WorldWideScience

Sample records for space environmental tests

  1. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  2. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  3. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  4. Environmental spaces

    DEFF Research Database (Denmark)

    Larsen, Henrik Gutzon

    Using the development of intergovernmental environmental cooperation in the Baltic Sea area as a concrete example, the aim of this study is to explore how the 'environment' in situations of environmental interdependence is identified and institutionalised as political-geographical objects....... 'Environmental interdependence' is to this end conceptualised as a tension between 'political spaces' of discrete state territories and 'environmental spaces' of spatially nested ecosystems. This tension between geographies of political separateness and environmental wholeness is the implicit or explicit basis...... for a large and varied literature. But in both its critical and problemsolving manifestations, this literature tends to naturalise the spatiality of environmental concerns: environmental spaces are generally taken for granted. On the suggestion that there is a subtle politics to the specification...

  5. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  6. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  7. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  8. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  9. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    Science.gov (United States)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  10. Finding of No Significant Impact and Environmental Assessment for Flight Test to the Edge of Space

    Science.gov (United States)

    2008-12-01

    Runway 22 or on Rogers Dry Lakebed at Edwards AFB. 17 On the basis of the findings of the Environmental Assessment, no significant impact to human...FLIGHT TEST CENTER Environmental Assessment for Flight Test to the Edge of Space Page 5-3 Bowles, A.E., S. Eckert, L . Starke, E. Berg, L . Wolski, and...Numbers. Anne Choate, Laura 20 Pederson , Jeremy Scharfenberg, Henry Farland. Washington, D.C. September. 21 Jeppesen Sanderson, Incorporated 22

  11. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  12. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    Science.gov (United States)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  13. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  14. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  15. Space Environmental Effects Knowledgebase

    Science.gov (United States)

    Wood, B. E.

    2007-01-01

    This report describes the results of an NRA funded program entitled Space Environmental Effects Knowledgebase that received funding through a NASA NRA (NRA8-31) and was monitored by personnel in the NASA Space Environmental Effects (SEE) Program. The NASA Project number was 02029. The Satellite Contamination and Materials Outgassing Knowledgebase (SCMOK) was created as a part of the earlier NRA8-20. One of the previous tasks and part of the previously developed Knowledgebase was to accumulate data from facilities using QCMs to measure the outgassing data for satellite materials. The main object of this current program was to increase the number of material outgassing datasets from 250 up to approximately 500. As a part of this effort, a round-robin series of materials outgassing measurements program was also executed that allowed comparison of the results for the same materials tested in 10 different test facilities. Other programs tasks included obtaining datasets or information packages for 1) optical effects of contaminants on optical surfaces, thermal radiators, and sensor systems and 2) space environmental effects data and incorporating these data into the already existing NASA/SEE Knowledgebase.

  16. Driver ASIC Environmental Testing and Performance Optimization for SpaceBased Active Mirrors

    Science.gov (United States)

    Mejia Prada, Camilo

    Direct imaging of Earth-like planets requires techniques for light suppression, such as coronagraphs or nulling interferometers, in which deformable mirrors (DM) are a principal component. On ground-based systems, DMs are used to correct for turbulence in the Earth’s atmosphere in addition to static aberrations in the optics. For space-based observations, DMs are used to correct for static and quasi- static aberrations in the optical train. State-of-the-art, high-actuator count deformable mirrors suffer from external heavy and bulky electronics in which electrical connections are made through thousands of wires. We are instead developing Application Specific Integrated Circuits (ASICs) capable of direct integration with the DM in a single small package. This integrated ASIC-DM is ideal for space missions, where it offers significant reduction in mass, power and complexity, and performance compatible with high-contrast observations of exoplanets. We have successfully prototyped and tested a 32x32 format Switch-Mode (SM) ASIC which consumes only 2mW static power (total, not per-actuator). A number of constraints were imposed on key parameters of this ASIC design, including sub-picoamp levels of leakage across turned-off switches and from switch-to-substrate, control resolution of 0.04 mV, satisfactory rise/fall times, and a near-zero on-chip crosstalk over a useful range of operating temperatures. This driver ASIC technology is currently at TRL 4. This Supporting Technology proposal will further develop the ASIC technology to TRL 5 by carrying on environmental tests and further optimizing performance, with the end goal of making ASICs suitable for space-based deployment. The effort will be led by JPL, which has considerable expertise with DMs used in highcontrast imaging systems for exoplanet missions and in adaptive optic systems, and in design of DM driver electronics. Microscale, which developed the prototype of the ASICDM, will continue its development. We

  17. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  18. Space Environmental Effects Testing and Characterization of the Candidate Solar Sail Material Aluminized Mylar

    Science.gov (United States)

    Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.

  19. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  20. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    Science.gov (United States)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  1. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    Science.gov (United States)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  2. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  3. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  4. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  5. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  6. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Science.gov (United States)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  7. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  8. Space Suit Joint Torque Testing

    Science.gov (United States)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  9. Accelerated testing of space batteries

    Science.gov (United States)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  10. Accelerated testing of space mechanisms

    Science.gov (United States)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  11. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  12. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  13. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  14. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  15. 30 CFR 33.31 - Test space.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test space. 33.31 Section 33.31 Mineral... § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains suspended across a mine opening in such a manner that the volume of the test space shall be approximately 2...

  16. Environmental Impact Assessment and Space Activities

    Science.gov (United States)

    Viikari, L.

    these developments in way or another. In addition to national EIA regulations, there are also international agreements on EIA (i.a. the Espoo Convention) which establish their own EIA systems. In international law of outer space, environmental impact assessment is, however, not a well-established tool. The UN space treaties were drafted during a time when such consideratio ns were still not among the highest ranking items on national agendas. Therefore, these instruments fail to contain provisions regarding impact assessment, and also rest of the environmental content found in them is rather modest. The nearest equivalent to any impact assessment is contained in the Outer Space Treaty Article IX, namely the requirement of prior consultations in case of planned space activity or experiment that might cause "potentially harmful interference" with space activities of other St ates Parties. There also exist some applicable provisions on national level, such as the requirement of "formal assessment" on NASA programs of "[orbital] debris generation potential and debris mitigation options" in NASA Policy for Limiting Orbital Debris Generation (Art. 1.b). Also the national legislation of some space faring countries provides at least for the supply of some kind of information assessing the possible environmental consequences of proposed space activities. For instance, the Russian Statute on Lisencing Space Operations requires that for obtaining a license for space operation in the Russian Federation, the applicant has to supply, i.a. "documents confirming the safety of space operations (including ecological, fire and explosion safety) and the reliability of space equipment'"(Art.5.h). However, such provisions are obviously not enough for ensuring effective international regulation of the issue. The goal of this paper is to consider the usefulness of international environmental impact assessment for space activities. The space environment, however, is a unique arena in many ways

  17. Kennedy Space Center environmental health program

    International Nuclear Information System (INIS)

    Marmaro, G.M.; Cardinale, M.A.; Summerfield, B.R.; Tipton, D.A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials

  18. Space Station Freedom Environmental Health Care Program

    Science.gov (United States)

    Richard, Elizabeth E.; Russo, Dane M.

    1992-01-01

    The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.

  19. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  20. Laboratory Support Services for Environmental Testing

    National Research Council Canada - National Science Library

    1997-01-01

    ...) were effectively managing their contracts for environmental test services and whether DoD organizations were effectively performing quality assurance procedures on environmental test results received...

  1. Results and Analysis from Space Suit Joint Torque Testing

    Science.gov (United States)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  2. Environmental Studies at the Guiana Space Centre

    Science.gov (United States)

    Richard, Sandrine

    2013-09-01

    The Environmental Commitment of the French Space Agency at the Guiana Space Centre (CNES / CSG) specifies that the environmental protection is a major stake. Consequently, CNES participates in numerous space programs that contribute significantly to a better knowledge, management and protection of our environment at a global scale.The studies and researches that are done at CNES / CSG meet several objectives:* Assessment of safety and environmental effects and risk related to the effects overflowing due to a pollution caused by ground and flight activities* Improvement of the studies related to the knowledge of the environment (flora and fauna monitoring).* Risk assessment and management which may affect the safety of people , property, and protection of public health and environment * Verification of the compliance of the results of impact studies of launch vehicle in flight phase provided by the launch operator (Technical Regulation) with the French Safety Operational Acts.In this note, study and research programs are presented. They allow a better knowledge of the surrounding environment and of impacts caused by the industrial activities done in Guiana Space Center.

  3. The de Finetti theorem for test spaces

    International Nuclear Information System (INIS)

    Barrett, Jonathan; Leifer, Matthew

    2009-01-01

    We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.

  4. Environmental Testing Methodology in Biometrics

    OpenAIRE

    Fernández Saavedra, Belén; Sánchez Reíllo, Raúl; Alonso Moreno, Raúl; Miguel Hurtado, Óscar

    2010-01-01

    8 pages document + 5-slide presentation.-- Contributed to: 1st International Biometric Performance Conference (IBPC 2010, NIST, Gaithersburg, MD, US, Mar 1-5, 2010). Recently, biometrics is used in many security systems and these systems can be located in different environments. As many experts claim and previous works have demonstrated, environmental conditions influence biometric performance. Nevertheless, there is not a specific methodology for testing this influence at the moment...

  5. Environmental effects and large space systems

    Science.gov (United States)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  6. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  7. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  8. ENVIRONMENTAL CONTAMINATION FROM WEAPON TESTS

    Energy Technology Data Exchange (ETDEWEB)

    none

    1958-10-01

    The program of the Atomic Energy Commission on environmental contamination from weapons tests is designed for the overall evaluation of the hazard to humans from test operations. It is limited to studies of the deposition of activity at long range rather than the problems associated with immediate, close-in fallout. The program has largely been a study of Sr{sup 90}, since considerations based on experience and measurement indicate that it is the isotope of greatest potential hazard. Data are presented pertinent to the monitoring of long-range fallout, particularly Sr{sup 90} and Cs{sup 137}. Values are tabulated for the fallout deposition, air concentrations, water concentrations, and the amounts in foods and human bone. In addition, results are given for some experimental investigations. The report of these results is not interpretative although certain papers that do attempt to interpret the present situation with respect to Sr{sup 90} in particular are reprinted. Bibliographies are presented covering the period since the 1957 hearings before the Joint Committee on Atomic Energy concerning the nature of radioactive fallout and its effects on man. A document list of submissions to the United Nations Scientific Committee on the Effects of Atomic Radiation is given to illustrate the work done in other countries. Several papers on the subject, which have not been generally available, are reprinted.

  9. Space Environmental Effects on Coated Tether Materials

    Science.gov (United States)

    Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed

    2005-01-01

    The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.

  10. Environmental monitors in the Midcourse Space Experiments (MSX)

    Science.gov (United States)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  11. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  12. Nevada Test Site Environmental Report 2005

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts

  13. Nevada Test Site Environmental Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

  14. A discrete-space urban model with environmental amenities

    Science.gov (United States)

    Liaila Tajibaeva; Robert G. Haight; Stephen Polasky

    2008-01-01

    This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...

  15. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  16. Space Environmentally Stable Polyimides and Copolyimides

    Science.gov (United States)

    Watson, Kent A.; Connell, John W.

    2000-01-01

    Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.

  17. Environmental safety of the global information space

    Directory of Open Access Journals (Sweden)

    В’ячеслав Степанович Волошин

    2015-03-01

    Databases of full-text publications – journals, articles, monographs- are surely a means of salvation for science. There already exist a large number of such portals. Besides, advantages and disadvantages of electronic subscriptions to periodicals should certainly be considered. The former include the following most evident ones: aggregation of large data arrays, saving money on a subscription, an opportunity to work with relevant publications, thematic collections of materials, availability of records, simultaneous access of an unlimited number of users and others. Nevertheless, there are many disadvantages that make it difficult to work with full-text publications. They are the following: selective representativeness of publication numbers, complexity of keyword search, occasional presence of obsolete text formats, printed versions, possible psychological barrier, physiological incompatibility with computer equipment, fatigue caused by prolonged work on the computer. The Internet was followed by the appearance of global control networks, their aims ranging from control of a human life support to a unified control of humanity. So, the formed global information space promises the man to get access to almost any information source. Meanwhile, environmental safety of the man, his/her objective biological psyche and abilities in harmonious development are at serious risk

  18. Z-1 Prototype Space Suit Testing Summary

    Science.gov (United States)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  19. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  20. Nevada Test Site Environmental Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

  1. Nevada Test Site Environmental Report 2007

    International Nuclear Information System (INIS)

    Cathy Wills

    2008-01-01

    The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report

  2. SPACE Code Assessment for FLECHT Test

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hyoung Kyoun; Min, Ji Hong; Park, Chan Eok; Park, Seok Jeong; Kim, Shin Whan [KEPCO E and C, Daejeon (Korea, Republic of)

    2015-10-15

    According to 10 CFR 50 Appendix K, Emergency Core Cooling System (ECCS) performance evaluation model during LBLOCA should be based on the data of FLECHT test. Heat transfer coefficient (HTC) and Carryout Rate Fraction (CRF) during reflood period of LBLOCA should be conservative. To develop Mass and Energy Release (MER) methodology using Safety and Performance Analysis CodE (SPACE), FLECHT test results were compared to the results calculated by SPACE. FLECHT test facility is modeled to compare the reflood HTC and CRF using SPACE. Sensitivity analysis is performed with various options for HTC correlation. Based on this result, it is concluded that the reflood HTC and CRF calculated with COBRA-TF correlation during LBLOCA meet the requirement of 10 CFR 50 Appendix K. In this study, the analysis results using SPACE predicts heat transfer phenomena of FLECHT test reasonably and conservatively. Reflood HTC for the test number of 0690, 3541 and 4225 are conservative in the reference case. In case of 6948 HTC using COBRATF is conservative to calculate film boiling region. All of analysis results for CRF have sufficient conservatism. Based on these results, it is possible to apply with COBRA-TF correlation to develop MER methodology to analyze LBLOCA using SPACE.

  3. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  4. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    Science.gov (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  5. Environmental Testing for Precision Parts and Instruments

    International Nuclear Information System (INIS)

    Choi, Man Yong; Park, Jeong Hak; Yun, Kyu Tek

    2001-01-01

    Precision parts and instruments are tested to evaluate performance in development-process and product-step to prement a potential defect due to a failure design. In this paper, Environmental test technology, which is the basis of reliability analysis, is introduced with examples of test criterion, test method for products, encoder and traffic signal controller, and measuring instruments. Recently, as the importance of the environmental test technology is recognised. It is proposed that training of test technician and technology of jig design and failure analysis are very essential

  6. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  7. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  8. Space Telecommunications Radio System (STRS) Compliance Testing

    Science.gov (United States)

    Handler, Louis M.

    2011-01-01

    The Space Telecommunications Radio System (STRS) defines an open architecture for software defined radios. This document describes the testing methodology to aid in determining the degree of compliance to the STRS architecture. Non-compliances are reported to the software and hardware developers as well as the NASA project manager so that any non-compliances may be fixed or waivers issued. Since the software developers may be divided into those that provide the operating environment including the operating system and STRS infrastructure (OE) and those that supply the waveform applications, the tests are divided accordingly. The static tests are also divided by the availability of an automated tool that determines whether the source code and configuration files contain the appropriate items. Thus, there are six separate step-by-step test procedures described as well as the corresponding requirements that they test. The six types of STRS compliance tests are: STRS application automated testing, STRS infrastructure automated testing, STRS infrastructure testing by compiling WFCCN with the infrastructure, STRS configuration file testing, STRS application manual code testing, and STRS infrastructure manual code testing. Examples of the input and output of the scripts are shown in the appendices as well as more specific information about what to configure and test in WFCCN for non-compliance. In addition, each STRS requirement is listed and the type of testing briefly described. Attached is also a set of guidelines on what to look for in addition to the requirements to aid in the document review process.

  9. Electromagnetic Environmental Effects System Testing

    Science.gov (United States)

    2013-11-20

    localized ( spot ) illumination is adequate to evaluate potential responses by illuminating specific apertures, cables and subsystems. At these...the EMC testing. The Battlefield Functional Area Control System (BFACS), Force XXI Blue Force Tracker (BFT), routers, hubs, switches, etc, are... Laser Printer F1 F1 F1 G G G G G G G G G G G G G G G G G G G G G G G G G G Embedded Training Module F1 F1 F1 G G G G G G G G G G G G G G G G G G G G G

  10. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  11. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  12. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  13. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  14. Contamination Effects Due to Space Environmental Interactions

    Science.gov (United States)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  15. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  16. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    OpenAIRE

    Traynor, Laura; Lange, Ian A.; Moro, Mirko

    2012-01-01

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though ...

  17. Low Cost Environmental Sensors for Spaceflight: NMP Space Environmental Monitor (SEM) Requirements

    Science.gov (United States)

    Garrett, Henry B.; Buehler, Martin G.; Brinza, D.; Patel, J. U.

    2005-01-01

    An outstanding problem in spaceflight is the lack of adequate sensors for monitoring the space environment and its effects on engineering systems. By adequate, we mean low cost in terms of mission impact (e.g., low price, low mass/size, low power, low data rate, and low design impact). The New Millennium Program (NMP) is investigating the development of such a low-cost Space Environmental Monitor (SEM) package for inclusion on its technology validation flights. This effort follows from the need by NMP to characterize the space environment during testing so that potential users can extrapolate the test results to end-use conditions. The immediate objective of this effort is to develop a small diagnostic sensor package that could be obtained from commercial sources. Environments being considered are: contamination, atomic oxygen, ionizing radiation, cosmic radiation, EMI, and temperature. This talk describes the requirements and rational for selecting these environments and reviews a preliminary design that includes a micro-controller data logger with data storage and interfaces to the sensors and spacecraft. If successful, such a sensor package could be the basis of a unique, long term program for monitoring the effects of the space environment on spacecraft systems.

  18. A Testing Framework for Critical Space SW

    Science.gov (United States)

    Fernandez, Ignacio; Di Cerbo, Antonio; Dehnhardt, Erik; Massimo, Tipaldi; Brünjes, Bernhard

    2015-09-01

    This paper describes a testing framework for critical space SW named Technical Specification Validation Framework (TSVF). It provides a powerful and flexible means and can be used throughout the SW test activities (test case specification & implementation, test execution and test artifacts analysis). In particular, tests can be run in an automated and/or step-by-step mode. The TSVF framework is currently used for the validation of the Satellite Control Software (SCSW), which runs on the Meteosat Third Generation (MTG) satellite on-board computer. The main purpose of the SCSW is to control the spacecraft along with its various subsystems (AOCS, Payload, Electrical Power, Telemetry Tracking & Command, etc.) in a way that guarantees a high degree of flexibility and autonomy. The TSVF framework serves the challenging needs of the SCSW project, where a plan-driven approach has been combined with an agile process in order to produce preliminary SW versions (with a reduced scope of implemented functionality) in order to fulfill the stakeholders needs ([1]). The paper has been organised as follows. Section 2 gives an overview of the TSVF architecture and interfaces versus the test bench along with the technology used for its implementation. Section 3 describes the key elements of the XML based language for the test case implementation. Section 4 highlights all the benefits compared to conventional test environments requiring a manual test script development, whereas section 5 concludes the paper.

  19. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  20. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  1. LEARNING AND ENVIRONMENTAL DESIGN: Softer Learning Spaces

    Directory of Open Access Journals (Sweden)

    E. Ümran TOPÇU

    2013-07-01

    Full Text Available Learning is a central part of everyone’s life that is often associated with school and  classrooms. Today’ classroom looks and functions like the classroom of an earlier century. Desks lined up in neat rows, facing the teacher and a board or screen is the general condition in many educational institutions. Most of us have sat through classes in plain, hard rooms. Although they did not look very pleasant, we all coped with them. If they could be designed slightly more tolerable, would they help in the betterment of education and learning in any measurable way? This paper aims at describing an attempt to design an alternative classroom. Based on several years of experience, it is observed that there is a demand among students for softer, warmer and more intimate instructional spaces. Students of “People and Environment” Course were asked to select a suitable space to redesign as a “Soft Classroom” within Bahçeşehir University Besiktas Campus  premises. This case study presented a potential research project to etter understand,  how student engagement can be increased by changing learning spaces.

  2. Green hypocrisy? Environmental attitudes and residential space heating expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, Laura; Lange, Ian; Moro, Mirko [Stirling Univ. (United Kingdom). Division of Economics

    2012-06-15

    In the UK, the largest proportion of household energy use is for space heating. Popular media make claims of a green hypocrisy: groups which have the strongest attitude towards the environment have the highest emissions. This study examines whether environmental attitudes and behaviours are associated with space heating energy use using data from the British Household Panel Survey. Results find that environmentally friendly attitudes generally do not lead to lower heating expenditures though environmentally friendly behaviours are associated with lower heating expenditure. Also, the effect of these attitudes and behaviours do not change as income increase.

  3. Fiber Laser Component Testing for Space Qualification Protocol Development

    Science.gov (United States)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    qualification of each of these all the way to the system level. As a result of the current effort, a validated protocol was developed for the space qualification of DPFLs, where validation via selected tests was mostly limited to the component level. It was the mission of this effort to validate selected aspects of the protocol with the limited set of tests proposed. The results of the environmental testing as well as lessons learned for space qualification of DPFL components are presented in this paper.

  4. Space Station CMIF extended duration metabolic control test

    Science.gov (United States)

    Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.

    1989-01-01

    The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.

  5. The European Person Equivalent: Measuring the personal environmental space

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Wenzel, Henrik

    2001-01-01

    The European person equivalent (PE) is a quantification of the environmental impact caused annually by the activities of an average European. It comprises contributions to all the major environmental impacts from global to local as well as our consumption of resources. Similarly, the targeted...... European person equivalent is a quantification of the average person’s environmental impact in a near future according to the current politically set environmental targets. In addition to expressing the current societal priorities in pollution reduction, the targeted PE expresses the environmental space...... available to all of us according to the current environmental policy. Both concepts were developed in the mid-nineties for use in life cycle impact assessment to help comparisons across different environmental impact categories. Since then they have shown their value as a pedagogic tool in the presentation...

  6. Alpha Fuels Environmental Test Facility impact gun

    International Nuclear Information System (INIS)

    Anderson, C.G.

