iii) the effect of delay in implementation of the measures on the reduction of doses. (authors)

  19. Visible Counterterrorism Measures in Urban Spaces

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja; Laisen, Jesper; Wandorf, Charlotte

    2014-01-01

    factors impacting positively or negatively on the feelings of safety of Danish citizens, when being in a crowded place. Surprisingly, the response to security measures like fences, cameras, and uniformed guards was positive. More visible security apparently reinforced feelings of safety. This article...

  20. Dispersion analysis of spaced antenna scintillation measurement

    Directory of Open Access Journals (Sweden)

    M. Grzesiak

    2009-07-01

    Full Text Available We present a dispersion analysis of the phase of GPS signals received at high latitude. Basic theoretical aspects for spectral analysis of two-point measurement are given. To account for nonstationarity and statistical robustness a power distribution of the windowed Fourier transform cross-spectra as a function of frequency and phase is analysed using the Radon transform.

  1. Evaluation of protection measurements for urban environments

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Wasserman, Maria Angelica V.

    2011-01-01

    Radioactive accidents has shown the necessity of a previous evaluation planning of exposure and directives for implementation of protection measurements. The description or measurements in the literature usually is associated to reduction of concentrations in the medium where they are applied. For verification the efficiency in dose reduction, it is necessary to proceed simulations. Through the development of data base on protection measurements, it was established basic sceneries, typically tropical as far the building type is concerned and the construction material. The program SIEM was used for simulation of contamination with 137 Cs. The results indicates that generic solutions persuade not to and the decision make processes should be effectuated according to the real conditions of contamination and the use of affected area. For affected areas, two classification criteria were defined: (1) efficiency in reducing the dose in the first year; and (2) efficiency in dose reducing at long term

  2. Measuring Forest Height and Biomass from Space

    Science.gov (United States)

    Agueh, Temilola Elisabeth Fato

    2013-01-01

    Talk about doing earth science at NASA and how what we do is focus on the biosphere- that is the living portion of the earth.In particular, we are interested in looking at forests-quantifying deforestation, regrowth, change in general and helping develop new cutting-edge technologies and instruments to be able to measure these changes in land use, land cover and quality more accurately.

  3. Results of dosimetric measurements in space missions

    International Nuclear Information System (INIS)

    Reitz, G.; Strauch, K.; Beaujean, R.; Kopp, J.; Leicher, M.; Heilmann, C.

    1997-01-01

    Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different locations inside spacecraft. The detector systems, which supplement each other in their registration characteristics, allow the recording of biologically relevant portions of the radiation field independently. Results are presented and compared with calculations. Dose equivalents for the astronauts have been calculated based on the measurements; they lie between 190 μSv.d -1 and 860 μSv.d -1 . (author)

  4. Culturally Sensitive and Environment-Friendly Outcome Measures in

    African Journals Online (AJOL)

    Dr Olaleye

    A systematic review of evidence on culturally sensitive and environment-friendly outcome measures in ..... which included manual grass cutting/hoeing, assuming the Islamic ... who opined that the starting point for any outcome measure is to ...

  5. Environment modelling in near Earth space: Preliminary LDEF results

    Science.gov (United States)

    Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.

    1992-01-01

    Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).

  6. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  7. Cognitive Agility Measurement in a Complex Environment

    Science.gov (United States)

    2017-04-01

    validated by the corresponding psychological tests in the experiment. 15 Chapter 3 – Results 3.1. Result Summary from Thesis #1 (An...experiment using psychological tests and a military decision computer game called Make Goal to attempt to measure cognitive agility in military leaders...NPS thesis students. This document discusses the experimental design and the results from one of those theses. 14. SUBJECT TERMS cognitive agility

  8. Measurement of tritium in environment, (2)

    International Nuclear Information System (INIS)

    Chaya, Ikuo; Kagami, Tadaaki; Hamamura, Norikatsu

    1975-01-01

    In order to know the amount of natural tritium in environmental water and also to know the tendency of tritium concentration in surface water which is necessary for the measurement of ground water age, the tritium concentration in rain, river, and sea water in Aichi Prefecture were measured. In order to make the appropriate utilization of ground water such as city water and hot springs and to elucidate the effect of ground water utilization on ground subsidence, it is desirable to clarify the state of underground water-bearing strata, the flow direction and flow speed of ground water, and the change of ground water quality owing to the flow. As the means of knowing the flow speed of ground water, the age determination with tritium was carried out. The amount of tritium was determined by measuring the concentrated samples with a liquid scintillation counter. The tritium concentration in river was 1.7 times as much as that in rain water, and it is attributed to the time difference from raining to flowing in rivers. The tritium concentration in sea water was high at the estuary of Kiso River, and about a half of it in the other places. The water of the hot spring source in Nobi Plain is the old ground water soaked more than 20 years ago. The city water sources utilizing ground water shallower than 300 m use both new and old ground water. (Kako, I.)

  9. Broadband Ionospheric Scintillation Measurements from Space

    Science.gov (United States)

    Suszcynsky, D. M.; Light, M. E.; Pigue, M. J.

    2014-12-01

    The U.S. Department of Energy's Radio Frequency Propagation (RFProp) experiment consists of a satellite-based radio receiver suite to study various aspects of trans-ionospheric signal propagation and detection in four frequency bands, 2 - 55 MHz, 125 - 175 MHz, 365 - 415 MHz and 825 - 1100 MHz. In this paper, we present an overview of the RFProp on-orbit research and analysis effort with particular focus on an equatorial scintillation experiment called ESCINT. The 3-year ESCINT project is designed to characterize equatorial ionospheric scintillation in the upper HF and lower VHF portions of the radio spectrum (20 - 150 MHz). Both a 40 MHz continuous wave (CW) signal and 30 - 42 MHz swept frequency signal are transmitted to the satellite receiver suite from the Reagan Test Site at Kwajalein Atoll in the Marshall Islands (8.7° N, 167.7° E) in four separate campaigns centered on the 2014 and 2015 equinoxes. Results from the first campaign conducted from April 22 - May 15, 2014 will be presented including (a) coherence bandwidth measurements over a full range of transmission frequencies and scintillation activity levels, (b) spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities, and (c) supporting ray-trace simulations. The broadband nature of the measurements is found to offer unique insight into both the structure of ionospheric irregularities and their impact on HF/VHF trans-ionospheric radio wave propagation.

  10. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment.

    Science.gov (United States)

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-04-22

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people's stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant's home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  11. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Directory of Open Access Journals (Sweden)

    Catharine Ward Thompson

    2016-04-01

    Full Text Available Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  12. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Science.gov (United States)

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-01-01

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments. PMID:27110803

  13. Bio-Inspired Space Environment-Resistant Polymer Composite

    Data.gov (United States)

    National Aeronautics and Space Administration — Use of inorganic nanoparticles which have been recently explored for therapeutic purposes in the treatment of oxidative stress disorder, cancer and heart diseases...

  14. Fast Neutron Dosimeter for the Space Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Model calculations and risk assessment estimates indicate that secondary neutrons, with energies ranging between 0.5 to >150 MeV, make a significant contribution...

  15. Striction-based Power Monitoring in Space Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...

  16. Methods of measuring radioactivity in the environment

    Science.gov (United States)

    Isaksson, Mats

    In this thesis a variety of sampling methods have been utilised to assess the amount of deposited activity, mainly of 137Cs, from the Chernobyl accident and from the nuclear weapons tests. Starting with the Chernobyl accident in 1986 sampling of air and rain was used to determine the composition and amount of radioactive debris from this accident, brought to southern Sweden by the weather systems. The resulting deposition and its removal from urban areas was than studied through measurements on sewage sludge and water. The main part of the thesis considers methods of determining the amount of radiocaesium in the ground through soil sampling. In connection with soil sampling a method of optimising the sampling procedure has been developed and tested in the areas of Sweden which have a comparatively high amount of 137Cs from the Chernobyl accident. This method was then used in a survey of the activity in soil in Lund and Skane, divided between nuclear weapons fallout and fallout from the Chernobyl accident. By comparing the results from this survey with deposition calculated from precipitation measurements it was found possible to predict the deposition pattern over Skane for both nuclear weapons fallout and fallout from the Chernobyl accident. In addition, the vertical distribution of 137Cs has been modelled and the temporal variation of the depth distribution has been described.

  17. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  18. Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009

    OpenAIRE

    Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito

    2012-01-01

    Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...

  19. Public open spaces and walking for recreation: moderation by attributes of pedestrian environments.

    Science.gov (United States)

    Sugiyama, Takemi; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Adams, Robert J; Daniel, Mark

    2014-05-01

    This study examined whether attributes of pedestrian environments moderate the relationships between access to public open spaces (POS) and adults' recreational walking. Data were collected from participants of the North West Adelaide Health Study in 2007. Recreational walking was determined using self-reported walking frequency. Measures of POS access (presence, count, and distance to the nearest POS) were assessed using a Geographic Information System. Pedestrian environmental attributes included aesthetics, walking infrastructure, barrier/traffic, crime concern, intersection density, and access to walking trails. Regression analyses examined whether associations between POS access and recreational walking were moderated by pedestrian environmental attributes. The sample included 1574 participants (45% men, mean age: 55). POS access measures were not associated with recreational walking. However, aesthetics, walking infrastructure, and access to walking trail were found to moderate the POS-walking relationships. The presence of POS was associated with walking among participants with aesthetically pleasing pedestrian environments. Counter-intuitively, better access to POS was associated with recreational walking for those with poorer walking infrastructure or no access to walking trails. Local pedestrian environments moderate the relationships between access to POS and recreational walking. Our findings suggest the presence of complex relationships between POS availability and pedestrian environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  1. Apparatus for Measurements of Time and Space Correlation

    Science.gov (United States)

    Favre, Alexandre; Gaviglio, J; Dumas, R

    1955-01-01

    A brief review is made of improvements to an experimental apparatus for time and space correlation designed for study of turbulence. Included is a description of the control of the measurements and a few particular applications.

  2. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  3. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  4. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  5. Screens as light biological variable in microgravitational space environment.

    Science.gov (United States)

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  6. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, J.F. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Siegrist, M. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France); Duvivier, E.; Almarcha, B. [STEEL Technologies, Mazeres sur Salat (France); Dachev, T.P.; Semkova, J.V. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Solar Energy and New Energy Sources; Petrov, V.M.; Bengin, V.; Koslova, S.B. [Institute of Biomedical Problems, Moscow (Russian Federation)

    1995-12-31

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs.

  7. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Duvivier, E.; Almarcha, B.; Dachev, T.P.; Semkova, J.V.

    1995-01-01

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs

  8. Rasch Measurement of Collaborative Problem Solving in an Online Environment.

    Science.gov (United States)

    Harding, Susan-Marie E; Griffin, Patrick E

    2016-01-01

    This paper describes an approach to the assessment of human to human collaborative problem solving using a set of online interactive tasks completed by student dyads. Within the dyad, roles were nominated as either A or B and students selected their own roles. The question as to whether role selection affected individual student performance measures is addressed. Process stream data was captured from 3402 students in six countries who explored the problem space by clicking, dragging the mouse, moving the cursor and collaborating with their partner through a chat box window. Process stream data were explored to identify behavioural indicators that represented elements of a conceptual framework. These indicative behaviours were coded into a series of dichotomous items. These items represented actions and chats performed by students. The frequency of occurrence was used as a proxy measure of item difficulty. Then given a measure of item difficulty, student ability could be estimated using the difficulty estimates of the range of items demonstrated by the student. The Rasch simple logistic model was used to review the indicators to identify those that were consistent with the assumptions of the model and were invariant across national samples, language, curriculum and age of the student. The data were analysed using a one and two dimension, one parameter model. Rasch separation reliability, fit to the model, distribution of students and items on the underpinning construct, estimates for each country and the effect of role differences are reported. This study provides evidence that collaborative problem solving can be assessed in an online environment involving human to human interaction using behavioural indicators shown to have a consistent relationship between the estimate of student ability, and the probability of demonstrating the behaviour.

  9. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  10. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  11. Power plants operating in normal conditions, space management, and environment

    International Nuclear Information System (INIS)

    Bertron, L.

    1986-01-01

    This paper presents the local populations considerations related to the establishment of a nuclear power plant comprising 4 units of 900 MW: reception of a population in the existing environment, acceptance of the power plant by the local population, effluent releases and environmental impacts, and the power plant future [fr

  12. Office Space: How Will Technology Affect the Education Office Environment?

    Science.gov (United States)

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  13. Effects of Solar Activity and Space Environment in 2003 Oct.

