WorldWideScience

Sample records for space environment part

  1. Reproduction in the space environment: Part I. Animal reproductive studies

    Science.gov (United States)

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  2. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  3. Space Ethics and Protection of the Space Environment

    Science.gov (United States)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  4. Fictional space in participatory design of engaging interactive environments

    DEFF Research Database (Denmark)

    Dindler, Christian

    2010-01-01

    practices of visitors and museum knowledge. The second and larger part of the contribution addresses the issue of shaping design inquiries. This part is summarized through the overarching notion of fictional space denoting a perspective on the creation of a design space where established norms...... spaces for museums and science centres. The dissertation is composed of seven research papers framed by a general overview that summarises the arguments made in the papers and outlines related work and research method. The contribution reflects a dual yet intertwined concern for understanding engagement...... in exhibition spaces and shaping design inquiries around the notion of engaging interactive environments. The first part of the contribution relates to conceptualising aspects of engagement in relation to interactive environments. The perspective of participatory engagement is presented as an overarching...

  5. Lead-Free Experiment in a Space Environment

    Science.gov (United States)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  6. Reproduction in the space environment: Part II. Concerns for human reproduction

    Science.gov (United States)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  7. 14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false HIRF Environments and Equipment HIRF Test Levels J Appendix J to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF.... 23, App. J Appendix J to Part 23—HIRF Environments and Equipment HIRF Test Levels This appendix...

  8. Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  9. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  10. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  11. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  12. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  13. Impact of space environment on stability of medicines: Challenges and prospects.

    Science.gov (United States)

    Mehta, Priti; Bhayani, Dhara

    2017-03-20

    To upkeep health of astronauts in a unique, isolated, and extreme environment of space is the primary goal for a successful space mission, hence, safe and efficacious medications are essential for the wellness of astronauts. Space medication has been challenged with problems related to efficacy. Along with altered physiology, one of the possible reasons could be instability of space medications in the presence of harsh spaceflight environmental conditions. Altered physical and chemical stability can result in reduced potency which can result in reduced efficacy. Right now, medicines from the International Space Station are replaced before their expiration. But, for longer duration missions to Mars or any other asteroid, there will not be any chance of replacement of medicines. Hence, it is desired that medicines maintain the shelf-life throughout the space mission. Stability of medicines used for short term or long term space missions cannot be judged by drug stability guidelines based on terrestrial environmental factors. Unique environmental conditions related to spaceflight include microgravity, excessive vibration, hard vacuum, humidity variation, temperature differences and excessive radiation, which may cause instability of medicines. This write-up provides a review of the problem and countermeasure approaches for pharmaceuticals exposed to the space environment. The first part of the article discusses thought processes behind outlining of International Conference on Harmonization drug stability guidelines, Q1A (R2) and Q1B, and its acceptance limits for accelerated stability study. The second part of the article describes the difference in the radiation environment of deep space compared to radiation environment inside the space shuttle based on penetration power of different types of radiation. In the third part of the article, various promising approaches are listed which can be used for assurance of space medicine stability. One of the approaches is the

  14. Information Space, Information Field, Information Environment

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-08-01

    Full Text Available The article analyzes information space, information field and information environment; shows that information space can be natural and artificial; information field is substantive and processual object and articulates the space property; information environment is concerned with some object and acts as the surrounding in relation to it and is considered with regard to it. It enables to define information environment as a subset of information space. It defines its passive description. Information environment can also be defined as a subset of information field. It corresponds to its active description.

  15. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  16. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  17. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  18. Reading space characteristics in campus environment

    Science.gov (United States)

    Tampubolon, A. C.; Kusuma, H. E.

    2018-03-01

    Reading activity is a part of daily learning activities that are usually done by college students and takes place in the facilities that are provided by the campus. However, students tend to have a perception of a particular location that is considered appropriate with the activities undertaken. This study identified students’ perceptions of reading space characteristics in campus environment which are considered able to accommodate reading activity. Exploratory qualitative research methods were used to collect data from selected types of space and the reasons for the students in choosing the specifics space to do their reading. The results showed that students do not only use library facilities as a support unit of academic activities. This study found that students tend to use some places with non-library function, such as students’ union room, hallway, and classroom. Students perceive reading space by its physical and social characteristics. The physical consist of ambiance, quiet place, tranquility, availability of facilities, the level of coolness, lighting, location accessibility, connection with nature, convenience furniture, air quality, aesthetics, the flexibility of activities, the crowd of place, the level of shade, outdoor, ownership, and indoor. While the social characteristics of the reading space are to have privacy, favorable reading position, and the presence of others.

  19. System survivability in nuclear and space environments

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  20. Space environment studies for the SZ-4 spacecraft

    International Nuclear Information System (INIS)

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  1. Situative Space Tracking within Smart Environments

    DEFF Research Database (Denmark)

    Surie, Dipak; Jäckel, Florian; Janlert, Lars-Erik

    2010-01-01

    This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking syste......-laboratory smart home environment where a global precision of 83.4% and a global recall of 88.6% were obtained.......This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking system...

  2. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  3. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  4. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  5. The Objectives of NASA's Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  6. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  7. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  8. Space environments and their effects on space automation and robotics

    Science.gov (United States)

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  9. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  10. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  11. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  12. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  13. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  14. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  15. The Space-Time Cube as part of a GeoVisual Analytics Environment to support the understanding of movement data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, M. J.; van Elzakker, C. P. J. M.

    2015-01-01

    This paper reports the results of an empirical usability experiment on the performance of the space-time cube in a GeoVisual analytics environment. It was developed to explore movement data based on the requirements of human geographers. The interactive environment consists of multiple coordinated...

  16. Mutagenic effects of space environment and protons on rice

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei

    1998-07-01

    Dry seeds of 5 rice varieties were carried by recoverable satellite for space mutation, and were irradiated by 4∼8 MeV protons with various doses. The mutagenic effects was studied. The results indicated that the space environment could cause chromosomal structure aberration and had stimulating mitosis action in root tip cells. As compared with γ-rays and protons, the effects of space environment flight were lower on chromosomal aberration but were significantly higher on mitosis index. Space environment and protons induce high frequency of chlorophyll deficient mutation and mutation in plant height and heading date in M 2 generation. Frequency of beneficial mutation induced by space environment and protons were higher than those induced by γ-rays

  17. Space environment effects on polymers in low earth orbit

    International Nuclear Information System (INIS)

    Grossman, E.; Gouzman, I.

    2003-01-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment

  18. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  19. The Revised Space Environment Models in CREME-MC: A Replacement for CREME96

    Science.gov (United States)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Mendenhall, Marcus H.; Reed, Robert A.; Sierawski, Brian; Watts, John W.; Weller, Robert A.

    2010-01-01

    The CREME96 model has been available on the WWW for more than 10 years now. While principally for the estimation of radiation effects on spacecraft electronics, it contains space radiation environment models that have been used for instrument design calculations, estimation of instrumental background, estimation of radiation hazards and many other purposes. Because of the evolution of electronic part design we have found it necessary to revise CREME96, creating CREME-MC. As part of this revision, we are revising and extending the environmental models in CREME96. This talk will describe the revised radiation environment models that are being made available in CREME-MC

  20. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    Science.gov (United States)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  1. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  2. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  3. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  4. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  5. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  6. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  7. Novel Amalgams for In-Space Fabrication of Replacement Parts

    Science.gov (United States)

    Cochran, Calvin T.; Van Hoose, James R.; Grugel, R. N.

    2012-01-01

    Being able to fabricate replacement parts during extended space flight missions precludes the weight, storage volume, and speculation necessary to accommodate spares. Amalgams, widely used in dentistry, are potential candidates for fabricating parts in microgravity environments as they are moldable, do not require energy for melting, and do not pose fluid handling problems. Unfortunately, amalgams have poor tensile strength and the room temperature liquid component is mercury. To possibly resolve these issues a gallium-indium alloy was substituted for mercury and small steel fibers were mixed in with the commercial alloy powder. Subsequent microscopic examination of the novel amalgam revealed complete bonding of the components, and mechanical testing of comparable samples showed those containing steel fibers to have a significant improvement in strength. Experimental procedures, microstructures, and test results are presented and discussed in view of further improving properties.

  8. Solar/Space Environment Data (Satellites)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  9. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  10. Physics of the Space Environment

    Science.gov (United States)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  11. Overview of fiber optics in the natural space environment

    International Nuclear Information System (INIS)

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences

  12. NASA Electronic Parts and Packaging (NEPP): Space Qualification Guidelines of Optoelectronic and Photonic Devices for Optical Communication Systems

    Science.gov (United States)

    Kim, Quiesup

    2001-01-01

    Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.

  13. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    Science.gov (United States)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  14. Environment monitoring from space

    International Nuclear Information System (INIS)

    Takagi, M.

    1994-01-01

    Environmental problems such as acid rain, ozone depletion, deforestation, erosion, and the greenhouse effect are of increasing concern, and continuous earth observation from artificial satellites has been contributing significant information on the environment since the 1960s. Earth observation from space has the advantages of wide area coverage at potentially high resolutions, periodic and long-term observation capability, data acquisition with uniform quality and repeatability, and ability to observe using different types of sensors. Problems to be solved in earth observation include the need for preprocessing of satellite data, understanding the relationship between observed physical parameters and objects, and the high volume of data for processing. In Japan, a research project on the higher-order utilization of remote sensing data from space was organized in 1985, and the results led to recognition of the importance of satellite observation. It was then decided to undertake a program to improve the understanding of the earth environment by satellite. Five research plans were selected: a basic study on earth observation by microwaves; global change analysis of the biosphere; a study of the physical process of the water cycle over land; a study of air-sea interaction; and higher-order processing of earth observation information. In recognition of the international nature of satellite data, as well as the capabilities of Canada and Japan in computer, communication, and multimedia technologies, bilateral cooperation is proposed in the area of earth environment information systems based on satellite observation

  15. ISS External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  16. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Science.gov (United States)

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  17. Space Analogue Environments: Are the Populations Comparable?

    Science.gov (United States)

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  18. Research on the Design of Public Space Environment for Aging Society

    Science.gov (United States)

    Fang, Gu; Soo, Kim Chul

    2018-03-01

    This paper studies the living space environment suitable for the elderly, because the elderly and the disabled have become increasingly prominent social problems. Through the discussion of the humanistic environment design method of the elderly and the disabled, the paper puts forward a new environment design which has the traditional characteristics and adapts to the new society to care for the elderly (the disabled).By studying and analyzing the background of social aging, the theory of public space environment design and the needs of the elderly, it is pointed out that the design of public space environment in the aged society needs to be implemented in detail design. The number of elderly people in public space will increase, give full attention to the public space outdoor environment quality, for the elderly to provide a variety of environmental facilities have long-term significance.

  19. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  20. Electro-Mechanical Systems for Extreme Space Environments

    Science.gov (United States)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  1. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  2. Preservation of Near-Earth Space for Future Generations

    Science.gov (United States)

    Simpson, John A.

    2007-05-01

    List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital

  3. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with

  4. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    Science.gov (United States)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  5. Teamwork in high-risk environments analogous to space

    Science.gov (United States)

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  6. Do Inner Planets Modulate the Space Environment of the Earth?

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-03-01

    Full Text Available Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth’s neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets’ wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth’s neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.

  7. The part task of the part-spacing paradigm is not a pure measurement of part-based information of faces.

    Directory of Open Access Journals (Sweden)

    Qi Zhu

    Full Text Available BACKGROUND: Faces are arguably one of the most important object categories encountered by human observers, yet they present one of the most difficult challenges to both the human and artificial visual systems. A variety of experimental paradigms have been developed to study how faces are represented and recognized, among which is the part-spacing paradigm. This paradigm is presumed to characterize the processing of both the featural and configural information of faces, and it has become increasingly popular for testing hypotheses on face specificity and in the diagnosis of face perception in cognitive disorders. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments we questioned the validity of the part task of this paradigm by showing that, in this task, measuring pure information about face parts is confounded by the effect of face configuration on the perception of those parts. First, we eliminated or reduced contributions from face configuration by either rearranging face parts into a non-face configuration or by removing the low spatial frequencies of face images. We found that face parts were no longer sensitive to inversion, suggesting that the previously reported inversion effect observed in the part task was due in fact to the presence of face configuration. Second, self-reported prosopagnosic patients who were selectively impaired in the holistic processing of faces failed to detect part changes when face configurations were presented. When face configurations were scrambled, however, their performance was as good as that of normal controls. CONCLUSIONS/SIGNIFICANCE: In sum, consistent evidence from testing both normal and prosopagnosic subjects suggests the part task of the part-spacing paradigm is not an appropriate task for either measuring how face parts alone are processed or for providing a valid contrast to the spacing task. Therefore, conclusions from previous studies using the part-spacing paradigm may need re-evaluation with

  8. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  9. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  10. A study of dynamical behavior of space environment

    Science.gov (United States)

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  11. Space environment durability of beta cloth in LDEF thermal blankets

    Science.gov (United States)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  12. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  13. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  14. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  15. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  16. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  17. The Living With a Star Space Environment Testbed Payload

    Science.gov (United States)

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  18. Modelling the near-Earth space environment using LDEF data

    Science.gov (United States)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  19. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  20. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  1. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  2. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  3. Optimization of application execution in the GridSpace environment

    NARCIS (Netherlands)

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  4. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  5. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  6. Public spaces and urban sustainability in the tropical built environment

    Science.gov (United States)

    Yusof, Y. M.; Kozlowski, M.

    2018-01-01

    Sustainability is an overarching sense of responsibility towards the future. On a city-wide level, urban sustainability incorporates a wide body of changes especially as they relate to the built environment, all of which intended at creating a livable place. This paper discusses existing public spaces in view of their achievement against a set of criteria for the built environment. The paper introduces performance design criteria for the tropical built environment. The key findings indicate that long-term strategies, guidance and directions for the city and region can achieve development which corresponds to local climate, synergies and provide a higher proportion of public spaces that offer something for everyone.

  7. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known

  8. Book Review: Physics of the Space Environment

    Science.gov (United States)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  9. Assessing Built Environment Walkability using Activity-Space Summary Measures.

    Science.gov (United States)

    Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R

    There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.

  10. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  11. Protection from Induced Space Environments Effects on the International Space Station

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  12. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  13. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent times long-term stay has become a common occurrence in the International Space Station (ISS). However adaptation to the space environment can sometimes...

  14. Research Progress and Prospect of GNSS Space Environment Science

    Directory of Open Access Journals (Sweden)

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  15. Human Pathophysiological Adaptations to the Space Environment

    Directory of Open Access Journals (Sweden)

    Gian C. Demontis

    2017-08-01

    Full Text Available Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning to months (i.e., loss of bone density and muscle atrophy of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  16. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  17. Extraterrestrial organic chemistry: from the interstellar medium to the origins of life. Part 2: complex organic chemistry in the environment of planets and satellites.

    Science.gov (United States)

    Raulin, F; Kobayashi, K

    2001-01-01

    During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.

  18. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  19. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  20. Space - A unique environment for process modeling R&D

    Science.gov (United States)

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  1. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  2. Design of Compact Particle Detector System Using FPGA for Space Particle Environment Measurement

    Directory of Open Access Journals (Sweden)

    K. Ryu

    2007-06-01

    Full Text Available We have designed a high resolution proton and electron telescope for the detection of high energy particles, which constitute a major part of the space environment. The flux of the particles, in the satellite orbits, can vary abruptly according to the position and solar activities. In this study, a conceptual design of the detector, for adapting these variations with a high energy resolution, was made and the performance was estimated. In addition, a parallel processing algorithm was devised and embodied using FPGA for the high speed data processing, capable of detecting high flux without losing energy resolution, on board a satellite.

  3. SPACE, COLOR AND QUALITY OF LIFE IN A NUBIAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Diana Kamel

    2012-03-01

    Full Text Available The Egyptian Nubians relocated after the construction of the High Dam South of Aswan to a completely different setting, adjusted with difficulty to their new environment and changed part of it to suit their needs. This paper is a longitudinal study; it deals with the issue of continuity in the patterns of lifestyle within the present Egyptian Nubian community. The aim is to seek evidence on such continuity and to explain the repercussions of previous socio-economic values on the actual residential built and lived-in environment. The methodology is based on earlier studies that were done before relocation and immediately after, also on site visits made by the authors to detect the current aspects of the built-environment. The field study focuses on changes made to the interior and exterior spaces, on the use of decorative patterns and color of the walls and on the residents’ lifestyle. The tools for data gathering are annotated photographs and semi-structured interviews. The cases are chosen from a random sample in one of the 33 villages that constitute the Kom-Ombo site – the village of Eneba (Aniba. Results show evidence of change in all investigated aspects with a slight continuity in some of the culturally related values.

  4. TDRS-1 single event upsets and the effect of the space environment

    International Nuclear Information System (INIS)

    Wilkinson, D.C.; Daughtridge, S.C.; Stone, J.L.; Sauer, H.H.; Darling, P.

    1991-01-01

    The systematic recording of Single Event Upsets on TDRS-1 from 1984 to 1990 allows correlations to be drawn between those upsets and the space environment. In this paper, ground based neutron monitor data are used to illustrate the long-term relationship between galactic cosmic rays and TDRS-1 upsets. The short-term effects of energetic solar particles are illustrated with space environment data from GOES-7

  5. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  6. Space Environment Automated Alerts and Anomaly Analysis Assistant (SEA^5) for NASA

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a comprehensive analysis and dissemination system (Space Environment Automated Alerts  & Anomaly Analysis Assistant: SEA5) that will...

  7. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  8. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  9. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  10. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  11. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Science.gov (United States)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  12. The ESA Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  13. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    Science.gov (United States)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P

    2017-07-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent (United Kingdom), Doetinchem (The Netherlands), and Kaunas (Lithuania). 3771 adults living in 124 neighbourhoods answered questions on mental health, neighbourhood social environment, and amount and quality of green space. Additionally, audit data on neighbourhood green space were collected. Multilevel regression analyses examined the relation between neighbourhood green space and individual mental health and the influence of neighbourhood social environment. Mental health was only related to green (audit) in Barcelona. The amount and quality of neighbourhood green space (audit and perceived) were related to social cohesion in Doetinchem and Stoke-on-Trent and to neighbourhood attachment in Doetinchem. In all four cities, mental health was associated with social contacts. Neighbourhood green was related to mental health only in Barcelona. Though neighbourhood green was related to social cohesion and attachment, the neighbourhood social environment seems not the underlying mechanism for this relationship.