    1978-01-01

    The Alpha Fuels Environmental Test Facility (AFETF) impact gun is a unique tool for impact testing 238 PuO 2 -fueled heat sources of up to 178-mm dia at velocities to 300 m/s. An environmentally-sealed vacuum chamber at the muzzle of the gun allows preheating of the projectile to 1,000 0 C. Immediately prior to impact, the heat source projectile is completely sealed in a vacuum-tight catching container to prevent escape of its radioactive contents should rupture occur. The impact velocity delivered by this gas-powered gun can be regulated to within +-2%

  7. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  8. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  9. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  10. SRS environmental technology development field test platform

    International Nuclear Information System (INIS)

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-01-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications

  11. New Environmental Testing Capabilities at INTA

    Science.gov (United States)

    Olivo, Esperanza; Hernandez, Daniel; Garranzo, Daniel; Barandiaran, Javier; Reina, Manuel

    2012-07-01

    In this paper we aim to present and describe the facilities for aerospace environmental testing at INTA; the Spanish National Institute for Aerospace Technique with emphasis on the Thermal Vacuum testing facility with dimensions 4 m x 4 m x 4 m and a temperature range from +150oC to -175 oC and 10-6 vacuum conditions with the new Thermo Elastic Distortion (TED) measurement capability designed at INTA. It will be presented the validation data for the empty chamber, with specimens such a 3m diameter reflector and antenna towers for both, thermal cycling and TED measurements. For TED, it will be shown the feasibility study and the solution finally selected. Apart from those, it will be shown other complementary facilities for environmental testing such as 320 (2x160) kN dual shaker with a new 3 m x 3 m sliding table and other complementary facilities.

  12. Nevada Test Site Environmental Report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2004-10-01

    The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

  13. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  14. Nevada Test Site Environmental Report 2007 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  15. Nevada Test Site Environmental Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  16. Nevada Test Site Environmental Report 2008 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

  17. Irreducible Tests for Space Mission Sequencing Software

    Science.gov (United States)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  18. CM-2 Environmental/Modal Testing of SPACEHAB Racks

    Science.gov (United States)

    McNelis, Mark E.; Goodnight, Thomas W.

    2001-01-01

    Combined environmental/modal vibration testing has been implemented at the NASA Glenn Research Center's Structural Dynamics Laboratory. The benefits of combined vibration testing are that it facilitates test article modal characterization and vibration qualification testing. The Combustion Module-2 (CM-2) is a space experiment that will launch on shuttle mission STS-107 in the SPACEHAB Research Double Module. The CM-2 flight hardware is integrated into a SPACEHAB single and double rack. CM-2 rack-level combined vibration testing was recently completed on a shaker table to characterize the structure's modal response and verify the random vibration response. Control accelerometers and limit force gauges, located between the fixture and rack interface, were used to verify the input excitation. Results of the testing were used to verify the loads and environments for flight on the shuttles.

  19. Nevada Test Site Environmental Report Summary 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). NNSA/NSO prepares the Nevada Test Site Environmental Report (NTSER) to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the NTS to protect the public and the environment from radiation hazards and from nonradiological impacts. The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. This summary provides an abbreviated and more readable version of the NTSER. It does not contain detailed descriptions or presentations of monitoring designs, data collection methods, data tables, the NTS environment, or all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

  20. Launch Environmental Test for KITSAT-3 FM

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Lee

    1999-06-01

    Full Text Available The satellite experiences the severe launch environment such as vibration, acceleration, shock, and acoustics induced by rocket. Therefore, the satellite should be designed and manufactured to endure such severe launch environments. In this paper, we describe the structure of the KITSAT-3 FM(Flight Model and the processes and results of the launch environmental test to ensure the reliability during launch period.

  1. Space for action: How practitioners influence environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kågström, Mari, E-mail: mari.kagstrom@slu.se [Department of Urban and Rural Development, Swedish University of Agricultural Sciences (Sweden); Richardson, Tim, E-mail: tim.richardson@nmbu.no [Department of Landscape Architecture and Spatial Planning, Norwegian University of Life Sciences, Frederik A Dahls vei 15, KA-bygningen, Ås (Norway)

    2015-09-15

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges.

  2. Space for action: How practitioners influence environmental assessment

    International Nuclear Information System (INIS)

    Kågström, Mari; Richardson, Tim

    2015-01-01

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges

  3. Optimised Environmental Test Approaches in the GOCE Project

    Science.gov (United States)

    Ancona, V.; Giordano, P.; Casagrande, C.

    2004-08-01

    The Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) is dedicated to measuring the Earth's gravity field and modelling the geoid with extremely high accuracy and spatial resolution. It is the first Earth Explorer Core mission to be developed as part of ESA's Living Planet Programme and is scheduled for launch in 2006. The program is managed by a consortium of European companies: Alenia Spazio, the prime contractor, Astrium GmbH, the platform responsible, Alcatel Space Industries and Laben, suppliers of the main payloads, respectively the Electrostatic Gravity Gradiometer (EGG) and the Satellite to Satellite Tracking Instrument (SSTI), actually a precise GPS receiver. The GOCE Assembly Integration and Verification (AIV) approach is established and implemented in order to demonstrate to the customer that the satellite design meets the applicable requirements and to qualify and accept from lower level up to system level. The driving keywords of "low cost" and "short schedule" program, call for minimizing the development effort by utilizing off-the-shelf equipment combined with a model philosophy lowering the number of models to be used. The paper will deal on the peculiarities of the optimized environmental test approach in the GOCE project. In particular it introduces the logic of the AIV approach and describe the foreseen tests at system level within the SM environmental test campaign, outlining the Quasi Static test performed in the frame of the SM sine vibration tests, and the PFM environmental test campaign pinpointing the deletion of the Sine Vibration test on PFM model. Furthermore the paper highlights how the Model and Test Effectiveness Database (MATD) can be utilized for the prediction of the new space projects like GOCE Satellite.

  4. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  5. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  6. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  7. Development of Test Protocols for International Space Station Particulate Filters

    Science.gov (United States)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  8. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    Science.gov (United States)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  9. Physical modelling and testing in environmental geotechnics

    International Nuclear Information System (INIS)

    Garnier, J.; Thorel, L.; Haza, E.

    2000-01-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper is analysed in INIS data base for its specific interest in nuclear industry. The other ones, concerning the energy, are analyzed in ETDE data base

  10. Physical modelling and testing in environmental geotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, J.; Thorel, L.; Haza, E. [Laboratoire Central des Ponts et Chaussees a Nantes, 44 - Nantes (France)

    2000-07-01

    The preservation of natural environment has become a major concern, which affects nowadays a wide range of professionals from local communities administrators to natural resources managers (water, wildlife, flora, etc) and, in the end, to the consumers that we all are. Although totally ignored some fifty years ago, environmental geotechnics has become an emergent area of study and research which borders on the traditional domains, with which the geo-technicians are confronted (soil and rock mechanics, engineering geology, natural and anthropogenic risk management). Dedicated to experimental approaches (in-situ investigations and tests, laboratory tests, small-scale model testing), the Symposium fits in with the geotechnical domains of environment and transport of soil pollutants. These proceedings report some progress of developments in measurement techniques and studies of transport of pollutants in saturated and unsaturated soils in order to improve our understanding of such phenomena within multiphase environments. Experimental investigations on decontamination and isolation methods for polluted soils are discussed. The intention is to assess the impact of in-situ and laboratory tests, as well as small-scale model testing, on engineering practice. One paper has been analyzed in INIS data base for its specific interest in nuclear industry.

  11. Study of the space environmental effects on spacecraft engineering materials

    Science.gov (United States)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  13. Space Environmental Effects on Candidate Solar Sail Materials

    Science.gov (United States)

    Edwards, David L.; Nehls, Mary; Semmel, Charles; Hovater, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted ot a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA's Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar, Teonex, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were characterized

  14. Environmental "Omics" of International Space Station: Insights, Significance, and Consequences

    Science.gov (United States)

    Venkateswaran, Kasthuri

    2016-07-01

    The NASA Space Biology program funded two multi-year studies to catalogue International Space Station (ISS) environmental microbiome. The first Microbial Observatory (MO) experiment will generate a microbial census of the ISS surfaces and atmosphere using advanced molecular microbial community analysis "omics" techniques, supported by traditional culture-based methods and state-of-the art molecular techniques. The second MO experiment will measure presence of viral and select bacterial and fungal pathogens on ISS surfaces and correlate their presence on crew. The "omics" methodologies of the MO experiments will serve as the foundation for an extensive microbial census, offering significant insight into spaceflight-induced changes in the populations of beneficial and potentially harmful microbes. The safety of crewmembers and the maintenance of hardware are the primary goals for monitoring microorganisms in this closed habitat. The statistical analysis of the ISS microbiomes showed that three bacterial phyla dominated both in ISS and Earth cleanrooms, but varied in their abundances. While members of Actinobacteria were predominant on ISS, Proteobacteria dominated the Earth cleanrooms. Alpha diversity estimators indicated a significant drop in viable microbial diversity. To better characterize the shared community composition among samples, beta-diversity metrics analysis were conducted. At the bacterial species level characterization, the microbial community composition is strongly associated with sampling site. Results of the study indicate significant differences between ISS and Earth cleanroom microbiomes in terms of community structure and composition. Bacterial strains isolated from ISS surfaces were also tested for their resistance to nine antibiotics using conventional disc method and Vitek 2 system. Most of the Staphylococcus aureus strains were resistant to penicillin. Five strains were specifically resistant to erythromycin and the ermA gene was also

  15. Applying AI tools to operational space environmental analysis

    Science.gov (United States)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  16. Low Earth Orbit Environmental Effects on Space Tether Materials

    Science.gov (United States)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  17. Thermal Environmental Testing of NSTAR Engineering Model Ion Thrusters

    Science.gov (United States)

    Rawlin, Vincent K.; Patterson, Michael J.; Becker, Raymond A.

    1999-01-01

    NASA's New Millenium program will fly a xenon ion propulsion system on the Deep Space 1 Mission. Tests were conducted under NASA's Solar Electric Propulsion Technology Applications Readiness (NSTAR) Program with 3 different engineering model ion thrusters to determine thruster thermal characteristics over the NSTAR operating range in a variety of thermal environments. A liquid nitrogen-cooled shroud was used to cold-soak the thruster to -120 C. Initial tests were performed prior to a mature spacecraft design. Those results and the final, severe, requirements mandated by the spacecraft led to several changes to the basic thermal design. These changes were incorporated into a final design and tested over a wide range of environmental conditions.

  18. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  19. Environmental qualification testing of TFE valve components

    International Nuclear Information System (INIS)

    Eyvindson, A.; Krasinski, W.; McCutcheon, R.

    1997-01-01

    Valves containing tetrafluoroethylene (TFE) components are being used in many CANDU Nuclear Generating Stations. However, some concerns remain about the performance of TFE after exposure to high levels of radiation. Stations must therefore ensure that such valves perform reliably after being exposed to postulated accident radiation dose levels. The current Ontario Hydro Environmental Qualification [EQ] program specifies much higher postulated radiation exposure than the original design, to account for conditions following a LOCA. Initial assessments indicated that Teflon components would require replacement. Proof of acceptable performance can remove the need for large scale replacement, avoiding a significant cost penalty and preserving benefits due to the superior performance of TFE-based seals. A test program was undertaken at Chalk River Laboratories (CRL) to investigate the performance of three valves after irradiation to 10 Mrad. Such valves are currently used at the Bruce B Nuclear Generating Station. Each contains TFE packing rings; one also has TFE seats. Two of the valves are used in the ECIS recovery system, while the third is used for instrumentation loop isolation or as drain valves. All are exposed to little or no radiation during normal use. Based on the results of the tests, all the valves tested will still meet functional and performance requirements after the TFE components have been exposed to 10 Mrad of irradiation. (author)

  20. Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects

    Science.gov (United States)

    Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry

    2003-01-01

    Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.

  1. 46 CFR 113.05-7 - Environmental tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Environmental tests. 113.05-7 Section 113.05-7 Shipping... SYSTEMS AND EQUIPMENT General Provisions § 113.05-7 Environmental tests. Communication, alarm system, control, and monitoring equipment must meet the environmental tests of— (a) Section 4-9-7, Table 9, of ABS...

  2. Alamos: An International Collaboration to Provide a Space Based Environmental Monitoring Solution for the Deep Space Network

    Science.gov (United States)

    Kennedy, S. O.; Dunn, A.; Lecomte, J.; Buchheim, K.; Johansson, E.; Berger, T.

    2018-02-01

    This abstract proposes the advantages of an externally mounted instrument in support of the human physiology, space biology, and human health and performance key science area. Alamos provides Space-Based Environmental Monitoring capabilities.

  3. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  4. Initial tests of thermoacoustic space power engine

    International Nuclear Information System (INIS)

    Backhaus, S.N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  5. Thermal stresses in the space shuttle orbiter: Analysis versus test

    International Nuclear Information System (INIS)

    Grooms, H.R.; Gibson, W.F. Jr.; Benson, P.L.

    1984-01-01

    Significant temperature differences occur between the internal structure and the outer skin of the Space Shuttle Orbiter as it returns from space. These temperature differences cause important thermal stresses. A finite element model containing thousands of degrees of freedom is used to predict these stresses. A ground test was performed to verify the prediction method. The analysis and test results compare favorably. (orig.)

  6. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  7. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1

  8. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1

  9. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  10. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  11. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    International Nuclear Information System (INIS)

    Berglin, E.J.

    1997-01-01

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36'' diameter x 6' high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20' diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling

  12. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  13. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  14. ECONOMIC GROWTH, TRADE AND ENVIRONMENTAL ISSUES: TESTING ENVIRONMENTAL KUZNETS CURVE

    Directory of Open Access Journals (Sweden)

    Dedi Budiman Hakim

    2013-04-01

    Full Text Available ASEAN experiences a dynamic economic growth due to its liberalised markets. However concerns arise related to environmental issues resulting from the economic activities. It reflects tradeoffs between economic growth driven by trade and foreign direct investment (FDI, and environment. To investigate such a relation the Environmental Kuznets Curve was applied by regressing amount of carbon emission with gross domestic product (GDP, quadratic GDP, trade openness and FDI. The result reveals that amount of carbon emission is linearly and positively correlated with GDP per capita. It is predicted that as ASEAN economies grow, carbon emission increases. Trade openness is also found to contribute to carbon emission. Keywords: Kuznets curve, carbon emission, gross domestic product, trade, foreign direct investment JEL classification number: F15, F18

  15. Solar Array Sails: Possible Space Plasma Environmental Effects

    Science.gov (United States)

    Mackey, Willie R.

    2005-01-01

    An examination of the interactions between proposed "solar sail" propulsion systems with photovoltaic energy generation capabilities and the space plasma environments. Major areas of interactions ere: Acting from high voltage arrays, ram and wake effects, V and B current loops and EMI. Preliminary analysis indicates that arcing will be a major risk factor for voltages greater than 300V. Electron temperature enhancement in the wake will be produce noise that can be transmitted via the wake echo process. In addition, V and B induced potential will generate sheath voltages with potential tether like breakage effects in the thin film sails. Advocacy of further attention to these processes is emphasized so that plasma environmental mitigation will be instituted in photovoltaic sail design.

  16. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  17. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  18. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  19. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    Science.gov (United States)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  20. 1991 Environmental Monitoring Report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Howard, D.; Culp, T.

    1992-11-01

    This report summarizes the environmental surveillance activities conducted by the US Environmental Protection Agency (EPA) and Reynolds Electrical and Engineering Company (REECO) for the Tonopah Test Range (TTR) operated by Sandia National Laboratories (SNL). Other environmental compliance programs such as the National Environmental Policy Act of 1969 (NEPA), environmental permits, environmental restoration, and waste management programs are also included. The 1991 SNL, TTR, operations had no discernible impact on the general public or the environment. This report 3-s prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400.1

  1. Aerospace Structures Test Facility Environmental Test Chambers (ETC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The ETCs test the structural integrity of aerospace structures in representative operating temperatures and aerodynamic load distributions. The test article...

  2. Nickel-hydrogen battery testing for Hubble Space Telescope

    Science.gov (United States)

    Baggett, Randy M.; Whitt, Thomas H.

    1989-01-01

    The authors identify objectives and provide data from several nickel-hydrogen battery tests designed to evaluate the possibility of launching Ni-H2 batteries on the Hubble Space Telescope (HST). Test results from a 14-cell battery, a 12-cell battery, and a 4-cell pack are presented. Results of a thermal vacuum test to verify the battery-module/bay heat rejection capacity are reported. A 6-battery system simulation breadboard is described, and test results are presented.

  3. Evaluation tests of industrial vacuum bearings for space use

    Science.gov (United States)

    Obara, S.; Sasaki, A.; Haraguchi, M.; Imagawa, K.; Nishimura, M.; Kawashima, N.

    2001-09-01

    Tribological performance of industrial vacuum bearings was experimentally evaluated for space use. The bearings selected for investigation were an 8 mm bore-sized deep-groove ball bearing lubricated with a sputtered MoS2 film and that lubricated with an ion-plated Ag film, commercially delivered from three Japanese domestic bearing-manufacturers. Based on survey results of tribological requirements for the existing satellite mechanisms, four types of bearing tests were defined and conducted: a vacuum test at room temperature, an atmosphere-resistant test, a thermal vacuum test and a vibration test. In addition to these tests, variation in tribological performance of the industrial bearings was also investigated. The results of more than eighty tests demonstrated that the industrial vacuum bearings had sufficient lubrication lives with low frictional torque and their data were reasonably repeatable, indicating very good potentiality for space use.

  4. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    Science.gov (United States)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  5. Testing of a femtosecond pulse laser in outer space

    Science.gov (United States)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  6. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  7. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  8. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  9. Qualification Tests of Micro-camera Modules for Space Applications

    Science.gov (United States)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  10. An improved standard total dose test for CMOS space electronics

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Riewe, L.C.; Pease, R.L.

    1989-01-01

    The postirradiation response of hardened and commercial CMOS devices is investigated as a function of total dose, dose rate, and annealing time and temperature. Cobalt-60 irradiation at ≅ 200 rad(SiO 2 )/s followed by a 1-week 100 degrees C biased anneal and testing is shown to be an effective screen of hardened devices for space use. However, a similar screen and single-point test performed after Co-60 irradiation and elevated temperature anneal cannot be generally defined for commercial devices. In the absence of detailed knowledge about device and circuit radiation response, a two-point standard test is proposed to ensure space surviability of CMOS circuits: a Co-60 irradiation and test to screen against oxide-trapped charge related failures, and an additional rebound test to screen against interface-trap related failures. Testing implications for bipolar technologies are also discussed

  11. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    Science.gov (United States)

    2015-06-22

    ground station hardware and software. B. Space- based Platforms There are already in place several satellite based options to collecting and... Transceive data over very long range at low to very high altitudes DARPA: XS-1 Ground Based Aircraft Based Space Based Future Data...412TW-PA-15264 AIR FORCE TEST CENTER EDWARDS AIR FORCE BASE , CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE REPORT

  12. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  13. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  14. Assessment of SPACE Code Using the LSTF 10% MSLB Test

    International Nuclear Information System (INIS)

    Kim, Yo Han; Yang, Chang Keun; Ha, Sang Jun

    2012-01-01

    The Korea Nuclear Hydro and Nuclear Power Co. (KHNP) has developed a multipurpose nuclear safety analysis code called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE is a best-estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors (PWRs). As in the second phase of the project, the beta version of the code has been developed through the validation and verification (V and V) using integral loop test data or plant operating data and the complement of code to solve the SPACE code user problem and resolution reports. In this study, the Large Scale Test Facility (LSTF) 10% main steam line break (MSLB) test, SB-SL-01, was simulated as a V and V work. The results were compared with the experimental data and those of the RELAP5/MOD3.1 code simulation

  15. Hubble Space Telescope nickel-hydrogen battery testing: An update

    Science.gov (United States)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  16. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  17. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  18. Environmental Disturbance Modeling for Large Inflatable Space Structures

    National Research Council Canada - National Science Library

    Davis, Donald

    2001-01-01

    Tightening space budgets and stagnating spacelift capabilities are driving the Air Force and other space agencies to focus on inflatable technology as a reliable, inexpensive means of deploying large structures in orbit...

  19. Space Use Variation in Co-Occurring Sister Species: Response to Environmental Variation or Competition?

    Science.gov (United States)

    Dufour, Claire M. S.; Meynard, Christine; Watson, Johan; Rioux, Camille; Benhamou, Simon; Perez, Julie; du Plessis, Jurie J.; Avenant, Nico; Pillay, Neville; Ganem, Guila

    2015-01-01

    Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence. PMID:25693176

  20. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  1. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  2. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    Science.gov (United States)

    2014-09-05

    Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space and Missile Systems Center/Air Force Program...140 Satellite Hardness and Survivability; Testing Rationale for Electronic Upset and Burnout Effects 30. JANNAF-GL-2012-01-RO Test and Evaluation...vehicle, subsystem, and unit lev- els . Acceptance testing shall be conducted on all subsequent flight items. The protoqualification strategy shall require

  3. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  4. Environmental simulation testing of solar cell contamination by hydrazine

    Science.gov (United States)

    Moore, W. W., Jr.

    1972-01-01

    Test results for thermal vacuum and radiation environment simulation of hydrazine contamination are discussed. Solar cell performance degradation, measured by short circuit current, is presented in correlation with the variations used in environmental parameters.

  5. 16 CFR 1509.6 - Component-spacing test method.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6 Section 1509.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... applied to the wedge perpendicular to the plane of the crib side. ...

  6. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  7. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  8. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  9. Wald Sequential Probability Ratio Test for Space Object Conjunction Assessment

    Science.gov (United States)

    Carpenter, James R.; Markley, F Landis

    2014-01-01

    This paper shows how satellite owner/operators may use sequential estimates of collision probability, along with a prior assessment of the base risk of collision, in a compound hypothesis ratio test to inform decisions concerning collision risk mitigation maneuvers. The compound hypothesis test reduces to a simple probability ratio test, which appears to be a novel result. The test satisfies tolerances related to targeted false alarm and missed detection rates. This result is independent of the method one uses to compute the probability density that one integrates to compute collision probability. A well-established test case from the literature shows that this test yields acceptable results within the constraints of a typical operational conjunction assessment decision timeline. Another example illustrates the use of the test in a practical conjunction assessment scenario based on operations of the International Space Station.

  10. The Study of Environmental Crisis and Local Distribution of Green Space in Tehran City

    OpenAIRE

    K. zayyari; L. Vahedian Beiky; Z. Parnoon

    2012-01-01

    Extended abstract1-IntroductionUncontrolled development of large cities due to the increase in population and migration has led to a massive environmental destruction and pollution, and the latter has destroyed green spaces within the city and changed the land use. Therefore, the need for green space and connection with nature has an important role in human life. The best way to reduce the destructive effects of environmental hazards is the development of green space. Due to its wide range of...