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Cho

    2004-12-01

    Full Text Available In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

  14. Distributed computing environments for future space control systems

    Science.gov (United States)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  15. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  16. Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    Science.gov (United States)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2006-01-01

    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.

  17. Mesh Networking in the Tactical Environment Using White Space Technolog

    Science.gov (United States)

    2015-12-01

    facilitate the establishment of a point to multi-point network topology . The base station node handles the compilation of data necessary to determine a...the client nodes from the base station node, the number of client nodes, and the network topology . The metrics chosen for evaluation were picked as a...model, are commonly utilized to simulate quadratic path loss across free space [22]. This model uses the following formula to calculate path loss: L

  18. Human-like robots for space and hazardous environments

    Science.gov (United States)

    1994-01-01

    The three year goal for the Kansas State USRA/NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of crossing rough terrain, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation, and path planning skills.

  19. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    Science.gov (United States)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  20. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  1. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with

  2. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  3. 10th meeting of the International Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    Tagawa, Masahito; Kimoto, Yugo; Protection of Materials and Structures From the Space Environment

    2013-01-01

    The goals of the 10th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-10J, since its inception in 1992, have been to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials, including aspects of LEO, GEO and Deep Space environments, ground-based qualification, and in-flight experiments and lessons learned from operational vehicles that are closely interrelated to disciplines of the atmospheric sciences, solar-terrestrial interactions and space life sciences. The knowledge of environmental conditions on and around the Moon, Mars, Venus and the low Earth orbit as well as other possible candidates for landing such as asteroids have become an important issue, and protecting both hardware and human life from the effects of space environments has taken on a new meaning in light of the increased interest in space travel and colonization of other planets.  And while many materia...

  4. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  5. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  6. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  7. Measuring the quality of public open space using Google Earth.

    Science.gov (United States)

    Taylor, Bronwen T; Fernando, Peter; Bauman, Adrian E; Williamson, Anna; Craig, Jonathan C; Redman, Sally

    2011-02-01

    Proximity to public open space, such as parks and other green spaces, has considerable health benefits, and people have been shown to be more likely to use such space for physical activity if it is of high quality. This paper describes a new remote-assessment approach that makes use of Google Earth Pro (the free version of this program is Google Earth) to provide rapid and inexpensive measurement of the quality of public open space. The aim of the study was to assess the correlation between assessments of the quality of public open space using (1) the remote method (making use of Google Earth Pro) and (2) direct observation with a well-established measure of quality, the Public Open Space Tool (POST). Fifty parks selected from the southwest part of Sydney, Australia, were assessed in 2009 with the remote method (using Google Earth Pro), and scores were compared with those obtained from direct observation of the same parks using POST. The time taken to conduct the assessments using each method was also recorded. Raters for each method were blind to scores obtained from using the other method. Analyses were conducted in 2009. The Spearman correlation coefficient between the quality scores obtained for the 50 parks using the remote method and direct observation was 0.9 (pspaces without the need for in-person visits, dramatically reducing the time required for environmental audits of public open space. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Street as Public Space - Measuring Street Life of Kuala Lumpur

    Science.gov (United States)

    Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina

    2017-10-01

    Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.

  9. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    Science.gov (United States)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  10. Analytical and experimental studies of leak location and environment characterization for the international space station

    Energy Technology Data Exchange (ETDEWEB)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin [Stinger Ghaffarian Technologies, Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 (United States); Abel, Joshua; Hawk, Doug [Alliant Techsystems, Inc, 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States); Autrey, David; Glenn, Jodie [Lockheed Martin, 1300 Hercules, Houston, TX 77058 (United States); Bond, Tim; Buffington, Jesse [NASA Johnson Space Flight Center, 2101 NASA Pkwy, Houston, TX 77058 (United States); Cheng, Edward; Ma, Jonathan; Rossetti, Dino [Conceptual Analytics, 8209 Woburn Abbey Rd, Glenn Dale, MD 20769 (United States); DeLatte, Danielle [ASRC Federal Space and Defense, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705 (United States); Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Tull, Kimathi [Jackson and Tull, 7375 Executive Pl, Lanham, MD 20706 (United States); Warren, Eric [Wyle STE Group, 1290 Hercules Ave, Houston, TX 77058-2769 (United States)

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  11. Analytical and experimental studies of leak location and environment characterization for the international space station

    International Nuclear Information System (INIS)

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH 3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb m/ /yr. to about 1 lb m /day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit

  12. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    NARCIS (Netherlands)

    Ruijsbroek, A.; Mohnen, S.M.; Droomers, M.; Kruize, H.; Gidlow, C.; Grazuleviciene, R.; Andrusaityte, S.; Helbich, M.; Maas, J.; Nieuwenhuijsen, M.J.; Triguero-Mas, M.; Masterson, D.; Ellis, N.; Kempen, E. van; Hardyns, W.; Stronks, K.; Groenewegen, P.P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona

  13. Neighbourhood green space, social environment and mental health : an examination in four European cities

    NARCIS (Netherlands)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona (Spain),

  14. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment

    DEFF Research Database (Denmark)

    Høybye, Mette Terp

    2013-01-01

    of the individual patient ’ s needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive...... these concepts, the study demonstrates how the hospital environment is a fl ow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients ’ sense of healing changes with the experience of progression in treatment and the capacity of the hospital space...... to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Discussion. Healing environments are complex relations between practices, space and care, where recognition...

  15. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  16. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  17. A research on the excavation, support, and environment control of large scale underground space

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  18. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  19. Secondary beam line phase space measurement and modeling at LAMPF

    International Nuclear Information System (INIS)

    Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.

    1979-01-01

    Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described

  20. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  1. Electrical behaviour of a silicone elastomer under simulated space environment

    International Nuclear Information System (INIS)

    Roggero, A; Dantras, E; Paulmier, T; Rejsek-Riba, V; Tonon, C; Dagras, S; Balcon, N; Payan, D

    2015-01-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around T g in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon. (paper)

  2. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  3. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment.

    Science.gov (United States)

    Høybye, Mette Terp

    2013-02-01

    Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best

  4. TDRS-1 single event upsets and the effect of the space environment

    International Nuclear Information System (INIS)

    Wilkinson, D.C.; Daughtridge, S.C.; Stone, J.L.; Sauer, H.H.; Darling, P.

    1991-01-01

    The systematic recording of Single Event Upsets on TDRS-1 from 1984 to 1990 allows correlations to be drawn between those upsets and the space environment. In this paper, ground based neutron monitor data are used to illustrate the long-term relationship between galactic cosmic rays and TDRS-1 upsets. The short-term effects of energetic solar particles are illustrated with space environment data from GOES-7

  5. CosmoBon, tree research team, for studying utilization of woody plant in space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari

    2012-07-01

    We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  6. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  7. On the differential structure of metric measure spaces and applications

    CERN Document Server

    Gigli, Nicola

    2015-01-01

    The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like \\Delta g=\\mu, where g is a functi

  8. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  9. Metagenomic analysis of the airborne environment in urban spaces.

    Science.gov (United States)

    Be, Nicholas A; Thissen, James B; Fofanov, Viacheslav Y; Allen, Jonathan E; Rojas, Mark; Golovko, George; Fofanov, Yuriy; Koshinsky, Heather; Jaing, Crystal J

    2015-02-01

    The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.

  10. Centralized vs. decentralized nursing stations: effects on nurses' functional use of space and work environment.

    Science.gov (United States)

    Zborowsky, Terri; Bunker-Hellmich, Lou; Morelli, Agneta; O'Neill, Mike

    2010-01-01

    Evidence-based findings of the effects of nursing station design on nurses' work environment and work behavior are essential to improve conditions and increase retention among these fundamental members of the healthcare delivery team. The purpose of this exploratory study was to investigate how nursing station design (i.e., centralized and decentralized nursing station layouts) affected nurses' use of space, patient visibility, noise levels, and perceptions of the work environment. Advances in information technology have enabled nurses to move away from traditional centralized paper-charting stations to smaller decentralized work stations and charting substations located closer to, or inside of, patient rooms. Improved understanding of the trade-offs presented by centralized and decentralized nursing station design has the potential to provide useful information for future nursing station layouts. This information will be critical for understanding the nurse environment "fit." The study used an exploratory design with both qualitative and quantitative methods. Qualitative data regarding the effects of nursing station design on nurses' health and work environment were gathered by means of focus group interviews. Quantitative data-gathering techniques included place- and person-centered space use observations, patient visibility assessments, sound level measurements, and an online questionnaire regarding perceptions of the work environment. Nurses on all units were observed most frequently performing telephone, computer, and administrative duties. Time spent using telephones, computers, and performing other administrative duties was significantly higher in the centralized nursing stations. Consultations with medical staff and social interactions were significantly less frequent in decentralized nursing stations. There were no indications that either centralized or decentralized nursing station designs resulted in superior visibility. Sound levels measured in all

  11. The contamination of personal space : boundary construction in a prison environment

    NARCIS (Netherlands)

    Sibley, David; van Hoven, Bettina

    In this paper, inmates in dormitories in a prison in New Mexico, USA, talk about their everyday lives. We are particularly interested in the ways in which they think about space. Their principal concern appears to be the definition of personal space in an environment where boundaries are weak. The

  12. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  13. Peripersonal Space: An Index of Multisensory Body–Environment Interactions in Real, Virtual, and Mixed Realities

    Directory of Open Access Journals (Sweden)

    Andrea Serino

    2018-01-01

    Full Text Available Human–environment interactions normally occur in the physical milieu and thus by medium of the body and within the space immediately adjacent to and surrounding the body, the peripersonal space (PPS. However, human interactions increasingly occur with or within virtual environments, and hence novel approaches and metrics must be developed to index human–environment interactions in virtual reality (VR. Here, we present a multisensory task that measures the spatial extent of human PPS in real, virtual, and augmented realities. We validated it in a mixed reality (MR ecosystem in which real environment and virtual objects are blended together in order to administer and control visual, auditory, and tactile stimuli in ecologically valid conditions. Within this mixed-reality environment, participants are asked to respond as fast as possible to tactile stimuli on their body, while task-irrelevant visual or audiovisual stimuli approach their body. Results demonstrate that, in analogy with observations derived from monkey electrophysiology and in real environmental surroundings, tactile detection is enhanced when visual or auditory stimuli are close to the body, and not when far from it. We then calculate the location where this multisensory facilitation occurs as a proxy of the boundary of PPS. We observe that mapping of PPS via audiovisual, as opposed to visual alone, looming stimuli results in sigmoidal fits—allowing for the bifurcation between near and far space—with greater goodness of fit. In sum, our approach is able to capture the boundaries of PPS on a spatial continuum, at the individual-subject level, and within a fully controlled and previously laboratory-validated setup, while maintaining the richness and ecological validity of real-life events. The task can therefore be applied to study the properties of PPS in humans and to index the features governing human–environment interactions in virtual or MR. We propose PPS as an

  14. Direct methods for radionuclides measurement in water environment

    International Nuclear Information System (INIS)

    Chernyaev, A.; Gaponov, I.; Kazennov, A.

    2004-01-01

    The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90 Sr detection are considered

  15. Characteristics of personal space during obstacle circumvention in physical and virtual environments.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Richards, Carol L; Fung, Joyce; McFadyen, Bradford J

    2008-02-01

    It is not known how the flexible protective zone maintained around oneself during locomotion (personal space or PS; see [Gérin-Lajoie M, Richards CL, McFadyen BJ. The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control 2005;9:242-69]) is modulated with walking speed, whether both sides of the PS are symmetrical, and whether the circumvention of physical and virtual obstructions elicit the same use of such PS. Personal space was measured in ten adults as they circumvented a cylindrical obstacle that was stationary within their path. Both left and right passes were performed at natural self-selected, slow and fast walking speeds. The same circumvention task was also performed at natural speeds in an immersive virtual environment (VE) replicating the same obstruction scenario. The shape and size of PS were maintained across walking speeds, and a smaller PS was generally observed on the dominant side. The general shape and lateral bias of the PS were preserved in the VE while its size was slightly increased. The systematic behavior across walking speeds and types of environment and the lateral bias suggest that PS is used to control navigation. This study deepens our understanding of normal adaptive walking behavior and has implications for the development of better tools for the assessment and retraining of locomotor capacity in different populations, from people with walking deficits to elite athletes. Since the PS behavior was shown to be robust in the VE used for this study, the virtual reality technology is proposed as a promising platform for the development of such assessment and retraining applications.