  14. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-07-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  15. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-01-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  16. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  17. Oncogenesis of melanoma B16 cell clones mutagenized by space environment

    International Nuclear Information System (INIS)

    Guo Yupeng; Yang Hongsheng; Tang Jingtian; Xu Mei; Geng Chuanying; Fang Qing; Xu Bo; Li Hongyan; Xiang Xing; Pan Lin

    2005-01-01

    Objective: To explore the oncogenesis of the melanoma B16 cell clones mutagenized by space environment, and find the B16 cell clones with remarkably mutated immunogenicity. Methods: B16 cells were carried by the Chinese 20th recoverable satellite to the outer space, and were harvested after 18 days' spaceflight and then monocloned. Four cell clones, which were randomly selected from the total 110 clones obtained , and the control clone were routinely cultured. The cultured cells were injected to 10 groups of C57BL/6J mice, 82.1 mice in each group. Five groups of mice received hypodermic injection and another 5 groups of mice received abdominal injection. The survival time was observed in abdominal injection groups. The mice in hypodermic injection groups were sacrificed after 14 days, the tumor, spleen and thymus were weighted, and the serum IL-2 concentration was determined. Moreover, the melanoma tumor tissues were examined histopathologically. Results: An experiment program suitable to screening space mutagenesis of B16 tumor cell clones in vivo and the observation indices were basically established. One clone was found out which was remarkably different from the control clone in latent period of tumor formation, tumor weight, survival time of the tumor-bearing mice and the expression of IL-2. Conclusions: Cultured melanoma B16 cells could be mutated by outer space environment. The further study will be focused on the influence of space environment on immunogenicity of mutagenized B16 cells. (authors)

  18. Analysis on Space Environment from the Anomalies of Geosynchronous Satellites

    Directory of Open Access Journals (Sweden)

    Jaejin Lee

    2009-12-01

    Full Text Available While it is well known that space environment can produce spacecraft anomaly, defining space environment effects for each anomalies is difficult. This is caused by the fact that spacecraft anomaly shows various symptoms and reproducing it is impossible. In this study, we try to find the conditions of when spacecraft failures happen more frequently and give satellite operators useful information. Especially, our study focuses on the geosynchronous satellites which cost is high and required high reliability. We used satellite anomaly data given by Satellite News Digest which is internet newspaper providing space industry news. In our analysis, 88 anomaly cases occurred from 1997 to 2008 shows bad corelation with Kp index. Satellite malfunctions were likely to happen in spring and fall and in local time from midnight to dawn. In addition, we found the probability of anomaly increase when high energy electron flux is high. This is more clearly appeared in solar minimum than maximum period.

  19. Specification of the near-Earth space environment with SHIELDS

    International Nuclear Information System (INIS)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; Godinez, Humberto C.; Jeffery, Christopher Andrew Munn

    2017-01-01

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.

  20. TIROS-N/NOAA A-J space environment monitor subsystem. Technical memo

    International Nuclear Information System (INIS)

    Seale, R.A.; Bushnell, R.H.

    1987-04-01

    The Space Environment Monitor (SEM), which is incorporated as a subsystem in the TIROS-N and NOAA A-J satellites, is described. The SEM consists of a Total Energy Detector (TED), a Medium Energy Proton and Electron Detector (MEPED), a High Energy Proton and Alpha Detector (HEPAD) and a Data Processing Unit (DPU). The detectors are intended to provide near-real-time particle data for use in the Space Environment Service Center of National Oceanic and Atmospheric Administration (NOAA) and to provide a long-term scientific data base. Telemeter codes, data reduction, and test instructions are given

  1. BUSEFL: The Boston University Space Environment Forecast Laboratory

    International Nuclear Information System (INIS)

    Contos, A.R.; Sanchez, L.A.; Jorgensen, A.M.

    1996-01-01

    BUSEFL (Boston University Space Environment Forecast Laboratory) is a comprehensive, integrated project to address the issues and implications of space weather forecasting. An important goal of the BUSEFL mission is to serve as a testing ground for space weather algorithms and operational procedures. One such algorithm is the Magnetospheric Specification and Forecast Model (MSFM), which may be implemented in possible future space weather prediction centers. Boston University Student-satellite for Applications and Training (BUSAT), the satellite component of BUSEFL, will incorporate four experiments designed to measure (1) the earth close-quote s magnetic field, (2) distribution of energetic electrons trapped in the earth close-quote s radiation belts, (3) the mass and charge composition of the ion fluxes along the magnetic field lines and (4) the auroral forms at the foot of the field line in the auroral zones. Data from these experiments will be integrated into a ground system to evaluate space weather prediction codes. Data from the BUSEFL mission will be available to the scientific community and the public through media such as the World Wide Web (WWW). copyright 1996 American Institute of Physics

  2. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  3. The contamination of personal space : boundary construction in a prison environment

    NARCIS (Netherlands)

    Sibley, David; van Hoven, Bettina

    In this paper, inmates in dormitories in a prison in New Mexico, USA, talk about their everyday lives. We are particularly interested in the ways in which they think about space. Their principal concern appears to be the definition of personal space in an environment where boundaries are weak. The

  4. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  5. Women's Health Issues in the Space Environment

    Science.gov (United States)

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  6. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Science.gov (United States)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  7. Towards the Next Generation of Space Environment Prediction Capabilities.

    Science.gov (United States)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  8. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    Science.gov (United States)

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  9. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment.

    Science.gov (United States)

    Høybye, Mette Terp

    2013-02-01

    Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best

  10. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  11. Crew behavior and performance in space analog environments

    Science.gov (United States)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  12. VirtualSpace: A vision of a machine-learned virtual space environment

    Science.gov (United States)

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  13. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    Science.gov (United States)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  14. A research on the excavation, support, and environment control of large scale underground space

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  15. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  16. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  17. Farming of Vegetables in Space-Limited Environments

    Science.gov (United States)

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  18. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, Govindarajapuram Subramaniam

    1997-12-01

    The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.

  19. CosmoBon, tree research team, for studying utilization of woody plant in space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari

    2012-07-01

    We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  20. Studies of Earth Space Environment and Sudden Disappearances of Solar Prominences

    National Research Council Canada - National Science Library

    Huang, Tian-Sen

    2005-01-01

    With the support from AFOSR's Minority University Program, we worked on research of Sun-Earth space environment, conducted daily solar observation programs, improved solar instruments, and established...

  1. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  2. 40 CFR 264.35 - Required aisle space.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Required aisle space. 264.35 Section... Preparedness and Prevention § 264.35 Required aisle space. The owner or operator must maintain aisle space to... Regional Administrator that aisle space is not needed for any of these purposes. [Comment: Part 270 of this...

  3. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  4. The Effects of Space Environment on Wireless Communication Devices' Performance

    OpenAIRE

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  5. Commercial opportunities utilizing the International Space Station

    Science.gov (United States)

    Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth

    1998-01-01

    The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.

  6. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment

    DEFF Research Database (Denmark)

    Høybye, Mette Terp

    2013-01-01

    of the individual patient ’ s needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive...... these concepts, the study demonstrates how the hospital environment is a fl ow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients ’ sense of healing changes with the experience of progression in treatment and the capacity of the hospital space...... to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Discussion. Healing environments are complex relations between practices, space and care, where recognition...

  7. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  8. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  9. Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009

    OpenAIRE

    Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito

    2012-01-01

    Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...

  10. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  11. Application of Advanced Materials Protecting from Influence of Free Space Environment

    Science.gov (United States)

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for

  12. DISILICIDE BASE REFRACTORY METAL COATINGS IN SPACE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Bocarsly, Sidney I.

    1963-03-15

    Studies of probable effects of space environment exposure of Durak B'' (a Chromizing Corp. proprietary disilicide coating) coated Mo are described. It was concluded that, in a high-temperature environment, solar radiation will not affect the material system. Sputtering will not cause a structural problem, but it may cause a change in optical properties. Meteoroids may cause coating spalling and minimum to possibly total failure. Some protection system will probably be necessary. Vacuum will cause some coating evaporation. The rate will be temperature-dependent and probably of a low order. The possible problem area is that the evaporation appears to occur preferentially at crack sites. Ionized nitrogen and hydrogen may react with the coating and charge physical or mechanical properties. (A.G.W.)

  13. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  14. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  15. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  16. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  17. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  18. Sustainable Shaping of Urban Spaces in the Context of the Environment

    Directory of Open Access Journals (Sweden)

    Joanna Agnieszka Pawłowicz

    2017-11-01

    Full Text Available The natural environment is of great importance when it comes to developing a city, as it shapes its spaces, defines its roles and performs climatic and protective functions. Industrialization often requires removing landscape obstacles and vegetation to erect new buildings. An urban planner, though, should be aware of the borders that must not be crossed. Designing new streets and buildings should follow a sustainable growth pattern, if the city landscape and its climatic conditions are to improve for generations to come. This paper discusses the aspects of planning and managing urban spaces in such a way as to provide their users with healthy and comfortable living conditions. The paper is based on a survey conducted to gather the opinions of members of a city community on the environment in which they live.

  19. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    Science.gov (United States)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  20. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  1. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  2. The Design Space of Multi-Language Development Environments

    DEFF Research Database (Denmark)

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  3. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  4. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  5. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  6. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  7. Transforming spaces into lively public open places

    NARCIS (Netherlands)

    Cilliers, E.J.; Timmermans, W.

    2016-01-01

    Urban public open spaces are an important part of the urban environment, creating the framework for public life. The transformation of open space into successful public places is crucial in this regard. In the context of target-driven performance it is essential to identify the value of

  8. Habituation to novel visual vestibular environments with special reference to space flight

    Science.gov (United States)

    Young, L. R.; Kenyon, R. V.; Oman, C. M.

    1981-01-01

    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.

  9. Artificial intelligence and the space station software support environment

    Science.gov (United States)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  10. Space Use in the Commons: Evaluating a Flexible Library Environment

    Directory of Open Access Journals (Sweden)

    Andrew D. Asher

    2017-06-01

    Full Text Available Abstract Objective – This article evaluates the usage and user experience of the Herman B Wells Library’s Learning Commons, a newly renovated technology and learning centre that provides services and spaces tailored to undergraduates’ academic needs at Indiana University Bloomington (IUB. Methods – A mixed-method research protocol combining time-lapse photography, unobtrusive observation, and random-sample surveys was employed to construct and visualize a representative usage and activity profile for the Learning Commons space. Results – Usage of the Learning Commons by particular student groups varied considerably from expectations based on student enrollments. In particular, business, first and second year students, and international students used the Learning Commons to a higher degree than expected, while humanities students used it to a much lower degree. While users were satisfied with the services provided and the overall atmosphere of the space, they also experienced the negative effects of insufficient space and facilities due to the space often operating at or near its capacity. Demand for collaboration rooms and computer workstations was particularly high, while additional evidence suggests that the Learning Commons furniture mix may not adequately match users’ needs. Conclusions – This study presents a unique approach to space use evaluation that enables researchers to collect and visualize representative observational data. This study demonstrates a model for quickly and reliably assessing space use for open-plan and learning-centred academic environments and for evaluating how well these learning spaces fulfill their institutional mission.

  11. Role of Green Spaces in Favorable Microclimate Creating in Urban Environment (Exemplified by Italian Cities)

    Science.gov (United States)

    Finaeva, O.

    2017-11-01

    The article represents a brief analysis of factors that influence the development of an urban green space system: territorial and climatic conditions, cultural and historical background as well as the modern strategy of historic cities development. The introduction defines the concept of urban greening, green spaces and green space distribution. The environmental parameters influenced by green spaces are determined. By the example of Italian cities the principles of the urban greening system development are considered: the historical aspects of formation of the urban greening system in Italian cities are analyzed, the role of green spaces in the formation of the urban environment structure and the creation of a favorable microclimate is determined, and a set of measures aimed at its improvement is highlighted. The modern principles of urban greening systems development and their characteristic features are considered. Special attention is paid to the interrelation of architectural and green structures in the formation of a favorable microclimate and psychological comfort in the urban environment; various methods of greening are considered by the example of existing architectural complexes depending on the climate of the area and the landscape features. The examples for the choice of plants and the application of compositional techniques are given. The results represent the basic principles of developing an urban green spaces system. The conclusion summarizes the techniques aimed at the microclimate improvement in the urban environment.

  12. Vertebrate development in the environment of space: models, mechanisms, and use of the medaka

    Science.gov (United States)

    Wolgemuth, D. J.; Herrada, G.; Kiss, S.; Cannon, T.; Forsstrom, C.; Pranger, L. A.; Weismann, W. P.; Pearce, L.; Whalon, B.; Phillips, C. R.

    1997-01-01

    With the advent of space travel, it is of immediate interest and importance to study the effects of exposure to various aspects of the altered environment of space, including microgravity, on Earth-based life forms. Initial studies of space travel have focused primarily on the short-term effects of radiation and microgravity on adult organisms. However, with the potential for increased lengths of time in space, it is critical to now address the effects of space on all phases of an organism's life cycle, from embryogenesis to post-natal development to reproduction. It is already possible for certain species to undergo multiple generations within the confines of the Mir Space Station. The possibility now exists for scientists to consider the consequences of even potentially subtle defects in development through multiple phases of an organism's life cycle, or even through multiple generations. In this discussion, we highlight a few of the salient observations on the effects of the space environment on vertebrate development and reproductive function. We discuss some of the many unanswered questions, in particular, in the context of the choice of appropriate models in which to address these questions, as well as an assessment of the availability of hardware already existing or under development which would be useful in addressing these questions.

  13. 10th meeting of the International Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    Tagawa, Masahito; Kimoto, Yugo; Protection of Materials and Structures From the Space Environment

    2013-01-01

    The goals of the 10th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-10J, since its inception in 1992, have been to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials, including aspects of LEO, GEO and Deep Space environments, ground-based qualification, and in-flight experiments and lessons learned from operational vehicles that are closely interrelated to disciplines of the atmospheric sciences, solar-terrestrial interactions and space life sciences. The knowledge of environmental conditions on and around the Moon, Mars, Venus and the low Earth orbit as well as other possible candidates for landing such as asteroids have become an important issue, and protecting both hardware and human life from the effects of space environments has taken on a new meaning in light of the increased interest in space travel and colonization of other planets.  And while many materia...

  14. Key figures for the environment - Release 2012

    International Nuclear Information System (INIS)

    2012-09-01

    Commented graphs and data tables give an overview of several indicators regarding the environment in France in 2011. A first part addresses natural media and biodiversity by commenting several indicators related to climate and greenhouse effect, air pollution, water pollution, soil pollution by organic materials, and biodiversity. The second part addresses natural resource management and use: space consumption, material consumption, water consumption, energy consumption, and wastes. The third part addresses the economy of the environment and the evolution of behaviours: jobs and expenses in the environment sector, evolution of transport modes, practices in agriculture, forest fire risks and natural risks, public actions to be performed and environmental concern of the French population

  15. Application of Terrestrial Environments in Orion Assessments

    Science.gov (United States)

    Barbre, Robert E.

    2016-01-01

    This presentation summarizes the Marshall Space Flight Center Natural Environments Terrestrial and Planetary Environments (TPE) Team support to the NASA Orion space vehicle. The TPE utilizes meteorological data to assess the sensitivities of the vehicle due to the terrestrial environment. The Orion vehicle, part of the Multi-Purpose Crew Vehicle Program, is designed to carry astronauts beyond low-earth orbit and is currently undergoing a series of tests including Exploration Test Flight (EFT) - 1. The presentation describes examples of TPE support for vehicle design and several tests, as well as support for EFT-1 and planning for upcoming Exploration Missions while emphasizing the importance of accounting for the natural environment's impact to the vehicle early in the vehicle's program.

  16. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  17. Process material management in the Space Station environment

    Science.gov (United States)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  18. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  19. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  20. Urban green spaces assessment approach to health, safety and environment

    Directory of Open Access Journals (Sweden)

    B. Akbari Neisiani

    2016-04-01

    Full Text Available The city is alive with dynamic systems, where parks and urban green spaces have high strategic importance which help to improve living conditions. Urban parks are used as visual landscape with so many benefits such as reducing stress, reducing air pollution and producing oxygen, creating opportunities for people to participate in physical activities, optimal environment for children and decreasing noise pollution. The importance of parks is such extent that are discussed as an indicator of urban development. Hereupon the design and maintenance of urban green spaces requires integrated management system based on international standards of health, safety and the environment. In this study, Nezami Ganjavi Park (District 6 of Tehran with the approach to integrated management systems have been analyzed. In order to identify the status of the park in terms of the requirements of the management system based on previous studies and all Tehran Municipality’s considerations, a check list has been prepared and completed by park survey and interview with green space experts. The results showed that the utility of health indicators were 92.33 % (the highest and environmental and safety indicators were 72 %, 84 % respectively. According to SWOT analysis in Nezami Ganjavi Park some of strength points are fire extinguishers, first aid box, annual testing of drinking water and important weakness is using unseparated trash bins also as an opportunities, there are some interesting factors for children and parents to spend free times. Finally, the most important threat is unsuitable park facilities for disabled.

  1. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  2. Distributed computing environments for future space control systems

    Science.gov (United States)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  3. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  4. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Science.gov (United States)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  5. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...

  6. On reflexivity of random walks in a random environment on a metric space

    International Nuclear Information System (INIS)

    Rozikov, U.A.

    2002-11-01

    In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)

  7. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Science.gov (United States)

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  8. Space Environmental Effects on Colored Coatings and Anodizes

    Science.gov (United States)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  9. Approaching value added planning in the green environment

    NARCIS (Netherlands)

    Cilliers, E.J.; Timmermans, W.