  11. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  12. Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects

    Science.gov (United States)

    Potter, A. E. (Compiler)

    1977-01-01

    Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.

  13. Phase 1 space fission propulsion system testing and development progress

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans

  14. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    International Nuclear Information System (INIS)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs

  15. Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

  16. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  17. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  18. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  19. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others

    2013-10-15

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  20. Whole Module Offgas Test Report: Space-Xl Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    On September 26 and September 28,2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 m1 evacuated canisters from the sealed Space-Xl Dragon Module. One sample was also acquired from Space-X Facility near the module at the start of the test. Samples of the module air were taken in triplicate once the module had been sealed, and then taken again in triplicate 1.98 days later. Ofthe triplicate samples, the first served as a line purge, and the last two were analyzed. The results of 5 samples are reported.

  1. The Florida Ranchlands Environmental Services Project: Field Testing a Pay-for-Environmental-Services Program

    OpenAIRE

    Lynch, S.; Shabman, L.

    2007-01-01

    The Florida Ranchlands Environmental Services Project (FRESP) was recently launched, which will field test a program to complement the existing restoration programs such as the Lake Okeechobee Protection Plan (LOPP), which uses public funding to build treatment wetlands, drill aquifer storage, and capture rainwater (to delay its arrival downstream). FRESP will pay cattle ranchers to provide environmental services that will benefit the lake. PES-1 (Payments for Environmental Services Associ...

  2. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  3. Environmental Testing of the NEXT PM1R Ion Engine

    Science.gov (United States)

    Snyder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2007-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The subsystem includes an ion engine, power processing unit, feed system components, and thruster gimbal. The Prototype Model engine PM1 was subjected to qualification-level environmental testing in 2006 to demonstrate compatibility with environments representative of anticipated mission requirements. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. The engine was reworked to address most of these findings, renamed PM1R, and the environmental test sequence was repeated. Thruster functional testing was performed before and after the vibration and thermal-vacuum tests. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 min in each of three axes. Thermal-vacuum testing included three thermal cycles from 120 to 215 C with hot engine re-starts. Thruster performance was nominal throughout the test program, with minor variations in a few engine operating parameters likely caused by facility effects. There were no significant changes in engine performance as characterized by engine operating parameters, ion optics performance measurements, and beam current density measurements, indicating no significant changes to the hardware as a result of the environmental testing. The NEXT PM1R engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. The redesigned cathode heater terminations successfully survived the vibration environments. Based on the results of this test

  4. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  5. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  6. Environmental qualification test of electrical penetration for nuclear power stations

    International Nuclear Information System (INIS)

    Kooziro, Tetsuya; Nakagawa, Akitoshi; Toyoda, Shigeru; Uno, Shunpei

    1979-01-01

    Environmental qualification test was conducted according to IEEE Std. 323-1974 in order to evaluate the safety and reliability of electrical penetration of PWR type nuclear power station. Electrical penetration is the assemblies of electric cables attached to the containment vessel and penetrate through the vessel. Since it is a part of the vessel, it is deemed to be one of the primary safety equipments that are important for the safety and reliability of nuclear power stations. Environmental tests were conducted continuously as to heat cycle, vibration and LOCA with the full size specimens of bushing type, pigtail type and triaxial cable type and at the same time thermal life and irradiation tests were conducted on the insulation materials used, in order to obtain the comprehensive evaluation of their electrical and mechanical characteristics. As the result, they all satisfied the requirements for the circuits for actual use during and after various environmental qualification tests according to IEEE Std. 323. (author)

  7. Space Environmental Effects on Colored Coatings and Anodizes

    Science.gov (United States)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  8. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    Science.gov (United States)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  9. Nevada Test Site annual site environmental report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wruble, D T; McDowell, E M [eds.

    1990-11-01

    Prior to 1989 annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the offsite radiological surveillance program conducted by the US Environmental Protection Agency (EPA), Environmental Monitoring Systems Laboratory, Las Vegas, Nevada, were reported separately by that Agency. Beginning with this 1989 annual Site environmental report for the NTS, these two documents are being combined into a single report to provide a more comprehensive annual documentation of the environmental protection program conducted for the nuclear testing program and other nuclear and non-nuclear activities at the Site. The two agencies have coordinated preparation of this combined onsite and offsite report through sharing of information on environmental releases and meteorological, hydrological, and other supporting data used in dose-estimate calculations. 57 refs., 52 figs., 65 tabs.

  10. Thermal vacuum test of space equipment: tests of SIR-2 instrument Chandrayaan-1 mission

    Science.gov (United States)

    Sitek, P.

    2008-11-01

    We describe the reasons of proceeding Thermal-Vacuum tests for space electronic. We will answer on following questions: why teams are doing TV tests, what kind of phases should be simulated, which situations are the most critical during TV tests, what kind of results should be expected, which errors can be detect. As an example, will be shown TV-test of SIR-2 instrument for Chandrayaan-1 moon mission.

  11. Microwave energy transmission test toward the SPS using the space station

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    1986-12-01

    An outline of a project METT (Microwave Energy Transmission Test) using the Space Station is described. The objectives of the METT are to develop and test the technology of microwave energy transmission for the future Solar Power Satellite (SPS), and to estimate the environmental effects of the high power microwaves on the ionosphere and the atmosphere. Energy generated with solar cells is transmitted from a transmitting antenna on the bus platform near the Space Station to a rectenna on the sub-satellite or the ground station in order to test the total efficiency and the functions of the developed system of the energy transmission. Plasma similar to that in the D and E layers in the ionosphere is produced in a large balloon opened on the sub-satellite in order to investigate possible interactions between the SPS microwave and the ionospheric plasma and to determine the maximum power density of the microwave beam which passes through the ionosphere.

  12. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  13. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  14. Tests of gravity with future space-based experiments

    Science.gov (United States)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  15. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  16. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  17. Casing pull tests for directionally drilled environmental wells

    International Nuclear Information System (INIS)

    Staller, G.E.; Wemple, R.P.; Layne, R.R.

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it's industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported

  18. Casing pull tests for directionally drilled environmental wells

    Energy Technology Data Exchange (ETDEWEB)

    Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

    1994-11-01

    A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

  19. Global Environmental Micro Sensors Test Operations in the Natural Environment

    Science.gov (United States)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  20. Aragats space-environmental centre: status and SEP forecasting possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, A; Avakyan, K; Babayan, V; Bostanjyan, N; Chilingarian, S; Eganov, V; Hovhanissyan, A; Karapetyan, G; Gevorgyan, N; Gharagyozyan, G; Ghazaryan, S; Garyaka, A; Ivanov, V; Martirosian, H; Martirosov, R; Melkumyan, L; Sogoyan, H; Sokhoyan, S; Tserunyan, S; Vardanyan, A; Zazyan, M [Cosmic Ray Division, Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan 36 (Armenia); Yeremian, A [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    2003-05-01

    The Aragats Space Environment Center in Armenia provides real-time monitoring of cosmic particle fluxes. Neutron monitors operating at altitudes of 2000 m and 3200 m on Mt Aragats continuously gather data to detect possible abrupt enhancement of the count rates. Additional high precision detectors, measuring muon and electron fluxes, along with directional information have been put in operation on Mt Aragats in the summer of 2002. We plan to use this information to establish an early warning system against extreme solar energetic particle (SEP) events which pose danger to the satellite electronics and the space station crew. Solar ion and proton fluxes as measured by space-borne sensors on ACE and GOES satellites are used to derive expected arrival times of highest energy ions at 1 AU. The peaks in the time series detected by Aragats neutron monitors, coincided with these times, demonstrate the possibility of early detection of SEP events using the ground-based detectors.

  1. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    Science.gov (United States)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  2. Final Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    Science.gov (United States)

    2010-06-02

    rooted , mesophylic plant species that Chapter 3. Affected Environment Final Environmental Assessment - California Space Center, Vandenberg Air...Chapter 3. Affected Environment 3-12 Final Environmental Assessment - California Space Center, Vandenberg Air Force Base the root and debris zone of the...protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle ), animals (i.e. insects

  3. Environmental Testing of the NEXT PM1 Ion Engine

    Science.gov (United States)

    Synder, John S.; Anderson, John R.; VanNoord, Jonathan L.; Soulas, George C.

    2008-01-01

    The NEXT propulsion system is an advanced ion propulsion system presently under development that is oriented towards robotic exploration of the solar system using solar electric power. The Prototype Model engine PM1 was subjected to qualification-level environmental testing to demonstrate compatibility with environments representative of anticipated mission requirements. Random vibration testing, conducted with the thruster mated to the breadboard gimbal, was executed at 10.0 Grms for 2 minutes in each of three axes. Thermal-vacuum testing included a deep cold soak of the engine to temperatures of -168 C and thermal cycling from -120 to 203 C. Although the testing was largely successful, several issues were identified including the fragmentation of potting cement on the discharge and neutralizer cathode heater terminations during vibration which led to abbreviated thermal testing, and generation of particulate contamination from manufacturing processes and engine materials. Thruster performance was nominal throughout the test program, with minor variations in some engine operating parameters likely caused by facility effects. In general, the NEXT PM1 engine and the breadboard gimbal were found to be well-designed against environmental requirements based on the results reported herein. After resolution of the findings from this test program the hardware environmental qualification program can proceed with confidence.

  4. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  5. Environmental testing of flat plate solar cell modules

    Science.gov (United States)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  6. Construction and testing of a space ready rectenna

    Science.gov (United States)

    Brown, Alan M.

    1993-01-01

    In Feb. 1993, the Solar Power Satellite (SPS) Working Group from ISAS, Japan will launch a sounding rocket into low earth orbit to perform two activities: collect scientific information on the high power microwave-ionosphere interaction, and demonstrate microwave power transmission in space at 2.45 GHz. The SPS Working Group announced an open invitation to international agencies willing to collaborate with the Microwave Energy Transmission in Space (METS) experiment in a number of categories. Under the sponsorship of the NASA's Lewis Research Center, the Center for Space Power located at Texas A&M University joined the experiment by producing a microwave rectifying receiving antenna (rectenna). The rectenna is a special type of receiving antenna with unique properties and characteristics. The rectenna's main purpose is to efficiently convert microwave power into DC power. The rectenna is an advanced component in microwave power beaming technology developed for 2.45 GHz. The state-of-the-art rectenna for this frequency consists of dipole antennas, filter circuits, and transmission lines etched on a thin layer of Kapton film. The format of the thin film rectenna is ideally suited for space applications. Thin film rectennas have a low specific mass of approximately 1 kg/kW. The main component of the rectenna is the rectifying diode. High conversion efficiencies (90 percent) in microwave to DC power are capable with special Schottky barrier diodes correctly located in the rectenna circuitry. The theory of operation of the 2.45 GHz rectenna is explained. Experimental test results on the METS rectenna are presented. The packaging of the rectenna is also discussed to meet space qualifications.

  7. Environmental education excursions and proximity to urban green space : Densification in a ‘compact city’

    NARCIS (Netherlands)

    Wolsink, M.

    2016-01-01

    The value of urban green space for environmental education fieldwork is empirically investigated in a study among all secondary schools in Amsterdam. The article describes how the proximity of schools to green spaces emerges as a new factor in the ‘sustainable city’ and the ‘compact city’ debate.

  8. Students' Imaginings of Spaces of Learning in Outdoor and Environmental Education

    Science.gov (United States)

    Preston, Lou

    2014-01-01

    In this article, I interrogate students' stories about the spaces and places in a tertiary Outdoor and Environmental Education course that support and shape their environmental ethics. Drawing on a longitudinal qualitative study, I explore the ways in which particular sites of learning (outdoor, practical learning) are privileged and how…

  9. Sample test cases using the environmental computer code NECTAR

    International Nuclear Information System (INIS)

    Ponting, A.C.

    1984-06-01

    This note demonstrates a few of the many different ways in which the environmental computer code NECTAR may be used. Four sample test cases are presented and described to show how NECTAR input data are structured. Edited output is also presented to illustrate the format of the results. Two test cases demonstrate how NECTAR may be used to study radio-isotopes not explicitly included in the code. (U.K.)

  10. Estimation of environmental noise impacts within architectural spaces

    International Nuclear Information System (INIS)

    Chang, Y. S.; Liebich, R. E.; Chun, K. C.

    2002-01-01

    Public Law 91-596, ''Occupational Safety and Health Act of 1970,'' Dec. 29, 1970, stimulated interest in modeling the impacts of interior noise on employees, as well as the intelligibility of interior public-address and other speech intra-communication systems. The classical literature on this topic has primarily featured a statistical uniform diffuse-field model. This was pioneered by Leo L. Beranek in the 1950s, based on energy-density formulations at the former Bell Telephone (AT and T) Laboratories in the years from 1930 to 1950. This paper compares the classical prediction approach to the most recent statistical methods. Such models were developed in the late 1970s and included innovations such as consideration of irregularly shaped (e.g., L-shaped) interior room spaces and coupled spaces

  11. Environmental survey of southern part of former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Zharikov, S.K.

    2000-01-01

    The present paper discusses results of the environmental survey performed in selected areas of Semipalatinsk test site southern part and gives calculations of possible annual radionuclide (Cs-37, Sr-90 and Pu-239/240) intake due to local husbandry products. (author)

  12. Design for unusual environment (space). Complementary use of modelling and testing phases

    International Nuclear Information System (INIS)

    Cambiaghi, Danilo; Cambiaghi, Andrea

    2004-01-01

    Designing for space requires a great imagination effort from the designer. He must perceive that the stresses experimented by the facilities he is designing will be quite different in space (during the mission), in launch phase and on ground (before launch handling phase), and he must design for all such environmental conditions. Furthermore he must design for mechanical and thermal environment, which often lead to conflicting needs. Virtual models may help very much in balancing the conflicting requirements, but models must be validated to be reliable. Test phase help validating the models, but may overstress the items. The aim of the designer is to reach an efficient and safe design through a balanced use of creativity, modelling and testing

  13. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  14. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  15. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  16. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  17. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  18. Whole Module Offgas Test Report: Space-X Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    Between 7 April and 11 April 2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 ml evacuated canisters from the sealed Dragon Module at the Space-X facility at KSC. Three samples were taken of facility air (two before the test and one after the test), and a total of 9 samples were taken from the sealed module in triplicate at the following times: 0 hours, 48 hours, and 96 hours. The module contained 470 kg, which was 100% of the mass to be launched. Analytical data contained in the Toxicology Group Report (attached) show that the ambient facility air was clean except for almost 9 milligrams per cubic meter of isopropanol (IPA) in the sample taken at the end of the test. Space-X must ensure that IPA is not introduced into the module before it is sealed for launch. Other minor contaminants in the ambient air included the following: perfluoro(2-methyl)pentane and hexamethylcyclotrisiloxane. The first-acquired samples of each triplicate from the module were not analyzed. Analyses of pairs of samples that were taken during the test show excellent agreement between the pairs and a linear increase in the T-values during the 4 days of the test (figure below). The rate of increase averaged 0.124 T units per day. If the time from last purge of the module on the ground to crew first entry on orbit is 10 days, then the T value at first entry should be less than 1.2 units, which is well below the criterion of 3.0 for consideration of additional protection of the crew from offgas products. The primary contributors were as follows: trimethylsilanol (0.057), fluorotrimethylsilane (0.047), acetaldehyde (0.004), hexamethylcyclopentasiloxane (0.003), and toluene (0.002).

  19. The hydrographic basin a space for the environmental planning

    International Nuclear Information System (INIS)

    Dunoyer Mejia Monica

    2002-01-01

    This paper is a synthesis of the work done in watershed management in the framework of sustainable development in Caldas, it describes different points of view to the watershed management approaches as well as its legal aspects developed in the recent history of Colombia. You will also find different basins delineations according to the size, spatial scale used, and the proposed objectives to achieve different goals in watershed management as a way to do environmental planning. At the end of this paper you will find a description of the methodological faces used to achieve a so-called ordering plan, based on legal. Parameters used to date in Colombia

  20. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  1. SPACE code simulation of ATLAS DVI line break accident test (SB DVI 08 Test)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Gyu [KHNP, Daejeon (Korea, Republic of)

    2012-10-15

    APR1400 has adopted new safety design features which are 4 mechanically independent DVI (Direct Vessel Injection) systems and fluidic device in the safety injection tanks (SITs). Hence, DVI line break accident has to be evaluated as one of the small break LOCA (SBLOCA) to ensure the safety of APR1400. KAERI has been performed for DVI line break test (SB DVI 08) using ATLAS (Advanced Thermal Hydraulic Test Loop for Accident Simulation) facility which is an integral effect test facility for APR1400. The test result shows that the core collapsed water level decreased before a loop seal clearance, so that a core uncover occurred. At this time, the peak cladding temperature (PCT) is rapidly increased even though the emergency core cooling (ECC) water is injected from safety injection pump (SIP). This test result is useful for supporting safety analysis using thermal hydraulic safety analysis code and increases the understanding of SBLOCA phenomena in APR1400. The SBLOCA evaluation methodology for APR1400 is now being developed using SPACE code. The object of the development of this methodology is to set up a conservative evaluation methodology in accordance with appendix K of 10 CFR 50. ATLAS SB DVI 08 test is selected for the evaluation of SBLOCA methodology using SPACE code. Before applying the conservative models and correlations, benchmark calculation of the test is performed with the best estimate models and correlations to verify SPACE code capability. This paper deals with benchmark calculations results of ATLAS SB DVI 08 test. Calculation results of the major hydraulics variables are compared with measured data. Finally, this paper carries out the SPACE code performances for simulating the integral effect test of SBLOCA.

  2. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    Science.gov (United States)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  3. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  4. TESTS AND METHODOLOGIES FOR THE SURVEY OF NARROW SPACES

    Directory of Open Access Journals (Sweden)

    L. Perfetti

    2017-02-01

    Full Text Available The research illustrated in this article aimed at identifying a good standard methodology to survey very narrow spaces during 3D investigation of Cultural Heritage. It is an important topic in today’s era of BIM modelling applied to Cultural Heritage. Spaces like staircases, corridors and passages are very common in the architectural or archaeological fields, and obtaining a 3D-oriented survey of those areas can be a very complex task when completeness of the model and high precision are requested. Photogrammetry appears to be the most promising solution in terms of versatility and manoeuvrability also considering the quality of the required data. Fisheye lenses were studied and tested in depth because of their significant advantage in the field of view if compared with rectilinear lenses. This advantage alone can be crucial to reduce the total amount of photos and, as a consequence, to obtain manageable data, to simplify the survey phase and to significantly reduce the elaboration time. In order to overcome the main issue that arise when using fisheye lenses, which is the lack of rules that can be employed to design the survey, a general mathematical formulation to precisely estimate the GSD (Ground Sampling Distance for every optical projection is presented here. A complete survey of a real complex case study was performed in order to test and stress the proposed methodology, and to handle a fisheye-based survey from beginning to end: the photogrammetric survey of the Minguzzi Staircase. It is a complex service spiral-staircase located in the Duomo di Milano with a total height of 25 meters and characterized by a narrow walkable space about 70 centimetres wide.

  5. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  6. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  7. Test results for cables used in nuclear power plants by a new environmental testing method

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-12-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10/sup 8/ Rad ..gamma..-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, ..gamma..-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation.

  8. Test results for cables used in nuclear power plants by a new environmental testing method

    International Nuclear Information System (INIS)

    Handa, Katsue; Fujimura, Shun-ichi; Hayashi, Toshiyasu; Takano, Keiji; Oya, Shingo

    1982-01-01

    In the nuclear power plants using PWRs or BWRs in Japan, environmental tests are provided, in which simulated LOCA conditions are considered so as to conform with Japanese conditions, and many cables which passed these tests are presently employed. Lately, the new environmental testing, in which a credible accident called MSLB (main steam line breakage) is taken into account, is investigated in PWR nuclear power plants, besides LOCA. This paper reports on the results of evaluating some PWR cables for this new environmental testing conditions. The several cables tested were selected out of PH cables (fire-retardant, ethylene propylene rubber insulated, chlorosulfonated polyethylene sheathed cables) as the cables for safety protecting circuits and to be used in containment vessels where the cables are to be exposed to severe environmental test conditions of 2 x 10 8 Rad γ-irradiation and simulated LOCA. All these cables have been accepted after the vertical tray burning test provided in the IEEE Standard 383. The new testing was carried out by sequentially applying thermal deterioration, γ-irradiation, and the exposure to steam (twice 300 s exposures to 190 deg C superheated steam). After completing each step, tensile strength, elongation, insulation resistance and breakdown voltage were measured, respectively. Every cable tested showed satisfactory breakdown voltage after the exposure to steam, thus it was decided to be acceptable. In future, it is required to investigate the influence of the rate of temperature rise on the cable to be tested in MSLB simulation. (Wakatsuki, Y.)

  9. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  10. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  11. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    Science.gov (United States)

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  12. Transnational Urban Spaces and Urban Environmental Reforms : Analyzing Beijing's Environmental Restructuring in the Light of Globalization.

    NARCIS (Netherlands)

    Melchert Saguas Presas, L.

    2004-01-01

    In this era of globalization, `transnational spaces¿ are being created within urban settings, providing a direct connection between the `local¿ and the `global¿. Corporate headquarters, hotels, shopping malls, and airports are typical examples of such spaces, which while located within an urban

  13. Sustaining an Environmental Ethic: Outdoor and Environmental Education Graduates' Negotiation of School Spaces

    Science.gov (United States)

    Preston, Lou

    2011-01-01

    In this article, I draw on interviews with graduates from an Outdoor and Environmental Education course to explore the ways in which their environmental ethics changed since leaving university. I do this in relation to the graduates' personal and professional experiences, particularly in the context of teaching Outdoor Education and Physical…

  14. Environmental Assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  15. Draft environmental assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  16. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    Science.gov (United States)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  17. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  18. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  19. Verification Test of Automated Robotic Assembly of Space Truss Structures

    Science.gov (United States)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  20. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  1. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  2. A miniature microcontroller curve tracing circuit for space flight testing transistors.

    Science.gov (United States)

    Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D

    2015-02-01

    This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.