  16. Estimation of measurement variance in the context of environment statistics

    Science.gov (United States)

    Maiti, Pulakesh

    2015-02-01

    The object of environment statistics is for providing information on the environment, on its most important changes over time, across locations and identifying the main factors that influence them. Ultimately environment statistics would be required to produce higher quality statistical information. For this timely, reliable and comparable data are needed. Lack of proper and uniform definitions, unambiguous classifications pose serious problems to procure qualitative data. These cause measurement errors. We consider the problem of estimating measurement variance so that some measures may be adopted to improve upon the quality of data on environmental goods and services and on value statement in economic terms. The measurement technique considered here is that of employing personal interviewers and the sampling considered here is that of two-stage sampling.

  17. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  18. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  19. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  20. Guidelines for Evaluating the Thermal Environment of Enclosed Spaces

    Science.gov (United States)

    2009-09-01

    probes Thermocouple and thermistor probes for air, soil, water, etc. Solar radiation LI-COR LI200 pyranometer Silicon diode – not for indoor use...Solar radiation Hukseflux LP02 pyranometer Thermopile sensor element – may be used indoors Black globe thermometer Commercial (original source...temperature (Tnwb) and RH. Exterior Solar Radiation Radiometers that measure solar radiation are called pyranometers . A pyranometer consists of a

  1. Measuring the food and built environments in urban centres

    DEFF Research Database (Denmark)

    Pomerleau, Joceline; Knai, Cecile; McKee, M

    2013-01-01

    Objectives: The authors designed an instrument to measure objectively aspects of the built and food environments in urban areas, the EURO-PREVOB Community Questionnaire, within the EU-funded project ‘Tackling the social and economic determinants of nutrition and physical activity for the prevention...... of obesity across Europe’ (EURO-PREVOB). This paper describes its development, reliability, validity, feasibility and relevance to public health and obesity research. Study design: The Community Questionnaire is designed to measure key aspects of the food and built environments in urban areas of varying...... levels of affluence or deprivation, within different countries. The questionnaire assesses (1) the food environment and (2) the built environment. Methods: Pilot tests of the EURO-PREVOB Community Questionnaire were conducted in five to 10 purposively sampled urban areas of different socio...

  2. A new kind of droplet space distribution measuring method

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    A new kind of droplet space distribution measuring technique was introduced mainly, and the experimental device which was designed for the measuring the space distribution and traces of the flying film droplet produced by the bubble breaking up near the free surface of the water. This experiment was designed with a kind of water-sensitivity test paper (rice paper) which could record the position and size of the colored scattering droplets precisely. The rice papers were rolled into cylinders with different diameters by using tools. The bubbles broke up exactly in the center of the cylinder, and the space distribution and the traces of the droplets would be received by analysing all the positions of the droplets produced by the same size bubble on the rice papers. (authors)

  3. Electrophysiological measurement of interest during walking in a simulated environment.

    Science.gov (United States)

    Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao

    2014-09-01

    A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spectrograph dedicated to measuring tropospheric trace gas constituents from space

    NARCIS (Netherlands)

    Vries, J. de; Laan, E.C.; Deutz, A.F.; Escudero-Sanz, I.; Bokhove, H.; Hoegee, J.; Aben, I.; Jongma, R.; Landgraf, J.; Hasekamp, O.P.; Houweling, S.; Weele, M. van; Oss, R. van; Oord, G. van den; Levelt, P.

    2005-01-01

    Several organizations in the Netherlands are cooperating to develop user requirements and instrument concepts in the line of SCIAMACHY and OMI but with an increased focus on measuring tropospheric constituents from space. The concepts use passive spectroscopy in dedicated wavelength sections in the

  5. Quantitative approach to measuring the cerebrospinal fluid space with CT

    Energy Technology Data Exchange (ETDEWEB)

    Zeumer, H.; Hacke, W.; Hartwich, P.

    1982-01-01

    A method for measuring the subarachnoid space by using an independent CT evaluation unit is described. The normal values have been calculated for patients, according to age, and three examples are presented demonstrating reversible decrease of brain volume in patients suffering anorexia nervosa and chronic alcoholism.

  6. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  7. Foundations of symmetric spaces of measurable functions Lorentz, Marcinkiewicz and Orlicz spaces

    CERN Document Server

    Rubshtein, Ben-Zion A; Muratov, Mustafa A; Pashkova, Yulia S

    2016-01-01

    Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

  8. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  9. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    Science.gov (United States)

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  10. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  11. Study of localized photon source in space of measures

    International Nuclear Information System (INIS)

    Lisi, M.

    2010-01-01

    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semi groups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed.

  12. A device for automated phase space measurement of ion beams

    International Nuclear Information System (INIS)

    Lukas, J.; Priller, A.; Steier, P.

    2007-01-01

    Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning

  13. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Science.gov (United States)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  14. A new system for the measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  15. A new system for measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  16. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  17. Dimensional measurements with submicrometer uncertainty in production environment

    DEFF Research Database (Denmark)

    De Chiffre, L.; Gudnason, M. M.; Madruga, D.

    2015-01-01

    The work concerns a laboratory investigation of a method to achieve dimensional measurements with submicrometer uncertainty under conditions that are typical of a production environment. The method involves the concurrent determination of dimensions and material properties from measurements carried...... gauge blocks along with their uncertainties were estimated directly from the measurements. The length of the two workpieces at the reference temperature of 20 °C was extrapolated from the measurements and compared to certificate values. The investigations have documented that the developed approach...

  18. Preserving Differential Privacy for Similarity Measurement in Smart Environments

    Directory of Open Access Journals (Sweden)

    Kok-Seng Wong

    2014-01-01

    Full Text Available Advances in both sensor technologies and network infrastructures have encouraged the development of smart environments to enhance people’s life and living styles. However, collecting and storing user’s data in the smart environments pose severe privacy concerns because these data may contain sensitive information about the subject. Hence, privacy protection is now an emerging issue that we need to consider especially when data sharing is essential for analysis purpose. In this paper, we consider the case where two agents in the smart environment want to measure the similarity of their collected or stored data. We use similarity coefficient function FSC as the measurement metric for the comparison with differential privacy model. Unlike the existing solutions, our protocol can facilitate more than one request to compute FSC without modifying the protocol. Our solution ensures privacy protection for both the inputs and the computed FSC results.

  19. A measurement concept for hot-spot BRDFs from space

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-09-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  20. A measurement concept for hot-spot BRDFs from space

    Science.gov (United States)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  1. Optical techniques for sensing and measurement in hostile environments

    International Nuclear Information System (INIS)

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    These proceedings collect papers on optical sensing and measurement in hostile environments. Topic include: nuclear waste storage facility monitoring, monitoring of nuclear and chemical explosions, exhaust gas monitoring, fiber-optic monitoring, temperature and radiation effects on optical fibers, and interferometers

  2. Indirect Measures of Learning Transfer between Real and Virtual Environments

    Science.gov (United States)

    Garrett, Michael; McMahon, Mark

    2013-01-01

    This paper reports on research undertaken to determine the effectiveness of a 3D simulation environment used to train mining personnel in emergency evacuation procedures, designated the Fires in Underground Mines Evacuation Simulator (FUMES). Owing to the operational constraints of the mining facility, methods for measuring learning transfer were…

  3. Culturally Sensitive and Environment-Friendly Outcome Measures in

    African Journals Online (AJOL)

    Dr Olaleye

    to review research studies on outcome measures that were developed for ... A systematic review of evidence on culturally sensitive and environment- ... Various databases including Google Scholar, PEDro and PubMed were accessed to search for relevant empirical ... utilization of disease-specific, patient-centered outcome.

  4. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  5. Free-space optical channel characterization and experimental validation in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy

    2018-03-05

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  6. Free-space optical channel characterization and experimental validation in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  7. An Evaluation of the Measurement of Perceived Classroom Assessment Environment

    Directory of Open Access Journals (Sweden)

    Hussain Alkharusi

    2015-07-01

    Full Text Available A classroom assessment environment is a classroom context experienced by students as the teacher determines assessment purposes, develops assessment tasks, defines assessment criteria and standards, provides feedback, and monitors outcomes (Brookhart, 1997. It is usually a group experience varying from class to class dependent upon the teacher’s assessment practices (Brookhart, 2004. As such, the measurement of class-level perception of the assessment environment should deserve recognition and investigation. This study aimed at evaluating the measurement of the perceived classroom assessment environment by comparing the psychometric properties of the scale at the student level and class level. Using a multi-stage random sampling process, data were collected from 4088 students nested within 236 classes of the second cycle of the basic education in the Sultanate of Oman. Students responded to the 18-items of Alkharusi's (2011 Perceived Classroom Assessment Environment Scale. Results of the principal axis factoring yielded two factors, learning-oriented and performance-oriented assessment environment, at both levels. However, the two factors explained about 38% of the variance at the class level compared to about 20% of the variance at the student level. Reliability coefficients in terms of Cronbach alpha ranged between .79 and .83 at the class level compared to .65 and .67 at the student level

  8. Quality Of Educational Environment At Wah Medical College: Assessment By Using Dundee Ready Educational Environment Measure.

    Science.gov (United States)

    Mushtaq, Robina; Ansar, Ambreen; Bibi, Anwar; Ramzan, Musarat; Munir, Arif; Zaheer, Amna; Ahmad, Afsa; Barlas, Aisha

    2017-01-01

    Educational environment not only has an impact on the students during the academic years but has its reflections throughout their medical career. The Dundee Ready Educational Environment Measure (DREEM) is an internationally accepted useful tool to analyse undergraduate educational environments in the health professionals. The purpose of this study was to assess how students, across all the five years in a private medical college, perceive their educational environment. It was a cross sectional study, which used the DREEM inventory at Wah Medical College over the course of 6 months (January-June 2015). All 500 students were included in the study. The fifty items DREEM inventory, having the maximum score of two hundred indicating ideal educational environment was used for data collection. The questionnaire was completed by 400 undergraduate medical students (response rate 80%). The overall DREEM score was 122.63/200 (61.3%), indicating that the perception of the learning environment was more positive than negative. Among the highest scoring categories were students' participation in classes, relaxed atmosphere and confidence in passing the annual exams. However, many areas requiring improvement were also brought to attention. Overall, the student's perception of their learning environment at Wah Medical College was found to be positive. This study did bring to light some areas that could be improved upon. This should enable the faculty to adopt changes in their teaching methods to make the learning process more productive and enjoyable for future students.

  9. Exploring the Design Space of Longitudinal Censorship Measurement Platforms

    OpenAIRE

    Razaghpanah, Abbas; Li, Anke; Filastò, Arturo; Nithyanand, Rishab; Ververis, Vasilis; Scott, Will; Gill, Phillipa

    2016-01-01

    Despite the high perceived value and increasing severity of online information controls, a data-driven understanding of the phenomenon has remained elusive. In this paper, we consider two design points in the space of Internet censorship measurement with particular emphasis on how they address the challenges of locating vantage points, choosing content to test, and analyzing results. We discuss the trade offs of decisions made by each platform and show how the resulting data provides compleme...

  10. Elliptic equations with measure data in Orlicz spaces

    Directory of Open Access Journals (Sweden)

    Ge Dong

    2008-05-01

    Full Text Available This article shows the existence of solutions to the nonlinear elliptic problem $A(u=f$ in Orlicz-Sobolev spaces with a measure valued right-hand side, where $A(u=-mathop{ m div}a(x,u, abla u$ is a Leray-Lions operator defined on a subset of $W_{0}^{1}L_{M}(Omega$, with general $M$.

  11. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  12. Measuring Conflict in a Multi-Source Environment as a Normal Measure

    OpenAIRE

    Wei, Pan; Ball, John E.; Anderson, Derek T.; Harsh, Archit; Archibald, Christopher

    2018-01-01

    In a multi-source environment, each source has its own credibility. If there is no external knowledge about credibility then we can use the information provided by the sources to assess their credibility. In this paper, we propose a way to measure conflict in a multi-source environment as a normal measure. We examine our algorithm using three simulated examples of increasing conflict and one experimental example. The results demonstrate that the proposed measure can represent conflict in a me...

  13. Measuring the Microlensing Parallax from Various Space Observatories

    Science.gov (United States)

    Bachelet, E.; Hinse, T. C.; Street, R.