    2013-01-01

    Purpose – The purpose of this paper is to link economic value to urban green spaces to enhance the value of green urban spaces, along with the added benefit it can offer to the urban environment. Design/methodology/approach – As part of the VALUE project (Valuing Attractive Landscapes in the Urban

  10. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  11. Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder"? Part I.

    Science.gov (United States)

    Logan, Alan C; Katzman, Martin A; Balanzá-Martínez, Vicent

    2015-01-31

    Famed microbiologist René J. Dubos (1901-1982) was an early pioneer in the developmental origins of health and disease (DOHaD) construct. In the 1960s, he conducted groundbreaking experimental research concerning the ways in which early-life experience with nutrition, microbiota, stress, and other environmental variables could influence later-life health outcomes. He also wrote extensively on potential health consequences of a progressive loss of contact with natural environments (now referred to as green or blue space), arguing that Paleolithic experiences have created needs, particularly in the mental realm, that might not be met in the context of rapid global urbanization. He posited that humans would certainly adapt to modern urban landscapes and high technology, but there might be a toll to be paid in the form of higher psychological distress (symptoms of anxiety and depression) and diminished quality of life. In particular, there might be an erosion of humanness, exemplified by declines in altruism/empathy. Here in the first of a two-part review, we examine contemporary research related to natural environments and question to what extent Dubos might have been correct in some of his 50-year-old assertions.

  12. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  13. Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

    International Nuclear Information System (INIS)

    Belloir, Jean-Marc

    2016-01-01

    CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such as space imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramatically increased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors have substantial advantages over CCDs which make them great candidates to replace CCDs in future space missions. However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidly degrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or the fusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure. These displacement damage effects lead to the formation of stable defects and to the introduction of states in the forbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, non ionizing radiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the image sensor sensitivity and dynamic range. The aim of the present work is to extend the understanding of the effect of displacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on the shape of the dark current distribution depending on the particle type, energy and fluence but also on the image sensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the dark current distribution induced by displacement damage in nuclear or space environments is experimentally validated and physically justified. Another central part of this work consists in using the dark current spectroscopy technique for the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects. Many types of defects are detected and two of them are identified

  14. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  15. Culture and error in space: implications from analog environments.

    Science.gov (United States)

    Helmreich, R L

    2000-09-01

    An ongoing study investigating national, organizational, and professional cultures in aviation and medicine is described. Survey data from 26 nations on 5 continents show highly significant national differences regarding appropriate relationships between leaders and followers, in group vs. individual orientation, and in values regarding adherence to rules and procedures. These findings replicate earlier research on dimensions of national culture. Data collected also isolate significant operational issues in multi-national flight crews. While there are no better or worse cultures, these cultural differences have operational implications for the way crews function in an international space environment. The positive professional cultures of pilots and physicians exhibit a high enjoyment of the job and professional pride. However, a negative component was also identified characterized by a sense of personal invulnerability regarding the effects of stress and fatigue on performance. This misperception of personal invulnerability has operational implications such as failures in teamwork and increased probability of error. A second component of the research examines team error in operational environments. From observational data collected during normal flight operations, new models of threat and error and their management were developed that can be generalized to operations in space and other socio-technological domains. Five categories of crew error are defined and their relationship to training programs in team performance, known generically as Crew Resource Management, is described. The relevance of these data for future spaceflight is discussed.

  16. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  17. Enhanced Predictions of Time to Critical Dielectric Breakdown of Materials Under Prolonged Exposure to Space Plasma Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading cause of spacecraft failures and malfunctions due to interactions with the space plasma environment is electrostatic discharge (ESD). The enhanced time...

  18. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  19. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2015-12-01

    Full Text Available In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton’s laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  20. Fibre optic gyroscopes for space use

    Science.gov (United States)

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  1. Key figures on the environment - Issue 2013

    International Nuclear Information System (INIS)

    2013-10-01

    This publication proposes data, graphs, maps and tables illustrating through various parameters and indicators the status and the evolution of different aspects of the environment. It first addresses natural media and biodiversity: climate, greenhouse effect, air, waters, soils and biodiversity. The second part addresses the management and use of natural resources: space consumption, material consumption, water consumption, energy consumption, biological resource consumption, and wastes. The third part addresses the economy of the environment and the evolution of behaviours: public opinion, risks, economy, transports, and agriculture. It also proposes a comparative view between European countries

  2. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  3. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  4. Health services at the Kennedy Space Center

    Science.gov (United States)

    Ferguson, E. B.; Humbert, P.; Long, I. D.; Tipton, D. A.

    1992-01-01

    Comprehensive occupational health services are provided to approximately 17,000 workers at the Kennedy Space Center and an additional 6000 on Cape Canaveral Air Force Station. These areas cover about 120,000 acres encompassing part of the Merritt Island Wild Life Refuge and wetlands which are the habitat of numerous endangered and protected species of wildlife. The services provided at the Kennedy Space Center optimally assure a safe and healthy working environment for the employees engaged in the preparation and launching of this country's Space Shuttle and other important space exploration programs.

  5. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  6. Innovative Learning Environments and New Materialism: A Conjunctural Analysis of Pedagogic Spaces

    Science.gov (United States)

    Charteris, Jennifer; Smardon, Dianne; Nelson, Emily

    2017-01-01

    An Organisation for Economic Cooperation and Development research priority, innovative learning environments (ILEs) have been translated into policy and practice in 25 countries around the world. In Aotearoa/New Zealand, learning spaces are being reconceptualised in relation to this policy work by school leaders who are confronted by an impetus to…

  7. Sandboxes, Loose Parts, and Playground Equipment: A Descriptive Exploration of Outdoor Play Environments

    Science.gov (United States)

    Olsen, Heather; Smith, Brandy

    2017-01-01

    The purpose of the study was to examine outdoor environments to understand whether or not young children had access to play materials and loose parts to enhance their playful experiences. This study sought to gather the availability of SAFE and quality play opportunities in early childhood outdoor environments. The study took place in one state of…

  8. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar; Agarwal, Saurav; Mahadevan, Aditya; Chakravorty, Suman; Tomkins, Daniel; Denny, Jory; Amato, Nancy M.

    2014-01-01

    , such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes

  9. Effects of a Green Space Layout on the Outdoor Thermal Environment at the Neighborhood Level

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lai

    2012-09-01

    Full Text Available This study attempted to address the existing urban design needs and computer-aided thermal engineering and explore the optimal green space layout to obtain an acceptable thermal environment at the neighborhood scale through a series of building energy and computational fluid dynamics (CFD simulations. The building-energy analysis software eQUEST and weather database TMY2 were adopted to analyze the electric energy consumed by air conditioners and the analysis results were incorporated to derive the heat dissipated from air conditioners. Then, the PHOENICS CFD software was used to analyze how the green space layout influences outdoor thermal environment based on the heat dissipated from air conditioners and the solar heat reemitted from the built surfaces. The results show that a green space located in the center of this investigated area and at the far side of the downstream of a summer monsoon is the recommended layout. The layouts, with green space in the center, can decrease the highest temperature by 0.36 °C.

  10. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Science.gov (United States)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  11. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Science.gov (United States)

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  12. Enhancing engagement in multimodality environments by sound movement in a virtual space

    DEFF Research Database (Denmark)

    Götzen, Amalia De

    2004-01-01

    of instrumental sounds - has allowed space as a musical instrumental practice to flourish. Electro-acoustic technologies let composers explore new listening dimensions and consider the sounds coming from loudspeakers as possessing different logical meanings from the sounds produced by traditional instruments....... Medea, Adriano Guarnieri's "video opera", is an innovative work stemming from research in multimedia that demonstrates the importance and amount of research dedicated to sound movement in space. Medea is part of the Multi-sensory Expressive Gesture Application project (http://www.megaproject.org). Among...

  13. Designing carbon markets, Part II: Carbon markets in space

    International Nuclear Information System (INIS)

    Fankhauser, Samuel; Hepburn, Cameron

    2010-01-01

    This paper analyses the design of carbon markets in space (i.e., geographically). It is part of a twin set of papers that, starting from first principles, ask what an optimal global carbon market would look like by around 2030. Our focus is on firm-level cap-and-trade systems, although much of what we say would also apply to government-level trading and carbon offset schemes. We examine the 'first principles' of spatial design to maximise flexibility and to minimise costs, including key design issues in linking national and regional carbon markets together to create a global carbon market.

  14. CliniSpace: a multiperson 3D online immersive training environment accessible through a browser.

    Science.gov (United States)

    Dev, Parvati; Heinrichs, W LeRoy; Youngblood, Patricia

    2011-01-01

    Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.

  15. Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    Science.gov (United States)

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2006-01-01

    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.

  16. The NASA Electronic Parts and Packaging (NEPP) Program: An Overview

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2016-01-01

    This presentation provides an overview of the NEPP Program. The NEPP Mission is to provide guidance to NASA for the selection and application of microelectronics technologies; Improve understanding of the risks related to the use of these technologies in the space environment; Ensure that appropriate research is performed to meet NASA mission assurance needs. NEPP's Goals are to provide customers with appropriate and cost-effective risk knowledge to aid in: Selection and application of microelectronics technologies; Improved understanding of risks related to the use of these technologies in the space environment; Appropriate evaluations to meet NASA mission assurance needs; Guidelines for test and application of parts technologies in space; Assurance infrastructure and support for technologies in use by NASA space systems.

  17. Considering the space environment

    International Nuclear Information System (INIS)

    Boudenot, J.C.; Fillon, T.; Barrillot, C.; Calvet, M.C.

    1999-01-01

    The high levels of radiation encountered in space and in the upper atmosphere can affect the onboard electronics in satellites, launch vehicles and aircraft. The main categories of radiation in space have been classified into four distinct types; radiation belts, solar flares, cosmic radiation and the solar wind. Most of the risk to modern electronic systems arises from heavy ions. In geostationary and low polar orbits, these originate mainly as protons from solar flares. In medium earth orbits, the main source is trapped protons and the South Atlantic anomaly. (authors)

  18. Living closer to the environment: Housing design concept

    Directory of Open Access Journals (Sweden)

    Kosorić Vesna

    2011-01-01

    Full Text Available The main idea of this design concept is to strengthen the relationship and understanding between a man - resident and his environment. Residents are separated from the outdoor environment by glazing, which enables constant observation of environment from nearly all points of indoor space, encouraging positive feelings towards external world and understanding of the fragility of biosphere. Care for the environment should become a part of a man's nature and way of living, and it is the people who are expected to become the driving force of positive global changes towards sustainable development. The semisphere-like single family house of 14m in diameter has a multifunctional, multi-layer 'active' facade envelope. The envelope ensures constant visual contact of residents with the whole surroundings, while still providing comfort. The living space of the house reflects natural shapes which are organic rather than rectangular. Such indoor space becomes a part of the environment, rather than being protected, distanced and isolated from it. The house is designed to use solar energy 'passively' by absorption through insulated glazed envelope and 'actively' by outer skin layer on the first floor, made of stripes of flat semi-transparent polycrystalline photovoltaic (PV panels. In addition to its constructive role, the concrete core of the house acts as thermal mass and enables absorption and accumulation of thermal energy. The developed housing concept is applicable in different urban-design units and sets.

  19. OverView of Space Applications for Environment (SAFE) initiative

    Science.gov (United States)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  20. OverView of Space Applications for Environment (SAFE) initiative

    International Nuclear Information System (INIS)

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  1. Fiber-based laser MOPA transmitter packaging for space environment

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  2. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  3. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  4. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  5. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    NARCIS (Netherlands)

    Ruijsbroek, A.; Mohnen, S.M.; Droomers, M.; Kruize, H.; Gidlow, C.; Grazuleviciene, R.; Andrusaityte, S.; Helbich, M.; Maas, J.; Nieuwenhuijsen, M.J.; Triguero-Mas, M.; Masterson, D.; Ellis, N.; Kempen, E. van; Hardyns, W.; Stronks, K.; Groenewegen, P.P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona

  6. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  7. Optimal repairable spare-parts procurement policy under total business volume discount environment

    International Nuclear Information System (INIS)

    Pascual, Rodrigo; Santelices, Gabriel; Lüer-Villagra, Armin; Vera, Jorge; Cawley, Alejandro Mac

    2017-01-01

    In asset intensive fields, where components are expensive and high system availability is required, spare parts procurement is often a critical issue. To gain competitiveness and market share is common for vendors to offer Total Business Volume Discounts (TBVD). Accordingly, companies must define the procurement and stocking policy of their spare parts in order to reduce procurement costs and increase asset availability. In response to those needs, this work presents an optimization model that maximizes the availability of the equipment under a TBVD environment, subject to a budget constraint. The model uses a single-echelon structure where parts can be repaired. It determines the optimal number of repairable spare parts to be stocked, giving emphasis on asset availability, procurement costs and service levels as the main decision criteria. A heuristic procedure that achieves high quality solutions in a fast and time-consistent way was implemented to improve the time required to obtain the model solution. Results show that using an optimal procurement policy of spare parts and accounting for TBVD produces better overall results and yields a better availability performance. - Highlights: • We propose a model for procurement of repairable components in single-echelon and business volume discount environments. • We used a mathematical model to develop a competitive heuristic that provides high quality solutions in very short times. • Our model places emphasis on using system availability, procurement costs and service levels as leading decision criteria. • The model can be used as an engine for a multi-criteria Decision Support System.

  8. Fine Coining of Bulk Metal Formed Parts in Digital Environment

    International Nuclear Information System (INIS)

    Pepelnjak, T.; Kuzman, K.; Krusic, V.

    2007-01-01

    At present the production of bulk metal formed parts in the automotive industry must increasingly fulfil demands for narrow tolerance fields. The final goal of the million parts production series is oriented towards zero defect production. This is possible by achieving production tolerances which are even tighter than the prescribed ones. Different approaches are used to meet this demanding objective affected by many process parameters. Fine coining as a final forming operation is one of the processes which enables the production of good manufacturing tolerances and high process stability. The paper presents the analyses of the production of the inner race and a digital evaluation of manufacturing tolerances caused by different material parameters of the workpiece. Digital optimisation of the fine coining with FEM simulations was performed in two phases. Firstly, fine coining of the inner racer in a digital environment was comparatively analysed with the experimental work in order to verify the accuracy and reliability of digitally calculated data. Secondly, based on the geometrical data of a digitally fine coined part, tool redesign was proposed in order to tighten production tolerances and increase the process stability of the near-net-shaped cold formed part

  9. Neighbourhood green space, social environment and mental health : an examination in four European cities

    NARCIS (Netherlands)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona (Spain),

  10. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  11. A trajectory planning scheme for spacecraft in the space station environment. M.S. Thesis - University of California

    Science.gov (United States)

    Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.

    1991-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.

  12. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  13. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  14. Neighbourhood green space, social environment and mental health: an examination in four European cities

    NARCIS (Netherlands)

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent

  15. Design for unusual environment (space). Complementary use of modelling and testing phases

    International Nuclear Information System (INIS)

    Cambiaghi, Danilo; Cambiaghi, Andrea

    2004-01-01

    Designing for space requires a great imagination effort from the designer. He must perceive that the stresses experimented by the facilities he is designing will be quite different in space (during the mission), in launch phase and on ground (before launch handling phase), and he must design for all such environmental conditions. Furthermore he must design for mechanical and thermal environment, which often lead to conflicting needs. Virtual models may help very much in balancing the conflicting requirements, but models must be validated to be reliable. Test phase help validating the models, but may overstress the items. The aim of the designer is to reach an efficient and safe design through a balanced use of creativity, modelling and testing

  16. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  17. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  18. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment

    Directory of Open Access Journals (Sweden)

    Silje A. Wolff

    2014-05-01

    Full Text Available Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA has developed the Micro-Ecological Life Support System Alternative (MELiSSA program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.

  19. Developments of space station; Uchu station no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  20. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  1. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  2. Is green space in the living environment associated with people's feelings of social safety?

    NARCIS (Netherlands)

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    The authors investigate whether the percentage of green space in people’s living environment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in the

  3. Is green space in the living environment associated with people's feelings of social safety?

    NARCIS (Netherlands)

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    Abstract. The authors investigate whether the percentage of green space in people's living environ- ment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in

  4. The NASA Electronic Parts and Packaging (NEPP) Program: Overview and the New Tenets for Cost Conscious Mission Assurance on Electrical, Electronic, and Electromechanical (EEE) Parts

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2015-01-01

    The NEPP Program focuses on the reliability aspects of electronic devices (integrated circuits such as a processor in a computer). There are three principal aspects of this reliability: 1) Lifetime, inherent failure and design issues related to the EEE parts technology and packaging; 2) Effects of space radiation and the space environment on these technologies, and; 3) Creation and maintenance of the assurance support infrastructure required for mission success. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment, and to ensure that appropriate EEE parts research is performed to meet NASA mission assurance needs. NEPPs FY15 goals are to represent the NASA voice to the greater aerospace EEE parts community including supporting anti-counterfeit and trust, provide relevant guidance to cost-effective missions, aid insertion of advanced (and commercial) technologies, resolve unexpected parts issues, ensure access to appropriate radiation test facilities, and collaborate as widely as possible with external entities. In accordance with the changing mission profiles throughout NASA, the NEPP Program has developed a balanced portfolio of efforts to provide agency-wide assurance for not only traditional spacecraft developments, but also those in-line with the new philosophies emerging worldwide. In this presentation, we shall present an overview of this program and considerations for EEE parts assurance as applied to cost conscious missions.

  5. Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope

    Science.gov (United States)

    Jah, Muzar A.; Jeffers, Basil S.

    2016-01-01

    James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.

  6. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  7. Creating Welcoming Spaces for Lesbian, Gay, Bisexual, and Transgender (LGBT) Patients: An Evaluation of the Health Care Environment.

    Science.gov (United States)

    McClain, Zachary; Hawkins, Linda A; Yehia, Baligh R

    2016-01-01

    Health outcomes are affected by patient, provider, and environmental factors. Previous studies have evaluated patient-level factors; few focusing on environment. Safe clinical spaces are important for lesbian, gay, bisexual, and transgender (LGBT) communities. This study evaluates current models of LGBT health care delivery, identifies strengths and weaknesses, and makes recommendations for LGBT spaces. Models are divided into LGBT-specific and LGBT-embedded care delivery. Advantages to both models exist, and they provide LGBT patients different options of healthcare. Yet certain commonalities must be met: a clean and confidential system. Once met, LGBT-competent environments and providers can advocate for appropriate care for LGBT communities, creating environments where they would want to seek care.