  3. Space Environmental Viewing and Analysis Network (SEVAN) – characteristics and first operation results

    International Nuclear Information System (INIS)

    Chilingarian, Ashot; Arakelyan, Karen; Avakyan, Karen; Bostanjyan, Nikolaj; Chilingaryan, Suren; Pokhsraryan, D; Sargsyan, D; Reymers, A

    2013-01-01

    Space Environmental Viewing and Analysis Network is a worldwide network of identical particle detectors located at middle and low latitudes aimed to improve fundamental research of space weather conditions and to provide short- and long-term forecasts of the dangerous consequences of space storms. SEVAN detected changing fluxes of different species of secondary cosmic rays at different altitudes and latitudes, thus turning SEVAN into a powerful integrated device used to explore solar modulation effects. Till to now the SEVAN modules are installed at Aragats Space Environmental Centre in Armenia (3 units at altitudes 800, 2000 and 3200 m a.s.l.), Bulgaria (Moussala), Croatia and India (New-Delhi JNU.) and now under installation in Slovakia, LomnitskySchtit). Recently SEVAN detectors were used for research of new high-energy phenomena originated in terrestrial atmosphere – Thunderstorm Ground Enhancements (TGEs). In 2011 first joint measurements of solar modulation effects were detected by SEVAN network, now under analysis.

  4. Orientation of Space Station Freedom electrical power system in environmental effects assessment

    Science.gov (United States)

    Lu, Cheng-Yi

    1990-01-01

    The orientation effects of six Space Station Freedom Electrical Power System (EPS) components are evaluated for three environmental interactions: aerodynamic drag, atomic oxygen erosion, and orbital debris impact. Designers can directly apply these orientation factors to estimate the magnitude of the examined environment and the environmental effects for the EPS component of interest. The six EPS components are the solar array, photovoltaic module radiator, integrated equipment assembly, solar dynamic concentrator, solar dynamic radiator, and beta gimbal.

  5. Nevada Test Site Environmental Report 2008 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2009-09-01

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  6. Nevada Test Site Environmental Report 2007 Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2008-09-01

    This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  7. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    International Nuclear Information System (INIS)

    Cathy A. Wills

    2006-01-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report

  8. Test Area North Pool Stabilization Project: Environmental assessment

    International Nuclear Information System (INIS)

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as open-quotes commercial fuelsclose quotes except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative

  9. Nevada Test Site Environmental Report 2009, Attachment A: Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2009. Included are subsections that summarize the site’s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site’s environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  10. Nevada Test Site Environmental Report 2005, Attachment A - Site Description

    Energy Technology Data Exchange (ETDEWEB)

    Cathy A. Wills

    2006-10-01

    This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

  11. Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.

    Energy Technology Data Exchange (ETDEWEB)

    May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

    2009-06-01

    This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

  12. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  13. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages.

    Science.gov (United States)

    Asefa, Mengesha; Cao, Min; Zhang, Guocheng; Ci, Xiuqin; Li, Jie; Yang, Jie

    2017-03-09

    Environmental filtering consistently shapes the functional and phylogenetic structure of species across space within diverse forests. However, poor descriptions of community functional and lineage distributions across space hamper the accurate understanding of coexistence mechanisms. We combined environmental variables and geographic space to explore how traits and lineages are filtered by environmental factors using extended RLQ and fourth-corner analyses across different spatial scales. The dispersion patterns of traits and lineages were also examined in a 20-ha tropical rainforest dynamics plot in southwest China. We found that environmental filtering was detected across all spatial scales except the largest scale (100 × 100 m). Generally, the associations between functional traits and environmental variables were more or less consistent across spatial scales. Species with high resource acquisition-related traits were associated with the resource-rich part of the plot across the different spatial scales, whereas resource-conserving functional traits were distributed in limited-resource environments. Furthermore, we found phylogenetic and functional clustering at all spatial scales. Similar functional strategies were also detected among distantly related species, suggesting that phylogenetic distance is not necessarily a proxy for functional distance. In summary, environmental filtering considerably structured the trait and lineage assemblages in this species-rich tropical rainforest.

  14. Deep Space CubeSat Prototype Platform Design and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD will significantly advance a GSFC Deep Space CubeSat prototype effort in almost all subsystems.  Because it represents a “tall pole” for lunar orbiters, as...

  15. Environmental testing of terrestrial flat plate photovoltaic modules

    Science.gov (United States)

    Hoffman, A.; Griffith, J.

    1979-01-01

    The Low-Cost Solar Array (LSA) Project at the Jet Propulsion Laboratory has as one objective: the development and implementation of environmental tests for flat plate photovoltaic modules as part of the Department of Energy's terrestrial photovoltaic program. Modules procured under this program have been subjected to a variety of laboratory tests intended to simulate service environments, and the results of these tests have been compared to available data from actual field service. This comparison indicates that certain tests (notably temperature cycling, humidity cycling, and cyclic pressure loading) are effective indicators of some forms of field failures. Other tests have yielded results useful in formulating module design guidelines. Not all effects noted in field service have been successfully reproduced in the laboratory, however, and work is continuing in order to improve the value of the test program as a tool for evaluating module design and workmanship. This paper contains a review of these ongoing efforts and an assessment of significant test results to date.

  16. Performance Test of Alpha Spectrometry for Environmental Radioactivity Analysis

    International Nuclear Information System (INIS)

    Choi, Jung Youn; Yoon, Jong-Ho; Han, Ki-Tek; Ahn, Gil Hoon

    2015-01-01

    Environmental samples are analyzed by various methods such as, ICP-MS (inductively coupled plasma mass spectrometry), AMS (accelerator mass spectrometry) TIMS (thermal ionization mass spectrometry), HRGS (high resolution gamma spectrometry) and alpha /beta particle analysis. In this study, we will described the result of performance test using alpha spectrometry for analyzing environmental samples. Measurement data of the U activity using SRM based on extraction chromatography with UTEVA resin. It should be effective way to separate of uranium isotope for the measurement of alpha spectrometry. But, the result of this measurement data is higher than another recovery data. Also concentration of U data is lack of consistency. We leave out of consideration many effect of factors about influence in the experiment process. In the future work, we will try to reduce the step of experiment process and reflect the uncertainty factors

  17. Measuring Values in Environmental Research: A Test of an Environmental Portrait Value Questionnaire

    Science.gov (United States)

    Bouman, Thijs; Steg, Linda; Kiers, Henk A. L.

    2018-01-01

    Four human values are considered to underlie individuals’ environmental beliefs and behaviors: biospheric (i.e., concern for environment), altruistic (i.e., concern for others), egoistic (i.e., concern for personal resources) and hedonic values (i.e., concern for pleasure and comfort). These values are typically measured with an adapted and shortened version of the Schwartz Value Survey (SVS), to which we refer as the Environmental-SVS (E-SVS). Despite being well-validated, recent research has indicated some concerns about the SVS methodology (e.g., comprehensibility, self-presentation biases) and suggested an alternative method of measuring human values: The Portrait Value Questionnaire (PVQ). However, the PVQ has not yet been adapted and applied to measure values most relevant to understand environmental beliefs and behaviors. Therefore, we tested the Environmental-PVQ (E-PVQ) – a PVQ variant of E-SVS –and compared it with the E-SVS in two studies. Our findings provide strong support for the validity and reliability of both the E-SVS and E-PVQ. In addition, we find that respondents slightly preferred the E-PVQ over the E-SVS (Study 1). In general, both scales correlate similarly to environmental self-identity (Study 1), energy behaviors (Studies 1 and 2), pro-environmental personal norms, climate change beliefs and policy support (Study 2). Accordingly, both methodologies show highly similar results and seem well-suited for measuring human values underlying environmental behaviors and beliefs. PMID:29743874

  18. 'Outside the box thinking': An overview of an environmental qualification test from a test lab perspective

    International Nuclear Information System (INIS)

    Mitton, T.

    2004-01-01

    Most people in the nuclear Environmental Qualification (EQ) business know that the basis for qualification ultimately lies with an equipment's successful operation during and after exposure to a simulated harsh environment. As opposed to focusing specifically on the test results of an Environmental Qualification test program, this paper/presentation will offer a more detailed look at the mechanical, electrical and thermodynamic requirements as well as the project difficulties and solutions of one such project - particularly an extensive, large-scale, non-typical project. (author)

  19. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  20. Utilisation of Wearable Computing for Space Programmes Test Activities Optimasation

    Science.gov (United States)

    Basso, V.; Lazzari, D.; Alemanni, M.

    2004-08-01

    New technologies are assuming a relevant importance in the Space business domain also in the Assembly Integration and Test (AIT) activities allowing process optimization and capability that were unthinkable only few years ago. This paper has the aim to describe Alenia Spazio (ALS) gained experience on the remote interaction techniques as a results of collaborations established both on European Communities (EC) initiatives, with Alenia Aeronautica (ALA) and Politecnico of Torino (POLITO). The H/W and S/W components performances increase and costs reduction due to the home computing massive utilization (especially demanded by the games business) together with the network technology possibility (offered by the web as well as the hi-speed links and the wireless communications) allow today to re-think the traditional AIT process activities in the light of the multimedia data exchange: graphical, voice video and by sure more in the future. Aerospace business confirm its innovation vocation which in the year '80 represents the cradle of the CAD systems and today is oriented to the 3D data visualization/ interaction technologies and remote visualisation/ interaction in collaborative way on a much more user friendly bases (i.e. not for specialists). Fig. 1 collects AIT extended scenario studied and adopted by ALS in these years. ALS experimented two possibilities of remote visualization/interaction: Portable [e.g. Fig.2 Personal Digital Assistant (PDA), Wearable] and walls (e.g.VR-Lab) screens as both 2D/3D visualisation and interaction devices which could support many types of traditional (mainly based on EGSE and PDM/CAD utilisation/reports) company internal AIT applications: 1. design review support 2. facility management 3. storage management 4. personnel training 5. integration sequences definition 6. assembly and test operations follow up 7. documentation review and external access to AIT activities for remote operations (e.g. tele-testing) EGSE Portable Clean room

  1. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  2. Alternative Testing Methods for Predicting Health Risk from Environmental Exposures

    Directory of Open Access Journals (Sweden)

    Annamaria Colacci

    2014-08-01

    Full Text Available Alternative methods to animal testing are considered as promising tools to support the prediction of toxicological risks from environmental exposure. Among the alternative testing methods, the cell transformation assay (CTA appears to be one of the most appropriate approaches to predict the carcinogenic properties of single chemicals, complex mixtures and environmental pollutants. The BALB/c 3T3 CTA shows a good degree of concordance with the in vivo rodent carcinogenesis tests. Whole-genome transcriptomic profiling is performed to identify genes that are transcriptionally regulated by different kinds of exposures. Its use in cell models representative of target organs may help in understanding the mode of action and predicting the risk for human health. Aiming at associating the environmental exposure to health-adverse outcomes, we used an integrated approach including the 3T3 CTA and transcriptomics on target cells, in order to evaluate the effects of airborne particulate matter (PM on toxicological complex endpoints. Organic extracts obtained from PM2.5 and PM1 samples were evaluated in the 3T3 CTA in order to identify effects possibly associated with different aerodynamic diameters or airborne chemical components. The effects of the PM2.5 extracts on human health were assessed by using whole-genome 44 K oligo-microarray slides. Statistical analysis by GeneSpring GX identified genes whose expression was modulated in response to the cell treatment. Then, modulated genes were associated with pathways, biological processes and diseases through an extensive biological analysis. Data derived from in vitro methods and omics techniques could be valuable for monitoring the exposure to toxicants, understanding the modes of action via exposure-associated gene expression patterns and to highlight the role of genes in key events related to adversity.

  3. Research-to-operations (R2O) for the Space Environmental Effects Fusion System (SEEFS) system-impact products

    Science.gov (United States)

    Quigley, Stephen

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/RVBX) and the Space Environment Branch of the Space and Missile Systems Center (SMC SLG/WMLE) have combined efforts to design, develop, test, implement, and validate numerical and graphical products for Air Force Space Command's (AFSPC) Space Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes the Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D) products. This presentation will provide overviews of the current system impact products, along with plans and potentials for future products expected for the SEEFS program. The overviews will include information on applicable research-to-operations (R2O) issues, to include input data coverage and quality control, output confidence levels, modeling standards, and validation efforts.

  4. Environmental plutonium levels near the Nevada Test Site

    International Nuclear Information System (INIS)

    Bliss, W.A.; Jakubowski, F.M.

    1977-01-01

    The Environmental Monitoring and Support Laboratory-Las Vegas is engaged in a study to define the distribution of plutonium in the environment surrounding the Nevada Test Site (NTS). Extensive soil sampling has been conducted around the NTS, both to define areal distribution and to investigate local concentrating effects by natural phenomena. Additionally, air filters used in the off-NTS air surveillance network as well as those collected in special studies have been analyzed for plutonium to better define ambient levels and to investigate the possibility of resuspension. Results of these, as well as other studies related to defining the ambient plutonium levels around the NTS, are given in this report

  5. Environmental Impact Analysis Process. Environmental Impact Statement Space Shuttle Program Vandenberg AFB, California

    Science.gov (United States)

    1978-01-01

    MAIMIEOIR, NATIUM L FEATURES TO BE ALTERED: Nost applicable. EMISSIONS: .• Operational: Space Shuttle main eagin. and SolidRocket Roast r exhaust. 414...symptom. (50) (2) From animal studies" (a) Bobwhite quail and domestic chicken eggs displayed a 50 percent mortality rate upon a single 15-minute exposure...t In another planned study (as opposed to casual observation) chicken eggs were exposed to about 30 sonic booms per day during incubation; median

  6. Ecological Unequal Exchange: International Trade and Uneven Utilization of Environmental Space in the World System

    Science.gov (United States)

    Rice, James

    2007-01-01

    We evaluate the argument that international trade influences disproportionate cross-national utilization of global renewable natural resources. Such uneven dynamics are relevant to the consideration of inequitable appropriation of environmental space in particular and processes of ecological unequal exchange more generally. Using OLS regression…

  7. Environmental space management in the harbor of Amsterdam, Netherlands; Milieuruimtemanagement haven Amsterdam

    Energy Technology Data Exchange (ETDEWEB)

    Klok, L.; Hulskotte, J. [TNO Built Environment and Geosciences, Den Haag (Netherlands); Van Breemen, T. [Haven Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    A new calculation tool will quickly offer the Harbor of Amsterdam insight in the effect of activities in the harbor on the air quality and hence the available environmental space. [Dutch] Een nieuw rekeninstrument geeft Haven Amsterdam snel inzicht in het effect van alle activiteiten in de haven op de luchtkwaliteit en daarmee in de beschikbare milieuruimte.

  8. Singing the Spaces: Artful Approaches to Navigating the Emotional Landscape in Environmental Education

    Science.gov (United States)

    Burkhart, Jocelyn

    2016-01-01

    This paper briefly explores the gap in the environmental education literature on emotions, and then offers a rationale and potential directions for engaging the emotions more fully, through the arts. Using autoenthnographic and arts-based methods, and including original songs and invitational reflective questions to open spaces for further inquiry…

  9. Integration of Distinct Educating Spaces and Their Potential for a More Comprehensive Environmental Education Work

    Science.gov (United States)

    Iared, Valéria Ghisloti; de Oliveira, Haydée Torres

    2012-01-01

    To investigate if the units of the São Carlos Ecological Pole (São Carlos, São Paulo, Brazil) are educating spaces that may contribute to the understanding of the complexity of environmental issues and stimulate a sense of belonging and social responsibility, we interviewed primary school teachers who had accompanied visits to these places and…

  10. Environmental testing of an experimental digital safety channel

    International Nuclear Information System (INIS)

    Korsah, K.; Tanaka, T.J.; Wilson, T.L. Jr.; Wood, R.T.

    1996-09-01

    This document presents the results of environmental stress tests performed on an experimental digital safety channel (EDSC) assembled at the Oak Ridge National Laboratory (ORNL) as part of the NRC-sponsored Qualification of Advanced Instrumentation and Controls (W) System program. The objective of this study is to investigate failure modes and vulnerabilities of microprocessor-based technologies when subjected to environmental stressors. The study contributes to the technical basis for environmental qualification of safety-related digital I ampersand C systems. The EDSC employs technologies and digital subsystems representative of those proposed for use in advanced light-water reactors (ALWRs) or for retrofits in existing plants. Subsystems include computers, electrical and optical serial communication links, fiber-optic network links, analog-to-digital and digital-to-analog converters, and multiplexers. The EDSC was subjected to selected stressors that are a potential risk to digital equipment in a mild environment. The selected stressors were electromagnetic and radio-frequency interference (EMYRFI), temperature, humidity, and smoke exposure. The stressors were applied over ranges that were considerably higher than what the channel is likely to experience in a normal nuclear power plant environment. Ranges of stress were selected at a sufficiently high level to induce errors so that failure modes that are characteristic of the technologies employed could be identified

  11. Scoping the parameter space for demo and the engineering test

    International Nuclear Information System (INIS)

    Meier, W R.

    1999-01-01

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to define R ampersand D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R ampersand D programs must seek to meet

  12. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  13. Allium -test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    International Nuclear Information System (INIS)

    Oudalova, A A; Pyatkova, S V; Geras’kin, S A; Dikareva, N S

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium -test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium -test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds. (paper)

  14. Allium-test as a tool for toxicity testing of environmental radioactive-chemical mixtures

    Science.gov (United States)

    Oudalova, A. A.; Geras'kin, S. A.; Dikareva, N. S.; Pyatkova, S. V.

    2017-01-01

    Bioassay-based approaches have been propagated to assess toxicity of unknown mixtures of environmental contaminants, but it was rarely applied in cases of chemicals with radionuclides combinations. Two Allium-test studies were performed to assess environmental impact from potential sources of combined radioactive-chemical pollution. Study sites were located at nuclear waste storage facilities in European and in Far-Eastern parts of Russia. As environmental media under impact, waters from monitor wells and nearby water bodies were tested. Concentrations of some chemicals and radionuclides in the samples collected enhanced the permitted limits. Cytogenetic and cytotoxic effects were used as biological endpoints, namely, frequency and spectrum of chromosome aberrations and mitotic abnormalities in anatelophase cells as well as mitotic activity in Allium root tips. Sample points were revealed where waters have an enhanced mutagenic potential. The findings obtained could be used to optimize monitoring system and advance decision making on management and rehabilitation of industrial sites. The Allium-test could be recommended and applied as an effective tool for toxicity testing in case of combined contamination of environmental compartments with radionuclides and chemical compounds.

  15. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  16. Environmental Physiology at the Johnson Space Center: Past, Present, and Future

    Science.gov (United States)

    Conkin, Johnny

    2007-01-01

    This viewgraph presentation reviews the work in environmental physiology done at Johnson Space Center (JSC). The work is aimed at keeping astronauts healthy. This is a different approach than treating the sick, and is more of an occupational health model. The reduction of risks is the main emphasis for this work. They emphasis is to reduce the risk of decompression sickness (DCS) and acute mountain sickness (AMS). The work in environmental physiology encompasses the following areas: (1) Pressure: hypobaric and hyperbaric (2) Gases: hypoxia and hyperoxia, hypercapnia--closed space issues, inert gas physiology / respiration (3) Temperature: hypothermia and hyperthermia, thermal comfort, Protective clothing diving, aviation, mountaineering, and space (4) Acceleration (5) Noise and Vibration (6) Exercise / Performance (6) Acclimatization / Adaptation: engineering solutions when necessary. This presentation reviews the work done at JSC in the areas of DCS and AMS.

  17. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  18. Preliminary testing of the Scanning Laser Environmental Airborne Fluorosensor

    International Nuclear Information System (INIS)

    Brown, C.E.; Marois, R.; Fingas, M.F.; Mullin, J.V.

    2000-01-01

    The installation and testing program of the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) on Environment Canada's DC-3 aircraft was described and the capabilities of the new system were presented. SLEAF is a new generation of laser fluorosensor designed to provide prompt reliable detection and mapping of oil pollution in different marine and terrestrial environments. It consists of a high-power excimer laser, high-resolution range-gated intensified diode-array spectrometer, and a pair of variable speed and angular displacement scanning mirrors. SLEAF is capable of detecting narrow bands of oil that can pile up along the high tide lines of beaches and shorelines, including those that contain ice and snow. It also has the added benefit of providing real-time detection. SLEAF will be declared operational for emergency response personnel when the initial test flight program will be completed in the near future. 9 refs., 2 figs

  19. Environmental test program for superconducting materials and devices

    Science.gov (United States)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  20. First environmental data from the EUV engineering test stand

    Science.gov (United States)

    Klebanoff, Leonard E.; Malinowski, Michael E.; Grunow, Philip A.; Clift, W. Miles; Steinhaus, Chip; Leung, Alvin H.; Haney, Steven J.

    2001-08-01

    The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.

  1. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  2. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  3. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  4. Reliability testing across the Environmental Quality Index and national environmental indices.

    Science.gov (United States)

    One challenge in environmental epidemiology is the exploration of cumulative environmental exposure across multiple domains (e.g. air, water, land). The Environmental Quality Index (EQI), created by the U.S. EPA, uses principle component analyses combining environmental domains (...

  5. Effects of simulated space environmental parameters on six commercially available composite materials

    International Nuclear Information System (INIS)

    Funk, J.G.; Sykes, G.F. Jr.

    1989-04-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested

  6. A note of spaces of test and generalized functions of Poisson white noise

    OpenAIRE

    Lytvynov, E.

    2006-01-01

    The paper is devoted to construction and investigation of some riggings of the $L^2$-space of Poisson white noise. A particular attention is paid to the existence of a continuous version of a function from a test space, and to the property of an algebraic structure under pointwise multiplication of functions from a test space.

  7. Simple Instrumental and Visual Tests for Nonlaboratory Environmental Control

    Directory of Open Access Journals (Sweden)

    L. P. Eksperiandova

    2016-01-01

    Full Text Available Proposed are simple and available techniques that can be used for rapid and reliable environmental control specifically of natural water by means of instrumental and visual tests in outdoor conditions. Developed are the chemical colorimetric modes for fast detection of socially dangerous trace impurities in water such as Co(II, Pd(II, and Rh(III as well as NO2--ions and Fe(III serving as model impurities. Application of portable digital devices and scanner allows estimating the color coordinates and increasing the accuracy and sensitivity of the tests. The combination of complex formation with preconcentration of colored complexes replaces the sensitive but time-consuming and capricious kinetic method that is usually used for this purpose at the more convenient and reliable colorimetric method. As the test tools, the following ones are worked out: polyurethane foam tablets with sorbed colored complexes, the two-layer paper sandwich packaged in slide adapter and saturated by reagents, and polyethylene terephthalate blister with dried reagents. Fast analysis of polyurethane foam tablets is realized using a pocket digital RGB-colorimeter or portable photometer. Express analysis of two-layer paper sandwich or polyethylene terephthalate blister is realized by visual and instrumental tests. The metrological characteristics of the developed visual and instrumental express analysis techniques are estimated.