    2018-05-01

    A few observational methods allow the measurement of the mass and distance of the lens-star for a microlensing event. A first estimate can be obtained by measuring the microlensing parallax effect produced by either the motion of the Earth (annual parallax) or the contemporaneous observation of the lensing event from two (or more) observatories (space or terrestrial parallax) sufficiently separated from each other. Further developing ideas originally outlined by Gould as well as Mogavero & Beaulieu, we review the possibility of measuring systematically the microlensing parallax using a telescope based on the Moon surface and other space-based observing platforms, including the upcoming WFIRST space-telescope. We first generalize the Fisher matrix formulation and present results demonstrating the advantage for each observing scenario. We conclude by outlining the limitation of the Fisher matrix analysis when submitted to a practical data modeling process. By considering a lunar-based parallax observation, we find that parameter correlations introduce a significant loss in detection efficiency of the probed lunar parallax effect.

  14. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Measuring the Internal Environment of Solid Rocket Motors During Ignition

    Science.gov (United States)

    Weisenberg, Brent; Smith, Doug; Speas, Kyle; Corliss, Adam

    2003-01-01

    A new instrumentation system has been developed to measure the internal environment of solid rocket test motors during motor ignition. The system leverages conventional, analog gages with custom designed, electronics modules to provide safe, accurate, high speed data acquisition capability. To date, the instrumentation system has been demonstrated in a laboratory environment and on subscale static fire test motors ranging in size from 5-inches to 24-inches in diameter. Ultimately, this system is intended to be installed on a full-scale Reusable Solid Rocket Motor. This paper explains the need for the data, the components and capabilities of the system, and the test results.

  16. Habituation to novel visual vestibular environments with special reference to space flight

    Science.gov (United States)

    Young, L. R.; Kenyon, R. V.; Oman, C. M.

    1981-01-01

    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.

  17. National network of environment radioactivity measurements. Press kit

    International Nuclear Information System (INIS)

    2010-01-01

    This document first presents the objectives, challenges, context, operation and actors of the French national network of environment radioactivity measurements. It discusses the reasons for these measurements, the way they are performed, who perform them and how they are transmitted to the national network. It describes the quality policy for these measurements, and how this network is at the service of authorities, experts and population. It outlines the originality of the French approach within the European Union, and how this network takes the population expectations and their evolution into account

  18. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    Science.gov (United States)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P

    2017-07-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent (United Kingdom), Doetinchem (The Netherlands), and Kaunas (Lithuania). 3771 adults living in 124 neighbourhoods answered questions on mental health, neighbourhood social environment, and amount and quality of green space. Additionally, audit data on neighbourhood green space were collected. Multilevel regression analyses examined the relation between neighbourhood green space and individual mental health and the influence of neighbourhood social environment. Mental health was only related to green (audit) in Barcelona. The amount and quality of neighbourhood green space (audit and perceived) were related to social cohesion in Doetinchem and Stoke-on-Trent and to neighbourhood attachment in Doetinchem. In all four cities, mental health was associated with social contacts. Neighbourhood green was related to mental health only in Barcelona. Though neighbourhood green was related to social cohesion and attachment, the neighbourhood social environment seems not the underlying mechanism for this relationship.

  19. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    Science.gov (United States)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  20. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  1. Space dependence of reactivity parameters on reactor dynamic perturbation measurements

    International Nuclear Information System (INIS)

    Maletti, R.; Ziegenbein, D.

    1985-01-01

    Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)

  2. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  3. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Science.gov (United States)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  4. TIROS-N/NOAA A-J space environment monitor subsystem. Technical memo

    International Nuclear Information System (INIS)

    Seale, R.A.; Bushnell, R.H.

    1987-04-01

    The Space Environment Monitor (SEM), which is incorporated as a subsystem in the TIROS-N and NOAA A-J satellites, is described. The SEM consists of a Total Energy Detector (TED), a Medium Energy Proton and Electron Detector (MEPED), a High Energy Proton and Alpha Detector (HEPAD) and a Data Processing Unit (DPU). The detectors are intended to provide near-real-time particle data for use in the Space Environment Service Center of National Oceanic and Atmospheric Administration (NOAA) and to provide a long-term scientific data base. Telemeter codes, data reduction, and test instructions are given

  5. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    Science.gov (United States)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  6. Impact of space environment on stability of medicines: Challenges and prospects.

    Science.gov (United States)

    Mehta, Priti; Bhayani, Dhara

    2017-03-20

    To upkeep health of astronauts in a unique, isolated, and extreme environment of space is the primary goal for a successful space mission, hence, safe and efficacious medications are essential for the wellness of astronauts. Space medication has been challenged with problems related to efficacy. Along with altered physiology, one of the possible reasons could be instability of space medications in the presence of harsh spaceflight environmental conditions. Altered physical and chemical stability can result in reduced potency which can result in reduced efficacy. Right now, medicines from the International Space Station are replaced before their expiration. But, for longer duration missions to Mars or any other asteroid, there will not be any chance of replacement of medicines. Hence, it is desired that medicines maintain the shelf-life throughout the space mission. Stability of medicines used for short term or long term space missions cannot be judged by drug stability guidelines based on terrestrial environmental factors. Unique environmental conditions related to spaceflight include microgravity, excessive vibration, hard vacuum, humidity variation, temperature differences and excessive radiation, which may cause instability of medicines. This write-up provides a review of the problem and countermeasure approaches for pharmaceuticals exposed to the space environment. The first part of the article discusses thought processes behind outlining of International Conference on Harmonization drug stability guidelines, Q1A (R2) and Q1B, and its acceptance limits for accelerated stability study. The second part of the article describes the difference in the radiation environment of deep space compared to radiation environment inside the space shuttle based on penetration power of different types of radiation. In the third part of the article, various promising approaches are listed which can be used for assurance of space medicine stability. One of the approaches is the

  7. Evidence of Molecular Adaptation to Extreme Environments and Applicability to Space Environments

    Directory of Open Access Journals (Sweden)

    Filipović, M. D.

    2008-06-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: {it Escherichia coli (E. coli K12}, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0D C ({it Metarhizium frigidum (M.~frigidum} and {it Methanococcoides burtonii (M.~burtonii} and 110D C ({it Methanopyrus kandleri (M.~kandleri}. Although not all the components of heat adaptation can be attributed to novel genes, the {it chaperones} known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved {it chaperons} found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique {it chaperone TF55}. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The followinghyperthermophile genomes incorporated in this software were used forthese studies: {it Methanocaldococcus jannaschii (M.~jannaschii, M.~kandleri, Archaeoglobus fulgidus (A.~fulgidus} and threespecies of {it Pyrococcus}. Common genes were annotated and groupedaccording to their roles in cellular processes where such informationwas available and proteins not previously implicated in theheat-adaptation of hyperthermophiles were identified. Additionalexperimental data are needed in order to learn more about theseproteins. To address non-gene based components of thermaladaptation

  8. Evidence of molecular adaptation to extreme environments and applicability to space environments

    Directory of Open Access Journals (Sweden)

    Filipović M.

    2008-01-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: Escherichia coli (E. coli K12, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0ºC (Metarhizium frigidum (M. frigidum and Methanococcoides burtonii (M. burtonii and 110ºC (Methanopyrus kandleri (M. kandleri. Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M. jannaschii, M. kandleri, Archaeoglobus fulgidus (A. fulgidus and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were

  9. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    International Nuclear Information System (INIS)

    Dodson, T.; Ellis, R.; Priniski, C.; Raftopoulos, S.; Stevens, D.; Viola, M.

    2009-01-01

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurement based (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes

  10. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  11. Vertebrate development in the environment of space: models, mechanisms, and use of the medaka

    Science.gov (United States)

    Wolgemuth, D. J.; Herrada, G.; Kiss, S.; Cannon, T.; Forsstrom, C.; Pranger, L. A.; Weismann, W. P.; Pearce, L.; Whalon, B.; Phillips, C. R.

    1997-01-01

    With the advent of space travel, it is of immediate interest and importance to study the effects of exposure to various aspects of the altered environment of space, including microgravity, on Earth-based life forms. Initial studies of space travel have focused primarily on the short-term effects of radiation and microgravity on adult organisms. However, with the potential for increased lengths of time in space, it is critical to now address the effects of space on all phases of an organism's life cycle, from embryogenesis to post-natal development to reproduction. It is already possible for certain species to undergo multiple generations within the confines of the Mir Space Station. The possibility now exists for scientists to consider the consequences of even potentially subtle defects in development through multiple phases of an organism's life cycle, or even through multiple generations. In this discussion, we highlight a few of the salient observations on the effects of the space environment on vertebrate development and reproductive function. We discuss some of the many unanswered questions, in particular, in the context of the choice of appropriate models in which to address these questions, as well as an assessment of the availability of hardware already existing or under development which would be useful in addressing these questions.

  12. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  13. Crack Growth Monitoring in Harsh Environments by Electric Potential Measurements

    International Nuclear Information System (INIS)

    Lloyd, Wilson Randolph; Reuter, Walter Graham; Weinberg, David Michael

    1999-01-01

    Electric potential measurement (EPM) technology offers an attractive alternative to conventional nondestructive evaluation (NDE) for monitoring crack growth in harsh environments. Where conventional NDE methods typically require localized human interaction, the EPM technique developed at the Idaho National Engineering and Environmental Laboratory (INEEL) can be operated remotely and automatically. Once a crack-like defect is discovered via conventional means, EPM can be applied to monitor local crack size changes. This is of particular interest in situations where an identified structural defect is not immediately rejectable from a fitness-for-service viewpoint, but due to operational and environmental conditions may grow to an unsafe size with continuing operation. If the location is in a harsh environment where periodic monitoring by normal means is either too costly or not possible, a very expensive repair may be immediately mandated. However, the proposed EPM methodology may offer a unique monitoring capability that would allow for continuing service. INEEL has developed this methodology, supporting equipment, and calibration information to apply EPM in a field environment for just this purpose. Laboratory and pilot scale tests on full-size engineering structures (pressure vessels and piping) have been successfully performed. The technique applicable is many severe environments because the sensitive equipment (electronics, operators) can be situated in a remote location, with only current and voltage probe electrical leads entering into the harsh environment. Experimental results showing the utility of the methodology are presented, and unique application concepts that have been examined by multiple experiments are discussed

  14. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    Science.gov (United States)

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  15. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    Directory of Open Access Journals (Sweden)

    So Fujiyoshi

    2017-11-01

    Full Text Available Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%. It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i outdoor environments, and (ii the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne

  16. Measuring Radionuclides in the environment: radiological quantities and sampling designs

    International Nuclear Information System (INIS)

    Voigt, G.

    1998-10-01

    One aim of the workshop was to support and provide an ICRU report committee (International Union of Radiation Units) with actual information on techniques, data and knowledge of modern radioecology when radionuclides are to be measured in the environment. It has been increasingly recognised that some studies in radioecology, especially those involving both field sampling and laboratory measurements, have not paid adequate attention to the problem of obtaining representative, unbiased samples. This can greatly affect the quality of scientific interpretation, and the ability to manage the environment. Further, as the discipline of radioecology has developed, it has seen a growth in the numbers of quantities and units used, some of which are ill-defined and which are non-standardised. (orig.)

  17. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  18. Angular signatures, and a space-borne measurement concept

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-05-01

    The nature and value of angular signatures in remote sensing are reviewed with emphasis on the canopy hot-spot as a directionally localized angular signature and an important special case of a BRDF (bidirectional reflectance distribution function). A new concept is presented that allows hot spot measurements from space by using active (laser) illumination and bistatic detection. The detectors are proposed as imaging array sensors that are circulating the illumination source (or vice versa) and are connected with it through tethers in space which also provide the directional controls needed so that the entire system becomes pointable like a search light. Near infrared or IR operation in an atmospheric transmission winodw is envisioned with night-time data acquistion. Detailed feasibility and systems analyses have yet to be performed.

  19. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  20. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  1. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  2. CliniSpace: a multiperson 3D online immersive training environment accessible through a browser.

    Science.gov (United States)

    Dev, Parvati; Heinrichs, W LeRoy; Youngblood, Patricia

    2011-01-01

    Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.