  8. Computed tomography of the carotid space and related cervical spaces. Part 1. Anatomy

    International Nuclear Information System (INIS)

    Silver, A.J.; Mawad, M.E.; Hilal, S.K.; Sane, P.; Ganti, S.R.

    1984-01-01

    The carotid space, parapharyngeal space, and paraspinal space are described. The carotid space is shown on computed tomography (CT) to be posterior to the parapharyngeal space and separated from it by the styloid apparatus. The paraspinal space is posterior to the carotid space and separated from it by the longus and anterior scalene muscles

  9. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Science.gov (United States)

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  10. Natural Hazards of the Space Environment

    Science.gov (United States)

    Evans, Steven W.; Kross, Dennis A. (Technical Monitor)

    2000-01-01

    Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.

  11. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  12. The Mini Space Farm—A Food Regenerative System in the Long-term Manned Space Mission.

    Science.gov (United States)

    Zhang, Mao

    In this invention we propose rearing six types of small animals which are mainly insects, all the biological wastes (bio-waste) in the space human life environment, including the human and animal feces, inedible parts of the plants and animals, food bits and other bio-wastes,can be feedstuff for rearing these six small animals, each one can recycle and digest the specific wastes to be their nourishing biomass. The biomass of these six animals, combine with the inedible parts of the space plants, will further be used as feedstuff for feeding edible animals of poultry, aquatics, amphibians, even the livestock. The meat, egg and milk from these edible animals are taken as human's animal food. Here we name these animals are as Edible Animal (EA), these six small animals are as Recycling Animals (RA). The water and nutrition left in the residues after rearing the RA can be recycled again by other RA or used to fertilize the space plants. The appropriate space plants include both terrestrial and aquatic species, such as vegetable,grain,feeding plant,edible algae and germs,also be cultivated as vegetarian food which have already successfully developed by NASA and other countries. These RA have strong reproduction ability, short life cycle, rich of nutrition, and can be easily reared in high densities with high efficiency in microgravity. Like the RA, the EA and space plants, they can be continuously reared in cages,boxes and water tanks as the solid manner, their optimal growth temperature and the humidity are same with RA, so they can be fed in the same cabin. Rearing RA, EA and plants together can provide a self-sustaining food system with minimum volume, weight, energy, labor and cost, which is the basis for realizing mini space farm in long term manned space missions. In this way, two kinds of mini space farm models have been designed: A cabin model to be used on ISS and flight craft functioning within a microgravity environment, and a greenhouse model to be used on

  13. Key figures for the environment - Issue 2015

    International Nuclear Information System (INIS)

    2015-10-01

    Commented graphs and data tables give an overview of several indicators regarding the environment in France in 2014. A first part addresses natural media and biodiversity by commenting several indicators related to climate and greenhouse effect, air pollution and pollutants, water pollution (underground waters, rivers, rivers flowing to the sea, marine environment), soil pollution by organic materials and soil erosion, and biodiversity (birds, protected areas, humid zones). The second part addresses natural resource management and use: space consumption, material consumption, water consumption, energy consumption, consumption of biological resources (forests, fishery resources), and wastes. The third part addresses the economy of the environment and the evolution of behaviours: environmental concerns and expectations of French people, forest fire risks and natural risks, public actions to be performed and environmental concern of the French population, jobs and expenses in the environmental sector, evolution of transport modes, practices in agriculture and in industry. Some brief European comparisons are proposed, as well as a glossary

  14. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  16. Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications

    Science.gov (United States)

    Pellish, Jonathan

    2018-01-01

    This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!

  17. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  18. CfDS attends the first meeting of the All-Party Parliamentary Astronomy and Space Environment Group

    Science.gov (United States)

    Mizon, B.

    1999-06-01

    This group first met on March 11th, 1999, as 'a forum for discussion to further parliamentary interest in astronomy and the space environment affecting terrestrial life and its climate; and to increase awareness of the social, political and philosophical implications of present and future space technologies connected with exploring and understanding the cosmos'. CfDS coordinator Bob Mizon attended the first meeting of the group.

  19. Secondary electron emission and its role in the space environment

    Science.gov (United States)

    Němeček, Z.; Pavlů, J.; Richterová, I.; Šafránková, J.; Vaverka, J.

    2018-01-01

    The role of dust in the space environment is of increasing interest in recent years and also the fast development of fusion devices with a magnetic confinement brought new issues in the plasma-surface interaction. Among other processes, secondary electron emission plays an important role for dust charging in interplanetary space and its importance increases at and above the surfaces of airless bodies like planets, moons, comets or asteroids. A similar situation can be found in many industrial applications where the dust is a final product or an unintentional impurity. The present paper reviews the progress in laboratory investigations of the secondary emission process as well as an evolution of the modeling of the interaction of energetic electrons with dust grains of different materials and sizes. The results of the model are discussed in view of latest laboratory simulations and they are finally applied on the estimation of an interaction of the solar wind and magnetospheric plasmas with the dust attached to or levitating above the lunar surface.

  20. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  1. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  2. Targeting Children Online : Young internet users and producers in the commercial media environment

    OpenAIRE

    Martinez, Carolina

    2017-01-01

    Children’s daily internet usage takes place to a large extent in a commercial environment, where advertising and the sale of virtual goods are ever-present parts of the online experience. The overall goal of this thesis is to contribute to a critical understanding of children’s commercial online environment as spaces for children’s everyday life activities and participation, and as spaces for commercial interests that seek to target children and monetize their internet usage. Two papers analy...

  3. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  4. Characteristics of personal space during obstacle circumvention in physical and virtual environments.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Richards, Carol L; Fung, Joyce; McFadyen, Bradford J

    2008-02-01

    It is not known how the flexible protective zone maintained around oneself during locomotion (personal space or PS; see [Gérin-Lajoie M, Richards CL, McFadyen BJ. The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control 2005;9:242-69]) is modulated with walking speed, whether both sides of the PS are symmetrical, and whether the circumvention of physical and virtual obstructions elicit the same use of such PS. Personal space was measured in ten adults as they circumvented a cylindrical obstacle that was stationary within their path. Both left and right passes were performed at natural self-selected, slow and fast walking speeds. The same circumvention task was also performed at natural speeds in an immersive virtual environment (VE) replicating the same obstruction scenario. The shape and size of PS were maintained across walking speeds, and a smaller PS was generally observed on the dominant side. The general shape and lateral bias of the PS were preserved in the VE while its size was slightly increased. The systematic behavior across walking speeds and types of environment and the lateral bias suggest that PS is used to control navigation. This study deepens our understanding of normal adaptive walking behavior and has implications for the development of better tools for the assessment and retraining of locomotor capacity in different populations, from people with walking deficits to elite athletes. Since the PS behavior was shown to be robust in the VE used for this study, the virtual reality technology is proposed as a promising platform for the development of such assessment and retraining applications.

  5. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    Science.gov (United States)

    Johnson, K.; Kim, R.; Echeverry, J.

    Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS

  6. The Space Situational Assessment Report to Improve Public Awareness in China

    Science.gov (United States)

    Li, Hongbo; Zhang, Qi; Xie, Zebing; Wei, Xiangwang; Wang, Tao

    For improvement of public awareness of the impact of space activities in China, a Space Situational Assessment Report 2013 will be issued in March 2014. More than ten Chinese main medium are invited for a special press conference. The Space Situational Assessment Report aims to introduce international space activities to Chinese public, and provide a common, comprehensive knowledge base to support the development of national policies and international security cooperation of outer space. The full report organizes international space activities until 2013 according to three parts those are Foundations, Strategies and Environment, including nine chapters, such as Space laws and policies; Space facility and equipment; Institutions and Human Resource; Military space, Civil space and Commercial space; Natural space environment; Space situational awareness, etc. A kind of Space Situational Assessment Index System is presented as a globally-focused analytic framework that defines, measures, and ranks national space activity. To use for a variety of public themes, different assessment indexes are constituted by scores of individual qualitative and quantitative metrics based on the Index System. Three research organizaitons of space sciences and technologies collaborated on the Space Situational Assessment Report. It is a scholarly and ungovernmental work.

  7. Implementing AORN recommended practices for a safe environment of care, part II.

    Science.gov (United States)

    Kennedy, Lynne

    2014-09-01

    Construction in and around a working perioperative suite is a challenge beyond merely managing traffic patterns and maintaining the sterile field. The AORN "Recommended practices for a safe environment of care, part II" provides guidance on building design; movement of patients, personnel, supplies, and equipment; environmental controls; safety and security; and control of noise and distractions. Whether the OR suite evolves through construction, reconstruction, or remodeling, a multidisciplinary team of construction experts and health care professionals should create a functional plan and communicate at every stage of the project to maintain a safe environment and achieve a well-designed outcome. Emergency preparedness, a facility-wide security plan, and minimization of noise and distractions in the OR also help enhance the safety of the perioperative environment. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  8. The Affect of the Space Environment on the Survival of Halorubrum Chaoviator and Synechococcus (Nageli): Data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2014-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life

  9. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  10. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    Science.gov (United States)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  11. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  12. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  13. Space in Space: Designing for Privacy in the Workplace

    Science.gov (United States)

    Akin, Jonie

    2015-01-01

    Privacy is cultural, socially embedded in the spatial, temporal, and material aspects of the lived experience. Definitions of privacy are as varied among scholars as they are among those who fight for their personal rights in the home and the workplace. Privacy in the workplace has become a topic of interest in recent years, as evident in discussions on Big Data as well as the shrinking office spaces in which people work. An article in The New York Times published in February of this year noted that "many companies are looking to cut costs, and one way to do that is by trimming personal space". Increasingly, organizations ranging from tech start-ups to large corporations are downsizing square footage and opting for open-office floorplans hoping to trim the budget and spark creative, productive communication among their employees. The question of how much is too much to trim when it comes to privacy, is one that is being actively addressed by the National Aeronautics and Space Administration (NASA) as they explore habitat designs for future space missions. NASA recognizes privacy as a design-related stressor impacting human health and performance. Given the challenges of sustaining life in an isolated, confined, and extreme environment such as Mars, NASA deems it necessary to determine the acceptable minimal amount for habitable volume for activities requiring at least some level of privacy in order to support optimal crew performance. Ethnographic research was conducted in 2013 to explore perceptions of privacy and privacy needs among astronauts living and working in space as part of a long-distance, long-duration mission. The allocation of space, or habitable volume, becomes an increasingly complex issue in outer space due to the costs associated with maintaining an artificial, confined environment bounded by limitations of mass while located in an extreme environment. Privacy in space, or space in space, provides a unique case study of the complex notions of

  14. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  15. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment.

    Science.gov (United States)

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-04-22

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people's stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant's home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  16. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Directory of Open Access Journals (Sweden)

    Catharine Ward Thompson

    2016-04-01

    Full Text Available Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  17. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Science.gov (United States)

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-01-01

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments. PMID:27110803

  18. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  19. Yearbook on space policy 2015 access to space and the evolution of space activities

    CERN Document Server

    Baranes, Blandina; Hulsroj, Peter; Lahcen, Arne

    2017-01-01

    The Yearbook on Space Policy, edited by the European Space Policy Institute (ESPI), is the reference publication analysing space policy developments. Each year it presents issues and trends in space policy and the space sector as a whole. Its scope is global and its perspective is European. The Yearbook also links space policy with other policy areas. It highlights specific events and issues, and provides useful insights, data and information on space activities. The first part of the Yearbook sets out a comprehensive overview of the economic, political, technological and institutional trends that have affected space activities. The second part of the Yearbook offers a more analytical perspective on the yearly ESPI theme and consists of external contributions written by professionals with diverse backgrounds and areas of expertise. The third part of the Yearbook carries forward the character of the Yearbook as an archive of space activities. The Yearbook is designed for government decision-makers and agencies...

  20. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2015-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary

  1. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  2. Economy of conservation options in industry and developed environment. Part 2

    International Nuclear Information System (INIS)

    1994-03-01

    To determine the optimal situation for the energy supply in the working area of the IJsselmij and Sep the study on the title subject was carried out. To influence the energy demand demand-side management (DSM) as part of integrated resource planning (IRP) is applied. Several scenarios to determine whether new production capacity must be installed or conservation options and activities should be realized are elaborated and calculated by means of the COMPASS model. E3T compiled input data for the demand-side of the model: energy consumption and energy conservation, investment cost and operational cost per user, number of installations and the development of the penetration of the conservation options between 1990 and 2010, and required subsidies and promotional costs of the IJsselmij to introduce such options. Six of the options were selected and elaborated in detail. The results are presented in this report for the options: coverage of cooling and freezing equipment at night, frequency control of electric motors, decentralized heat production by means of advanced burners, indoor climate control in the built environment, reflectors for TL-lighting systems in the built environment, and behavioral change in industrial companies. In part 1 an overview is given of the economics, the selection and elaboration of the energy conservation options. 9 figs., 53 tabs., 71 refs., 1 appendix

  3. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  4. Workplaces as Transformative Learning Spaces

    DEFF Research Database (Denmark)

    Maslo, Elina

    2010-01-01

    some other examples on “successful learning” from the formal, informal and non-formal learning environments, trying to prove those criteria. This presentation provides a view on to new examples on transformative learning spaces we discovered doing research on Workplace Learning in Latvia as a part......Abstract to the Vietnam Forum on Lifelong Learning: Building a Learning Society Hanoi, 7-8 December 2010 Network 2: Competence development as Workplace Learning Title of proposal: Workplaces as Transformative Learning Spaces Author: Elina Maslo, dr. paed., University of Latvia, elina@latnet.lv Key...... words: learning, lifelong learning, adult learning, workplace learning, transformative learning spaces During many years of research on lifelong foreign language learning with very different groups of learners, we found some criteria, which make learning process successful. Since then we tried to find...

  5. Space Guiding Us

    Science.gov (United States)

    Primikiri, Athina

    2016-04-01

    Taking into consideration the fact that general education provides the passport for a successful career the charting of Space consists of a constructive instrument available to every single teacher. Activities touching directly upon Space comprise a source of inspiration that encourages pupils to get acquainted with natural sciences and technology while consolidating their cross-curriculum knowledge. The applications and endeavors arising out of Space play a vital role for the further development and growth of our societies. Moreover, the prosperity of people is inextricably bound up with the implementation of Space policies adapted to different sectors such as the Environment, the phenomenon of climate change, matters affecting public or private safety, humanitarian aid and other technological issues. Therefore, the thorough analysis of Space endows us with insights about new products and innovative forms of industrial collaboration. As a teacher, I have consciously chosen to utilize the topic of Space in class as an instructive tool during the last 4 years. The lure of Space combined with the fascination provided by Space flights contributes to the enrichment of children's knowledge in the field of STEM. Space consists of the perfect cross-curriculum tool for the teaching of distinct subjects such as History, Geography, Science, Environment, Literature, Music, Religion and Physical Education. Following the Curriculum for pupils aged 9-10 I opted to teach the topic of Space under the title 'Space Guiding Us' as well as its subunits: • International Space Station • Cassini/Huygens, Mission to Titan • Rosetta & Philae • European Union and Space • Mission X: Train like an Astronaut The main purpose of choosing the module of 'Space' is to stimulate the scientific and critical thought of the pupils, to foster the co-operative spirit among them and to make them aware of how the application of Science affects their everyday lives. Aims • To incite pupils

  6. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  7. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  8. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  9. Preface: Space and geophysical research related to Latin America - Part 1

    Science.gov (United States)

    Mendoza, Blanca

    2016-03-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers will be printed in two separate issues; this is Part 1. These papers show the wide variety of research, both theoretical and applied, that is currently being developed in the Sub-Continent.

  10. Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad

    Directory of Open Access Journals (Sweden)

    Shahid Naeem

    2018-01-01

    Full Text Available Increasing trends of urbanization lead to vegetation degradation in big cities and affect the urban thermal environment. This study investigated (1 the cooling effect of urban green space spatial patterns on Land Surface Temperature (LST; (2 how the surrounding environment influences the green space cool islands (GCI, and vice versa. The study was conducted in two Asian capitals: Beijing, China and Islamabad, Pakistan by utilizing Gaofen-1 (GF-1 and Landsat-8 satellite imagery. Pearson’s correlation and normalized mutual information (NMI were applied to investigate the relationship between green space characteristics and LST. Landscape metrics of green spaces including Percentage of Landscape (PLAND, Patch Density (PD, Edge Density (ED, and Landscape Shape Index (LSI were selected to calculate the spatial patterns of green spaces, whereas GCI indicators were defined by Green Space Range (GR, Temperature Difference (TD, and Temperature Gradient (TG. The results indicate that both vegetation composition and configuration influence LST distributions; however, vegetation composition appeared to have a slightly greater effect. The cooling effect can be produced more effectively by increasing green space percentage, planting trees in large patches with equal distribution, and avoiding complex-shaped green spaces. The GCI principle indicates that LST can be decreased by increasing the green space area, increasing the water body fraction, or by decreasing the fraction of impervious surfaces. GCI can also be strengthened by decreasing the fraction of impervious surfaces and increasing the fraction of water body or vegetation in the surrounding environment. The cooling effect of vegetation and water could be explained based on their thermal properties. Beijing has already enacted the green-wedge initiative to increase the vegetation canopy. While designing the future urban layout of Islamabad, the construction of artificial lakes within the urban green

  11. Commercial Space Travel, Ethics and Society

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  12. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  13. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    Science.gov (United States)

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  14. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  15. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  16. Shaping and Being Shaped by Environments for Learning Science. Continuities with the Space and Democratic Vision of a Century Ago

    Science.gov (United States)

    Cavicchi, Elizabeth

    2017-07-01

    Environments of learning often remain unnoticed and unacknowledged. This study follows a student and myself as we became aware of our local environment at MIT and welcomed that environment as a vibrant contributor to our learning. We met this environment in part through its educational heritage in two centennial anniversaries: John Dewey's 1916 work Democracy and Education and MIT's 1916 move from Boston to the Cambridge campus designed by architect William Welles Bosworth. Dewey argued that for learning to arise through constructive, active engagement among students, the environment must be structured to accommodate investigation. In designing an environment conducive to practical and inventive studies, Bosworth created organic classical forms harboring the illusion of symmetry, while actually departing from it. Students and I are made open to the effects of this environment through the research pedagogy of "critical exploration in the classroom," which informs my practice of listening and responding, and teaching while researching; it lays fertile grounds for the involvement of one student and myself with our environment. Through viewing the moon and sky by eye, telescope, airplane, and astrolabe, the student developed as an observer. She became connected with the larger universe, and critical of formalisms that encage mind and space. Applying Euclid's geometry to the architecture outdoors, the student noticed and questioned classical features in Bosworth's buildings. By encountering these buildings while accompanied by their current restorer, we came to see means by which their structure and design promote human interaction and environmental sustainability as intrinsic to education. The student responded creatively to Bosworth's buildings through photography, learning view-camera, and darkroom techniques. In Dewey's view, democracy entails rejecting dualisms endemic in academic culture since the Greek classical era. Dewey regarded experimental science, where

  17. X-cephalometric study of different parts of the upper airway space and changes in hyoid position following mandibular fractures.