  8. Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility.

    Science.gov (United States)

    Perchoux, Camille; Chaix, Basile; Cummins, Steven; Kestens, Yan

    2013-05-01

    A considerable body of literature has investigated how environmental exposures affect health through various pathways. These studies have generally adopted a common approach to define environmental exposures, focusing on the local residential environment, using census tracts or postcodes to delimit exposures. However, use of such administrative units may not be appropriate to evaluate contextual effets on health because they are generally not a 'true' representation of the environments to which individuals are exposed. Recent work has suggested that advances may be made if an activity-space approach is adopted. The present paper investigates how various disciplines may contribute to the refinement of the concept of activity space for use in health research. In particular we draw on seminal work in time geography, which provides a framework to describe individual behavior in space and time, and can help the conceptualization of activity space. In addition we review work in environmental psychology and social networks research, which provides insights on how people and places interact and offers new theories for improving the spatial definition of contextual exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  10. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  11. Test Equal Bending by Gravity for Space and Time

    Science.gov (United States)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  12. Ghost neutrinos as test fields in curved space-time

    International Nuclear Information System (INIS)

    Audretsch, J.

    1976-01-01

    Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)

  13. Global Environmental Micro Sensors Test Operations in the Natural Environment (GEMSTONE

    Directory of Open Access Journals (Sweden)

    Mark ADAMS

    2007-10-01

    Full Text Available ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS. The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains on-board satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration’s Kennedy Space Center (KSC Weather Office for a project called GEMS Test Operations in the Natural Environment (GEMSTONE. The goal of the GEMSTONE project was to build and field-test a small system of prototype probes in the Earth’s atmosphere. This paper summarizes the 9-month GEMSTONE project (Sep 2006 – May 2007 including probe and system engineering as well as experiment design and data analysis from laboratory and field tests. These tests revealed issues with reliability, sensor accuracy, electronics miniaturization, and sub-system optimization. Nevertheless, the success of the third and final free flight test provides a solid foundation to move forward in follow on projects addressing these issues as highlighted in the technology roadmap for future GEMS development.

  14. Environmental assessment of general-purpose heat source safety verification testing

    International Nuclear Information System (INIS)

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE's mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned

  15. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  16. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  17. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  18. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  19. Inequality and Trust: Testing a Mediating Relationship for Environmental Sustainability

    Directory of Open Access Journals (Sweden)

    Eric Kemp-Benedict

    2013-02-01

    Full Text Available Instrumental arguments linking inequality to environmental sustainability often suppose a negative relationship between inequality and social cohesion. While social cohesion is difficult to measure, there are measures of a narrower concept, social trust, and empirical studies have shown that social trust is negatively related to inequality. In this paper we test whether at least part of the observed relationship may be explained by income level, rather than income distribution. We use individual response data from the World Values Survey at the income decile level, and find evidence that income level is indeed important in explaining differences in levels of social trust, but it is insufficient to explain all of the dependence. In the sample used for the study, we find that both income level and income distribution help explain differences in social trust between countries.

  20. NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health

    Science.gov (United States)

    Holubec, Keith; Connolly, Janis

    2010-01-01

    This slide presentation reviews the history, and development of NASA-STD-3001, NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health, and the related Human Integration Design Handbook. Currently being developed from NASA-STD-3000, this project standard currently in review will be available in two volumes, (i.e., Volume 1 -- VCrew Health and Volume 2 -- Human Factors, Habitability, and Environmental Health) and the handbook will be both available as a pdf file and as a interactive website.

  1. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  2. Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    Science.gov (United States)

    2010-04-08

    shallow- rooted , mesophylic plant species that Chapter 3. Affected Environment Final Draft Environmental Assessment - California Space Center...buckwheat flowers and buds where the larvae feed until maturation. Upon maturation larvae burrow into the soil and pupate, usually within the root and...terrain, sharp or protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle

  3. Overlapping and permeability: Research on the pattern hierarchy of communication space and design strategy based on environmental behavior

    Science.gov (United States)

    Leilei, Sun; Liang, Zhang; Bing, Chen; Hong, Xi

    2017-11-01

    This thesis is to analyze the basic pattern hierarchy of communication space by using the theory of environmental psychology and behavior combined with relevant principles in architecture, to evaluate the design and improvement of communication space in specific meaning, and to bring new observation ideas and innovation in design methods to the system of space, environment and behavior.

  4. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  5. Next Steps Toward Understanding Human Habitation of Space: Environmental Impacts and Mechanisms

    Science.gov (United States)

    Globus, Ruth

    2016-01-01

    Entry into low earth orbit and beyond causes profound shifts in environmental conditions that have the potential to influence human productivity, long term health, and even survival. We now have evidence that microgravity, radiation and/or confinement in space can lead to demonstrably detrimental changes in the cardiovascular (e.g. vessel function, orthostatic intolerance), musculoskeletal (muscle atrophy, bone loss) and nervous (eye, neurovestibular) systems of astronauts. Because of both the limited number of astronauts who have flown (especially females) and the high degree of individual variability in the human population, important unanswered questions about responses to the space environment remain: What are the sex differences with respect to specific physiological systems? Are the responses age-dependent and/or reversible after return to Earth? Do observed detrimental changes that resemble accelerated aging progress continuously over time or plateau? What are the mechanisms of the biological responses? Answering these important questions certainly demands a multi-pronged approach, and the study of multicellular model organisms (such as rodents and flies) already has provided opportunities for exploring those questions in some detail. Recent long duration spaceflight experiments with rodents show that mice in space provide a mammalian model that uniquely combines the influence of reduced gravitational loading with increased physical activity. In addition, multiple investigators have shown that ground-based models that simulate aspects of spaceflight (including rodent hind limb unloading to mimic weightlessness and exposure to ionizing radiation), cause various transient and persistent detrimental consequences in multiple physiological systems. In general, we have found that adverse skeletal effects of simulated weightlessness and space radiation when combined, can be quantitatively, if not qualitatively, different from the influence of each environmental

  6. Space use optimisation and sustainability-environmental comparison of international cases.

    Science.gov (United States)

    de Wilde, Sebastiaan; van den Dobbelsteen, Andy

    2004-11-01

    As a follow-up to our first paper in this journal, this paper discusses projects involving intensive and multiple use of space recently completed or still being developed around railway stations in London (Broadgate and Canary Wharf), Paris (Seine Rive Gauche and La Défense) and Amsterdam (Zuidas and Bijlmer). The cases were compared on the basis of spatial, functional and environmental indicators, as treated in our first paper. The environmental performance of each of the cases was determined through comparison with a theoretic reference project for an equal number of users, yet with average West-European urban values for spatial, functional and environmental properties. The case studies revealed that a high floor space index is easily achievable in urban plans, implying efficient use of land and preservation of green area outside the city. For a mono-functional office area it is easier to achieve a high FSI than for a functionally diverse area with, e.g. apartments and shops. Therefore, with respect to a reference functionally equal to the cases, the predominant office character of Canary Wharf, Broadgate and La Défense results in good environmental performance. However, on the basis of a functionally diverse reference, for which monofunctional cases were enlarged with additional area for housing and amenities, the varied areas of Zuidas and Seine Rive Gauche perform best. With respect to average urban plans, the cases achieved environmental improvement of factor 1.5. This performance is restricted by the energy consumption of buildings, which has by far the most influence on the end result. The impact of stacking on the use of building materials and energy consumption of buildings is limited, and specific sustainability measures on the building scale were not involved in the calculations. The environmental benefits of intensive and multiple use of space are mainly demonstrated by the great improvement factors for the green area preserved and transport fuel

  7. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  8. Environmental monitoring and research at the John F. Kennedy Space Center

    Science.gov (United States)

    Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.

    1992-01-01

    The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.

  9. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    Science.gov (United States)

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  10. Space Toxicology: Environmental Health Considerations during Spaceflight Operations and Potential Paths for Research

    Science.gov (United States)

    Khan-Mayberry, Noreen N.; Sundaresan, Alemalu

    2009-01-01

    Space Toxicology is a specialized discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids [1]. Astronaut explorers face unique challenges to their health while working and living with limited resources for rescue and medical care during space operation. At its core the practice of space toxicology to identify, assess and predict potential chemical contaminants and limit the astronaut s exposure to these environmental factors in order to protect crew health. Space toxicologists are also charged with setting safe exposure limits that will protect the astronaut against a multitude of chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space, toxicological risks are gauged and managed within the context of isolation, continual exposures, reuse of air and water, limited rescue options, and the necessary use of highly toxic compounds required for propulsion. As the space program move towards human presence and exploration other celestial bodies in situ toxicological risks, such as inhalation of unusual and/or reactive mineral dusts must also be analyzed and controlled. Placing humans for long-term presence in space creates several problems and challenges to the long-term health of the crew, such as bone-loss and immunological challenges and has spurred research into acute, chronic and episodic exposure of the pulmonary system to mineral dusts [2]. NASA has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. In order to protect astronaut health, NASA is now investigating the toxicity of this unique class of dusts. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar

  11. 78 FR 49287 - Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing...

    Science.gov (United States)

    2013-08-13

    ...; MMAA104000] Environmental Assessment for Potential Lease Issuance and Marine Hydrokinetic Technology Testing... important environmental issues associated with data collection and technology testing activities (76 FR... Availability of a Revised Environmental Assessment and a Finding of No Significant Impact. SUMMARY: BOEM has...

  12. Optimized Environmental Test Sequences to Ensure the Sustainability and Reliability of Marine Weapons

    Directory of Open Access Journals (Sweden)

    Jung Ho Yang

    2014-11-01

    Full Text Available In recent years, there has been an increase in the types of marine weapons used in response to diverse hostile threats. However, because marine weapons are only tested under a single set of environmental conditions, failures due to different environmental stresses have been difficult to detect. Hence, this study proposes an environmental test sequence for multi-environment testing. The environmental test sequences for electrical units described in the international standard IEC 60068-1, and for military supply described in the United States national standard MIL-STD-810G were investigated to propose guidelines for the appropriate test sequences. This study demonstrated the need for tests in multiple environments by investigating marine weapon accidents, and evaluated which environmental stresses and test items have the largest impacts on marine weapons using a two-phase quality function deployment (QFD analysis of operational scenarios, environmental stresses, and environmental test items. Integer programming was used to determine the most influential test items and the shortest environmental test time, allowing us to propose optimal test procedures. Based on our analysis, we developed optimal environmental test sequences that could be selected by a test designer.

  13. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  14. Producing Gorongosa: Space and the Environmental Politics of Degradation in Mozambique

    Directory of Open Access Journals (Sweden)

    Michael Madison Walker

    2015-01-01

    Full Text Available This article examines the spatial production of the greater Gorongosa ecosystem, linking the production of space with scientific discourses on environmental degradation. Ecological research conducted in Gorongosa National Park (GNP in the 1960s established the spatial contours and produced the greater Gorongosa ecosystem that is continually under threat from Mozambican cultivators. This discursive production and its material effects obscure a long history of human occupancy and transformation of the landscape that is now categorised as a national park. The use of aerial surveys and satellite imagery by conservationists to chart biophysical changes in the landscape is central to the spatial production of the greater Gorongosa ecosystem. The knowledge produced through these ways of seeing the landscape is used to justify various socio-technical and legal interventions to protect the environment. Through analysing the discourse on human-induced environmental degradation in GNP between 2005 and 2010, I suggest that when nature and space are taken as self evident by conservation practitioners, there is a danger of reproducing narratives of environmental degradation that simplify historically dynamic interactions between people, institutions, and their biophysical surroundings, and serve as further justification for intervening in the lives and livelihoods of adjacent residents.

  15. A New Generation of Leaching Tests – The Leaching Environmental Assessment Framework

    Science.gov (United States)

    Provides an overview of newly released leaching tests that provide a more accurate source term when estimating environmental release of metals and other constituents of potential concern (COPCs). The Leaching Environmental Assessment Framework (LEAF) methods have been (1) develo...

  16. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  17. Space shuttle pilot-induced-oscillation research testing

    Science.gov (United States)

    Powers, B. G.

    1984-01-01

    The simulation requirements for investigation of pilot-induced-oscillation (PIO) characteristics during the landing phase are discussed. Orbiters simulations and F-8 digital fly-by-wire aircraft tests are addressed.

  18. Space reactor fuel element testing in upgraded TREAT

    International Nuclear Information System (INIS)

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ∼60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ∼100 MW/L may be achievable

  19. Space reactor fuel element testing in upgraded TREAT

    Science.gov (United States)

    Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.

    1993-01-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.

  20. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  1. Dock Sud's environmental pollution: Spatial representations, space representation and spatial practices in peripheral neighborhoods

    Directory of Open Access Journals (Sweden)

    Sandra Valeria Ursino

    2012-01-01

    Full Text Available In this article, we present some of the results and argumentative lines used in the analysis of the field work carried out in the neighborhoods of Porst, Danubio and Villa Inflamable, in the Dock Sud area, located in the district of Avellaneda, province de Buenos Aires, during 2010 and 2011. Within this framework, we observed and recorded the inhabitants' usual routes around the neighborhood, which is environmentally polluted but which has also been symbolically appropriated. Along these lines then, our general aim was to learn about social representations, representation spaces and the spatial practices of the inhabitants of the most affected neighborhoods of Dock Sud due to the area's environmental issues. To this end, there was a reconstruction of the subjects' practices in the neighborhood, of the hegemonic discourse about the pollution in this place and, finally, the population's conflict and struggle practices

  2. NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives

    Science.gov (United States)

    Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

  3. Testing space weather connections in the solar system

    Science.gov (United States)

    Grison, B.; Souček, J.; Krupař, V.; Píša, D.; Santolík, O.; Taubenschuss, U.; Němec, F.

    2017-09-01

    This study aims at testing and validating tools for prediction of the impact of solar events in the vicinity of inner and outer solar system planets using in-situ spacecraft data (primarily MESSENGER, STEREO and ACE, but also VEX and Cassini), remote Jovian observations (Hubble telescope, Nançay decametric array), existing catalogues (HELCATS and Tao et al. (2005)) and the tested propagating models (the ICME radial propagation tool of the CDPP and the 1-D MHD code propagation model presented in Tao et al. (2005)).

  4. Assessment of environmental effects on Space Station Freedom Electrical Power System

    Science.gov (United States)

    Lu, Cheng-Yi; Nahra, Henry K.

    1991-01-01

    Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.

  5. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  6. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  7. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  8. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  9. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  10. Tree growth and soil relations at the 1925 Wind River spacing test in coast Douglas-fir.

    Science.gov (United States)

    Richard E. Miller; Donald L. Reukema; Harry W. Anderson

    2004-01-01

    The 1925 Wind River spacing test is the earliest field trial seeking to determine the most appropriate spacing for planting Douglas-fir. Spacing treatments were not replicated, although individual spacings were subsampled by two to four tree-measurement plots. Previously, greater growth occurred at the wider spacings (10 and 12 ft) than at the closer spacings (4, 5, 6...

  11. Environmental testing of a prototypic digital safety channel, Phase I: System design and test methodology

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K.; Turner, G.W.; Mullens, J.A. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I&C) Qualification Program sponsored by the US Nuclear Regulatory Commission. The goal of this program is to establish the technical basis and acceptance criteria for the qualification of advanced I&C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALWRs) such as the Simplified Boiling Water Reactor (SBWR). It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALWRs. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines.

  12. Environmental testing of a prototypic digital safety channel, phase I: System design and test methodology

    International Nuclear Information System (INIS)

    Korsah, K.; Turner, G.W.; Mullens, J.A.

    1995-01-01

    A microprocessor-based reactor trip channel has been assembled for environmental testing under an Instrumentation and Control (I ampersand C) Qualification Program sponsored by the U.S. Nuclear Regulatory Commission. The goal of this program is to establish the technical basis for the qualification of advanced I ampersand C systems. The trip channel implemented for this study employs technologies and digital subsystems representative of those proposed for use in some advanced light-water reactors (ALNWS) such as the Simplified Boiling Water Reactor (SBNW) and AP600. It is expected that these tests will reveal any potential system vulnerabilities for technologies representative of those proposed for use in ALNWS. The experimental channel will be purposely stressed considerably beyond what it is likely to experience in a normal nuclear power plant environment, so that the tests can uncover the worst-case failure modes (i.e., failures that are likely to prevent an entire trip system from performing its safety function when required to do so). Based on information obtained from this study, it may be possible to recommend tests that are likely to indicate the presence of such failure mechanisms. Such recommendations would be helpful in augmenting current qualification guidelines

  13. Living green saves money. Personal environmental burden test

    International Nuclear Information System (INIS)

    2003-01-01

    Based on a number of questions one can calculate the environmental burden of a lifestyle and determine which measures can unburden the environment and how much money can be saved by changing a lifestyle [nl

  14. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  15. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Calo, Victor M.

    2013-01-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  16. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti

    2013-05-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  17. Final Environmental Impact Statement (EIS) for the Space Nuclear Thermal Propulsion (SNTP) program

    Science.gov (United States)

    1991-09-01

    A program has been proposed to develop the technology and demonstrate the feasibility of a high-temperature particle bed reactor (PBR) propulsion system to be used to power an advanced second stage nuclear rocket engine. The purpose of this Final Environmental Impact Statement (FEIS) is to assess the potential environmental impacts of component development and testing, construction of ground test facilities, and ground testing. Major issues and goals of the program include the achievement and control of predicted nuclear power levels; the development of materials that can withstand the extremely high operating temperatures and hydrogen flow environments; and the reliable control of cryogenic hydrogen and hot gaseous hydrogen propellant. The testing process is designed to minimize radiation exposure to the environment. Environmental impact and mitigation planning are included for the following areas of concern: (1) Population and economy; (2) Land use and infrastructure; (3) Noise; (4) Cultural resources; (5) Safety (non-nuclear); (6) Waste; (7) Topography; (8) Geology; (9) Seismic activity; (10) Water resources; (11) Meteorology/Air quality; (12) Biological resources; (13) Radiological normal operations; (14) Radiological accidents; (15) Soils; and (16) Wildlife habitats.

  18. Reliability Testing of Cable on Environmental Humidity Condition

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Puradwi, I.W; Sony T, D.T; Handoyo, Demon; Mulyanto, Dwijo; Kusmono, Slamet

    2000-01-01

    Reliability testing of cable on humidified condition has been carried out. As a result, the failure occurred due to reduction of current by increasing the resistance on rising temperature testing. For humidified condition the result which are observed did not significant at the stated condition of testing. The needed time up to the failure criteria increased as a temperature testing increased

  19. Preliminary study of environmental parameters associated with the feasibility of a polygeneration plant at Kennedy Space Center

    International Nuclear Information System (INIS)

    Barnes, G.D.

    1982-01-01

    The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established

  20. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  1. Public views evening engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Over the past year, more than 20,000 people came to Stennis Space Center to witness the 'shake, rattle and roar' of one of the world's most sophisticated engines. Stennis Space Center in south Mississippi is NASA's lead center for rocket propulsion testing. StenniSphere, the visitor center for Stennis Space Center, hosted more than 250,000 visitors in its first year of operation. Of those visitors, 26.4 percent were from Louisiana.

  2. Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

  3. Earthquakes, public spaces and (the social construction of environmental disasters. The role of public space for risk mitigation and urban redevelopment and the role of environmental disasters for re­ assessing the ‘space of the Public’.

    Directory of Open Access Journals (Sweden)

    Barbara Pizzo

    2014-02-01

    Full Text Available This paper stems from long­lasting research dedicated to urban risk reduction through a planning approach. It focuses on public space, proposing an inversion of the usual perspective: instead of considering public spaces for risk mitigation and urban redevelopment, here the imperatives of environmental safety and urban resilience can be instrumental for exploring the meaning and role of the public space from a different, rather compelling point of view. One starting point is the concept of SUM, Strategic Urban Structure (or Framework, from the Italian “Struttura urbana minima”, which has been introduced in order to set out the contents of urban risk reduction in local administration agendas and particularly into ordinary planning processes. The SUM has been conceived both as an analytical and a normative/planning tool. Public spaces are the backbone of both urban structure and of the SUM. From their features, localization, distribution within thesettlement, and their systemic characters, largely depend the capacity of a town to positively react to a seismic event. Six case­studies of small and medium­size historic towns in the Umbria Region (one of the many Italian Regions with a high level of seismic risk, help to understand the complexities and problems related to seismic prevention within historical centres, and the conflicts between conservation of the heritage and the imperatives of environmental safety. In order to overcome possible criticalities identified in a SUM, it is necessary to provide alternatives to its functioning through redundant elements. The concept of redundancy, which is strictly related to that of uncertainty, is very interesting and promising in this field of research.

  4. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  5. The Environmental Design of Working Spaces in Equatorial Highlands Zones: The Case of Bogotá

    Directory of Open Access Journals (Sweden)

    Joana Carla Soares Gonçalves

    2015-10-01

    Full Text Available Recent empirical investigations have indicated that the majority of occupants in office buildings would appreciate contact with the external environment, especially in cities where the climate is mild for part of the year. Supported by the possibilities of adaptive thermal models, the design of naturally ventilated buildings has been elaborated since the decade of 1990s. More communal areas rather than private ones are demanded due to the importance of social interaction and knowledge transfer among employees. In this context, this paper investigates the possibility of daylight and thermal comfort in naturally ventilated working environments, located in cities of mild climatic conditions, by redefining the parameters of a façade’s design and exploring coupling strategies with the outdoors. For this purpose, the city of Bogotá (Latitude 4°7′ N, in Colombia, a place with great potential for passive strategies, is taken as the geographic context of this research, which is supported by fieldwork with occupants of 37 office buildings and analytical work. The survey revealed that being close to a window is valued by the majority. Furthermore, 50% would like to have informal areas and outdoor spaces attached to their working environments. In additithe analytical studies showed how the combination of a set of environmental design strategies, including a schedule for coupling and decoupling of indoor spaces with the outdoors and a variation of occupancy density, made thermal comfort possible in free running working spaces in Bogotá.