  3. An automated tunnel evaporation measurement system for confined spaces

    Science.gov (United States)

    Salve, Rohit

    2002-04-01

    An automated tunnel evaporation-rate measurement system (TEMS) has been designed to measure automatically the evaporation from a cylinder 0·30 m in diameter and 0·10 m tall. This cylinder continuously maintains a constant height of water, with losses to evaporation replenished from a stilling cylinder connected to a water reservoir. The evaporation rate is measured by a transducer located at the bottom of the stilling well. The TEMS was tested over a period of 3 months in an underground research facility with relatively strong wind effects, changing temperature, and changing humidity. During this period, the TEMS continued to function uninterrupted, automatically measuring the evaporation amounts along a tunnel and an enclosed niche. These observations suggest that this tool can be useful for investigations of evaporation processes both in enclosed and ventilated environments. Published in 2002 by John Wiley & Sons, Ltd.

  4. Operational measurements in radioprotection in the industrial and medical environments

    International Nuclear Information System (INIS)

    Rodde, S.; Vial, Th.; Truffert, H.; Kramar, R.; Batalla, A.; Roine, Ph.; Pin, A.; Lahaye, Th.; Rodde, S.; Bordy, J.M.; Paquet, F.; Veres, A.; Cadiou, A.; Branthonne, J.Y.; Noel, A.; Laloubere, L.; Moreau, St.; Gensdarmes, F.; Marques, S.; Lestang, M.; Valendru, N.; Tranchant, Ph.; Martel, P.; Bernhard, S.; Chareyre, P.; Gardin, I.; Casanova, Ph.; De Vita, A.; Tenailleau, L.; Masson, B.; Feret, B.; Guerin, M.; Guillot, L.; Gaultier, E.

    2009-01-01

    This document gathers the slides of the available presentations given during these conference days. Thirty presentations are assembled in the document and deal with: 1 - enforcement circular of the labor code dispositions relative to workers protection against ionizing radiation hazards (T. Lahaye); 2 - context and regulatory evolutions - public health code (S. Rodde); 3 - references and perspectives in external dosimetry (J.M. Bordy); 4 - CIPR's Committee 2 works (F. Paquet); 5 - from protection data to measurement data (A. Pin); 6 - dosimetric control in radiotherapy (A. Veres); 7 - calibration of irradiation measurement devices in industrial environment (A. Cadiou); 8 - calibration and verification of nuclear measurement devices (J.Y. Branthonne); 9 - calibration of measurement devices in medical environment (J.M. Bordy); 10 - quality control in radiotherapy (A. Batalla); 11 - in-vivo dosimetry in radiotherapy (A. Noel); 12 - calibration metrology of fixed post irradiation sensors (L. Laloubere); 13 - design requirements for the radiological zoning and the wastes cleanliness of Flamanville 3 EPR reactor (S. Moreau); 14 - efficiency of aerosol capture systems used in CNPE EDF (F. Gensdarmes); 15 - mobile surveillance means of the atmospheric contamination of CNPE EDF's reactor building (S. Marques and M. Lestang); 16 - experience feedback about the security gates at EDF's nuclear facilities (N. Valendru); 17 - metrology needs for radioprotection technical controls (P. Tranchant); 18 - technical evaluation of a flowmeter/dosemeter in the framework of the regulatory control of X-ray electric generators used in radio-diagnosis (P. Martel); 19 - reinforced natural radioactivity - the case of radon measurement (S. Bernhard); 20 - fires during radioactive materials transport (P. Chareyre); 21 - measurement in the framework of medical examinations: radiology service (A. Noel); 22 - operational measurements in nuclear medicine (I. Gardin); 23 - from the operational

  5. Open problems in Banach spaces and measure theory | Rodríguez ...

    African Journals Online (AJOL)

    We collect several open questions in Banach spaces, mostly related to measure theoretic aspects of the theory. The problems are divided into five categories: miscellaneous problems in Banach spaces (non-separable Lp spaces, compactness in Banach spaces, w*-null sequences in dual spaces), measurability in Banach ...

  6. Neighbourhood green space, social environment and mental health: an examination in four European cities

    NARCIS (Netherlands)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent

  7. Innovative Learning Environments and New Materialism: A Conjunctural Analysis of Pedagogic Spaces

    Science.gov (United States)

    Charteris, Jennifer; Smardon, Dianne; Nelson, Emily

    2017-01-01

    An Organisation for Economic Cooperation and Development research priority, innovative learning environments (ILEs) have been translated into policy and practice in 25 countries around the world. In Aotearoa/New Zealand, learning spaces are being reconceptualised in relation to this policy work by school leaders who are confronted by an impetus to…

  8. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar; Agarwal, Saurav; Mahadevan, Aditya; Chakravorty, Suman; Tomkins, Daniel; Denny, Jory; Amato, Nancy M.

    2014-01-01

    , such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes

  9. Is green space in the living environment associated with people's feelings of social safety?

    NARCIS (Netherlands)

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    The authors investigate whether the percentage of green space in people’s living environment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in the

  10. Is green space in the living environment associated with people's feelings of social safety?

    NARCIS (Netherlands)

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    Abstract. The authors investigate whether the percentage of green space in people's living environ- ment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in

  11. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...

  12. Oncogenesis of melanoma B16 cell clones mutagenized by space environment

    International Nuclear Information System (INIS)

    Guo Yupeng; Yang Hongsheng; Tang Jingtian; Xu Mei; Geng Chuanying; Fang Qing; Xu Bo; Li Hongyan; Xiang Xing; Pan Lin

    2005-01-01

    Objective: To explore the oncogenesis of the melanoma B16 cell clones mutagenized by space environment, and find the B16 cell clones with remarkably mutated immunogenicity. Methods: B16 cells were carried by the Chinese 20th recoverable satellite to the outer space, and were harvested after 18 days' spaceflight and then monocloned. Four cell clones, which were randomly selected from the total 110 clones obtained , and the control clone were routinely cultured. The cultured cells were injected to 10 groups of C57BL/6J mice, 82.1 mice in each group. Five groups of mice received hypodermic injection and another 5 groups of mice received abdominal injection. The survival time was observed in abdominal injection groups. The mice in hypodermic injection groups were sacrificed after 14 days, the tumor, spleen and thymus were weighted, and the serum IL-2 concentration was determined. Moreover, the melanoma tumor tissues were examined histopathologically. Results: An experiment program suitable to screening space mutagenesis of B16 tumor cell clones in vivo and the observation indices were basically established. One clone was found out which was remarkably different from the control clone in latent period of tumor formation, tumor weight, survival time of the tumor-bearing mice and the expression of IL-2. Conclusions: Cultured melanoma B16 cells could be mutated by outer space environment. The further study will be focused on the influence of space environment on immunogenicity of mutagenized B16 cells. (authors)

  13. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  14. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  15. Enhanced Predictions of Time to Critical Dielectric Breakdown of Materials Under Prolonged Exposure to Space Plasma Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading cause of spacecraft failures and malfunctions due to interactions with the space plasma environment is electrostatic discharge (ESD). The enhanced time...

  16. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  18. Precision interplanar spacings measurements of boron doped silicon

    International Nuclear Information System (INIS)

    Soares, D.A.W.; Pimentel, C.A.F.

    1982-05-01

    A study of lattice parameters of boron doped silicon (10 14 -10 19 atom/cc) grown in and directions by Czochralski technique has been undertaken. Interplanar spacings (d) were measured by pseudo-Kossel technique to a precision up to 0,001%; different procedures to obtain d and the errors are discussed. It is concluded that the crystallographic planes contract preferentially and the usual study of parameter variation must be made as a function of d. The diffused B particularly contracts the [333] plane and in a more pronunciate way in high concentrations. An orientation dependence of the diffusion during growth was observed. (Author) [pt

  19. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  20. Some measurements of time and space correlation in wind tunnel

    Science.gov (United States)

    Favre, A; Gaviglio, J; Dumas, R

    1955-01-01

    Results are presented of research obtained by means of an apparatus for measurement of time and space correlation and of a spectral analyzer in the study of the longitudinal component of turbulence velocities in a wind tunnel downstream of a grid of meshes. Application to the case of a flat-plate boundary layer is illustrated. These researches were made at the Laboratoire de Mecanique de l'Atmosphere de l'I.M.F.M. for the O.N.E.R.A.

  1. THE UNCERTAINTIES OF ENVIRONMENT'S PARAMETERS MEASUREMENTS AS TOLLS OF THE MEASUREMENTS QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Miroslav Badida

    2008-06-01

    Full Text Available Identification of the noise measuring uncertainties by declared measured values is unconditionally necessary and required by legislative. Uncertainty of the measurements expresses all errors that accrue during the measuring. B y indication of uncertainties the measure documents that the objective value is with certain probability found in the interval that is bounded by the measurement uncertainty. The paper deals with the methodology of the uncertainty calculation by noise measurements in living and working environments. metal processing industry and building materials industry.

  2. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    International Nuclear Information System (INIS)

    Beer, Juerg; Steiger, Rudolf von; McCracken, Ken

    2012-01-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  3. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Juerg [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, Duebendorf (Switzerland); Steiger, Rudolf von [International Space Science Insitute, Bern (Switzerland); McCracken, Ken [Maryland Univ., College Park (United States). IPST

    2012-07-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  4. On reflexivity of random walks in a random environment on a metric space

    International Nuclear Information System (INIS)

    Rozikov, U.A.

    2002-11-01

    In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)

  5. A Novel Attitude Measurement Algorithm in Magnetic Interference Environment

    Directory of Open Access Journals (Sweden)

    Lingxia Li

    2014-07-01

    Full Text Available The approach of using Magnetic Angular Rate Gravity (MARG sensor for the current multi-sensor based pedestrian navigation algorithm magnetometers is susceptible to the external magnetic interference. The result of attitude is affected by many factors, like the low-precision MEMS gyro drift and large body linear acceleration measurements. In this paper, we propose anti-jamming algorithm which is based on four elements of Extended Kalman Filtering (EKF. To reduce carrier linear acceleration and local magnetic field that impact on attitude measurement, the adaptive covariance matrix structure is considered. Moreover, the heading angle correction threshold method is used in magnetic field compensation and interference environment. Based on the experimental results, the effectiveness of the proposed algorithm suppresses the influence of the external magnetic interference on heading angle, as well as improving the accuracy of system attitude measurement.

  6. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  7. Development of a Flexible Lead-Free Piezoelectric Transducer for Health Monitoring in the Space Environment

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2015-11-01

    Full Text Available In this work we report on the fabrication process for the development of a flexible piezopolymeric transducer for health monitoring applications, based on lead-free, piezoelectric zinc oxide (ZnO thin films. All the selected materials are compatible with the space environment and were deposited by the RF magnetron sputtering technique at room temperature, in view of preserving the total flexibility of the structures, which is an important requirement to guarantee coupling with cylindrical fuel tanks whose integrity we want to monitor. The overall transducer architecture was made of a c-axis-oriented ZnO thin film coupled to a pair of flexible Polyimide foils coated with gold (Au electrodes. The fabrication process started with the deposition of the bottom electrode on Polyimide foils. The ZnO thin film and the top electrode were then deposited onto the Au/Polyimide substrates. Both the electrodes and ZnO layer were properly patterned by wet-chemical etching and optical lithography. The assembly of the final structure was then obtained by gluing the upper and lower Polyimide foils with an epoxy resin capable of guaranteeing low outgassing levels, as well as adequate thermal and electrical insulation of the transducers. The piezoelectric behavior of the prototypes was confirmed and evaluated by measuring the mechanical displacement induced from the application of an external voltage.