    Science.gov (United States)

    Chen, L-J; Zhao, M-C; Pan, X-F; Wei, Y-Q; Wang, D-Y

    2013-09-01

    This study analyses the different parts of the upper airway space and the changes in hyoid position. The results provide a clinical reference for developing timely and effective treatment programmes for patients with mandibular fractures caused by maxillofacial trauma. Standard X-cephalometric measurements of the lateral skull of 210 subjects were taken. The subjects were divided into four fracture groups: condylar, mandibular angle, mandibular body, and parasymphyseal. The radiographs of the mandibular fracture groups were compared with the normal occlusion group to analyse the upper airway space and the changes in hyoid position. Different types of fractures have different effects on the upper airway space. Bilateral mandibular body fracture and the parasymphyseal fracture have a significant influence on the lower oropharyngeal and laryngopharyngeal airway spaces, with serious obstructions severely restricting the ventilatory function of patients. Fractures at different parts of the mandibular structure are closely related to the upper airway and hyoid position.

  18. Priorities in national space strategies and governance of the member states of the European Space Agency

    Science.gov (United States)

    Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia

    2015-12-01

    The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits

  19. Thermal sensation and comfort models for non-uniform and transient environments: Part III: whole-body sensation and comfort

    OpenAIRE

    Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung

    2009-01-01

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specifi...

  20. Modelling of an industrial environment, part 2.: External dose calculation with relevant countermeasures

    International Nuclear Information System (INIS)

    Eged, K.; Kis, Z.; Alvarez-Farizo, B.; Gil, J.; Voigt, G.

    2002-01-01

    The calculation of the collective dose and averted collective dose after applying countermeasures in an industrial environment has been divided in two parts. In the first part (Kis et al. 2002) separate Monte Carlo simulations of photon transport resulted in the air kermas per photon per unit area due to the industrial surfaces contaminated by 1 37C s at specific points using the so-called local approach. In the local approach the air kerma rates due to specific intervention elements at the evaluation locations in the whole environment are determined (Gutierrez et al. 2000). In this way the collective and averted collective dose due to the radiation from a particular intervention element (e.g. the roof of a building) can be obtained. It can, therefore, provide a ranking of the specific intervention elements based on their contribution to collective dose as well. The deposition pattern and the long-term behaviour of deposited radionuclides vary widely in natural circumstances; therefore the number of the photons emitted from the various surfaces per unit area and time can differ significantly. This means the results of the Monte Carlo simulations have to be weighted according to the number of emitted photons so that the actual radiation field can be set up. For this purpose, a dose calculation code has been developed in the framework of the TEMAS project (Gutierrez et al. 2000) which allows to calculate collective doses for different environments. This code has been applied in the present work

  1. Plant mineral nutrition, gas exchange and photosynthesis in space: A review

    Science.gov (United States)

    Wolff, S. A.; Coelho, L. H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.-I.

    2013-02-01

    Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes. Reduced gravity prevents buoyancy driven thermal convection in the physical environment around the plant and alters transport and exchange of gases and liquids between the plant and its surroundings. In space experiments, indications of root zone hypoxia have frequently been reported, but studies on the influences of the space environment on plant nutrition and water transport are limited or inconclusive. Some studies indicate that uptake of potassium is elevated when plants are grown under microgravity conditions. Based on the current knowledge, gas exchange, metabolism and photosynthesis seem to work properly in space when plants are provided with a well stirred atmosphere and grown at moderate light levels. Effects of space radiation on plant metabolism, however, have not been studied so far in orbit. Ground experiments indicated that shielding from the Earth's magnetic field alters plant gas exchange and metabolism, though more studies are required to understand the effects of magnetic fields on plant growth. It has been shown that plants can grow and reproduce in the space environment and adapt to space conditions. However, the influences of the space environment may result in a long term effect over multiple generations or have an impact on the plants' role as food and part of a regenerative life support system. Suggestions for future plant biology research in space are discussed.

  2. Peripersonal Space: An Index of Multisensory Body–Environment Interactions in Real, Virtual, and Mixed Realities

    Directory of Open Access Journals (Sweden)

    Andrea Serino

    2018-01-01

    Full Text Available Human–environment interactions normally occur in the physical milieu and thus by medium of the body and within the space immediately adjacent to and surrounding the body, the peripersonal space (PPS. However, human interactions increasingly occur with or within virtual environments, and hence novel approaches and metrics must be developed to index human–environment interactions in virtual reality (VR. Here, we present a multisensory task that measures the spatial extent of human PPS in real, virtual, and augmented realities. We validated it in a mixed reality (MR ecosystem in which real environment and virtual objects are blended together in order to administer and control visual, auditory, and tactile stimuli in ecologically valid conditions. Within this mixed-reality environment, participants are asked to respond as fast as possible to tactile stimuli on their body, while task-irrelevant visual or audiovisual stimuli approach their body. Results demonstrate that, in analogy with observations derived from monkey electrophysiology and in real environmental surroundings, tactile detection is enhanced when visual or auditory stimuli are close to the body, and not when far from it. We then calculate the location where this multisensory facilitation occurs as a proxy of the boundary of PPS. We observe that mapping of PPS via audiovisual, as opposed to visual alone, looming stimuli results in sigmoidal fits—allowing for the bifurcation between near and far space—with greater goodness of fit. In sum, our approach is able to capture the boundaries of PPS on a spatial continuum, at the individual-subject level, and within a fully controlled and previously laboratory-validated setup, while maintaining the richness and ecological validity of real-life events. The task can therefore be applied to study the properties of PPS in humans and to index the features governing human–environment interactions in virtual or MR. We propose PPS as an

  3. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    Science.gov (United States)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  4. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  5. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  6. Bibliography of the space processing program. Volume 1: A compilation through June 1974, Parts 1 and 2. [space manufacturing/spacecraft construction materials - aerospace environments

    Science.gov (United States)

    Shoultz, M. B.; Mcclurken, E. W., Jr.

    1975-01-01

    A compilation of NASA research efforts in the area of space environmental effects on materials and processes is presented. Topics considered are: (1) fluid mechanics and heat transfer; (2) crystal growth and containerless melts; (3) acoustics; (4) glass and ceramics; (5) electrophoresis; (6) welding; and (7) exobiology.

  7. Biopan-survival I: exposure of the osmophiles synechococcus sp. (Nageli) and haloarcula sp. to the space environment

    Science.gov (United States)

    Mancinelli, R. L.; White, M. R.; Rothschild, L. J.

    The objective of this study was to determine the survivability of osmophilic microorganisms in space, as well as examine the DNA breakage in osmophilic cells exposed to solar UV-radiation plus vacuum and to vacuum only. The organisms used were an unidentified species of Synechococcus (Nägeli) that inhabits the evaporitic gypsum-halite crusts that form along the marine intertidal, and an unidentified species of the extremely halophilic genus Haloarcula (designated as isolate G) isolated from a evaporitic NaCl crystal. Because these organisms are desiccation resistant and gypsum-halite as well as NaCl attenuate UV-radiation, we hypothesized that these organisms would survive in the space environment, better than most others. The organisms were exposed to the space environment for 2 weeks while in earth orbit aboard the Biopan facility. Ground controls were tested in a space simulation facility. All samples were compared to unexposed samples. Survivability was determined by plate counts and the most probable number technique. DNA breakage was determined by labeling breaks in the DNA with ^32P followed by translation. Results indicate that the osmophilic microbes survived the 2 week exposure. The major cause of cell death was DNA damage. The number of strand breaks in the DNA from vacuum UV exposed cells was greater than the vacuum only exposed cells.

  8. Public open spaces and walking for recreation: moderation by attributes of pedestrian environments.

    Science.gov (United States)

    Sugiyama, Takemi; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Adams, Robert J; Daniel, Mark

    2014-05-01

    This study examined whether attributes of pedestrian environments moderate the relationships between access to public open spaces (POS) and adults' recreational walking. Data were collected from participants of the North West Adelaide Health Study in 2007. Recreational walking was determined using self-reported walking frequency. Measures of POS access (presence, count, and distance to the nearest POS) were assessed using a Geographic Information System. Pedestrian environmental attributes included aesthetics, walking infrastructure, barrier/traffic, crime concern, intersection density, and access to walking trails. Regression analyses examined whether associations between POS access and recreational walking were moderated by pedestrian environmental attributes. The sample included 1574 participants (45% men, mean age: 55). POS access measures were not associated with recreational walking. However, aesthetics, walking infrastructure, and access to walking trail were found to moderate the POS-walking relationships. The presence of POS was associated with walking among participants with aesthetically pleasing pedestrian environments. Counter-intuitively, better access to POS was associated with recreational walking for those with poorer walking infrastructure or no access to walking trails. Local pedestrian environments moderate the relationships between access to POS and recreational walking. Our findings suggest the presence of complex relationships between POS availability and pedestrian environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.

    2000-01-01

    To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.

  10. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  11. Space Power Theory: Controlling the Medium Without Weapons in Space

    National Research Council Canada - National Science Library

    Wilkerson, Don L

    2008-01-01

    .... strategic space assets and the ability to negate enemy space systems is essential to U.S. space strategy in controlling the geographical environment of space, predominately in the Lower Earth Orbit (LEO...

  12. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  13. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  14. Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments

    Science.gov (United States)

    2017-01-01

    Plant performance (i.e., fecundity, growth, survival) depends on an individual’s access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant–plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel–porous media test facility to simulate the soil–plant–atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant–plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant–plant interactions and community self-organization are important. PMID:28807999

  15. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  16. Myth-free space advocacy part I-The myth of innate exploratory and migratory urges

    Science.gov (United States)

    Schwartz, James S. J.

    2017-08-01

    This paper discusses the ;myth; that we have an innate drive to explore or to migrate into space. Three interpretations of the claim are considered. According to the ;mystical interpretation,; it is part of our ;destiny; as humans to explore and migrate into space. Such a claim has no rational basis and should play no role in rationally- or evidence-based space advocacy. According to the ;cultural interpretation,; exploration and migration are essential features of human culture and society. These are not universal features because there are cultures and societies that have not encouraged exploration and migration. Moreover, the cultures that have explored have seldom conducted exploration for its own sake. According to the ;biological interpretation; there is a psychological or genetic basis for exploration or migration. While there is limited genetic evidence for such a claim, that evidence suggests that genes associated with exploratory behavior were selected for subsequent to migration, making it unlikely that these genes played a role in causing migration. In none of these senses is it clearly true that we have an innate drive to explore or migrate into space; and even if we did it would be fallacious to argue that the existence of such a drive justified spaceflight activities.

  17. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  18. Neutron dose study with bubble detectors aboard the International Space Station as part of the Matroshka-R experiment

    International Nuclear Information System (INIS)

    Machrafi, R.; Garrow, K.; Ing, H.; Smith, M. B.; Andrews, H. R.; Akatov, Yu; Arkhangelsky, V.; Chernykh, I.; Mitrikas, V.; Petrov, V.; Shurshakov, V.; Tomi, L.; Kartsev, I.; Lyagushin, V.

    2009-01-01

    As part of the Matroshka-R experiments, a spherical phantom and space bubble detectors (SBDs) were used on board the International Space Station to characterise the neutron radiation field. Seven experimental sessions with SBDs were carried out during expeditions ISS-13, ISS-14 and ISS-15. The detectors were positioned at various places throughout the Space Station, in order to determine dose variations with location and on/in the phantom in order to establish the relationship between the neutron dose measured externally to the body and the dose received internally. Experimental data on/in the phantom and at different locations are presented. (authors)

  19. Economy of conservation options in the industry and the built environment. Part 1

    International Nuclear Information System (INIS)

    1994-03-01

    To determine the optimal situation for the energy supply in the working area of the IJsselmij and Sep the study on the title subject was carried out. To influence the energy demand demand-side management (DSM) as part of integrated resource planning (IRP) is applied. Several scenarios to determine whether new production capacity must be installed or conservation options and activities should be realized are elaborated and calculated by means of the COMPASS model. E3T compiled input data for the demand-side of the model: energy consumption and energy conservation, investment cost and operational cost per user, number of installations and the development of the penetration of the conservation options between 1990 and 2010, and required subsidies and promotional costs of the IJsselmij to introduce such options. The economics of the energy conservation options are given in chapter 2. Six of the options were selected and elaborated in detail in a separate publication (part 2): coverage of cooling and freezing equipment at night, frequency control of electric motors, decentralized heat production by means of advanced burners, indoor climate control in the built environment, reflectors for TL-lighting systems in the built environment, and behavioral change in industrial companies. 2 figs., 7 tabs., 7 refs., 4 appendices

  20. Virtual Environment User Interfaces to Support RLV and Space Station Simulations in the ANVIL Virtual Reality Lab

    Science.gov (United States)

    Dumas, Joseph D., II

    1998-01-01

    Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.

  1. Space construction system analysis. Part 2: Cost and programmatics

    Science.gov (United States)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  2. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  3. Free-space optical channel characterization in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy

    2017-12-28

    Recently, FSO (Free-Space Optical Communication) has received a lot of attention thanks to its high data-rate transmission via unbounded unlicensed bandwidth. However, some weather conditions lead to significant degradation of the FSO link performance. Based on this context and in order to have a better understanding of the capabilities of FSO communication in a coastal environment, the effects of temperature and humidity on an FSO system are investigated in this study. An experiment is conducted using an open source FSO system that achieves a transmission rate of 1 Gbit/s at a distance of 70 m. Two new mathematical models are proposed to represent the effects of temperature and humidity on our developed FSO system operating at a wavelength of 1 550 nm. The first model links the FSO attenuation coeffcient to the air temperature in coastal regions, while the second model links the FSO attenuation coeffcient to the humidity and the dew-point temperature. The key finding of this study is that FSO links can achieve maximum availability in a coastal city with normal variations in temperature and humidity.

  4. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Science.gov (United States)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  5. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    Science.gov (United States)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  6. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    Science.gov (United States)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  7. Approaching Environmental Health Disparities and Green Spaces: An Ecosystem Services Perspective

    Directory of Open Access Journals (Sweden)

    Viniece Jennings

    2015-02-01

    Full Text Available Health disparities occur when adverse health conditions are unequal across populations due in part to gaps in wealth. These disparities continue to plague global health. Decades of research suggests that the natural environment can play a key role in sustaining the health of the public. However, the influence of the natural environment on health disparities is not well-articulated. Green spaces provide ecosystem services that are vital to public health. This paper discusses the link between green spaces and some of the nation’s leading health issues such as obesity, cardiovascular health, heat-related illness, and psychological health. These associations are discussed in terms of key demographic variables—race, ethnicity, and income. The authors also identify research gaps and recommendations for future research.

  8. Inline temperature compensation for dimensional metrology of polymer parts in a production environment based on 3D thermomechanical analysis

    DEFF Research Database (Denmark)

    Sonne, M. R.; Gonzalez, D.; Costa, G. Dalla

    2018-01-01

    Abstract In the present work a new method for thermal compensation in dimensional metrology of polymer parts in a production environment based on 3D thermomechanical simulations is developed. A fixture for measuring the length dimension of a classical polymer part is placed in a production enviro...

  9. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  10. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    International Nuclear Information System (INIS)

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  11. Vitamin G : Green environments - Healthy environments

    NARCIS (Netherlands)

    Maas, J.

    2009-01-01

    The shortest summary of the thesis is in its title “Vitamin G”, where the G stands for the green space around us and Vitamin stands for the possible positive relationship between green space and people’s health. In the first part of this thesis we investigate whether green space in people’s living

  12. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  13. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  14. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  15. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  16. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  17. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Science.gov (United States)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  18. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    Science.gov (United States)

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  19. Centralized vs. decentralized nursing stations: effects on nurses' functional use of space and work environment.

    Science.gov (United States)

    Zborowsky, Terri; Bunker-Hellmich, Lou; Morelli, Agneta; O'Neill, Mike

    2010-01-01

    Evidence-based findings of the effects of nursing station design on nurses' work environment and work behavior are essential to improve conditions and increase retention among these fundamental members of the healthcare delivery team. The purpose of this exploratory study was to investigate how nursing station design (i.e., centralized and decentralized nursing station layouts) affected nurses' use of space, patient visibility, noise levels, and perceptions of the work environment. Advances in information technology have enabled nurses to move away from traditional centralized paper-charting stations to smaller decentralized work stations and charting substations located closer to, or inside of, patient rooms. Improved understanding of the trade-offs presented by centralized and decentralized nursing station design has the potential to provide useful information for future nursing station layouts. This information will be critical for understanding the nurse environment "fit." The study used an exploratory design with both qualitative and quantitative methods. Qualitative data regarding the effects of nursing station design on nurses' health and work environment were gathered by means of focus group interviews. Quantitative data-gathering techniques included place- and person-centered space use observations, patient visibility assessments, sound level measurements, and an online questionnaire regarding perceptions of the work environment. Nurses on all units were observed most frequently performing telephone, computer, and administrative duties. Time spent using telephones, computers, and performing other administrative duties was significantly higher in the centralized nursing stations. Consultations with medical staff and social interactions were significantly less frequent in decentralized nursing stations. There were no indications that either centralized or decentralized nursing station designs resulted in superior visibility. Sound levels measured in all

  20. The amount of natural radionuclides in the individual parts of environment in the locality Jahodna

    International Nuclear Information System (INIS)

    Cipakova, A.; Vrabel, V.