  6. Heat pumps in urban space heating systems: Energy and environmental aspects

    International Nuclear Information System (INIS)

    Carlini, M.; Impero Abenavoli, R.; Rome Univ. La Sapienza

    1991-01-01

    A statistical survey is conducted of air pollution in the city of Rome (Italy) due to conventional building space heating systems burning fossil fuels. The survey identifies the annual consumption of the different fuels and the relative amounts of the various pollutants released into the atmosphere by the heating plants, e.g., sulfur and nitrogen oxides, carbon monoxide, etc. Comparisons are then made between the ratios of urban heating plant air pollutants produced per tonne of fuel employed and those for ENEL (Italian National Electricity Board) coal, oil and natural gas fired power plants, in order to demonstrate the better environmental performances of the utility operated energy plants. The building space heating system energy consumption and pollution data are then used in a cost benefit analysis favouring the retrofitting of conventional heating systems with heat pump systems to obtain substantial reductions in energy consumption, heating bills and urban air pollution. The use of readily available, competitively priced and low polluting (in comparison with fuel oil and coal) methane as the energy source for space heating purposes is recommended. The paper also notes the versatility of the heat pump systems in that they could also be used for summer air conditioning

  7. Space diffuses multiobjective analysis: A tool to locate lineal projects with a focus of environmental management

    International Nuclear Information System (INIS)

    Patricia Jaramillo A Liliana Vinasco T

    2005-01-01

    This paper presents a methodological proposal that is developed to identify corridors for lineal projects (highways, transmission lines, pipelines, etc), with environmental management criteria, when there is not complete information about the area of influence of the project, or some of the information is imprecise. Also a computational module is developed that allow the use of the methodological proposal. The proposal is based in the fuzzy multiobjective analysis concept, which takes elements of the diffuse logic and the traditional Multiobjective Analysis; the first one, it conserves its properties with imprecise information and of the second allows, the minimization of multiple objective correspond to the least environmental the physical, biological, cultural, economical and political dimensions of the environment uses the Geographic Information SIG this proposal is being constituted a complete tool for taking decisions in which space attributed is included. The FMA is a recent technique that is in development [S integration to GIS is stiller. The proposal is a contribution to the construction of a conceptual scheme for future applications in this aspects constitute a tool for the environmental planning which decreasing the risks, future cost analysis of natural resources and human group

  8. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills

    2007-10-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

  9. Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)

    International Nuclear Information System (INIS)

    Cathy Wills

    2007-01-01

    The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders

  10. Environmental Socialization: Quantitative Tests of the Childhood Play Hypothesis

    Science.gov (United States)

    Robert D. Bixler; Myron F. Floyd; William E. Hammitt

    2002-01-01

    Two studies with adolescent youth (N = 1,376, N = 450) help clarify the relationship between childhood play experiences in wild environments and later environmental preferences in the life domains of work, leisure, and school. Respondents reporting having played in wild environments had more positive perceptions of natural environments, outdoor recreation activities,...

  11. Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Annette L. Schafer; Lloyd C. Brown; David C. Carathers; Boyd D. Christensen; James J. Dahl; Mark L. Miller; Cathy Ottinger Farnum; Steven Peterson; A. Jeffrey Sondrup; Peter V. Subaiya; Daniel M. Wachs; Ruth F. Weiner

    2013-11-01

    Environmental and health impacts are presented for activities associated with transient testing of nuclear fuel and material using two candidate test reactors. Transient testing involves irradiation of nuclear fuel or materials for short time-periods under high neutron flux rates. The transient testing process includes transportation of nuclear fuel or materials inside a robust shipping cask to a hot cell, removal from the shipping cask, pre-irradiation examination of the nuclear materials, assembly of an experiment assembly, transportation of the experiment assembly to the test reactor, irradiation in the test reactor, transport back to the hot cell, and post-irradiation examination of the nuclear fuel or material. The potential for environmental or health consequences during the transportation, examination, and irradiation actions are assessed for normal operations, off-normal (accident) scenarios, and transportation. Impacts to the environment (air, soil, and groundwater), are assessed during each phase of the transient testing process. This report documents the evaluation of potential consequences to the general public. This document supports the Environmental Assessment (EA) required by the U.S. National Environmental Policy Act (NEPA) (42 USC Subsection 4321 et seq.).

  12. Preliminary results of a test of a longitudinal phase-space monitor

    International Nuclear Information System (INIS)

    Kikutani, Eiji; Funakoshi, Yoshihiro; Kawamoto, Takashi; Mimashi, Toshihiro

    1994-01-01

    A prototype of a longitudinal phase-space monitor has been developed in TRISTAN Main Ring at KEK. The principle of the monitor and its basic components are explained. Also a result of a preliminary beam test is given. (author)

  13. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-03-15

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  14. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    Science.gov (United States)

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  15. Experimental Test Rig for Optimal Control of Flexible Space Robotic Arms

    Science.gov (United States)

    2016-12-01

    the test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to...test bed design. A single link arm with a torsional, helical spring at the base was finalized to investigate the effects of coupling due to movement...Source: [4]. A challenge with space systems is that it costs a lot of money to put a satellite or spacecraft into space. Estimates to send one kilogram

  16. Defining criteria for good environmental journalism and testing their applicability: An environmental news review as a first step to more evidence based environmental science reporting.

    Science.gov (United States)

    Rögener, Wiebke; Wormer, Holger

    2017-05-01

    While the quality of environmental science journalism has been the subject of much debate, a widely accepted benchmark to assess the quality of coverage of environmental topics is missing so far. Therefore, we have developed a set of defined criteria of environmental reporting. This instrument and its applicability are tested in a newly established monitoring project for the assessment of pieces on environmental issues, which refer to scientific sources and therefore can be regarded as a special field of science journalism. The quality is assessed in a kind of journalistic peer review. We describe the systematic development of criteria, which might also be a model procedure for other fields of science reporting. Furthermore, we present results from the monitoring of 50 environmental reports in German media. According to these preliminary data, the lack of context and the deficient elucidation of the evidence pose major problems in environmental reporting.

  17. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    OpenAIRE

    Gill, K; Grabit, R; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main env...

  18. Thermo-mechanical design and testing of a microbalance for space applications

    Science.gov (United States)

    Scaccabarozzi, Diego; Saggin, Bortolino; Tarabini, Marco; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2014-12-01

    This work focuses on the thermo-mechanical design of the microbalance used for the VISTA (Volatile In Situ Thermogravimetry Analyzer) sensor. VISTA has been designed to operate in situ in different space environments (asteroids, Mars, icy satellites). In this paper we focus on its application on Mars, where the expected environmental conditions are the most challenging for the thermo-mechanical design. The microbalance holding system has been designed to ensure piezoelectric crystal integrity against the high vibration levels during launch and landing and to cope with the unavoidable thermo-elastic differential displacements due to CTE and temperature differences between the microbalance elements. The crystal holding system, based on three symmetrical titanium supports, provides also the electrical connections needed for crystal actuation, microbalance heating and temperature measurement on the electrode area. On the microbalance crystal surfaces the electrodes, a micro film heater (optimized to perform thermo-gravimetric analysis up to 400 °C) and a resistive thermometer are deposited through a vacuum sputtering process. A mockup of the system has been manufactured and tested at the expected vibration levels and the thermal control effectiveness has been verified in thermo-vacuum environment.

  19. When unfamiliarity matters: Changing environmental context between study and test affects recognition memory for unfamiliar stimuli

    NARCIS (Netherlands)

    Russo, R.; Ward, G.; Geurts, H.M.; Scheres, A.P.J.

    1999-01-01

    Performance in recognition memory has been shown to be relatively insensitive to the effect of environmental context changes between study and test. Recent evidence (P. Dalton, 1993) showed that environmental context changes between study and test affected recognition memory discrimination for

  20. 78 FR 29698 - Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA

    Science.gov (United States)

    2013-05-21

    ...] Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA AGENCY: Animal and... Canine Lymphoma Vaccine, DNA. The environmental assessment, which is based on a risk analysis prepared to... biological product: Requester: Merial, Inc. Product: Canine Lymphoma Vaccine, DNA. Possible Field Test...

  1. Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration

    Science.gov (United States)

    2013-12-01

    and compliance issues associated with the use of zinc phosphate and chromate/ chrome containing conversion coatings while maintaining military...safety, and occupational health risks associated with the use of zinc phosphate and chromate/ chrome -containing conversion coatings. There is a need to...zirconium-based pretreatment will be shown to be both environmentally acceptable (no hazardous air pollutants or heavy metals such as hexavalent chromium

  2. Test Area B-70 Final Range Environmental Assessment, Revision 1

    Science.gov (United States)

    2009-06-01

    environmental impacts to Eglin ecosystems. Some of the main invasive non-native species of concern are Chinese tallow, cogon grass , Japanese climbing fern...2003a). Typical plant species include St. John’s Wort (Hypericum brachyphyllum) around the margins with spikerush (Eleocharis spp.), yellow-eyed grass ...Karst Pond Yellow-eyed Grass Xyris longisepala SE -- Pineland Hoary Pea Tephrosia mohrii ST -- Pineland Wild Indigo Baptista calycosa var villosa ST

  3. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  4. Carcinogenicity tests of certain environmental and industrial chemicals

    International Nuclear Information System (INIS)

    Weisburger, E.K.; Ulland, B.M.; Nam, J.; Gart, J.J.; Weisburger, J.H.

    1981-01-01

    Fourteen chemicals of varied uses were tested for carcinogenicity by oral administration in male and female Charles River CD rats. Under the conditions of the tests, propane sultone, propylene imine, and ethylenethiourea, in addition to the positive control N-2-fluorenylacetamide, were carcinogenic. Avadex, bis(2-chloroethyl) ether, the potassium salt of bis(2-hydroxyethyl) dithiocarbamic acid, ethylene carbonate, and semicarbazide hydrochloride were not carcinogenic under the test conditions. Dithiooxamide, glycerol alpha-monochlorohydrin, and thiosemicarbazide gave somewhat ambiguous results, though administered at high enough dose levels to be toxic. An inadequate number of animals survived treatments with sodium azide, sodium bisulfide, and vinylene carbonate, or the animals may not have received sufficiently high doses of the test chemicals to provide maximum test sensitivity. However, there were no indications that these three chemicals were carcinogenic under the test conditions

  5. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  6. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict...... real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  7. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  8. The effect of different environmental factors on force degradation of three common systems of orthodontic space closure.

    Science.gov (United States)

    Oshagh, Morteza; Khajeh, Farzaneh; Heidari, Somayeh; Torkan, Sepideh; Fattahi, Hamid Reza

    2015-01-01

    Different environmental conditions, such as high temperature or exposure to some chemical agents, may affect the force decay of different methods of space closure during orthodontic treatment. The aim of this in vitro study was to evaluate the force decay pattern in the presence of tea as a popular drink in some parts of the world and two mouthwashes that are usually prescribed by the orthodontist once the treatment is in progress. Elastic chain (EC), nickel-titanium (Ni-Ti) closed coil spring and tie-back (TB) method were used as the means of space closure. The specimens were placed in five different media: Hot tea, hot water (65°), chlorhexidine mouthwash, fluoride mouthwash and the control group (water at 37°). The specimens were stretched 25 mm and the elastic force of three systems was measured at the beginning of the study, after 24 h, after 1 week and after 3 weeks. One-way ANOVA was used to compare the results between the groups and Duncan test was carried out to compare the sets of means in different groups (P ≤ 0.05). Tea increases the force decay in the EC and TB groups. Oral mouthwashes also resulted in more rapid force decay than the control group. EC and Ni-Ti groups were not much affected in the presence of oral mouthwashes. Regarding the immersion media, TB method showed the biggest variation in different media and Ni-Ti coil spring was least affected by the type of media.

  9. Steady-State Calculation of the ATLAS Test Facility Using the SPACE Code

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Choi, Ki Yong; Kim, Kyung Doo

    2011-01-01

    The Korean nuclear industry is developing a thermalhydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). Several research and industrial organizations including KAERI (Korea Atomic Energy Research Institute) are participating in the collaboration for the development of the SPACE code. One of the main tasks of KAERI is to carry out separate effect tests (SET) and integral effect tests (IET) for code verification and validation (V and V). The IET has been performed with ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation) based on the design features of the APR1400 (Advanced Power Reactor of 1400MWe). In the present work the SPACE code input-deck for ATLAS is developed and used for simulation of the steady-state conditions of ATLAS as a preliminary work for IET V and V of the SPACE code

  10. Space-environmental tolerances in a cyanobacterium, Nostoc sp. HK-01

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yokobori, Shin-ichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Ajioka, Reiko; Yamagishi, Akihiko; Inoue, Kotomi

    2016-07-01

    We have been investigating the tolerances to space-environments of a cyanobacterium, Nostoc sp. HK-01 (hereafter referred to as HK-01). Dry colonies of HK-01 had high tolerance to dry conditions, but more detailed information about tolerance to high-temperature, UV, gamma-ray and heavy particle beams were not deeply investigated. The obtained dry colonies of HK-01 after exposure to each of the conditions described above were investigated. In all of the tested colonies of HK-01 after exposure, all or some of the cells in the colonies were alive. One of the purposes of space agriculture is growing plants on Mars. In the early stages, of our research, cyanobacteria are introduced on Mars to promote the oxidation of the atmosphere and the formation of soil from Mars's regolith. HK-01 will contribute to each of these factors in the future.

  11. A Note on Testing for Environmental Kuznets Curves

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, E.; Vollebergh, H.R.J.

    2001-05-20

    This paper casts doubt on empirical results based on panel estimations of an 'inverted-U' relationship between per capita GDP and pollution. Using a new data set for OECD countries on carbon dioxide emissions for the period 1960-1997, we find that the crucial assumption of homogeneity across countries is problematic. Decisively rejected are model specifications that feature even weaker homogeneity assumptions than are commonly used. Furthermore, our results challenge the existence of an overall Environmental Kuznets Curve for carbon dioxide emissions. 10 refs.

  12. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  13. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    Ronald B. Jackson

    2007-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress

  14. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Science.gov (United States)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (pperformance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature.

  15. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  16. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [Department of Energy, Albuquerque, NM (United States). National Nuclear Security Administration (NNSA); Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (United States)

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  17. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  18. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  19. The effect of environmental factors on job Performance using manual and mental tests

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2014-07-01

    Conclusion: Finding of the present research manifested that increase in noise and heat stress and also reduction in lighting lessen the speed of manual tests and time and accuracy of mathematical calculations. Therefore this result confirm the effects of various environmental factors on individuals’ job performance, in a way that by variation of different environmental factors, time of manual test and time and accuracy of mental tests would be changed.

  20. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  1. The image of public space on planned housing based on environmental and behavior cognition mapping (case study: Cemara Asri Estate)

    Science.gov (United States)

    Nirfalini Aulia, Dwira; Zahara, Aina

    2018-03-01

    Public spaces in a planned housing is a place of social interaction for every visitor of public space. The research on public space image uses four public spaces that meet the criteria of public space such as pedestrian sidewalks, public park, water front and worship place. Research on the perception of public space is interesting to investigate because housing development is part of the forming of a society that should design with proper architectural considerations. The purpose of this research is to know the image of public space on the planned housing in Medan City based on the mapping of environmental and behavior cognition and to know the difference between the image that happened to four group respondent. The research method of architecture used in this research is a descriptive qualitative method with case study approach (most similar case). Analysis of data used using mental maps and questionnaires. Then the image of public space is formed based on the elements of public space, wayfinding, route choice, and movement. The image difference that occurs to the housing residents and architecture students, design and planning are outstanding, visitors to the public housing space is good, people who have never visited the public space is inadequate.

  2. Comprehensive baseline environmental audit of former underground test areas in Colorado, Nevada, and New Mexico

    International Nuclear Information System (INIS)

    1994-05-01

    This report documents the results of the Comprehensive Baseline Environmental Audit of Former Underground Test Areas (FUTAS) in the States of Colorado, Nevada, and New Mexico. DOE and contractor systems for management of environmental protection activities on the Nevada Test Site (NTS) were not within the scope of the audit. The audit was conducted May 16-May 26, 1994, by the Office of Environmental Audit (EH-24). DOE 5482.1 B, open-quotes Environment, Safety, and Health Appraisal Programclose quotes, establishes the mission of EH-24, which is to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is to enhance environmental protection and minimize risk to public health and the environment. EH-24 accomplishes its mission using systematic and periodic evaluations of DOE's environmental programs within line organizations and supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. These evaluations function as a vehicle through which the Secretary and program managers are apprised of the status and vulnerabilities of Departmental environmental activities and environmental management systems. Several types of evaluations are conducted, including: (1) comprehensive baseline environmental audits; (2) routine environmental audits; (3) environmental management assessments; and (4) special issue reviews

  3. Quality Assurance Programme for the Environmental Testing of the CMS Tracker Optical Links

    CERN Document Server

    Gill, K; Troska, Jan K; Vasey, F; Zanet, A

    2001-01-01

    The QA programme is reviewed for the environmental compliance tests of commercial off-the-shelf (COTS) components for the CMS Tracker Optical link system. These environmental tests will take place in the pre-production and final production phases of the project and will measure radiation resistance, component lifetime, and sensitivity to magnetic fields. The evolution of the programme from small-scale prototype tests to the final pre-production manufacturing tests is outlined and the main environmental effects expected for optical links operating within the Tracker are summarised. A special feature of the environmental QA programme is the plan for Advance Validation Tests (AVT's) developed in close collaboration with the various industrial partners. AVT procedures involve validation of a relatively small set of basic samples in advance of the full production of the corresponding batch of devices. Only those lots that have been confirmed as sufficiently rad-tolerant will be purchased and used in the final prod...

  4. Rapid testing and identification of actuator using dSPACE real-time emulator

    Science.gov (United States)

    Xie, Daocheng; Wang, Zhongwei; Zeng, Qinghua

    2011-10-01

    To solve the problem of model identification of actuator in control system design of aerocraft, testing system based on dSPACE emulator is established, sending testing signal and receiving feedback voltage are realized using dSPACE interactive cards, communication between signal generating equipment and feedback voltage acquisition equipment is synchronized. This paper introduces the hardware architecture and key technologies of the simulation system. Constructing, downloading and calculating of the testing model is finished using dSPACE emulator, D/A transfer of testing signal is realized using DS2103 card, DS2002 card transfer the feedback voltage to digital value. Filtering module is added to the signal acquisition, for reduction of noise interference in the A/D channel. Precision of time and voltage is improved by setting acquisition period 1ms. The data gathered is recorded and displayed with Controldesk tools. The response of four actuators under different frequency are tested, frequency-domain analysis is done using least square method, the model of actuator is identified, simulation data fits well with real response of the actuator. The testing system created with dSPACE emulator satisfies the rapid testing and identification of actuator.

  5. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized

  6. 1990 Environmental monitoring report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Hwang, A.; Phelan, J.; Wolff, T.; Yeager, G.; Dionne, D.; West, G.; Girard, C.

    1991-05-01

    There is no routine radioactive emission from Sandia National Laboratories, Tonopah Test Range (SNL, TTR). However, based on the types of test activities such as air drops, gun firings, ground- launched rockets, air-launched rockets, and other explosive tests, possibilities exist that small amounts of depleted uranium (DU) (as part of weapon components) may be released to the air or to the ground because of unusual circumstances (failures) during testing. Four major monitoring programs were used in 1990 to assess radiological impact on the public. The EPA Air Surveillance Network (ASN) found that the only gamma (γ) emitting radionuclide on the prefilters was beryllium-7 ( 7 Be), a naturally-occurring spallation product formed by the interaction of cosmic radiation with atmospheric oxygen and nitrogen. The weighted average results were consistent with the area background concentrations. The EPA Thermoluminescent Dosimetry (TLD) Network and Pressurized Ion Chamber (PIC) reported normal results. In the EPA Long-Term Hydrological Monitoring Program (LTHMP), analytical results for tritium ( 3 H) in well water were reported and were well below DOE-derived concentration guides (DCGs). In the Reynolds Electrical and Engineering Company (REECo) Drinking Water Sampling Program, analytical results for 3 H, gross alpha (α), beta (β), and γ scan, strontium-90 ( 90 Sr) and plutonium-239 ( 239 Pu) were within the EPA's primary drinking water standards. 29 refs., 5 figs., 15 tabs

  7. 47 CFR 2.1509 - Environmental and duration tests.

    Science.gov (United States)

    2010-10-01

    ... TREATY MATTERS; GENERAL RULES AND REGULATIONS FCC Procedure for Testing Class A, B and S Emergency... measured over an ambient temperature from −20° to +55 °C at intervals of not more than 10 °C. A period of... oscillator to stabilize at that temperature. Step (3) Measure the carrier frequency in accordance with the...

  8. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Science.gov (United States)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  9. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  10. Assessment of the SPACE Code Using the ATLAS SLB-GB-01 Test

    International Nuclear Information System (INIS)

    Kim, Yo Han; Yang, Chang Keun; Kim, Seyun

    2013-01-01

    The Korea Nuclear Hydro and Nuclear Power Co. (KHNP) has developed a safety analysis code, called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE) by collaborative works with other Korean nuclear industries. The SPACE is a general-purpose best-estimated two-phase three-field thermal-hydraulic analysis code to analyze the safety and performance of pressurized water reactors (PWRs). The SPACE code has sufficient functions and capabilities to replace outdated vendor supplied codes and to be used for the safety analysis of operating PWRs and the design of advanced reactors. As a result of the second phase of the SPACE code development project, the 2.14 version of the code was released through the successive various V and V works using integral loop test data or plant operating data. In this study, the ATLAS main steam-line break (MSLB) test, SLB-GB-01, was simulated as a V and V work. The results were compared with the measured data. The ATALS MSLB test, SLB-GB-01, was simulated using the SPACE code. The results were compared with experimental data. Through the simulation, it was concluded that the SPACE code can effectively simulate MSLB accidents

  11. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    Science.gov (United States)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  12. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  13. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  14. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  15. Environmental monitoring associated with nuclear testing in French Polynesia

    International Nuclear Information System (INIS)

    Coulon, R.; Arnould, C.; Bory, P.; Ducousso, R.; Sarbach, J.