  8. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    Science.gov (United States)

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    iterative method. A powerful tool for proving convergence rates of Tikhonov type but also other regularization methods in Banach spaces are assumptions of the type of variational inequalities that combine conditions on solution smoothness (i.e., source conditions in the Hilbert space case) and nonlinearity of the forward operator. In Parameter choice in Banach space regularization under variational inequalities, Bernd Hofmann and Peter Mathé provide results with general error measures and especially study the question of regularization parameter choice. Daijun Jiang, Hui Feng, and Jun Zou consider an application of Banach space ideas in the context of an application problem in their paper Convergence rates of Tikhonov regularizations for parameter identifiation in a parabolic-elliptic system, namely the identification of a distributed diffusion coefficient in a coupled elliptic-parabolic system. In particular, they show convergence rates of Lp-H1 (variational) regularization for the application under consideration via the use and verification of certain source and nonlinearity conditions. In computational practice, the Lp norm with p close to one is often used as a substitute for the actually sparsity promoting L1 norm. In Norm sensitivity of sparsity regularization with respect to p, Kamil S Kazimierski, Peter Maass and Robin Strehlow consider the question of how sensitive the Tikhonov regularized solution is with respect to p. They do so by computing the derivative via the implicit function theorem, particularly at the crucial value, p=1. Another iterative regularization method in Banach space is considered by Qinian Jin and Linda Stals in Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Using a variational formulation and under some smoothness and convexity assumption on the preimage space, they extend the convergence analysis of the well-known iterative Tikhonov method for linear problems in Hilbert space to a more general Banach

  9. Neighborhood Environments and Objectively Measured Physical Activity in 11 Countries

    Science.gov (United States)

    Cerin, Ester; Cain, Kelli L; Conway, Terry L; Dyck, Delfien Van; Hinckson, Erica; Schipperijn, Jasper; Bourdeaudhuij, Ilse De; Owen, Neville; Davey, Rachel C; Hino, Adriano Akira Ferreira; Mitáš, Josef; Orzanco-Garralda, Rosario; Salvo, Deborah; Sarmiento, Olga L; Christiansen, Lars B; Macfarlane, Duncan J; Schofield, Grant; Sallis, James F

    2014-01-01

    Purpose Environmental changes are potentially effective population-level physical activity (PA) promotion strategies. However, robust multi-site evidence to guide international action for developing activity-supportive environments is lacking. We estimated pooled associations of perceived environmental attributes with objectively-measured PA outcomes; between-site differences in such associations; and, the extent to which perceived environmental attributes explain between-site differences in PA. Methods This was a cross-sectional study conducted in 16 cities located in Belgium, Brazil, Colombia, Czech Republic, Denmark, China, Mexico, New Zealand, Spain, United Kingdom, and USA. Participants were 6,968 adults residing in administrative units stratified by socio-economic status and transport-related walkability. Predictors were 10 perceived neighborhood environmental attributes. Outcome measures were accelerometry-assessed weekly minutes of moderate-to-vigorous PA (MVPA) and meeting the PA guidelines for cancer/weight gain prevention (420 min/week of MVPA). Results Most perceived neighborhood attributes were positively associated with the PA outcomes in the pooled, site-adjusted, single-predictor models. Associations were generalizable across geographical locations. Aesthetics and land use mix – access were significant predictors of both PA outcomes in the fully-adjusted models. Environmental attributes accounted for within-site variability in MVPA corresponding to a 3 min/d or 21 min/week standard deviation. Large between-site differences in PA outcomes were observed: 15.9% to 16.8% of these differences were explained by perceived environmental attributes. All neighborhood attributes were associated with between-site differences in the total effects of the perceived environment on PA outcomes. Conclusions Residents’ perceptions of neighborhood attributes that facilitate walking were positively associated with objectively-measured MVPA and meeting the guidelines

  10. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  11. Measurements for modeling radionuclide transfer in the aquatic environment

    International Nuclear Information System (INIS)

    Kahn, B.

    1976-01-01

    Analytical methods for measuring radionuclides in the aquatic environment are discussed for samples of fresh water and seawater, fish and shellfish, biota such as algae, plankton, seaweed, and aquatic plants, and sediment. Consideration is given to radionuclide collection and concentration, sample preservation, radiochemical and instrumental analysis, and quality assurance. Major problems are the very low environmental levels of the radionuclides of interest, simultaneous occurrence of radionuclides in several chemical and physical forms and the numerous factors that affect radionuclide levels in and transfers among media. Some radionuclides of importance in liquid effluents from nuclear power stations are listed, and sources of radiochemical analytical methods are recommended

  12. Electron-Scale Measurements of Magnetic Reconnection in Space

    Science.gov (United States)

    Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; hide

    2016-01-01

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  13. Aeroflex Single Board Computers and Instrument Circuit Cards for Nuclear Environments Measuring and Monitoring

    International Nuclear Information System (INIS)

    Stratton, Sam; Stevenson, Dave; Magnifico, Mateo

    2013-06-01

    A Single Board Computer (SBC) is an entire computer including all of the required components and I/O interfaces built on a single circuit board. SBC's are used across numerous industrial, military and space flight applications. In the case of military and space implementations, SBC's employ advanced high reliability processors designed for rugged thermal, mechanical and even radiation environments. These processors, in turn, rely on equally advanced support components such as memory, interface, and digital logic. When all of these components are put together on a printed circuit card, the result is a highly reliable Single Board Computer that can perform a wide variety of tasks in very harsh environments. In the area of instrumentation, peripheral circuit cards can be developed that directly interface to the SBC and various radiation measuring devices and systems. Designers use signal conditioning and high reliability Analog to Digital Converters (ADC's) to convert the measuring device signals to digital data suitable for a microprocessor. The data can then be sent to the SBC via high speed communication protocols such as Ethernet or similar type of serial bus. Data received by the SBC can then be manipulated and processed into a form readily available to users. Recent events are causing some in the NPP industry to consider devices and systems with better radiation and temperature performance capability. Systems designed for space application are designed for the harsh environment of space which under certain conditions would be similar to what the electronics will see during a severe nuclear reactor event. The NPP industry should be considering higher reliability electronics for certain critical applications. (authors)

  14. Measurements and predictions for nonevaporating sprays in a quiescent environment

    Science.gov (United States)

    Solomon, A. S. P.; Shuen, J.-S.; Faeth, G. M.; Zhang, Q.-F.

    1983-01-01

    Yule et al. (1982) have conducted a study of vaporizing sprays with the aid of laser techniques. The present investigation has the objective to supplement the measurements performed by Yule et al., by considering the limiting case of a spray in a stagnant environment. Mean and fluctuating velocities of the continuous phase are measured by means of laser Doppler anemometry (LDA) techniques, while Fraunhofer diffraction and slide impaction methods are employed to determine drop sizes. Liquid fluxes in the spray are found by making use of an isokinetic sampling probe. The obtained data are used as a basis for the evaluation of three models of the process, including a locally homogeneous flow (LHF) model, a deterministic separated flow (DSF) model, and a stochastic separated flow (SSF) model. It is found that the LHF and DSF models do not provide very satisfactory predictions for the test sprays, while the SSF model does provide reasonably good predictions of the observed structure.

  15. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  16. The Revised Space Environment Models in CREME-MC: A Replacement for CREME96

    Science.gov (United States)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Mendenhall, Marcus H.; Reed, Robert A.; Sierawski, Brian; Watts, John W.; Weller, Robert A.

    2010-01-01

    The CREME96 model has been available on the WWW for more than 10 years now. While principally for the estimation of radiation effects on spacecraft electronics, it contains space radiation environment models that have been used for instrument design calculations, estimation of instrumental background, estimation of radiation hazards and many other purposes. Because of the evolution of electronic part design we have found it necessary to revise CREME96, creating CREME-MC. As part of this revision, we are revising and extending the environmental models in CREME96. This talk will describe the revised radiation environment models that are being made available in CREME-MC

  17. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  18. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  19. Objective Measures of Emotion During Virtual Walks through Urban Environments

    Directory of Open Access Journals (Sweden)

    Moritz Geiser

    2011-07-01

    Full Text Available Previous studies were able to demonstrate different verbally stated affective responses to environments. In the present study we used objective measures of emotion. We examined startle reflex modulation as well as changes in heart rate and skin conductance while subjects virtually walked through six different areas of urban Paris using the StreetView tool of Google maps. Unknown to the subjects, these areas were selected based on their median real estate prices. First, we found that price highly correlated with subjective rating of pleasantness. In addition, relative startle amplitude differed significantly between the area with lowest versus highest median real estate price while no differences in heart rate and skin conductance were found across conditions. We conclude that interaction with environmental scenes does elicit emotional responses which can be objectively measured and quantified. Environments activate motivational and emotional brain circuits, which is in line with the notion of an evolutionary developed system of environmental preference. Results are discussed in the frame of environmental psychology and aesthetics.

  20. Sustainable Shaping of Urban Spaces in the Context of the Environment

    Directory of Open Access Journals (Sweden)

    Joanna Agnieszka Pawłowicz

    2017-11-01

    Full Text Available The natural environment is of great importance when it comes to developing a city, as it shapes its spaces, defines its roles and performs climatic and protective functions. Industrialization often requires removing landscape obstacles and vegetation to erect new buildings. An urban planner, though, should be aware of the borders that must not be crossed. Designing new streets and buildings should follow a sustainable growth pattern, if the city landscape and its climatic conditions are to improve for generations to come. This paper discusses the aspects of planning and managing urban spaces in such a way as to provide their users with healthy and comfortable living conditions. The paper is based on a survey conducted to gather the opinions of members of a city community on the environment in which they live.

  1. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  2. Measurement of radionuclides in food and the environment

    International Nuclear Information System (INIS)

    1989-01-01

    This guidebook is a production of the Fallout Radioactivity Monitoring in Environment and Food (MEF) Programme created by the IAEA in response to requests from Member States. The guidebook is divided into two parts. The first contains seven sections, including the introduction. Sections 2 and 3 provide general information on samples and radionuclides of interest. Laboratory equipment, space and personnel needed for radioanalyses are described in section 4. General instructions for sample collection and preparation are given in section 5. Sections 6 and 7 briefly discuss analytical methods and analytical quality control respectively. The second part of the guidebook is composed of ten annexes. The first four contain detailed methods for determination of gamma emitters collectively, strontium isotopes, tritium, and the isotopes of plutonium, americium and curium. Annex V provides a list of units and symbols; Annex VI gives information on radionuclide spectra in four types of nuclear accidents; nuclear data tables are listed in Annex VII; an example of a sample collection programme is presented in Annex VIII; some examples of NaI- and HP-Ge gamma spectrometric systems are given in Annex IX; and potential suppliers of calibration sources and reference materials are listed in Annex X. Refs, figs and tabs

  3. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  4. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  5. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  6. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  7. Effects of a Green Space Layout on the Outdoor Thermal Environment at the Neighborhood Level

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lai

    2012-09-01

    Full Text Available This study attempted to address the existing urban design needs and computer-aided thermal engineering and explore the optimal green space layout to obtain an acceptable thermal environment at the neighborhood scale through a series of building energy and computational fluid dynamics (CFD simulations. The building-energy analysis software eQUEST and weather database TMY2 were adopted to analyze the electric energy consumed by air conditioners and the analysis results were incorporated to derive the heat dissipated from air conditioners. Then, the PHOENICS CFD software was used to analyze how the green space layout influences outdoor thermal environment based on the heat dissipated from air conditioners and the solar heat reemitted from the built surfaces. The results show that a green space located in the center of this investigated area and at the far side of the downstream of a summer monsoon is the recommended layout. The layouts, with green space in the center, can decrease the highest temperature by 0.36 °C.

  8. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  9. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  10. Objectively measured residential environment and self-reported health: a multilevel analysis of UK census data.

    Directory of Open Access Journals (Sweden)

    Frank Dunstan

    Full Text Available Little is known about the association between health and the quality of the residential environment. What is known is often based on subjective assessments of the environment rather than on measurements by independent observers. The aim of this study, therefore, was to determine the association between self-reported general health and an objectively assessed measure of the residential environment. We studied over 30,000 residents aged 18 or over living in 777 neighbourhoods in south Wales. Built environment quality was measured by independent observers using a validated tool, the Residential Environment Assessment Tool (REAT, at unit postcode level. UK Census data on each resident, which included responses to a question which assessed self-reported general health, was linked to the REAT score. The Census data also contained detailed information on socio-economic and demographic characteristics of all respondents and was also linked to the Welsh Index of Multiple Deprivation. After adjusting for both the individual characteristics and area deprivation, respondents in the areas of poorest neighbourhood quality were more likely to report poor health compared to those living in areas of highest quality (OR 1.36, 95% confidence interval 1.22-1.49. The particular neighbourhood characteristics associated with poor health were physical incivilities and measures of how well the residents maintained their properties. Measures of green space were not associated with self-reported health. This is the first full population study to examine such associations and the results demonstrate the importance for health of the quality of the neighbourhood area in which people live and particularly the way in which residents behave towards their own and their neighbours' property. A better understanding of causal pathways that allows the development of interventions to improve neighbourhood quality would offer significant potential health gains.

  11. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  12. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  13. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Science.gov (United States)

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  14. Measuring the curvature of space with stretched strings

    International Nuclear Information System (INIS)

    Lyth, D.H.

    1983-01-01

    The equilibrium of a stretched string in curved space is studied. The problem is first formulated without detailed assumptions, then the force of gravity on the string is calculated from general relativity with a static metric. Apart from the latter calculation everything is done in ordinary space rather than in space-time. A number of simple cases are worked out explicitly. (author)

  15. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  16. Simple procedure for phase-space measurement and entanglement validation

    Science.gov (United States)

    Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.