    2008-01-01

    In this study we have investigated and evaluated the amount of K-40, Ra-226, Th-232, U-238 as well as total alpha and beta activity in individual parts of environment, i.e. soil, plant, water and sediment. The locality Jahodna was a studied one. This is a perspective source of uranium ore in the Slovak Republic. (authors)

  1. Habitability research priorities for the International Space Station and beyond.

    Science.gov (United States)

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  2. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    Science.gov (United States)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  3. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  4. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Energy Technology Data Exchange (ETDEWEB)

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  5. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  6. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    Science.gov (United States)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  7. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  8. ERATOSTHENES: excellence research Centre for Earth surveillance and space-based monitoring of the environment, the EXCELSIOR Horizon 2020 teaming project

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Kontoes, Haris; Schreier, Gunter; Ansmann, Albert; Komodromos, George; Themistocleous, Kyriacos; Mamouri, Rodanthi; Michaelides, Silas; Nisantzi, Argyro; Papoutsa, Christiana; Neocleous, Kyriacos; Mettas, Christodoulos; Tzouvaras, Marios; Evagorou, Evagoras; Christofe, Andreas; Melillos, George; Papoutsis, Ioannis

    2017-10-01

    The aim of this paper is to present the strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of all three domains of the Environment (Air, Land, Water). Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the

  9. Using Blackboard Wiki Pages as a Shared Space for Simulating the Professional Translation Work Environment

    Science.gov (United States)

    Vine, Juliet

    2015-01-01

    The Work-Integrated Simulation for Translators module is part of a three year undergraduate degree in translation. The semester long module aims to simulate several aspects of the translation process using the Blackboard virtual learning environment's Wikis as the interface for completing translation tasks. For each translation task, one of the…

  10. Concentrated solar power in the built environment

    Science.gov (United States)

    Montenon, Alaric C.; Fylaktos, Nestor; Montagnino, Fabio; Paredes, Filippo; Papanicolas, Costas N.

    2017-06-01

    Solar concentration systems are usually deployed in large open spaces for electricity generation; they are rarely used to address the pressing energy needs of the built environment sector. Fresnel technology offers interesting and challenging CSP energy pathways suitable for the built environment, due to its relatively light weight (Heating, Ventilation, and Air Conditioning) system of a recently constructed office & laboratory building, the Novel Technologies Laboratory (NTL). The multi-generative system will support cooling, heating and hot water production feeding the system of the NTL building, as a demonstration project, part of the STS-MED program (Small Scale Thermal Solar District Units for Mediterranean Communities) financed by the European Commission under the European Neighbourhood and Partnership Instrument (ENPI), CBCMED program.

  11. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  12. Humans in space the psychological hurdles

    CERN Document Server

    Kanas, Nick

    2015-01-01

    Using anecdotal reports from astronauts and cosmonauts, and the results from studies conducted in space analog environments on Earth and in the actual space environment, this book broadly reviews the various psychosocial issues that affect space travelers.  Unlike other books that are more technical in format, this text is targeted for the general public.  With the advent of space tourism and the increasing involvement of private enterprise in space, there is now a need to explore the impact of space missions on the human psyche and on the interpersonal relationships of the crewmembers. Separate chapters of the book deal with psychosocial stressors in space and in space analog environments; psychological, psychiatric, interpersonal, and cultural issues pertaining to space missions; positive growth-enhancing aspects of space travel; the crew-ground interaction; space tourism; countermeasures for dealing with space; and unique aspects of a trip to Mars, the outer solar system, and interstellar travel. .

  13. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  14. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  15. Legal Consequences of the Pollution of Outer Space with Space Debris

    Science.gov (United States)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  16. The simplified spherical harmonics (SPL) methodology with space and moment decomposition in parallel environments

    International Nuclear Information System (INIS)

    Gianluca, Longoni; Alireza, Haghighat

    2003-01-01

    In recent years, the SP L (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP L equations starting from the even-parity form of the S N equations. The SP L equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP L equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp L (Parallel Environment Neutral-particle SP L ). Pensp L solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP L matrices. Pensp L includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  17. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    Science.gov (United States)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  18. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  19. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  20. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    Energy Technology Data Exchange (ETDEWEB)

    Kabisch, Nadja, E-mail: nadja.kabisch@geo.hu-berlin.de [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany); Qureshi, Salman [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); School of Architecture, Birmingham Institute of Art and Design, Birmingham City University, The Parkside Building, 5 Cardigan Street, Birmingham B4 7BD (United Kingdom); Haase, Dagmar [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany)

    2015-01-15

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap.

  1. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    International Nuclear Information System (INIS)

    Kabisch, Nadja; Qureshi, Salman; Haase, Dagmar

    2015-01-01

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap

  2. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station

    Science.gov (United States)

    Krikorian, A. D.

    1996-01-01

    How cells manage without gravity and how they change in the absence of gravity are basic questions that only prolonged life on a Space station will enable us to answer. We know from investigations carried out on various kinds of Space vehicles and stations that profound physiological effects can and often to occur. We need to know more of the basic biochemistry and biophysics both of cells and of whole organisms in conditions of reduced gravity. The unique environment of Space affords plant scientists an unusual opportunity to carry out experiments in microgravity, but some major challenges must be faced before this can be done with confidence. Various laboratory activities that are routine on Earth take on special significance and offer problems that need imaginative resolution before even a relatively simple experiment can be reliably executed on a Space station. For example, scientists might wish to investigate whether adaptive or other changes that have occurred in the environment of Space are retained after return to Earth-normal conditions. Investigators seeking to carry out experiments in the low-gravity environment of Space using cultured cells will need to solve the problem of keeping cultures quiescent for protracted periods before an experiment is initiated, after periodic sampling is carried out, and after the experiment is completed. This review gives an evaluation of a range of strategies that can enable one to manipulate cell physiology and curtail growth dramatically toward this end. These strategies include cryopreservation, chilling, reduced oxygen, gel entrapment strategies, osmotic adjustment, nutrient starvation, pH manipulation, and the use of mitotic inhibitors and growth-retarding chemicals. Cells not only need to be rendered quiescent for protracted periods but they also must be recoverable and further grown if it is so desired. Elaboration of satisfactory procedures for management of cells and tissues at "near zero or minimal growth" will

  3. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    and a path to our common future. But for humanity to embark on this path, we need to understand ourselves in a new environment. As such, an understanding of the biological consequences of and opportunities in space flight is essential. In this, the first volume of a joint U.S./Russian series on space biology and medicine, we describe the current status of our understanding of space and present general information that will prove useful when reading subsequent volumes. Since we are witnesses to the beginning of a new era of interplanetary travel, a significant portion of the first volume will concentrate on the physical and ecological conditions that exist in near and outer space, as well as heavenly bodies from the smallest ones to the giant planets and stars. While space exploration is a comparatively recent endeavor, its foundations were laid much more than 30 years ago, and its history has been an eventful one. In the first part of this volume, Rauschenbach, Sokolskiy, and Gurjian address the "Historical Aspects of Space Exploration" from its beginnings to a present-day view of the events of the space age. The nature of space itself and its features is the focus of the second section of the volume. In the first chapter of the part, "Stars and Interstellar Space," the origin and evolution of stars, and the nature of the portions of space most distant from Earth are described by Galeev and Marochnik. In Chapter 2, Pisarenko, Logachev, and Kurt in "The Sun and Interplanetary Space" bring us to the vicinity of our own solar system and provide a description and discussion of the nearest star and its influence on the space environment that our Earth and the other planets inhabit. In our solar system there are many fascinating objects, remnants of the formation of a rather ordinary star in a rather obscure portion of the galaxy. Historical accident has caused us to be much more curious (and knowledgeable) about "The Inner Planets of the Solar System" than about any of

  4. Analyzing Test-As-You-Fly Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  5. The Status of Development of Electromagnetic Pumps for Space Application

    International Nuclear Information System (INIS)

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  6. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  7. Individual thermal profiles as a basis for comfort improvement in space and other environments

    Science.gov (United States)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.

    2002-01-01

    BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.

  8. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui; Arens, Edward; Huizenga, Charlie [Center for the Built Environment, UC Berkeley (United States); Han, Taeyoung [General Motors Company (United States)

    2010-02-15

    A three-part series presents the development of models for predicting the local thermal sensation (Part I) and local thermal comfort (Part II) of different parts of the human body, and also the whole-body sensation and comfort (Part III) that result from combinations of local sensation and comfort. The models apply to sedentary activities in a range of environments: uniform and non-uniform, stable and transient. They are based on diverse findings from the literature and from body-part-specific human subject tests in a climate chamber. They were validated against a test of automobile passengers. The series is intended to present the models' rationale, structure, and coefficients, so that others can test them and develop them further as additional empirical data becomes available. A) The whole-body (overall) sensation model has two forms, depending on whether all of the body's segments have sensations effectively in the same direction (e.g warm or cool), or whether some segments have sensations opposite to those of the rest of the body. For each, individual body parts have different weights for warm versus cool sensations, and strong local sensations dominate the overall sensation. If all sensations are near neutral, the overall sensation is close to the average of all body sensations. B) The overall comfort model also has two forms. Under stable conditions, people evaluate their overall comfort by a complaint-driven process, meaning that when two body parts are strongly uncomfortable, no matter how comfortable the other body parts might be, the overall comfort will be near the discomfort level of the two most uncomfortable parts. When the environmental conditions are transient, or people have control over their environments, overall comfort is better than that of the two most uncomfortable body parts. This can be accounted for by adding the most comfortable vote to the two most uncomfortable ones. (author)

  9. Consumption and environment - ecological economic perspectives

    DEFF Research Database (Denmark)

    Røpke, Inge

    2006-01-01

    motivation for dealing with consumption in ecological economics is presented. Basically, ecological economists agree that there are limits to the material growth of the economy, and that these limits have already been reached or exceeded. As there is an ethical challenge to increase environmental space......Consumption and environment – ecological economic perspectives Summary Research on issues related to consumption and environment has grown rapidly since the middle of the 1990s, and several disciplines as well as transdisciplinary fields have contributed to this development. The present papers...... constitute a small part of this wave of interest, and they are mostly framed as belonging to ecological economics. The collection starts with an introduction to the field of consumption research within ecological economics and then follows a series of papers on more specific issues. The introductionary...

  10. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    International Nuclear Information System (INIS)

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  11. The impact of long-term exposure to space environment on adult mammalian organisms: a study on mouse thyroid and testis.

    Directory of Open Access Journals (Sweden)

    Maria Angela Masini

    Full Text Available Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis.In thyroids, volumetric ratios between thyrocytes and colloid were measured. cAMP production in 10(-7M and 10(-8M thyrotropin-treated samples was studied. Thyrotropin receptor and caveolin-1 were quantitized by immunoblotting and localized by immunofluorescence. In space-exposed animals, both basal and thyrotropin-stimulated cAMP production were always higher. Also, the structure of thyroid follicles appeared more organized, while thyrotropin receptor and caveolin-1 were overexpressed. Unlike the control samples, in the space samples thyrotropin receptor and caveolin-1 were both observed at the intracellular junctions, suggesting their interaction in specific cell membrane microdomains.In testes, immunofluorescent reaction for 3β- steroid dehydrogenase was performed and the relative expressions of hormone receptors and interleukin-1β were quantified by RT-PCR. Epididymal sperm number was counted. In space-exposed animals, the presence of 3β and 17β steroid dehydrogenase was reduced. Also, the expression of androgen and follicle stimulating hormone receptors increased while lutenizing hormone receptor levels were not affected. The interleukin 1 β expression was upregulated. The tubular architecture was altered and the sperm cell number was significantly reduced in spaceflight mouse epididymis (approx. -90% vs. laboratory and ground controls, indicating that the space environment may lead to degenerative changes in seminiferous tubules.Space-induced changes of structure and function of thyroid and testis

  12. Management of outer space

    Science.gov (United States)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  13. Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews

    Science.gov (United States)

    Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)

    2004-01-01

    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the

  14. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  15. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  16. ISS Local Environment Spectrometers (ISLES)

    Science.gov (United States)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  17. Construction and Evaluation of an Integrated Formal/Informal Learning Environment for Foreign Language Learning across Real and Virtual Spaces

    Science.gov (United States)

    Waragai, Ikumi; Ohta, Tatsuya; Kurabayashi, Shuichi; Kiyoki, Yasushi; Sato, Yukiko; Brückner, Stefan

    2017-01-01

    This paper presents the prototype of a foreign language learning space, based on the construction of an integrated formal/informal learning environment. Before the background of the continued innovation of information technology that places conventional learning styles and educational methods into new contexts based on new value-standards,…

  18. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  19. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  20. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  1. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  2. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  3. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Science.gov (United States)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  4. Space and crime in Dutch built environments : Macro and micro scale spatial conditions for residential burglaries and thefts from cars

    NARCIS (Netherlands)

    Lopez, M.J.J.; Van Nes, A.

    2007-01-01

    At this moment, more knowledge is available on the physical characteristics of the built environment and their relationship to criminal opportunity rather than the spatial characteristics of potential targets and the public and private space between them. To improve this situation, a research

  5. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    Science.gov (United States)

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage

  6. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  7. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2007-02-26

    The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

  8. Public open space as the only urban space for walking: Sumatera Utara experience

    Science.gov (United States)

    Nasution, A. D.; Zahrah, W.; Ginting, Nurlisa

    2018-03-01

    One of successful public open space (POS) criteria is the proper pedestrian linkage. Furthermore, a good quality POS should pay attention to pedestrian activities. This will contribute to the physical and mental health of people and enhance their quality of life. The research means to investigate how POS accommodate the pedestrians. The study takes place in twenty small towns in Sumatra Utara province, Indonesia. The analysis is a descriptive, explorative study that collects data about physical elements of POS. The survey also uses a set of questionnaire to get information about the visitors walking tradition. The result of the study shows that most of the citizens approach and get to the POS by vehicle, both cars, and motorcycles. They use their private vehicles although the distance between their houses and the POS is less than one kilometer. There is no pedestrian linkage that connects the POS with the other part of urban space. However, the POS is active by various physical activities, such as walking, playing and exercising. These events occur both in pedestrian ways in the periphery, inside the POS, and in the other spots of the POS, such as grass field or multipurpose plaza. The visitors’ vehicle tradition relates to the whole urban space which is planned in a car-oriented way. Thus, the POS becomes the only space that people can walk and enjoy the environment.

  9. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  10. Bio-Inspired Space Environment-Resistant Polymer Composite

    Data.gov (United States)

    National Aeronautics and Space Administration — Use of inorganic nanoparticles which have been recently explored for therapeutic purposes in the treatment of oxidative stress disorder, cancer and heart diseases...

  11. Laboratory Investigation of Space and Planetary Dust Grains

    Science.gov (United States)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  12. Occupational Space Medicine

    Science.gov (United States)

    Tarver, William J.

    2012-01-01

    Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.

  13. Competitions as innovators of space for frail older people

    DEFF Research Database (Denmark)

    Andersson, Jonas E; Rönn, Magnus

    to grow old in a care environment with respect to the WHO policy of active ageing. In addition, the study demonstrates a conservation of existing notions about appropriate architecture for ageing at the expense of an integration of multi‐disciplinary findings on the relation on ageing, eldercare and space......In the context of the universal ageing process that is currently taking place in western society, the organization of architecture competitions that deals with space for dependent ageing comes of relevance. Based on the welfare regime theory, it could be argued that this type of architecture...... for ageing by use of architectural competitions. Three municipal architecture competitions that dealt with space for ageing (ordinary or sheltered housing) constitute the framework for this study. These were organized during the period of November 2011 to April 2012, partly sponsored by the Swedish Institute...

  14. A strategy for investment in space resource utilization

    Science.gov (United States)

    Mendell, Wendell W.

    During the first quarter of the next Century, space transportation systems will be capable of routine flights of humans and cargo to the Moon. The general acceptance of permanent human presence in space, as exemplified by at least two manned stations in LEO at that time, will lead to one or more staffed outposts on the Moon. Whether such outposts evolve into sustained, growing settlements will depend, in part, on whether the economic context attracts substantial private investment. A planetary surface provides a material and gravitational environment distinct from that of an orbiting space station and thus provides a setting familiar to non-aerospace sectors of terrestrial industry. Examination of current trends in terms of historical processes which operate on new frontiers suggests that the limited markets and unfamiliar technologies associated with space commercialization today may change dramatically in 20 years when lunar resources are accessible. However, the uncertainty and vagueness of such projections discourages investment at a useful scale unless a strategy for technology development can be implemented which provides tangible and marketable benefits in the intermediate term. At the present time technologies can be identified (a) that will be required (and therefore valuable) at the time of lunar settlement and (b) whose development can be planned to yield marketable intermediate products on Earth. Formation of pre-competitive, collaborative research consortia in the industrial sector could reduce technical and economic risk in the early stages and could promote a favorable political environment for the future growth of space activities.