    2009-01-01

    The realization of the programme of nuclear experiments in French Polynesia was accompanied by the installation by a radiological monitoring device of the environment, either the physical environment or biological, continental or marine, vegetable or animal, in order to make sure of the absence of risk for the populations. This device took all its importance with the tests carried out in the atmosphere between 1966 and 1974. Its implementation required important means in hardware and manpower with the intervention of civil and military or sometimes mixed organizations. The monitoring was naturally done in a very complete way in the zones close to the sites of tests, but also on the whole of the Polynesian territory, in particular the most populated atolls. It also carried, but in a less extended way, on remote zones, like the Andean countries, because of their geographical location. The results obtained by the various involved laboratories were gathered and interpreted in order to ensure information of the persons in charge and the authorities, in particular in Polynesia and through them the population. They were each year transmitted to the scientific committee of the United Nations for the study of the effects of ionizing radiations (UNSCEAR). The surveillance device is thus described, apart from the zones close to the zones of testing, with the presentation of the various implied organizations and the various monitoring programs. (authors)

  16. Environmental Hazard Assessment of Jarosite Waste Using Batch Leaching Tests

    Directory of Open Access Journals (Sweden)

    M. Kerolli – Mustafa

    2018-01-01

    Full Text Available Jarosite waste samples from Trepça Zinc Industry in Kosovo were subjected to two batch leaching tests as an attempt to characterize the leaching behavior and mobility of minor and major elements of jarosite waste. To achieve this, deionized water and synthetic acidic rain leaching tests were employed. A two-step acidic treatment in microwave digestion system were used to dissolve jarosite waste samples, followed by determination of Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, Pb, S, Si, Sr, and Zn by inductively coupled plasma optical emission spectrometry (ICP-OES. The validation of the procedure was performed by the analysis of two geochemical reference materials, S JR-3 and S Jsy-1. Two toxicity leaching tests revealed a high metal releasing of Cd, Cu, Ni, Mn, Pb, Zn, and As, and the metal release risk for these elements is still very high due the low pH and acid rain. The statistical analysis showed useful data information on the relationship between elements in jarosite samples in two different extraction conditions (deionized water and synthetic acid rain.

  17. Multipurpose Cooling Garment for Improved Space Suit Environmental Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these...

  18. Characterising and testing deep UV LEDs for use in space applications

    International Nuclear Information System (INIS)

    Hollington, D; Baird, J T; Sumner, T J; Wass, P J

    2015-01-01

    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability. (paper)

  19. Characterising and testing deep UV LEDs for use in space applications

    Science.gov (United States)

    Hollington, D.; Baird, J. T.; Sumner, T. J.; Wass, P. J.

    2015-12-01

    Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability.

  20. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  1. 76 FR 3075 - Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live...

    Science.gov (United States)

    2011-01-19

    ...] Availability of an Environmental Assessment for Field Testing Feline Leukemia Vaccine, Live Canarypox Vector... Feline Leukemia Vaccine, Live Canarypox Vector. The environmental assessment, which is based on a risk... ADDRESSES above for a link to Regulations.gov ). Requester: Merial, Inc. Product: Feline Leukemia Vaccine...

  2. 76 FR 81467 - Availability of an Environmental Assessment for Field Testing Swine Influenza Vaccine, RNA

    Science.gov (United States)

    2011-12-28

    ...] Availability of an Environmental Assessment for Field Testing Swine Influenza Vaccine, RNA AGENCY: Animal and... Vaccine, RNA. The environmental assessment, which is based on a risk analysis prepared to assess the risks...: Send your comment to Docket No. APHIS-2011-0114, Regulatory Analysis and Development, PPD, APHIS...

  3. The Role of Alternative Testing Strategies in Environmental Risk Assessment of Engineered Nanomaterials

    OpenAIRE

    Hjorth, Rune; Holden, Patricia; Hansen, Steffen Foss; Colman, Ben; Grieger, Khara; Hendren, Christine

    2017-01-01

    Within toxicology there is a pressure to find new test systems and organisms to replace, reduce and refine animal testing. In nanoecotoxicology the need for alternative testing strategies (ATS) is further emphasized as the validity of tests and risk assessment practices developed for dissolved chemicals are challenged. Nonetheless, standardized whole organism animal testing is still considered the gold standard for environmental risk assessment. Advancing risk analysis of engineered nanomater...

  4. The development of an Infrared Environmental System for TOPEX Solar Panel Testing

    Science.gov (United States)

    Noller, E.

    1994-01-01

    Environmental testing and flight qualification of the TOPEX/POSEIDON spacecraft solar panels were performed with infrared (IR) lamps and a control system that were newly designed and integrated. The basic goal was more rigorous testing of the costly panels' new composite-structure design without jeopardizing their safety. The technique greatly reduces the costs and high risks of testing flight solar panels.

  5. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  6. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...

  7. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    Science.gov (United States)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  8. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  9. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  10. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Energy Technology Data Exchange (ETDEWEB)

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  11. Environmental Testing of Tritium-Phosphor Glass Vials for Use in Long-Life Radioisotope Power Conversion Units

    Science.gov (United States)

    Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie

    2017-01-01

    Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.

  12. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  13. WALKABILITY IN HISTORIC URBAN SPACES: TESTING THE SAFETY AND SECURITY IN MARTYRS' SQUARE IN TRIPOLI

    Directory of Open Access Journals (Sweden)

    Khairi M. Al-bashir Abdulla

    2017-11-01

    Full Text Available Much of the built environment design literature focuses on a composite of walkable spaces variables such as density, diversity, and destination accessibility.  One of the most effective factors in walkability is “safety and security”. There is an evident gap in understanding the perceived ability of Libyan public spaces to support walkability. This paper aims to investigate the effectiveness of “walkability” in traditional Libyan urban spaces and analyse the relationship between walking, a safe and secure environment, and its impact on a heritage site in Tripoli city centre. The perceived personal safety of 140 users of the heritage site “Martyrs' Square” were measured; this research is studying the quality of environment and users’ interaction with their environmental issues relating to the study area. Mixed methods were used in this research: this study used both quantitative and qualitative methods to gather information; the quantitative took the form of a questionnaire; and the qualitative took the form of observations. Analysis of quantitative data was conducted with SPSS software; the survey was conducted from August 2016 to September 2016. The results of this study are useful for urban planning, to classify the walkable urban space elements, which could improve the level of walkability in Libyan cities and create sustainable and liveable urban spaces.

  14. The exploitation of biomass for building space heating in Greece: Energy, environmental and economic considerations

    International Nuclear Information System (INIS)

    Michopoulos, A.; Skoulou, V.; Voulgari, V.; Tsikaloudaki, A.; Kyriakis, N.A.

    2014-01-01

    Highlights: • The oil substitution with biomass residues for heating buildings is examined. • Primary energy consumption from biomass results increased by 3–4% as compared to diesel oil. • CO 2 and SO 2 emissions are significantly higher with biomass than with diesel oil. • The examined substitution is economically attractive for the final consumers. - Abstract: The exploitation of forest and agricultural biomass residues for energy production may offer significant advantages to the energy policy of the relevant country, but it strongly depends on a number of financial, technological and political factors. The work in hand focuses on the investigation of the energy, environmental and financial benefits, resulting from the exploitation of forest and agricultural biomass residues, fully substituting the conventional fuel (diesel oil) for building space heating in Greece. For this investigation, the energy needs of a representative building are determined using the EnergyPlus software, assuming that the building is located across the various climate zones of Greece. Based on the resulting thermal energy needs, the primary energy consumption and the corresponding emissions are determined, while an elementary fiscal analysis is also performed. The results show that significant financial benefits for the end-user are associated with the substitution examined, even though increased emissions and primary energy consumption have been derived

  15. The Role of Alternative Testing Strategies in Environmental Risk Assessment of Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Holden, Patricia; Hansen, Steffen Foss

    2017-01-01

    ) workshop in Washington, D.C. and serves as the point of depature for this paper. Here we present the main outcomes by describing and defining the use of ATS for ENMs as well as discussing its future role in environmental risk science. We conclude that diversity in testing should be encouraged to avoid...... chemicals are challenged. Nonetheless, standardized whole organism animal testing is still considered the gold standard for environmental risk assessment. Advancing risk analysis of engineered nanomaterials (ENMs) through ATS was discussed in September 2014 at an international Society for Risk Analysis (SRA...... be utilized to skip uncertain environmental extrapolations and give rise to more accurate risk analysis....

  16. Combined Contamination and Space Environmental Effects on Solar Cells and Thermal Control Surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Scheiman, David A.; Stidham, Curtis R.

    1994-01-01

    For spacecraft in low Earth orbit (LEO), contamination can occur from thruster fuel, sputter contamination products and from products of silicone degradation. This paper describes laboratory testing in which solar cell materials and thermal control surfaces were exposed to simulated spacecraft environmental effects including contamination, atomic oxygen, ultraviolet radiation and thermal cycling. The objective of these experiments was to determine how the interaction of the natural LEO environmental effects with contaminated spacecraft surfaces impacts the performance of these materials. Optical properties of samples were measured and solar cell performance data was obtained. In general, exposure to contamination by thruster fuel resulted in degradation of solar absorptance for fused silica and various thermal control surfaces and degradation of solar cell performance. Fused silica samples which were subsequently exposed to an atomic oxygen/vacuum ultraviolet radiation environment showed reversal of this degradation. These results imply that solar cells and thermal control surfaces which are susceptible to thruster fuel contamination and which also receive atomic oxygen exposure may not undergo significant performance degradation. Materials which were exposed to only vacuum ultraviolet radiation subsequent to contamination showed slight additional degradation in solar absorptance.

  17. Analysis and test for space shuttle propellant dynamics (1/10th scale model test results). Volume 1: Technical discussion

    Science.gov (United States)

    Berry, R. L.; Tegart, J. R.; Demchak, L. J.

    1979-01-01

    Space shuttle propellant dynamics during ET/Orbiter separation in the RTLS (return to launch site) mission abort sequence were investigated in a test program conducted in the NASA KC-135 "Zero G" aircraft using a 1/10th-scale model of the ET LOX Tank. Low-g parabolas were flown from which thirty tests were selected for evaluation. Data on the nature of low-g propellant reorientation in the ET LOX tank, and measurements of the forces exerted on the tank by the moving propellent will provide a basis for correlation with an analytical model of the slosh phenomenon.

  18. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  19. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  20. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  1. Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, Annette L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brown, LLoyd C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carathers, David C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Christensen, Boyd D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dahl, James J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farnum, Cathy Ottinger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Steven [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Subaiya, Peter V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wachs, Daniel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Weiner, Ruth F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    This document contains the analysis details and summary of analyses conducted to evaluate the environmental impacts for the Resumption of Transient Fuel and Materials Testing Program. It provides an assessment of the impacts for the two action alternatives being evaluated in the environmental assessment. These alternatives are (1) resumption of transient testing using the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) and (2) conducting transient testing using the Annular Core Research Reactor (ACRR) at Sandia National Laboratory in New Mexico (SNL/NM). Analyses are provided for radiologic emissions, other air emissions, soil contamination, and groundwater contamination that could occur (1) during normal operations, (2) as a result of accidents in one of the facilities, and (3) during transport. It does not include an assessment of the biotic, cultural resources, waste generation, or other impacts that could result from the resumption of transient testing. Analyses were conducted by technical professionals at INL and SNL/NM as noted throughout this report. The analyses are based on bounding radionuclide inventories, with the same inventories used for test materials by both alternatives and different inventories for the TREAT Reactor and ACRR. An upper value on the number of tests was assumed, with a test frequency determined by the realistic turn-around times required between experiments. The estimates provided for impacts during normal operations are based on historical emission rates and projected usage rates; therefore, they are bounding. Estimated doses for members of the public, collocated workers, and facility workers that could be incurred as a result of an accident are very conservative. They do not credit safety systems or administrative procedures (such as evacuation plans or use of personal protective equipment) that could be used to limit worker doses. Doses estimated for transportation are conservative and are based on

  2. Test Operations Procedure (TOP) 01-1-020 Tropical Regions Environmental Considerations

    Science.gov (United States)

    2013-02-08

    to exude tannins , sugars, and other natural plant products, which may support microbial growth and corrosion processes. 2.2 Test Site Severity...Containers in Humid Environments, US Army Tropic Test Center, TECOM Project No. 7-C0-PB5-TT1-004, 1978. 16. A Technical Analysis to Identify Ideal...1973. 37. MIL-STD-810G, Test Method Standard, Environmental Engineering Considerations and Laboratory Tests, 2008. 38. A Technical Analysis

  3. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    International Nuclear Information System (INIS)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya

    2018-01-01

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  4. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    Science.gov (United States)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  5. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  6. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering

    2018-02-15

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  7. The Space Station Module Power Management and Distribution automation test bed

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  8. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    Science.gov (United States)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  9. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    Science.gov (United States)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    1992-01-01

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  10. Justification of Technical System Control in Developing and Testing Objects of Missile and Space Technology

    Directory of Open Access Journals (Sweden)

    A. A. Fedorovskiy

    2015-01-01

    Full Text Available Tests in general lifecycle of missile and space technology, play a special role. The high cost of such products and a little time for creation and refinement, allow only a limited number of tests. Justification of the appropriate number of tests and finding the ways to reduce it are important from the practical point of view.When the appropriate number of field tests is impossible to implement, as well as if full or partial realization of the sample operation conditions is impossible the authors propose to use software with the involvement of previously obtained aprioristic information to have the modeling results of the functioning sample or its parts, according to the reliability and quality standards.Involvement of statistical methods for systems and objects of the missile and space equipment is limited to the single number of the carried-out tests. Currently used models and methods for systems of missile and barreled weapon do not allow us to conduct analysis and provide guidance on emerging issues of concern to ensure the quality and reliability of objects of the missile and space equipment by results of tests.The method of probabilistic and statistical analysis of the stochastic system operability is supposed to be used to solve a problem of the planning tests, assessment and control of reliability of technical systems at tests using aprioristic calculated and experimental information. This method makes it possible to relate the number of tests, required to prove the desirable level of reliability, to different types of constructional, functional, structural reserves of the system, as well as the level of information-and-measuring base and the completeness of available information.Thus, the structure of controlled elements, their importance, and acceptance conditions including elaboration of actions and recommendations to eliminate discrepancies in controlled parameters and improve quality of the considered system are justified and formed

  11. A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster.

    Science.gov (United States)

    Gorter, Jenke A; Billeter, Jean-Christophe

    2017-07-17

    An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.

  12. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Science.gov (United States)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  13. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    Science.gov (United States)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  14. Sensuality test result for application to space foods of the disaster food

    Science.gov (United States)

    Katayama, Naomi; Okano, Yukimi; Kondou, Syouko

    2016-07-01

    The human became able to stay in the space for a long term. This is very important to step forward to the first step for Mars emigration. The long-term stay in the space has a big great stress. The space foods are important to keep a body and mind from those stress. The maintenance of the function of the astronaut of immunity and a meal for the hormone to keep the balance are necessary. As for both the space foods and the disaster meal, room-temperature preservation is possible for a long term. However, the taste is important to even disaster food. The person is repeated if not delicious and cannot eat disaster foods. The sensuality test result about the taste of the disaster food is important. Melon bun, Strawberry jam bun, Cream bun, Maple caramel, Bean-jam bun, Croissant, Croissant Rich, Ogura croissant, Buran croissant, Waffle, Maple waffle, Buran waffle, Strawberry milk waffle, Chocolate bun A cream bun is special. The bean-jam bun is very familiar bread for a Japanese. Because a lot of dietary fibers were good for health as for the buran croissant, an evaluation was high. We think that it is similar in the space foods. It is necessary to think about a universal meal in the space foods. We think that it is necessary to prepare the food which a person of the whole world likes.

  15. 76 FR 12932 - Availability of an Environmental Assessment for Field Testing Fowl Laryngotracheitis-Marek's...

    Science.gov (United States)

    2011-03-09

    ... Inspection Service (APHIS), as well as obtain APHIS' authorization to ship the product for field testing. To... Inspection Service [Docket No. APHIS-2011-0011] Availability of an Environmental Assessment for Field Testing... and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the public that...

  16. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN,

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  17. Is the environmental performance of industrialized countries converging? A 'SURE' approach to testing for convergence

    International Nuclear Information System (INIS)

    Camarero, Mariam; Picazo-Tadeo, Andres J.; Tamarit, Cecilio

    2008-01-01

    In this paper, we test for convergence in the environmental performance of a sample of OECD countries, with data ranging from 1971 to 2002. First, we use Data Envelopment Analysis (DEA) to compute two environmental performance indicators (EPIs) in the production theory framework. Second, we propose the use of a sequential multivariate approach to test for convergence in environmental performance. These tests allow us to reconcile the time series literature with the cross-sectional dimension, which is basic when testing for convergence in regional blocs. The SURE technique is used, which allows for the existence of correlations across the series without imposing a common speed of mean reversion. The empirical results show that the group of countries as a whole, as well as the majority of countries considered on an individual basis (results for some countries vary between EPIs), are catching-up with Switzerland (the benchmark country). (author)

  18. Environmental risk assessment and management of engineered nanomaterials - The role of ecotoxicity testing

    DEFF Research Database (Denmark)

    Hjorth, Rune

    replaced with a focus on in silico and in vitro studies with an even greater need for and reliance on extrapolation. However, in this thesis it is argued that within ecotoxicity, whole organism models remain at the foundation of environmental risk assessment, and as such, they are likely to remain in use...... will be available, it is important that tools encompassing uncertainty are utilized to facilitate decision-support. As the risk constituted by ENMs cannot be quantified, the use, need and ability of risk management options to encompass the potential risk are similarly challenged. This should invoke a precautionary...... to these is the continued examination of the applicability of ecotoxicity testing to encompass the testing of particles, as the tests originally are developed for dissolved chemicals. Furthermore, the ability of such testing to inform environmental risk assessment and environmental risk management, including...

  19. Code Assessment of SPACE 2.19 using LSTF Steam Generator Tube Rupture Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minhee; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The SPACE is a best estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. As a result of the development, the 2.19 version of the code was released through the successive various verification and validation works. The present work is on the line of expanding the work by Kim et al. In this study, results produced by the SPACE 2.19 code were compared with the experimental data from JAERI's LSTF Test Run LSTF SB-SG-06 experiment simulating a Steam Generator Tube Rupture (SGTR) transient. In order to identify the predictability of SPACE 2.19, the LSTF steam generator tube rupture test was simulated. To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR and the RELAP5/ MOD3.1 are used. The calculation results indicate that the SPACE 2.19 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator relief valve.

  20. Code Assessment of SPACE 2.19 using LSTF 10% Main Steam-Line-Break Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minhee; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Safety and Performance Analysis Code for Nuclear Power Plants (SPACE) has been developed in recent years by the Korea Hydro and Nuclear Power Co. through collaborative works with other Korean nuclear industries and research institutes. As a result of the development, the 2.19 version of the code was released through the successive various verification and validation works. In this study, results produced by the SPACE 2.19 code were compared with the experimental data from JAERI's LSTF Test Run SBSL- 01 for a 10% main steam line break transient in a pressurized water reactor. The LSTF 10% main steam line break test were simulated using the SPACE 2.19 for code V and V work. The overall comparisons between the SPACE 2.19 code prediction and the LSTF Test Run SB-SL-01 experimental data are reasonably satisfactory. The comparisons were conducted in terms of the variations of mass flow rate, void fraction, pressure, collapsed liquid level, temperature, and system flow rate for the transient. In addition, the input model was modified for simulation accuracy of PZR pressure based on the calculated results. The correction of PORV setpoint affects to simulate the PORV open and close phenomena similarly with experiments. From the modification, the computed results show a reasonable agreement with experimental data in overall transient time.

  1. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  2. Pilot Field Test: Use of a Compression Garment During a Stand Test After Long-Duration Space Flight

    Science.gov (United States)

    Laurie, S. S.; Stenger, M. B.; Phillips, T. R.; Lee, S. M. C.; Cerisano, J.; Kofman, I.; Reschke, M.

    2016-01-01

    Orthostatic intolerance (OI) is a concern for astronauts returning from long-duration space flight. One countermeasure that has been used to protect against OI after short-duration bed rest and space flight is the use of lower body and abdominal compression garments. However, since the end of the Space Shuttle era we have not been able to test crewmembers during the first 24 hours after landing on Earth. NASA's Pilot Field Test provided us the opportunity to test cardiovascular responses of crewmembers wearing the Russian Kentavr compression garment during a stand test at multiple time points throughout the first 24 hours after landing. HYPOTHESIS We hypothesized that the Kentavr compression garment would prevent an increase in heart rate (HR) >15 bpm during a 3.5-min stand test. METHODS: The Pilot Field Test was conducted up to 3 times during the first 24 hours after crewmembers returned to Earth: (1) either in a tent adjacent to the Soyuz landing site in Kazakhstan (approx.1 hr) or after transportation to the Karaganda airport (approx. 4 hr); (2) during a refueling stop in Scotland (approx.12 hr); and (3) upon return to NASA Johnson Space Center (JSC) (approx.24 hr). We measured HR and arterial pressure (finger photoplethysmography) for 2 min while the crewmember was prone and throughout 3.5 min of quiet standing. Eleven crewmembers consented to participate; however, 2 felt too ill to start the test and 1 stopped 30 sec into the stand portion of the test. Of the remaining 8 crewmembers, 2 did not wear the Russian Kentavr compression garment. Because of inclement weather at the landing site, 5 crewmembers were flown by helicopter to the Karaganda airport before initial testing and received intravenous saline before completing the stand test. One of these crewmembers wore only the portion of the Russian Kentavr compression garment that covered the lower leg and thus lacked thigh and abdominal compression. All crewmembers continued wearing the Russian Kentavr

  3. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    Science.gov (United States)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  4. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    Science.gov (United States)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  5. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  6. Ecological Metissage: Exploring the Third Space in Outdoor and Environmental Education

    Science.gov (United States)

    Lowan, Greg

    2011-01-01

    Metis scholar Catherine Richardson introduced the concept of the "Third Space" as the existentially blended territory of a Metis mentality. She compared this to the "First Space" of the dominant Euro-Canadian society and the "Second Space" of colonially subjugated Aboriginal peoples. However, during a recent…

  7. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  8. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities; Addendum 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    This 1993 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  9. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  10. A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment.