    2017-08-01

    It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.

  17. Assessing measurement uncertainty in meteorology in urban environments

    International Nuclear Information System (INIS)

    Curci, S; Lavecchia, C; Frustaci, G; Pilati, S; Paganelli, C; Paolini, R

    2017-01-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network ® ) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer. (paper)

  18. Assessing measurement uncertainty in meteorology in urban environments

    Science.gov (United States)

    Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.

    2017-10-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.

  19. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  20. Application of Advanced Materials Protecting from Influence of Free Space Environment

    Science.gov (United States)

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for

  1. Beam Shaping for CARS Measurements in Turbulent Environments

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul M.

    2010-01-01

    This paper describes a new technique to mitigate the effect of beam steering on CARS measurements in turbulent, variable density environments. The new approach combines Planar BOXCARS phase-matching with elliptical shaping of one of the beams to generate a signal insensitive to beam steering, while keeping the same spatial resolution. Numerical and experimental results are provided to demonstrate the effectiveness of this approach. One set of experiments investigated the effect of beam shaping in the presence of a controlled and well quantified displacement of the beams at the focal plane. Another set of experiments, more qualitative, proved the effectiveness of the technique in the presence of severe beam steering due to turbulence.

  2. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  3. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    Science.gov (United States)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  4. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  5. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    Science.gov (United States)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  6. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  7. Evaluation of Occupational Cold Environments: Field Measurements and Subjective Analysis

    Science.gov (United States)

    OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study. PMID:24583510

  8. Evaluation of occupational cold environments: field measurements and subjective analysis.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Raimundo, António M; Quintela, Divo A

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study.

  9. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  10. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    Science.gov (United States)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; hide

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  11. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    Science.gov (United States)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  12. CALET: a calorimeter for cosmic-ray measurements in space

    International Nuclear Information System (INIS)

    Mori, Nicola

    2013-01-01

    The CALorimetric Electron Telescope (CALET) instrument is scheduled for a launch in 2014 and attached to the Exposed Facility of the Japanese Experimental Module (JEM-EF) on the International Space Station. Its main objective is to perform precise measurements of the electron+positron spectrum in cosmic rays at energies up to some TeV, searching for signals from dark matter and/or contributions from nearby astrophysical sources like pulsars. Other scientific goals include the investigation of heavy ions spectra up to Fe, elemental abundance of trans-iron nuclei and a measurement of the diffuse γ ray emission with high energy resolution. The instrument is now under construction, and consists of a charge detection device (CHD) composed of two layers of plastic scintillators, a finely-segmented sampling calorimeter (IMC) and a deep, homogeneous calorimeter (TASC) made of PbWO scintillating bars. The good containment of electromagnetic showers (total depth ∼3X 0 (IMC)+27X 0 (TASC)=30X 0 ) together with the homogeneity of TASC give an energy resolution for electrons and γ rays about 2%. CHD can discriminate the charge of primary particles with a resolution between 15% and 30% up to Fe. The finely-segmented IMC, made by tungsten layers and 1mm-wide scintillating fibers, can provide detailed information about the start and early development of particle showers. Lateral and longitudinal shower-development information from TASC, together with informations from IMC, can be used to achieve an electron/proton rejection power about 10 5 . High-statistics for collected data will be achieved by means of the planned 5-years exposure time together with a geometrical factor of 0.12 m 2 sr. Furthermore, a Gamma-Ray Burst monitor will complement the main detector. In this paper the status of the mission, the design and expected performance of the instrument will be detailed

  13. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    Science.gov (United States)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  14. Accessibility of green space in urban areas: an examination of various approaches to measure it

    OpenAIRE

    Zhang, Xin

    2007-01-01

    In the present research, we attempt to improve the methods used for measuring accessibility of green spaces by combining two components of accessibility-distance and demand relative to supply. Three modified approaches (Joseph and Bantock gravity model measure, the two-step floating catchment area measure and a measure based on kernel densities) will be applied for measuring accessibility to green spaces. We select parks and public open spaces (metropolitan open land) of south London as a cas...

  15. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  16. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  17. Design for unusual environment (space). Complementary use of modelling and testing phases

    International Nuclear Information System (INIS)

    Cambiaghi, Danilo; Cambiaghi, Andrea

    2004-01-01

    Designing for space requires a great imagination effort from the designer. He must perceive that the stresses experimented by the facilities he is designing will be quite different in space (during the mission), in launch phase and on ground (before launch handling phase), and he must design for all such environmental conditions. Furthermore he must design for mechanical and thermal environment, which often lead to conflicting needs. Virtual models may help very much in balancing the conflicting requirements, but models must be validated to be reliable. Test phase help validating the models, but may overstress the items. The aim of the designer is to reach an efficient and safe design through a balanced use of creativity, modelling and testing

  18. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Science.gov (United States)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  19. Measuring the Value of AI in Space Science and Exploration

    Science.gov (United States)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  20. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  1. Individual thermal profiles as a basis for comfort improvement in space and other environments

    Science.gov (United States)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.

    2002-01-01

    BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.

  2. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  3. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    Science.gov (United States)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  4. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  5. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  6. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  7. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    International Nuclear Information System (INIS)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-01-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m -2 .K -1 and 130 μC.N -1 for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to

  8. Walkability and walking for transport: characterizing the built environment using space syntax.

    Science.gov (United States)

    Koohsari, Mohammad Javad; Owen, Neville; Cerin, Ester; Giles-Corti, Billie; Sugiyama, Takemi

    2016-11-24

    Neighborhood walkability has been shown to be associated with walking behavior. However, the availability of geographical data necessary to construct it remains a limitation. Building on the concept of space syntax, we propose an alternative walkability index, space syntax walkability (SSW). This study examined associations of the full walkability index and SSW with walking for transport (WT). Data were collected in 2003-2004 from 2544 adults living in 154 Census Collection Districts (CCD) in Adelaide, Australia. Participants reported past week WT frequency. Full walkability (consisting of net residential density, intersection density, land use mix, and net retail area ratio) and SSW (consisting of gross population density and a space syntax measure of street integration) were calculated for each CCD using geographic information systems and space syntax software. Generalized linear models with negative binomial variance and logarithmic link functions were employed to examine the associations of each walkability index with WT frequency, adjusting for socio-demographic variables. Two walkability indices were closely correlated (ρ = 0.76, p walkability and SSW with WT frequency were positive, with regression coefficients of 1.12 (95% CI: 1.08, 1.17) and 1.14 (95% CI: 1.10, 1.19), respectively. SSW employs readily-available geographic data, yet is comparable to full walkability in its association with WT. The concept and methods of space syntax provide a novel approach to further understanding how urban design influences walking behaviors.

  9. Measuring the Interestingness of Articles in a Limited User Environment

    Energy Technology Data Exchange (ETDEWEB)

    Pon, Raymond K. [Univ. of California, Los Angeles, CA (United States)

    2008-01-01

    Search engines, such as Google, assign scores to news articles based on their relevancy to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevancy scores do not take into account what makes an article interesting, which varies from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment, there are not enough users that would make collaborative filtering effective. A general framework, called iScore, is presented for defining and measuring the 'interestingness' of articles, incorporating user-feedback. iScore addresses various aspects of what makes an article interesting, such as topic relevancy, uniqueness, freshness, source reputation, and writing style. It employs various methods to measure these features and uses a classifier operating on these features to recommend articles. The basic iScore configuration is shown to improve recommendation results by as much as 20%. In addition to the basic iScore features, additional features are presented to address the deficiencies of existing feature extractors, such as one that tracks multiple topics, called MTT, and a version of the Rocchio algorithm that learns its parameters online as it processes documents, called eRocchio. The inclusion of both MTT and eRocchio into iScore is shown to improve iScore recommendation results by as much as 3.1% and 5.6%, respectively. Additionally, in TREC11 Adaptive Filter Task, eRocchio is shown to be 10% better than the best filter in the last run of the task. In addition to these two major topic relevancy measures, other features are also introduced that employ language models, phrases, clustering, and changes in topics to improve recommendation results. These additional features are shown to improve recommendation results by iScore by

  10. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  11. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  12. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  13. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  14. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  15. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  16. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    Science.gov (United States)

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  17. The simplified spherical harmonics (SPL) methodology with space and moment decomposition in parallel environments

    International Nuclear Information System (INIS)

    Gianluca, Longoni; Alireza, Haghighat

    2003-01-01

    In recent years, the SP L (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP L equations starting from the even-parity form of the S N equations. The SP L equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP L equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp L (Parallel Environment Neutral-particle SP L ). Pensp L solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP L matrices. Pensp L includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  18. Developing an Adaptive Robotic Assistant for Close-Proximity Human-Robot Interaction in Space Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — As mankind continues making strides in space exploration and associated technologies, the frequency, duration, and complexity of human space exploration missions...

  19. Harsh Environment Gas Sensor Array for Venus Atmospheric Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and the Ohio State University propose to develop a harsh environment tolerant gas sensor array for atmospheric analysis in future Venus missions....

  20. Regulation and Measurement of the Heat Generated by Automatic Tooth Preparation in a Confined Space.

    Science.gov (United States)

    Yuan, Fusong; Zheng, Jianqiao; Sun, Yuchun; Wang, Yong; Lyu, Peijun

    2017-06-01

    The aim of this study was to assess and regulate heat generation in the dental pulp cavity and circumambient temperature around a tooth during laser ablation with a femtosecond laser in a confined space. The automatic tooth preparing technique is one of the traditional oral clinical technology innovations. In this technique, a robot controlled an ultrashort pulse laser to automatically complete the three-dimensional teeth preparing in a confined space. The temperature control is the main measure for protecting the tooth nerve. Ten tooth specimens were irradiated with a femtosecond laser controlled by a robot in a confined space to generate 10 teeth preparation. During the process, four thermocouple sensors were used to record the pulp cavity and circumambient environment temperatures with or without air cooling. A statistical analysis of the temperatures was performed between the conditions with and without air cooling (p heat generated in the pulp cavity was lower than the threshold for dental pulp damage. These results indicate that femtosecond laser ablation with air cooling might be an appropriate method for automatic tooth preparing.

  1. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  2. Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Koskela, P.; Zhou, Y.

    2013-01-01

    Roč. 25, č. 4 (2013), s. 787-819 ISSN 0933-7741 R&D Projects: GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : Besov space * Triebel-Lizorkin space * Hajłasz-Besov space Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2013 http://www.degruyter.com/view/j/form.2013.25.issue-4/form.2011.135/form.2011.135. xml ?format=INT

  3. Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Koskela, P.; Zhou, Y.

    2013-01-01

    Roč. 25, č. 4 (2013), s. 787-819 ISSN 0933-7741 R&D Projects: GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : Besov space * Triebel-Lizorkin space * Hajłasz-Besov space Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2013 http://www.degruyter.com/view/j/form.2013.25.issue-4/form.2011.135/form.2011.135.xml?format=INT

  4. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  5. Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field

    Science.gov (United States)

    Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.

    2016-12-01

    In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.

  6. Space dosimetry measurements in the stratosphere using different active and passive dosimetry systems

    International Nuclear Information System (INIS)

    Zabori, Balazs; Hirn, Attila; Deme, Sandor; Apathy, Istvan; Csoke, Antal; Pazmandi, Tamas; Szanto, Peter

    2016-01-01

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Mueller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra

  7. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    International Nuclear Information System (INIS)

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  8. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  9. Neighborhood Environments and Objectively Measured Physical Activity in 11 Countries

    DEFF Research Database (Denmark)

    Cerin, Ester; Cain, Kelli L; Conway, Terry L

    2014-01-01

    PURPOSE: Environmental changes are potentially effective population-level physical activity (PA) promotion strategies. However, robust multi-site evidence to guide international action for developing activity-supportive environments is lacking. We estimated pooled associations of perceived...

  10. Nigerian Physiotherapy Clinical Students' Perception of Their Learning Environment Measured by the Dundee Ready Education Environment Measure Inventory

    Science.gov (United States)

    Odole, Adesola C.; Oyewole, Olufemi O.; Ogunmola, Oluwasolape T.