  15. Report of space experiment project, 'Rad Gene', performed in the International Space Station Kibo

    International Nuclear Information System (INIS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nagamatsu, Aiko

    2010-01-01

    This report summarizes results of the project in the title adopted by Japan Aerospace Exploration Agency (JAXA) (in 2000) aiming to elucidate the biological effect of space environment, and contains 3 major parts of the process of the experiment, and of findings by analysis after flight and in radioadaptive response. The process for the experiment includes training of the experimenter crew (Dr. S. Magnus) in JAXA, preparation of samples (frozen cells with normal and mutated p53 genes derived from human lymphoblast TK6) and their transfer to the Space Shuttle Endeavour STS-126 launched on Nov. 15, 2008 (Japanese time) for cell culturing in Feb., 2009. Analyses after flight back to the Kennedy Space Center on Mar. 29, 2009, done on the ground in Japan thereafter include the physical evaluation, confirmation of DNA damage, and phenotypic expression with DNA- and protein-arrays (genes induced for expression of p53-related phenotypes in those cells which were stored frozen in the space, thawed on the ground and then cultured, genes induced for expressing the phenotypes and p53-related proteins expressed in cells cultured in space). Physically, total absorbed dose and dose equivalent are found to be respectively 43.5 mGy and 71.2 mSv (0.5 mSv/day). Interestingly, the biologically estimated dose by DNA-double strand breaks detected by γH2AX staining, 94.5 mSv (0.7 mSv/day), in living, frozen cells in space, is close to the above physical dose. Expression experiments of p53-related phenotypes have revealed that expression of 750 or more genes in 41,000 genes in the array is changed: enhanced or suppressed by space radiation, micro-gravity and/or their mixed effects in space environment. In 642 protein antibodies in the array, 2 proteins are found enhanced and 8, suppressed whereas heat-shock protein is unchanged. Radioadaptive response is the acquisition of radio-resistance to acute exposure by previous irradiation of small dose (window width 20-100 mSv) in normal p53

  16. Premature loss of primary teeth: part I, its overall effect on occlusion and space in the permanent dentition.

    Science.gov (United States)

    Hoffding, J; Kisling, E

    1978-01-01

    Premature loss of primary molars causes, without doubt, permanent changes in regard to space and sagittal molar relations, in the permanent dentition. The changes are due to drifting of teeth and lack of growth, and such changes should, whenever possible, be prevented. In part two of this series of papers, a further analysis of the data will be presented.

  17. Free-space optical channel characterization and experimental validation in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy

    2018-03-05

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  18. Free-space optical channel characterization and experimental validation in a coastal environment

    KAUST Repository

    Alheadary, Wael Ghazy; Park, Kihong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  19. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  20. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  1. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  2. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    International Nuclear Information System (INIS)

    Beer, Juerg; Steiger, Rudolf von; McCracken, Ken

    2012-01-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  3. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Juerg [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, Duebendorf (Switzerland); Steiger, Rudolf von [International Space Science Insitute, Bern (Switzerland); McCracken, Ken [Maryland Univ., College Park (United States). IPST

    2012-07-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  4. Street as Public Space - Measuring Street Life of Kuala Lumpur

    Science.gov (United States)

    Sulaiman, Normah; Ayu Abdullah, Yusfida; Hamdan, Hazlina

    2017-10-01

    Kuala Lumpur has envisioning in becoming World Class City by the year 2020. Essential elements of form and function of the urban environment are streets. Streets showcase the community and connect people. It’s one of the most comfortable social environment that provides aesthetical and interaction pleasure for everyone. Classified as main shopping streets in the local Kuala Lumpur urban design guidelines, Jalan Masjid India (JMI) has its uniqueness of shopping experience and social interaction. This conceptual paper will study the physical and cultural characteristics of the street that will generate the street character by mapping its original characters. The findings will focus on strengthening the methodology applied to promote improvements in evaluating it as a great public space. Results will also contribute to understanding the overall site context, the street connectivity, and urban dynamics. This paper is part of a larger study that addresses on transforming the sociability of public space.

  5. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  6. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  7. Manned space activity and psychological problems and issues; Yujin uchu katsudo to shinrigakuteki shomondai

    Energy Technology Data Exchange (ETDEWEB)

    Kume, M. [Waseda University, Tokyo (Japan)

    1996-03-05

    This paper considers psychological problems and issues for crews living in a space station for an extended period of time. The problems and issues may be divided largely into decline in mental functions such as neural fatigue, sleeplessness, decreased mental work functions, and aggravation in mental state such as anxiety, weariness, hostility, and declined morale. Factors for causing psychological problems may include zero gravity environment, radiation, limited space, vibration, being present under all eyes fixed on oneself, physical restrictions, space-sickness, living in a group, and work contents. These are classified into problems of mental functions that occur from situations specific to space and problems of metal state that come from inner part of the individuals. Life under space environment has neither been studied systematically nor organizationally. The following new criteria for human factors would be required: personality factors that demand individual`s natural gifts, crew factors that view group activities of crews importantly, operation factors that consider quality and amount of operations, and check of mental soundness of the crews. Themes that require further studies would include establishment of psychological aptitude selection criteria and development of psychological group training programs. 7 refs.

  8. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    Science.gov (United States)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  9. Space, geophysical research related to Latin America - Part 2

    Science.gov (United States)

    Mendoza, Blanca; Shea, M. A.

    2016-11-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.

  10. Solar cells for space applications (part 2)

    International Nuclear Information System (INIS)

    Gomez, T.J.

    1992-01-01

    This lecture focusses on qualification and verification tests and procedures on solar cells designed for space applications. The series of tests should produce orbital performance under determined illumination, temperature and irradiance. Tests are divided in outdoor and laboratory experiments. Environmental tests include durability, qualification (mechanical and electrical), I-V curves, Spectral response

  11. On Space Warfare: A Space Power Doctrine

    National Research Council Canada - National Science Library

    Lupton, David

    1998-01-01

    .... Nevertheless, the speech was promptly dubbed "Star Wars" because the space environment seems to be the most likely place to deploy a ballistic missile defense system, and several administration...

  12. Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and on-orbit experiments

    Science.gov (United States)

    Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.

    2018-01-01

    This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.

  13. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  14. Assessing hydrodynamic space use of brown trout, Salmo trutta, in a complex flow environment: a return to first principles.

    Science.gov (United States)

    Kerr, James R; Manes, Costantino; Kemp, Paul S

    2016-11-01

    It is commonly assumed that stream-dwelling fish should select positions where they can reduce energetic costs relative to benefits gained and enhance fitness. However, the selection of appropriate hydrodynamic metrics that predict space use is the subject of recent debate and a cause of controversy. This is for three reasons: (1) flow characteristics are often oversimplified, (2) confounding variables are not always controlled and (3) there is limited understanding of the explanatory mechanisms that underpin the biophysical interactions between fish and their hydrodynamic environment. This study investigated the space use of brown trout, Salmo trutta, in a complex hydrodynamic flow field created using an array of different sized vertically oriented cylinders in a large open-channel flume in which confounding variables were controlled. A hydrodynamic drag function (D) based on single-point time-averaged velocity statistics that incorporates the influence of turbulent fluctuations was used to infer the energetic cost of steady swimming. Novel hydrodynamic preference curves were developed and used to assess the appropriateness of D as a descriptor of space use compared with other commonly used metrics. Zones in which performance-enhancing swimming behaviours (e.g. Kármán gaiting, entraining and bow riding) that enable fish to hold position while reducing energetic costs (termed 'specialised behaviours') were identified and occupancy was recorded. We demonstrate that energy conservation strategies play a key role in space use in an energetically taxing environment with the majority of trout groups choosing to frequently occupy areas in which specialised behaviours may be adopted or by selecting low-drag regions. © 2016. Published by The Company of Biologists Ltd.

  15. Inventorying the molecular potential of Cupriavidus and Ralstonia strains surviving harsh space-related environments

    Science.gov (United States)

    Mijnendonckx, Kristel; van Houdt, Rob; Provoost, Ann; Bossus, Albert; Ott, C. Mark; Venkateswaran, Kasthuri; Leys, Natalie

    The craving of modern man to explore life beyond earth presents a lot of challenges. The control of microbial contamination of the confined manned spacecraft is an important aspect that has to be taken into account in this journey. Because the human body contains a huge amount of microorganisms, the crew itself is the most important contamination source. But contamination can also originate from residing environmental microorganisms or from materials that are supplied from the Earth. These microbial contaminations can cause problems for the astronauts -well documented to have a decreased immunity -and the infrastructure of the space station. In this study, 14 different Cupriavidus metallidurans and Ralstonia pickettii strains, isolated from such space-related environments, where characterised in detail. These unique strains were isolated from drinking water that returned from ISS (3), from the cooling water system of the American ISS segment (4), from a swab sample of the Mars Odyssey Orbitor surface prior to flight (4), and from an air sample taken in the space assembly facility PHSF during Mars exploration Rover assembly (3). Their resistance to heavy metals and antibiotics was screened. The C. metallidurans isolates were more resistant to Zn2+ and Hg+ but more sensitive to Ni2+ than the R. pickettii strains. The MIC values for Cu2+ ranged from 1,5mM to 12mM, for Co2+ from 1,58mM to 12,63mM and for Cd2+ from 0,25mM to 1mM. For Ni2+ , the MIC values were between 2 and 8mM, except for the strain C. metallidurans IV (0502478) that was able to grow on Ni+2 concentrations up to 48mM. A metal of special interest was Ag+ because it is used to sanitize ISS drinking water. The strains isolated from air and surface samples showed a MIC value ranging from 0,35µM to 4µM. The isolates from the water samples had MIC values from 0,3µM to 2µM, which is lower than (or comparable with) the lowest limit of the silver concentration used in the ISS (1,9µM -4,6µM). However, all

  16. Scientific projection paper for space radiobiological research

    International Nuclear Information System (INIS)

    Vinograd, S.P.

    1980-01-01

    A nationale for the radiobiological research requirements for space is rooted in a national commitment to the exploration of space, mandated in the form of the National Space Act. This research is almost entirely centered on man; more specifically, on the effects of the space radiation environment on man and his protection from them. The research needs discussed in this presentation include the space radiation environment; dosimetry; radiation biology-high LET particles (dose/response); and operational countermeasures

  17. Automation of closed environments in space for human comfort and safety

    Science.gov (United States)

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  18. Moving Toward Space Internetworking via DTN: Its Operational Challenges, Benefits, and Management

    Science.gov (United States)

    Barkley, Erik; Burleigh, Scott; Gladden, Roy; Malhotra, Shan; Shames, Peter

    2010-01-01

    The international space community has begun to recognize that the established model for management of communications with spacecraft - commanded data transmission over individual pair-wise contacts - is operationally unwieldy and will not scale in support of increasingly complex and sophisticated missions such as NASA's Constellation project. Accordingly, the international Inter-Agency Operations Advisory Group (IOAG) ichartered a Space Internetworking Strategy Group (SISG), which released its initial recommendations in a November 2008 report. The report includes a recommendation that the space flight community adopt Delay-Tolerant Networking (DTN) to address the problem of interoperability and communication scaling, especially in mission environments where there are multiple spacecraft operating in concert. This paper explores some of the issues that must be addressed in implementing, deploying, and operating DTN as part of a multi-mission, multi-agency space internetwork as well as benefits and future operational scenarios afforded by DTN-based space internetworking.

  19. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  20. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  1. Phase space information in a non-linear quantum system containing a Kerr-like medium through Su(1, 1)-algebraic treatment

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-05-01

    Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.

  2. Space Weather Studies at Istanbul Technical University

    Science.gov (United States)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  3. Third Conference on Artificial Intelligence for Space Applications, part 2

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  4. Cyber-bullying and incivility in the online learning environment, Part 1: Addressing faculty and student perceptions.

    Science.gov (United States)

    Clark, Cynthia M; Werth, Loredana; Ahten, Sara

    2012-01-01

    Online learning has created another potential avenue for incivility. Cyber-bullying, a form of incivility that occurs in an electronic environment, includes posting rumors or misinformation, gossiping, or publishing materials that defame and humiliate others. This is the first of 2 articles detailing a study to empirically measure nursing faculty and student perceptions of incivility in an online learning environment (OLE). In this article, the authors discuss the quantitative results including the types and frequency of uncivil behaviors and the extent to which they are perceived to be a problem in online courses. Part 2 in the September/October issue will describe challenges and advantages of the OLE, discuss specific ways to foster civility, and present strategies to promote student success and retention.

  5. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  6. Screening and identification of tillering dwarf mutant of rice induced by space environment

    International Nuclear Information System (INIS)

    Xu Jianlong; Li Chunshou; Wang Junmin; Luo Rongting; Zhang Mingxian

    2003-01-01

    Major agronomic traits and dwarfism of the tiller dwarf mutant, R955, induced by space environment from rice variety Bing 95-503 were identified. The results indicated that the traits including days from sowing to heading, 1000-grain weight, grain volume, plant type and awn-growing character were obviously different from those of the 5 tiller dwarfs such as ID-3, which were known for their dwarfing genes. R955 was insensitive to response of GA3, and its dwarfing gene was controlled by recessive gene(s), nonallelic to the tiller dwarfing genes d 3 , d 10 , d 14 , d 17 and d 27 . R955 had good plant type with the plant height near semidwarfism, normal grain size, and as many as 68 productive panicles per plant

  7. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  8. Public Spaces as the Reflection of Society and its Culture

    Science.gov (United States)

    Siláči, Ivan; Vitková, L.'ubica

    2017-10-01

    Spatial structure of places has gone through significant changes in the last 70 years, caused by modernistic approach towards urban design. This approach has brought retraction from traditional spatial form and has started introducing free form design of urban spaces since the 1960’s. Tighter urban structure has started to be applied since the 1980’s, but in a less significant way than in other developed European countries, as a result of starting mass-housing period. However modernistic approach legacy is quite heavily maintained and present in our cities. Single-use commercial areas and family-house “landscapes” located mostly on the outside of city border represent the mentioned system. In those structures, a man usually identifies himself with his own house or apartment rather than with space that commonly surrounds him. Therefore, the role of spaces, their image perceived by men and their character is more and more important. Supporting the distinctive individual character of a city and its places and the identification with districts is fundamental. Urban resident and occupant identify himself with the city and urban environment via arrangement of spaces. Social sustainability is an integral part of the effective urban development. Quality of public spaces, which support the city of neighborhoods, vibrant city and short distance city are the important pillars of sustainability. Cultural environment and the sense of place is another important dimension of sustainability. The paper is focused on mapping and evaluation of the public spaces in Bratislava with the emphasis of their social development and cultural value, as factors of their identity.

  9. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  10. Sacred space and the healing journey.

    Science.gov (United States)

    Alt, Paul L

    2017-07-01

    Sacred space and spirituality have long been used to heal the mind, body, and spirit. This article illuminates the origins of sacred space and its role as a healing environment from the first human construct, the burial mound, to the 5th Century BCE Greek healing city of Epidaurus. It then examines the role of spirituality as one of the necessary human institutions for a healthy society, according to the Italian philosopher Giambattista Vico. The conclusion then surveys three contemporary healing environments' architecture, the Department of Veteran Affairs Healing Environment Design Guideline (VAHEDG), and how these sacred spaces mend individual and community ailments.

  11. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  12. The Alpha-Helix Concept: Innovative utilization of the Space Station Program. A report to the National Aeronautical and Space Administration requesting establishment of a Sensory Physiology Laboratory on the Space Station

    Science.gov (United States)

    Bandurski, R. S.; Singh, N.

    1983-01-01

    A major laboratory dedicated to biological-medical research is proposed for the Space Platform. The laboratory would focus on sensor physiology and biochemistry since sensory physiology represents the first impact of the new space environment on living organisms. Microgravity and the high radiation environment of space would be used to help solve the problems of prolonged sojourns in space but, more importantly, to help solve terrestrial problems of human health and agricultural productivity. The emphasis would be on experimental use of microorganisms and small plants and small animals to minimize the space and time required to use the Space Platform for maximum human betterment. The Alpha Helix Concept, that is, the use of the Space Platform to bring experimental biomedicine to a new and extreme frontier is introduced so as to better understand the worldly environment. Staffing and instrumenting the Space Platform biomedical laboratory in a manner patterned after successful terrestrial sensory physiology laboratories is also proposed.

  13. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  14. ISS External Payload Platform - a new opportunity for research in the space environment

    Science.gov (United States)

    Steimle, Christian; Pape, Uwe

    The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a

  15. Creating a Space for Creativity

    DEFF Research Database (Denmark)

    Bøjer, Bodil

    2017-01-01

    Space shapes us but is also shaped by the way we interact with and act within the space. In recent years many schools are being built or rebuilt based on student-centred learning with smaller classrooms and large innovative learning environments (ILEs), expected to foster collaboration and creati......Space shapes us but is also shaped by the way we interact with and act within the space. In recent years many schools are being built or rebuilt based on student-centred learning with smaller classrooms and large innovative learning environments (ILEs), expected to foster collaboration...... teacher), space (the designer) and organisation (management). With my research, I would like to contribute to the understanding of the relationship between the physical learning environment and creative learning processes and the potential of the space as a tool to stimulate creativity. In my poster...... presentation at ‘Educational Architecture’ I will present a case study from my PhD-project where I developed a new ILE at a Danish municipal school in collaboration with the design agency Rune Fjord Studio. A starting point for the project was to examine if and how involving teachers and management...

  16. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  17. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Directory of Open Access Journals (Sweden)

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  18. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  19. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  20. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  1. Spain: Success story in space

    Science.gov (United States)

    Longdon, Norman

    From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.

  2. EVALUATION OF MICROBIAL SURVIVAL IN EXTRATERRESTRIAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Betül BULUÇ

    2012-08-01

    Full Text Available In this paper, the space environments where microbial terrestrial life could form and evolve in, were evaluted with the base of the physical and chemical properties. In addition, Earthial microbial life formation conditions in the interstellar medium and the other planets are investigated and the survival of microorganisms in the space environments are questioned. As a result, considering the aspects of terrestrial microbial life, we suggest that the space environment and other planets could not be a habitat for Earthial microorganisms.

  3. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  4. Contamination Effects Due to Space Environmental Interactions

    Science.gov (United States)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  5. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort.