    Science.gov (United States)

    Scholz, Stefan; Sela, Erika; Blaha, Ludek; Braunbeck, Thomas; Galay-Burgos, Malyka; García-Franco, Mauricio; Guinea, Joaquin; Klüver, Nils; Schirmer, Kristin; Tanneberger, Katrin; Tobor-Kapłon, Marysia; Witters, Hilda; Belanger, Scott; Benfenati, Emilio; Creton, Stuart; Cronin, Mark T D; Eggen, Rik I L; Embry, Michelle; Ekman, Drew; Gourmelon, Anne; Halder, Marlies; Hardy, Barry; Hartung, Thomas; Hubesch, Bruno; Jungmann, Dirk; Lampi, Mark A; Lee, Lucy; Léonard, Marc; Küster, Eberhard; Lillicrap, Adam; Luckenbach, Till; Murk, Albertinka J; Navas, José M; Peijnenburg, Willie; Repetto, Guillermo; Salinas, Edward; Schüürmann, Gerrit; Spielmann, Horst; Tollefsen, Knut Erik; Walter-Rohde, Susanne; Whale, Graham; Wheeler, James R; Winter, Matthew J

    2013-12-01

    Tests with vertebrates are an integral part of environmental hazard identification and risk assessment of chemicals, plant protection products, pharmaceuticals, biocides, feed additives and effluents. These tests raise ethical and economic concerns and are considered as inappropriate for assessing all of the substances and effluents that require regulatory testing. Hence, there is a strong demand for replacement, reduction and refinement strategies and methods. However, until now alternative approaches have only rarely been used in regulatory settings. This review provides an overview on current regulations of chemicals and the requirements for animal tests in environmental hazard and risk assessment. It aims to highlight the potential areas for alternative approaches in environmental hazard identification and risk assessment. Perspectives and limitations of alternative approaches to animal tests using vertebrates in environmental toxicology, i.e. mainly fish and amphibians, are discussed. Free access to existing (proprietary) animal test data, availability of validated alternative methods and a practical implementation of conceptual approaches such as the Adverse Outcome Pathways and Integrated Testing Strategies were identified as major requirements towards the successful development and implementation of alternative approaches. Although this article focusses on European regulations, its considerations and conclusions are of global relevance. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    OpenAIRE

    Judson, Richard S.; Houck, Keith A.; Kavlock, Robert J.; Knudsen, Thomas B.; Martin, Matthew T.; Mortensen, Holly M.; Reif, David M.; Rotroff, Daniel M.; Shah, Imran; Richard, Ann M.; Dix, David J.

    2009-01-01

    Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency?s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the ty...

  12. Study on environmental test technology of LiDAR used for vehicle

    Science.gov (United States)

    Wang, Yi; Yang, Jianfeng; Ou, Yong

    2018-03-01

    With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.

  13. The dispersion of alpha and beta radioactivity to the environmental from spent fuel testing in RMI

    International Nuclear Information System (INIS)

    Yuwono, I.; Pudjadi, E.

    1996-01-01

    The destructive testing of 2 spent fuels in RMI and radioactivity air release monitoring to the environmental have been done. The monitoring equipment used alpha-beta particulate monitor, Berthold LB 150 D type. The calculations using the Gaussian plume model and distributions factor showed there were no radiological effect of alpha and beta radioactivity dispersion and contribution to the environmental. The maximum average construction of alpha and beta radioactivity are 0.002% and 0.05%. (author)

  14. Simulation of total loss of feed water in ATLAS test facility using SPACE code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minhee; Kim, Seyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of). Central Research Inst.

    2017-08-15

    A total loss of feedwater (TLOFW) with additional failures in ATLAS test facility was analyzed using SPACE code, which is an advanced thermal-hydraulic system analysis code developed by the Korea nuclear industry. Partial failure of the safety injection pumps (SIPs) and the pilot-operated safety relief valves (POSRVs) of pressurizer were selected as additional failures. In order to assess the capability of SPACE code, partial failure was modeled, and compared with results of OECD-ATLAS A3.1 results. Reasonably good agreement with major thermal-hydraulic parameters was obtained by analyzing the transient behavior. From the results, this indicated that SPACE code has capabilities to design extension conditions, and feed and bleed operation using POSRVs and SIPs were effective for RCS cooling capability during TLOFW.

  15. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  16. Environmental Assessment for the sewage lagoon system: Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    1995-02-01

    The DOE Nevada Operations Office prepared an environmental assessment (EA), (DOE/EA-1026), to evaluate the potential impacts of constructing a sanitary waste sewage lagoon system in Area 5 at the Nevada Test Site (NTS). The proposed system would replace an existing septic system. Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 USC 4321 et seq.). Therefore, an environmental impact statement (EIS) is not required and DOE is issuing this FONSI

  17. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  18. Active self-testing noise measurement sensors for large-scale environmental sensor networks.

    Science.gov (United States)

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-12-13

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10.

  19. A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Graham, Paul S.; Morgan, Keith S.; Caffrey, Michael P.

    2008-01-01

    Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA user designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.

  20. Study of geologic-structural situation around Semipalatinsk test site test - holes using space images automated decoding method

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.; Ivanchenko, G.N.

    2004-01-01

    Performance of underground nuclear explosions (UNE) leads to irreversible changes in geological environment around the boreholes. In natural environment it was detected inhomogeneity of rock massif condition changes, which depended on characteristics of the underground nuclear explosion, anisotropy of medium and presence of faulting. Application of automated selection and statistic analysis of unstretched lineaments in high resolution space images using special software pack LESSA allows specifying the geologic-structural features of Semipalatinsk Test Site (STS), ranging selected fracture zones, outlining and analyzing post-explosion zone surface deformations. (author)

  1. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Science.gov (United States)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.

    2013-01-01

    In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.

  2. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  3. 1985 environmental report: Sandia National Laboratories, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Millard, G.C.

    1986-04-01

    The Tonopah Test Range is located about 160 air miles northwest of Las Vegas, Nevada, and covers 525 square miles within the Nellis Air Force Base Bombing and Gunnery Range. The range is used for various DOE tests involving high and low altitude projectiles. Operations that affect the environment are mainly road construction, preparation of instrumentation sites, and disturbance of the terrain from projectile impacts. Monitoring of the test range is done annually by the US Environmental Protection Agency to supplement Sandia's monitoring effort associated with Sandia test activities. Monitoring results for 1984 indicate that test range operations do not adversely affect the offsite environment or the public

  4. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kavelaars, Alicia T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Dept. of Aeronautics and Astronautics

    2006-10-10

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I&T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I&T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I&T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I&T management and oversight overall. E-Logbook has been used for the I&T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I&T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.

  5. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    International Nuclear Information System (INIS)

    Kavelaars, Alicia T.; SLAC; Stanford U., Dept. Aeronaut. Astronaut

    2006-01-01

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I and T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I and T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I and T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I and T management and oversight overall. E-Logbook has been used for the I and T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I and T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry

  6. Vicia cytogenetic tests for environmental mutagens. A report of the US Environmental Protection Agency gene-tox program

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T H

    1982-01-01

    Vicia root-tip mitotic and pollen mother-cell meiotic tests are two major kinds of cytogenetic tests for environmental mutagens. According to the present review, 81 of 85 earlier studies used mitotic tests to determine the frequencies of chromosome or chromatid aberrations and/or sister-chromatid exchange from root-tip meristematic cells; only 4 used meiotic tests to determine the frequencies of chromosome aberration from pollen mother cells. Treatment of root-tip meristem can be done by allowing the newly germinated roots to absorb the chemical mutagens from a water solution. Pollen mother cells can be treated by spraying the solution or pipetting the liquid over the flower buds. After an appropriate recovery time, the samples are fixed and stained, and the slides are prepared for metaphase or anaphase figures for scoring aberration frequencies. Slides for meiotic tests are prepared for metaphase I and/or Anaphase I stages for scoring chromosome aberration frequencies. Results of both cytogenetic tests should be expressed in terms of number of breaks per cell or per 100 cells. Test results of 76 chemicals from 32 classes in this review indicate that the Vicia root-tip mitotic test is reliable, efficient, and relatively inexpensive. These results also reveal that antibiotics are most frequently studied, followed by alkyl sulfones, pyrimidine, and purine derivatives. Of all the agents studied through root-tip mitotic tests, about 90% gave positive responses; antibiotics (phyleomycin and bleomycin) had very high mutagenicity (less than 1 ppM gave positive response).

  7. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  8. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  9. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  10. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  11. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  12. BIOGAS PLANT AS AN ELEMENT THAT HAS A POSITIVE INFLUENCE ON THE ENVIRONMENTAL CHANGES OF RURAL SPACE

    OpenAIRE

    Wojciech Pawłowski

    2017-01-01

    In the contemporary rural landscape, an agricultural biogas plant is becoming an increasingly frequent element of agricultural installations. There is a need to ask an important question: is a new technology, such as biogas plants with medium power of 1MW, listed as investments which can have significant environmental impacts? This question is becoming an integral part of rural space as a new form of village buildings. The inevitable changes in the rural landscape and the way of carrying out ...

  13. Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized Bonded Assemblies

    Science.gov (United States)

    1974-11-01

    btadiene/acrylonitrile ( NBR ) rubber -to-metat -. canized bonded assemblies at the two exposure sites are shown in Table 5. After exposure for one year...AD-A0-17 368 EN~VIRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES John A. WilliamsI Rock Island Arseital...COMMERCE 325116 1AD R-TR-75-013 ENViRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES by __ John A. Williams

  14. Improving the space surveillance telescope's performance using multi-hypothesis testing

    Energy Technology Data Exchange (ETDEWEB)

    Chris Zingarelli, J.; Cain, Stephen [Air Force Institute of Technology, 2950 Hobson Way, Bldg 641, Wright Patterson AFB, OH 45433 (United States); Pearce, Eric; Lambour, Richard [Lincoln Labratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02421 (United States); Blake, Travis [Defense Advanced Research Projects Agency, 675 North Randolph Street Arlington, VA 22203 (United States); Peterson, Curtis J. R., E-mail: John.Zingarelli@afit.edu [United States Air Force, 1690 Air Force Pentagon, Washington, DC 20330 (United States)

    2014-05-01

    The Space Surveillance Telescope (SST) is a Defense Advanced Research Projects Agency program designed to detect objects in space like near Earth asteroids and space debris in the geosynchronous Earth orbit (GEO) belt. Binary hypothesis test (BHT) methods have historically been used to facilitate the detection of new objects in space. In this paper a multi-hypothesis detection strategy is introduced to improve the detection performance of SST. In this context, the multi-hypothesis testing (MHT) determines if an unresolvable point source is in either the center, a corner, or a side of a pixel in contrast to BHT, which only tests whether an object is in the pixel or not. The images recorded by SST are undersampled such as to cause aliasing, which degrades the performance of traditional detection schemes. The equations for the MHT are derived in terms of signal-to-noise ratio (S/N), which is computed by subtracting the background light level around the pixel being tested and dividing by the standard deviation of the noise. A new method for determining the local noise statistics that rejects outliers is introduced in combination with the MHT. An experiment using observations of a known GEO satellite are used to demonstrate the improved detection performance of the new algorithm over algorithms previously reported in the literature. The results show a significant improvement in the probability of detection by as much as 50% over existing algorithms. In addition to detection, the S/N results prove to be linearly related to the least-squares estimates of point source irradiance, thus improving photometric accuracy.

  15. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THE INDUSTRIAL TEST SYSTEM, INC. CYANIDE REAGENTSTRIP™ TEST KIT

    Science.gov (United States)

    Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...

  16. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  17. Dairy cow feeding space requirements assessed in a Y-maze choice test.

    Science.gov (United States)

    Rioja-Lang, F C; Roberts, D J; Healy, S D; Lawrence, A B; Haskell, M J

    2012-07-01

    The effect of proximity to a dominant cow on a low-ranking cow's willingness to feed was assessed using choice tests. The main aim of the experiment was to determine the feeding space allowance at which the majority of subordinate cows would choose to feed on high-palatability food (HPF) next to a dominant cow rather than feeding alone on low-palatability food (LPF). Thirty Holstein-Friesian cows were used in the study. Half of the cows were trained to make an association between a black bin and HPF and a white bin and LPF, and the other half were trained with the opposite combination. Observations of pair-wise aggressive interactions were observed during feeding to determine the relative social status of each cow. From this, dominant and subordinate cows were allocated to experimental pairs. When cows had achieved an HPF preference with an 80% success rate in training, they were presented with choices using a Y-maze test apparatus, in which cows were offered choices between feeding on HPF with a dominant cow and feeding on LPF alone. Four different space allowances were tested at the HPF feeder: 0.3, 0.45, 0.6, and 0.75 m. At the 2 smaller space allowances, cows preferred to feed alone (choices between feeding alone or not for 0.3- and 0.45-m tests were significantly different). For the 2 larger space allowances, cows had no significant preferences (number of choices for feeding alone or with a dominant). Given that low-status cows are willing to sacrifice food quality to avoid close contact with a dominant animal, we suggest that the feeding space allowance should be at least 0.6m per cow whenever possible. However, even when space allowances are large, it is clear that some subordinate cows will still prefer to avoid proximity to dominant individuals. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1990 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory -- Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release

  19. Testing the environmental Kuznets curve hypothesis with bird populations as habitat-specific environmental indicators: evidence from Canada.

    Science.gov (United States)

    Lantz, Van; Martínez-Espiñeira, Roberto

    2008-04-01

    The traditional environmental Kuznets curve (EKC) hypothesis postulates that environmental degradation follows an inverted U-shaped relationship with gross domestic product (GDP) per capita. We tested the EKC hypothesis with bird populations in 5 different habitats as environmental quality indicators. Because birds are considered environmental goods, for them the EKC hypothesis would instead be associated with a U-shaped relationship between bird populations and GDP per capita. In keeping with the literature, we included other variables in the analysis-namely, human population density and time index variables (the latter variable captured the impact of persistent and exogenous climate and/or policy changes on bird populations over time). Using data from 9 Canadian provinces gathered over 37 years, we used a generalized least-squares regression for each bird habitat type, which accounted for the panel structure of the data, the cross-sectional dependence across provinces in the residuals, heteroskedasticity, and fixed- or random-effect specifications of the models. We found evidence that supports the EKC hypothesis for 3 of the 5 bird population habitat types. In addition, the relationship between human population density and the different bird populations varied, which emphasizes the complex nature of the impact that human populations have on the environment. The relationship between the time-index variable and the different bird populations also varied, which indicates there are other persistent and significant influences on bird populations over time. Overall our EKC results were consistent with those found for threatened bird species, indicating that economic prosperity does indeed act to benefit some bird populations.

  20. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    Science.gov (United States)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  1. Multilevel microvibration test for performance predictions of a space optical load platform

    Science.gov (United States)

    Li, Shiqi; Zhang, Heng; Liu, Shiping; Wang, Yue

    2018-05-01

    This paper presents a framework for the multilevel microvibration analysis and test of a space optical load platform. The test framework is conducted on three levels, including instrument, subsystem, and system level. Disturbance source experimental investigations are performed to evaluate the vibration amplitude and study vibration mechanism. Transfer characteristics of space camera are validated by a subsystem test, which allows the calculation of transfer functions from various disturbance sources to optical performance outputs. In order to identify the influence of the source on the spacecraft performance, a system level microvibration measurement test has been performed on the ground. From the time domain analysis and spectrum analysis of multilevel microvibration tests, we concluded that the disturbance source has a significant effect on its installation position. After transmitted through mechanical links, the residual vibration reduces to a background noise level. In addition, the angular microvibration of the platform jitter is mainly concentrated in the rotation of y-axes. This work is applied to a real practical application involving the high resolution satellite camera system.

  2. Nevada Test Site annual site environmental report for calendar year 1998

    International Nuclear Information System (INIS)

    Black, S.C.; Townsend, Y.E.

    1999-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  3. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Y.E.; Grossman, R.F.

    2000-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  4. Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999

    International Nuclear Information System (INIS)

    Townsend, Y.E.; Grossman, R.F.

    2000-01-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations

  5. Nevada Test Site annual site environmental report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Black, S.C.; Townsend, Y.E.

    1999-10-01

    Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

  6. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project.

    Science.gov (United States)

    Judson, Richard S; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Mortensen, Holly M; Reif, David M; Rotroff, Daniel M; Shah, Imran; Richard, Ann M; Dix, David J

    2010-04-01

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.

  7. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    Science.gov (United States)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  8. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  9. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Science.gov (United States)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  10. Computer-controlled environmental test systems - Criteria for selection, installation, and maintenance.

    Science.gov (United States)

    Chapman, C. P.

    1972-01-01

    Applications for presently marketed, new computer-controlled environmental test systems are suggested. It is shown that capital costs of these systems follow an exponential cost function curve that levels out as additional applications are implemented. Some test laboratory organization changes are recommended in terms of new personnel requirements, and facility modification are considered in support of a computer-controlled test system. Software for computer-controlled test systems are discussed, and control loop speed constraints are defined for real-time control functions. Suitable input and output devices and memory storage device tradeoffs are also considered.

  11. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    Science.gov (United States)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  12. Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects

    Science.gov (United States)

    Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.

    2012-01-01

    This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).

  13. Environmental Testing Campaign and Verification of Satellite Deimos-2 at INTA

    Science.gov (United States)

    Hernandez, Daniel; Vazquez, Mercedes; Anon, Manuel; Olivo, Esperanza; Gallego, Pablo; Morillo, Pablo; Parra, Javier; Capraro; Luengo, Mar; Garcia, Beatriz; Villacorta, Pablo

    2014-06-01

    In this paper the environmental test campaign and verification of the DEIMOS-2 (DM2) satellite will be presented and described. DM2 will be ready for launch in 2014.Firstly, a short description of the satellite is presented, including its physical characteristics and intended optical performances. DEIMOS-2 is a LEO satellite for earth observation that will provide high resolution imaging services for agriculture, civil protection, environmental issues, disasters monitoring, climate change, urban planning, cartography, security and intelligence.Then, the verification and test campaign carried out on the SM and FM models at INTA is described; including Mechanical test for the SM and Climatic, Mechanical and Electromagnetic Compatibility tests for the FM. In addition, this paper includes Centre of Gravity and Moment of Inertia measurements for both models, and other verification activities carried out in order to ensure satellite's health during launch and its in orbit performance.

  14. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    Science.gov (United States)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  15. Environmental surveillance and research at the Nevada Test Site: The beginning and the rationale

    International Nuclear Information System (INIS)

    Elle, D.R.; Church, B.W.; Bingham, F.E.

    1990-01-01

    Concurrently with the first nuclear-weapons tests at the Nevada Test Site (NTS) in 1951, an environmental surveillance and monitoring program was established offsite. Initial emphasis was on tracking fallout clouds and measuring external radiation exposure rates. An environmental research program was also initiated. Establishment of comprehensive programs has facilitated the ability to address issues such as the inventory and distribution of radionuclides in surface soils, reconstruction of offsite population doses, and recognition of areas requiring additional information. We have learned that a successful environmental monitoring program must be flexible and responsive to change; must address public as well as technical and regulatory concerns; and results must be continuously interpreted to ensure that all pathways are considered and the programs are proactive in their approach

  16. Preliminary environmental analysis of a geopressured-geothermal test well in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    White, W.A.; McGraw, M.; Gustavson, T.C.; Meriwether, J.

    1977-11-16

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land near Chocolate Bayou, Brazoria County, Texas, in which a geopressured-geothermal test well is to be drilled in the fall of 1977. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for the proposed well. Preliminary analyses of data revealed the eed for focusing on the following areas: potential for subsidence and fault activation, susceptibility of test well and support facilities to fresh- and salt-water flooding, possible effects of produced saline waters on biological assemblages and groundwaer resources, distribution of expansive soils, and effect of drilling and associated support activities on known archeological-cultural resources.

  17. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    Science.gov (United States)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  18. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 3: LED Environmental Testing

    Energy Technology Data Exchange (ETDEWEB)

    Tuenge, Jason R.; Hollomon, Brad; Dillon, Heather E.; Snowden-Swan, Lesley J.

    2013-03-01

    This report covers the third part of a larger U.S. Department of Energy (DOE) project to assess the life-cycle environmental and resource impacts in the manufacturing, transport, use, and disposal of light-emitting diode (LED) lighting products in relation to incumbent lighting technologies. All three reports are available on the DOE website (www.ssl.energy.gov/tech_reports.html). • Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent and LED Lamps; • Part 2: LED Manufacturing and Performance; • Part 3: LED Environmental Testing. Parts 1 and 2 were published in February and June 2012, respectively. The Part 1 report included a summary of the life-cycle assessment (LCA) process and methodology, provided a literature review of more than 25 existing LCA studies of various lamp types, and performed a meta-analysis comparing LED lamps with incandescent and compact fluorescent lamps (CFLs). Drawing from the Part 1 findings, Part 2 performed a more detailed assessment of the LED manufacturing process and used these findings to provide a comparative LCA taking into consideration a wider range of environmental impacts. Both reports concluded that the life-cycle environmental impact of a given lamp is dominated by the energy used during lamp operation—the upstream generation of electricity drives the total environmental footprint of the product. However, a more detailed understanding of end-of-life disposal considerations for LED products has become increasingly important as their installation base has grown. The Part 3 study (reported herein) was undertaken to augment the LCA findings with chemical analysis of a variety of LED, CFL, and incandescent lamps using standard testing procedures. A total of 22 samples, representing 11 different models, were tested to determine whether any of 17 elements were present at levels exceeding California or Federal regulatory thresholds for hazardous waste. Key findings include: • The selected

  19. Performance testing of the environmental TLD system for the Three Mile Island Nuclear Station.

    Science.gov (United States)

    Toke, L F; Carson, B H; Baker, G G; McBride, M H; Plato, P A; Miklos, J A

    1984-05-01

    Panasonic UD-801 thermoluminescent dosimeters ( TLDs ) containing two calcium sulfate phosphors were tested under Performance Specification 3.1 established by the American National Standard Institute ( ANSI75 ) and in the U.S. Nuclear Regulatory Commission's Regulatory Guide 4.13 ( NRC77 ). The specific qualifying tests included TLD uniformity, reproducibility, energy dependence and directional dependence. The overall measurement uncertainties and associated confidence levels are within the prescribed guidelines defined in the qualifying requirements for environmental TLDs .

  20. Gulf Coast Programmatic Environmental Assessment Geothermal Well Testing: The Frio Formation of Texas and Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    In accordance with the requirements of 10 CFR Part 711, environmental assessments are being prepared for significant activities and individual projects of the Division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). This environmental assessment of geopressure well testing addresses, on a regional basis, the expected activities, affected environments, and possible impacts in a broad sense. The specific part of the program addressed by this environmental assessment is geothermal well testing by the take-over of one or more unsuccessful oil wells before the drilling rig is removed and completion of drilling into the geopressured zone. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. In the interim, existing well tests need to be made to help define and assess the resource. The project addressed by this environmental assessment is the performance of a geothermal well test in high potential geothermal areas. Well tests involve four major actions each of which may or may not be required for each of the well tests. The four major actions are: site preparation, drilling a salt-water disposal well, actual flow testing, and abandonment of the well.