    2014-01-01

    The identification of the learning environment and the understanding of how students learn will help teacher to facilitate learning and plan a curriculum to achieve the learning outcomes. The purpose of this study was to investigate undergraduate physiotherapy clinical students' perception of University of Ibadan's learning environment. Using the…

  11. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    Science.gov (United States)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  12. When L1 of a vector measure is an AL-space

    OpenAIRE

    Curbera Costello, Guillermo

    1994-01-01

    We consider the space of real functions which are integrable with respect to a countably additive vector measure with values in a Banach space. In a previous paper we showed that this space can be any order continuous Banach lattice with weak order unit. We study a priori conditions on the vector measure in order to guarantee that the resulting L is order isomorphic to an AL-space. We prove that for separable measures with no atoms there exists a Co-valued measure that generates the same spac...

  13. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Science.gov (United States)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  14. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  15. Screening and identification of tillering dwarf mutant of rice induced by space environment

    International Nuclear Information System (INIS)

    Xu Jianlong; Li Chunshou; Wang Junmin; Luo Rongting; Zhang Mingxian

    2003-01-01

    Major agronomic traits and dwarfism of the tiller dwarf mutant, R955, induced by space environment from rice variety Bing 95-503 were identified. The results indicated that the traits including days from sowing to heading, 1000-grain weight, grain volume, plant type and awn-growing character were obviously different from those of the 5 tiller dwarfs such as ID-3, which were known for their dwarfing genes. R955 was insensitive to response of GA3, and its dwarfing gene was controlled by recessive gene(s), nonallelic to the tiller dwarfing genes d 3 , d 10 , d 14 , d 17 and d 27 . R955 had good plant type with the plant height near semidwarfism, normal grain size, and as many as 68 productive panicles per plant

  16. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    International Nuclear Information System (INIS)

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  17. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  18. A DEVICE AND METHOD FOR MEASURING TAR IN A TAR-ENVIRONMENT

    DEFF Research Database (Denmark)

    2017-01-01

    The present disclosure describes a device and corresponding method for measuring tar in a tar environment, e.g., a tar producing environment such as a stove or a combustion engine, based on UV absorption spectroscopy. A first measurement along an optical path in the tar environment is performed...

  19. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  20. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  1. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  2. Inferring metabolic states in uncharacterized environments using gene-expression measurements.

    Directory of Open Access Journals (Sweden)

    Sergio Rossell

    Full Text Available The large size of metabolic networks entails an overwhelming multiplicity in the possible steady-state flux distributions that are compatible with stoichiometric constraints. This space of possibilities is largest in the frequent situation where the nutrients available to the cells are unknown. These two factors: network size and lack of knowledge of nutrient availability, challenge the identification of the actual metabolic state of living cells among the myriad possibilities. Here we address this challenge by developing a method that integrates gene-expression measurements with genome-scale models of metabolism as a means of inferring metabolic states. Our method explores the space of alternative flux distributions that maximize the agreement between gene expression and metabolic fluxes, and thereby identifies reactions that are likely to be active in the culture from which the gene-expression measurements were taken. These active reactions are used to build environment-specific metabolic models and to predict actual metabolic states. We applied our method to model the metabolic states of Saccharomyces cerevisiae growing in rich media supplemented with either glucose or ethanol as the main energy source. The resulting models comprise about 50% of the reactions in the original model, and predict environment-specific essential genes with high sensitivity. By minimizing the sum of fluxes while forcing our predicted active reactions to carry flux, we predicted the metabolic states of these yeast cultures that are in large agreement with what is known about yeast physiology. Most notably, our method predicts the Crabtree effect in yeast cells growing in excess glucose, a long-known phenomenon that could not have been predicted by traditional constraint-based modeling approaches. Our method is of immediate practical relevance for medical and industrial applications, such as the identification of novel drug targets, and the development of

  3. Present status of ambient dose equivalent rate and radioactive substance concentration measurements in working environment. (3) Measuring instruments for ionizing radiation in working environments

    International Nuclear Information System (INIS)

    Matsubara, Shohei

    2006-01-01

    In order to measure the airborne radioactive substance concentration in working environments, some kinds of sampler such as dust sampler and iodine sampler, measuring instruments (alpha and beta spectrometer, and liquid scintillation counter), monitor (dust-, iodine- and gas-monitor), survey meter for measuring gamma ray dose rate are stated. The measurement method of α, β and γ-ray nuclides and ambient dose-equivalent at 10 mm was explained. Some examples of the list of dust sampler, filter, tritium sampler, dust monitor, iodine monitor, gas monitor, and survey meter on the market are shown. There are so many kinds of measuring instruments for ionizing radiation in working environment that the best instrument for measurement should be selected. The environment conditions such as sample form, temperature and humidity have to be considered in order to evaluate the measurement values. (S.Y.)

  4. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  5. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  6. ISS External Payload Platform - a new opportunity for research in the space environment

    Science.gov (United States)

    Steimle, Christian; Pape, Uwe

    The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a

  7. Evaluation of InGaAS array detector suitability to space environment

    Science.gov (United States)

    Tauziede, L.; Beulé, K.; Boutillier, M.; Bernard, F.; Reverchon, J.-L.; Buffaz, A.

    2017-11-01

    InGaAs material has a natural cutoff wavelength of 1.65µm so it is naturally suitable for detection in Short Wavelength InfraRed (SWIR) spectral range. Regarding Earth Observation Spacecraft missions this spectral range can be used for the CO2 concentration measurements in the atmosphere. CNES (French Space agency) is studying a new mission, Microcarb with a spectral band centered on 1.6µm wavelength. InGaAs detector looks attractive for space application because its low dark current allows high temperature operation, reducing by the way the needed instrument resources. The Alcatel Thales III-VLab group has developed InGaAs arrays technology (320x256 & 640x512) that has been studied by CNES, using internal facilities. Performance tests and technological evaluation were performed on a 320x256 pixels array with a pitch of 30µm. The aim of this evaluation was to assess this new technology suitability for space applications. The carried out test plan includes proton radiations with Random Telegraph Signal (RTS) study, operating lifetest and evolution of performances as a function of the operating temperature.

  8. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  9. A multi-sensor oceanographic measurement system for coastal environments

    Science.gov (United States)

    Martini, Marinna A.; Strahle, William J.

    1993-01-01

    An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.

  10. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    Science.gov (United States)

    2015-06-01

    TRAINING MARINES FOR OPERATIONS WITH DEGRADED OR DENIED SPACE-ENABLED CAPABILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David M. Garcia 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...could possibly have been linked to the blast as well [19]. Space Debris (4) There are over 20,000 pieces of debris the size of a softball or greater

  11. Variability in Measured Space Temperatures in 60 Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.; Lay, K.

    2013-03-01

    This report discusses the observed variability in indoor space temperature in a set of 60 homes located in Florida, New York, Oregon, and Washington. Temperature data were collected at 15-minute intervals for an entire year, including living room, master bedroom, and outdoor air temperature (Arena, et. al). The data were examined to establish the average living room temperature for the set of homes for the heating and cooling seasons, the variability of living room temperature depending on climate, and the variability of indoor space temperature within the homes. The accuracy of software-based energy analysis depends on the accuracy of input values. Thermostat set point is one of the most influential inputs for building energy simulation. Several industry standards exist that recommend differing default thermostat settings for heating and cooling seasons. These standards were compared to the values calculated for this analysis. The data examined for this report show that there is a definite difference between the climates and that the data do not agree well with any particular standard.

  12. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project

    NARCIS (Netherlands)

    Sharp, John T.; Angwin, Jane; Boers, Maarten; Duryea, Jeff; von Ingersleben, Gabriele; Hall, James R.; Kauffman, Joost A.; Landewé, Robert; Langs, Georg; Lukas, Cédric; Maillefert, Jean-Francis; Bernelot Moens, Hein J.; Peloschek, Philipp; Strand, Vibeke; van der Heijde, Désirée

    2007-01-01

    Computer-based methods of measuring joint space width (JSW) could potentially have advantages over scoring joint space narrowing, with regard to increased standardization, sensitivity, and reproducibility. In an early exercise, 4 different methods showed good agreement on measured change in JSW over

  13. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  14. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  15. Ultralightweight PV Array Materials for Deep Space Mission Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and...

  16. Measuring the influence of the greening design of the building environment on the urban real estate market in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kuei-Feng [Department of Real Estate Management, National Pingtung Institute of Commerce (China); Chou, Po-Cheng [Department of Interior Design, Shu-Te University, Kaohsiung County (China)

    2010-10-15

    To address the worsening problems of global warming and the urban heat island effect, ecological cities and building environment greening are being promoted in population-dense urban areas domestically and abroad. For example, the Japanese Ministry of Land, Infrastructure, Transport, and Tourism announced the CASBEE-HI (Heat Island) assessment system in 2008 as a response to worsening urban warming and urban heat island effects. The Ministry implemented ''Building Space Greening Plans'' in Tokyo, Osaka, and other cities, enforcing by law the effective reduction of urban temperatures and improving urban living environments and alleviating the threat of urban ecological disasters. Therefore, this study integrates Taiwan domestic and foreign building space greening design, derived greening benefits, implementation promotion methods, and greening design policies as measurement constructs to examine the mutual influence between different constructs and to analyze the degree of influence on the urban real estate market. From the result, demonstrating that building space environment greening design does bring about positive benefits. In addition, the greening benefit was shown to have a positive impact on the urban real estate market. At the same time, greening promotion implementation method and urban policy standard both had a positive impact on the urban real estate market, demonstrating that government promotion of building environment greening design through urban design policy means is acceptable to the public. (author)

  17. Measuring transient high temperature thermal phenomena in hostile environment

    International Nuclear Information System (INIS)

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument

  18. Assessment of Measurement Distortions in GNSS Antenna Array Space-Time Processing

    Directory of Open Access Journals (Sweden)

    Thyagaraja Marathe

    2016-01-01

    Full Text Available Antenna array processing techniques are studied in GNSS as effective tools to mitigate interference in spatial and spatiotemporal domains. However, without specific considerations, the array processing results in biases and distortions in the cross-ambiguity function (CAF of the ranging codes. In space-time processing (STP the CAF misshaping can happen due to the combined effect of space-time processing and the unintentional signal attenuation by filtering. This paper focuses on characterizing these degradations for different controlled signal scenarios and for live data from an antenna array. The antenna array simulation method introduced in this paper enables one to perform accurate analyses in the field of STP. The effects of relative placement of the interference source with respect to the desired signal direction are shown using overall measurement errors and profile of the signal strength. Analyses of contributions from each source of distortion are conducted individually and collectively. Effects of distortions on GNSS pseudorange errors and position errors are compared for blind, semi-distortionless, and distortionless beamforming methods. The results from characterization can be useful for designing low distortion filters that are especially important for high accuracy GNSS applications in challenging environments.

  19. Profiling Space Heating Behavior in Chilean Social Housing: Towards Personalization of Energy Efficiency Measures

    Directory of Open Access Journals (Sweden)

    Victor Bunster

    2015-06-01

    Full Text Available Global increases in the demand for energy are imposing strong pressures over the environment while compromising the capacity of emerging economies to achieve sustainable development. In this context, implementation of effective strategies to reduce consumption in residential buildings has become a priority concern for policy makers as minor changes at the household scale can result in major energy savings. This study aims to contribute to ongoing research on energy consumer profiling by exploring the forecasting capabilities of discrete socio-economic factors that are accessible through social housing allocation systems. Accordingly, survey data gathered by the Chilean Ministry of Social Development was used identify key characteristics that may predict firewood usage for space heating purposes among potential beneficiaries of the Chilean social housing program. The analyzed data evidences strong correlations between general household characteristics and space heating behavior in certain climatic zones, suggesting that personalized delivery of energy efficiency measures can potentially increase the effectiveness of initiatives aimed towards the reduction of current patterns of consumption.

  20. Developing information-space Confidence Building Measures (CBMs) between India and Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Yamin, Tughral

    2014-06-01

    The Internet has changed the world in ways hitherto unknown. The international financial system, air, land and maritime transport systems are all digitally linked. Similarly most militaries are fully or partially networked. This has not only sped up the decision making processes at all levels, it has also rendered these systems vulnerable to cyber-attacks. Cyber-warfare is now recognized as the most potent form of non-kinetic war fighting. In order to prevent large scale network-attacks, cyber-powers are simultaneously spending a lot of time, money and effort to erect redundant cyber-defenses and enhancing their offensive cyber capabilities. Difficulties in creating a stable environment in information-space stem from differing national perceptions regarding the freedom of the Internet, application of international law and problems associated with attribution. This paper discusses a range of Confidence Building Measures that can be created between India and Pakistan in information-space to control malicious cyber behavior and avert an inadvertent war.