    Science.gov (United States)

    Paquet, Catherine; Coffee, Neil T; Haren, Matthew T; Howard, Natasha J; Adams, Robert J; Taylor, Anne W; Daniel, Mark

    2014-07-01

    We investigated whether residential environment characteristics related to food (unhealthful/healthful food sources ratio), walkability and public open spaces (POS; number, median size, greenness and type) were associated with incidence of four cardio-metabolic risk factors (pre-diabetes/diabetes, hypertension, dyslipidaemia, abdominal obesity) in a biomedical cohort (n=3205). Results revealed that the risk of developing pre-diabetes/diabetes was lower for participants in areas with larger POS and greater walkability. Incident abdominal obesity was positively associated with the unhealthful food environment index. No associations were found with hypertension or dyslipidaemia. Results provide new evidence for specific, prospective associations between the built environment and cardio-metabolic risk factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  7. A state-space model for estimating detailed movements and home range from acoustic receiver data

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Weng, Kevin

    2013-01-01

    We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function of dista......We present a state-space model for acoustic receiver data to estimate detailed movement and home range of individual fish while accounting for spatial bias. An integral part of the approach is the detection function, which models the probability of logging tag transmissions as a function...... that the location error scales log-linearly with detection range and movement speed. This result can be used as guideline for designing network layout when species movement capacity and acoustic environment are known or can be estimated prior to network deployment. Finally, as an example, the state-space model...... is used to estimate home range and movement of a reef fish in the Pacific Ocean....

  8. Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design

    Science.gov (United States)

    Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie

    2018-01-01

    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…

  9. Woodland as working space: where is the restorative green idyll?

    Science.gov (United States)

    Bingley, Amanda

    2013-08-01

    Much has been written on the beneficial, restorative qualities of 'natural' (non-built) rural or urban 'green' space, including woodland, in promoting mental and physical health when accessed for leisure, sport and education. In contrast, with the exception of rural health studies, there is relatively little debate about the health benefits of 'green space' as work place, especially in woodland and forests. In the developed world, this apparent gap in the literature may be partly due to an assumption of the forest work place as inherently healthy, and also the invisibility of a tiny percentage of the workforce now employed in forestry. However, in the UK and parts of Europe over recent years there has been a small, though significant, increase in opportunities to train and work in woodlands using traditional, sustainable management such as coppicing, and an exploration of health issues of woodland work is timely. This paper reports on findings from a secondary narrative analysis of oral history interviews selected from two phases of the Woodland Recollections Project and newsletters written by local people historically and currently engaged in coppicing and woodland work in North West England. Perceptions of healthy working in green space are examined by applying key concepts of Attention Restoration Theory (ART). Findings suggest that woodland work environments involve many counter-restorative factors that can render the 'green idyll' detrimental to health and wellbeing. To benefit from restorative elements requires drawing on a high level of specialist skills that empower individuals to manage and maintain healthy working practices in these diverse and challenging environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. What makes a space invader? Passenger perceptions of personal space invasion in aircraft travel.

    Science.gov (United States)

    Lewis, Laura; Patel, Harshada; D'Cruz, Mirabelle; Cobb, Sue

    2017-11-01

    The invasion of personal space is often a contributory factor to the experience of discomfort in aircraft passengers. This paper presents a questionnaire study which investigated how air travellers are affected by invasions of personal space and how they attempt to adapt to, or counter, these invasions. In support of recent findings on the factors influencing air passenger comfort, the results of this study indicate that the invasion of personal space is not only caused by physical factors (e.g. physical contact with humans or objects), but also other sensory factors such as noise, smells or unwanted eye contact. The findings of this study have implications for the design of shared spaces. Practitioner Summary: This paper presents a questionnaire study which investigated personal space in an aircraft environment. The results highlight the factors which affect the perception of personal space invasion in aircraft and can therefore inform the design of aircraft cabin environments to enhance the passenger experience.

  11. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  12. The fluidities of digital learning environments and resources

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2012-01-01

    The research project “Educational cultures and serious games on a global market place” (2009-2011) dealt with the challenge of the digital learning environment and hence it’s educational development space always existing outside the present space and hence scope of activities. With a reference...... and establishments of the virtual universe called Mingoville.com, the research shows a need to include in researchers’ conceptualizations of digital learning environments and resources, their shifting materialities and platformations and hence emerging (often unpredictable) agencies and educational development...... spaces. Keywords: Fluidity, digital learning environment, digital learning resource, educational development space...

  13. Changes seen in the environment report from Uusimaa Regional Environment Centre

    International Nuclear Information System (INIS)

    Enckell, E.; Airola, H.; Tornivaara-Ruikka, R.; Villa, L.; Salasto, R.

    2002-05-01

    This publication describes the environmental changes and the influencing factors occurring within the administrative regions of the Uusimaa Regional Environment Centre. The quality of the environment can be judged as satisfying in regards to both the mental and physical health of humans. Areas have a steady trend of a relatively high growth in population density, while the efficiency of land use in new settlements is low. Traffic and the travel distances are on the rise. A considerable part of the population lives in areas where the noise standards are violated, despite control measures. Waste management, water distribution and sewage networks are under continuous development. In regards to the nature, the situation in some parts is of great concern. The manifold of the nature, cultural landscapes and culturally valuable buildings and sites are threatened. The living space of flora and fauna is continuing to decrease and change. The risks caused by human activities in groundwater areas are increasing. For these reasons the implementation of protection programs is important. Emissions from point sources to the water and air have significantly decreased. Yet, the impacts of air quality deprivation can still be seen in some cities and in the vicinity of some industrial sites. The eutrophication have essentially changed the ecology and fishstocks; however, the water quality has improved in many places. Regarding the above issues, as well as some other topics, included in the report are 16 theme maps 66 pictures. However, the report states that the monitoring and reporting of the environmental quality should be improved. (orig.)

  14. Creating a Space for Creativity

    DEFF Research Database (Denmark)

    Bøjer, Bodil

    2017-01-01

    and creativity. But the relational dependence between the physical space, pedagogics and organisation is widely overlooked when designing these new learning environments as a new spatial design in itself is expected to change the way we teach and learn. Simply changing the space is not enough (Imms & Byers, 2017......) and the intentions of the space can only be fully realised if the inhabitants of the schools completely understand and support the pedagogical principles informing the provision of these spaces (Burke, 2016). This is why three things should be aligned in order for an ILE to work intendedly: creative teaching (the...... teacher), space (the designer) and organisation (management). With my research, I would like to contribute to the understanding of the relationship between the physical learning environment and creative learning processes and the potential of the space as a tool to stimulate creativity. In my poster...

  15. Collaborative Commercial Space Situational Awareness

    Science.gov (United States)

    Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.

    2013-09-01

    There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most

  16. Gas-laser behavior in a low-gravity environment

    Science.gov (United States)

    Owen, R. B.

    1981-01-01

    In connection with several experiments proposed for flight on the Space Shuttle, which involve the use of gas lasers, the behavior of a He-Ne laser in a low-gravity environment has been studied theoretically and experimentally in a series of flight tests using a low-gravity-simulation aircraft. No fluctuation in laser output above the noise level of the meter (1 part in 1000 for 1 hr) was observed during the low-gravity portion of the flight tests. The laser output gradually increased by 1.4% during a 1.5-hr test; at no time were rapid variations observed in the laser output. A maximum laser instability of 1 part in 100 was observed during forty low-gravity parabolic maneuvers. The beam remained Gaussian throughout the tests and no lobe patterns were observed.

  17. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  18. Material and cultural assets. Part of radiation protection of the environment?; Sach- und Kulturgueter. Teil eines Strahlenschutzes der Umwelt?

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, R.G. [Nuclear Control and Consulting GmbH, Braunschweig (Germany); Loebner, W.

    2015-07-01

    Since several years the protection of the environment has been discussed at various international levels as part of radiation protection. ICRP has published a number of recommendations which relate primarily to the evaluation of radiation exposures to non-human species. Nevertheless, not least because of the declaratory mention of the environment in national legislative documents, the question arises how the environment can be integrated into the radiation protection or whether the radiation protection must be even expanded to new fields. A less discussed aspect here covers material and cultural assets that are classified in environmental law as objects worthy of protection. The paper describes some issues that arise in this context and outlines a framework for the consideration of material assets in radiation protection.

  19. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  20. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  1. Investigating the Marine Environment and Its Resources, Part II.

    Science.gov (United States)

    Lien, Violetta F.

    This is the second of two volumes comprising a resource unit designed to help students become more knowledgeable about the marine environment and its resources. Included in this volume are discussions of changes in the human and marine environment, human needs, marine resources, living marine resources, marine transportation, marine energy…

  2. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  3. School Environment Handbook Part I: Overview and Workshop Activities.

    Science.gov (United States)

    Gillespie, Judith; And Others

    This handbook, produced by the School Environmental Impact Program (Indiana) was developed to improve school environments and to create more positive attitudes and behaviors in school participants (all those involved in the school and its environment). It is designed to help in the assessment of school conditions by individuals, groups, or school…

  4. Collective space of high-rise housing complex

    Directory of Open Access Journals (Sweden)

    Bakaeva Tatyana

    2018-01-01

    Full Text Available The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  5. Collective space of high-rise housing complex

    Science.gov (United States)

    Bakaeva, Tatyana

    2018-03-01

    The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  6. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  7. Evolution of space dependent growth in the teleost Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Natalya D Gallo

    Full Text Available The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish and several blind cave-dwelling (cavefish forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG. In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments.

  8. Images of Environment and Management Practice

    DEFF Research Database (Denmark)

    Schmidt, Kirsten; Remmen, Arne

    ; environment as a part of quality management; environment as a part of corporate branding and environment as a part of customer relations. The different images are distributed and coexist throughout the organization, where they may be a potential for conflicting priorities or a platform for organizational......Different images of environment can be found in relation to various understandings of environmental problems and solutions, such as cleaner production, environmental management, cleaner products and sustainability. Ascribed to these images are: environment as a part of license to operate...... as a technical issue as part of a formalized system created barriers for organizational learning in relation to sustainability, while the broader concept of social responsibility shaped a platform from which the employees could create meanings on sustainability more in line with their daily practices....

  9. Heat transfer in a Couette flow with part of the space between the plates filled with porous medium

    International Nuclear Information System (INIS)

    Carrocci, L.R.; Liu, C.Y.; Ismail, K.A.R.

    1982-01-01

    The effect of various parameters in the temperature profile is shown under boundary conditions for the Couette flow between infinite plates with part of the space filled with porous medium. The parameters observed are: pressure gradient, permeability, the non-dimensional product PE (Prandtl number x Eckert number), the relation between the thermal conductibility coefficient between porous region and pure fluid, and finally the non-dimensional product PR (Prandtl number x Reynolds number). (E.G.) [pt

  10. Plastic modes of listening: affordance in constructed sound environments

    Science.gov (United States)

    Sjolin, Anders

    This thesis is concerned with how the ecological approach to perception with the inclusion of listening modes, informs the creation of sound art installation, or more specifically as referred to in this thesis as constructed sound environments. The basis for the thesis has been a practiced based research where the aim and purpose of the written part of this PhD project has been to critically investigate the area of sound art, in order to map various approaches towards participating in and listening to a constructed sound environment. The main areas has been the notion of affordance as coined by James J. Gibson (1986), listening modes as coined by Pierre Schaeffer (1966) and further developed by Michel Chion (1994), aural architects as coined by Blesser and Salter (2007) and the holistic approach towards understanding sound art developed by Brandon LaBelle (2006). The findings within the written part of the thesis, based on a qualitative analysis, have informed the practice that has resulted in artefacts in the form of seven constructed sound environments that also functions as case studies for further analysis. The aim of the practice has been to exemplify the methodology, strategy and progress behind the organisation and construction of sound environments The research concerns point towards the acknowledgment of affordance as the crucial factor in understanding a constructed sound environment. The affordance approach govern the idea that perceiving a sound environment is a top-down process where the autonomic quality of a constructed sound environment is based upon the perception of structures of the sound material and its relationship with speaker placement and surrounding space. This enables a researcher to side step the conflicting poles of musical/abstract and non-musical/realistic classification of sound elements and regard these poles as included, not separated elements in the analysis of a constructed sound environment.

  11. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  12. The simplified spherical harmonics (SP{sub L}) methodology with space and moment decomposition in parallel environments

    Energy Technology Data Exchange (ETDEWEB)

    Gianluca, Longoni; Alireza, Haghighat [Florida University, Nuclear and Radiological Engineering Department, Gainesville, FL (United States)

    2003-07-01

    In recent years, the SP{sub L} (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP{sub L} equations starting from the even-parity form of the S{sub N} equations. The SP{sub L} equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP{sub L} equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp{sub L} (Parallel Environment Neutral-particle SP{sub L}). Pensp{sub L} solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP{sub L} matrices. Pensp{sub L} includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  13. AF-GEOSpace Version 2.0: Space Environment Software Products for 2002

    Science.gov (United States)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.

    2002-05-01

    AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric

  14. A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Science.gov (United States)

    Mckay, Charles; Auty, David; Rogers, Kathy

    1987-01-01

    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.

  15. Annotated trajectories and the Space-Time-Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2012-01-01

    too, because these have not been adopted to the purpose. A suitable solution to display and study movements is the Space-Time-Cube (STC), the graphic representation of Hägerstrand’s Time Geography. This paper answers the question of how suitable the STC is to display the above describe combination...... of trajectories and annotations to avoid the visual clutter. Although the STC will be described here as a stand-alone solution it is part of a wider geovisual analytics environment and is used next to maps and other graphics to be able to answer user questions. As a case study data set the travel log data...

  16. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  17. Space Plants for Astronaut Consumption

    Science.gov (United States)

    Mickens, Matthew A.; Grandpre, Ayla Moriah; Boehm, Emma; Barnwell, Payton

    2017-01-01

    Growing plants in space will be an essential part of sustaining astronauts during long-range missions. During the summer of 2017, three female NASA interns, have been engaged in research relevant to food production in space, and will present their projects to an all female program known as Girls in STEM camp. Ayla Grandpre, a senior from Rocky Mountain College, has performed data mining and analysis of crop growth results gathered through Fairchild Botanical Gardens program, Growing Beyond Earth. Ninety plants were downselected to three for testing in controlled environment chambers at KSC. Ayla has also managed an experiment testing a modified hydroponics known as PONDS, to grow mizuna mustard greens and red robin cherry tomatoes. Emma Boehm, a senior from the University of Minnesota, has investigated methods to sterilize seeds and analyzed the most common microbial communities on seed surfaces. She has tested a bleach fuming method and an ethanol treatment. Emma has also tested Tokyo bekana Chinese cabbage seeds from four commercial seed vendors to identity differences in germination and growth variability. Lastly, Payton Barnwell, a junior from Florida Polytechnic University has shown that light recipes provided by LEDs can alter the growth and nutrition of 'Outredgeous' lettuce, Chinese cabbage, and Mizuna. The results of her light quality experiments will provide light recipe recommendations for space crops that grown in the Advanced Plant Habitat currently aboard the International Space Station.

  18. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  19. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  20. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    Science.gov (United States)

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety

  1. Shutdown and degradation: Space computers for nuclear application, verification of radiation hardness. Final report

    International Nuclear Information System (INIS)

    Eichhorn, E.; Gerber, V.; Schreyer, P.

    1995-01-01

    (1) Employment of those radiation hard electronics which are already known in military and space applications. (2) The experience in space-flight shall be used to investigate nuclear technology areas, for example, by using space electronics to prove the range of applications in nuclear radiating environments. (3) Reproduction of a computer developed for telecommunication satellites; proof of radiation hardness by radiation tests. (4) At 328 Krad (Si) first failure of radiation tolerant devices with 100 Krad (Si) hardness guaranteed. (5) Using radiation hard devices of the same type you can expect applications at doses of greater than 1 Mrad (Si). Electronic systems applicable for radiation categories D, C and lower part of B for manipulators, vehicles, underwater robotics. (orig.) [de

  2. Function spaces, 1

    CERN Document Server

    Pick, Luboš; John, Oldrich; Fucík, Svatopluk

    2012-01-01

    This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volum

  3. The common objectives of the European Nordic countries and the role of space

    Science.gov (United States)

    Lehnert, Christopher; Giannopapa, Christina; Vaudo, Ersilia

    2016-11-01

    The European Space Agency (ESA) has twenty two Member States with common goals of engaging in European space activities. However, the various Member States have a variety of governance structures, strategic priorities regarding space and other sectorial areas depending on their cultural and geopolitical aspirations. The Nordic countries, namely Denmark, Finland, Norway and Sweden, have similarities which result often in common geopolitical and cultural aspects. These in turn shape their respective priorities and interests in setting up their policies in a number of sectorial areas like shipping and fisheries, energy, immigration, agriculture, security and defence, infrastructures, climate change and the Arctic. Space technology, navigation, earth observation, telecommunication and integrated applications can assist the Nordic countries in developing, implementing and monitoring policies of common interest. This paper provides an in-depth overview and a comprehensive assessment of these common interests in policy areas where space can provide support in their realisation. The first part provides a synthesis of the Nordic countries respective priorities through analysing their government programmes and plans. The priorities are classified according to the six areas of sustainability: energy, environment and climate change, transport, knowledge and innovation, natural resources (fisheries, agriculture, forestry, mining, etc), and security and external relations. Although the national strategies present different national perspectives, at the same time, there are a number of similarities when it comes to overall policy objectives in a number of areas such as the Arctic and climate change. In other words, even though the Arctic plays a different role in each country's national context and there are clear differences as regards geography, access to resources and security policies, the strategies display common general interest in sustainable development and management of

  4. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Mattan

    2018-02-21

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.

  5. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  6. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Science.gov (United States)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  7. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  8. FPGAs operating in a radiation environment: lessons learned from FPGAs in space

    International Nuclear Information System (INIS)

    Wirthlin, M J

    2013-01-01

    Field Programmable Gate Arrays (FPGAs) are increasingly being used as a key component of digital systems because of their in-field reprogrammability, low non-recurring engineering costs (NRE), and relatively short design cycle. Recently, there has been great interest in using FPGAs within spacecraft. FPGAs, like all semiconductor devices, are susceptible to the effects of radiation. There is an active research community investigating the effects of radiation on FPGAs and developing methods to mitigate against these effects. There has been significant progress over the last decade in the understanding and developing FPGA technology that is resistant to the effects of radiation. The success of FPGAs within spacecraft suggests that FPGAs may be used in particle physics experiments where radiation levels are considerable higher than the conventional terrestrial earth environment. This paper will summarize the effects of radiation on FPGAs, methods to mitigate against these effects, provide a case study of a successful FPGA system operating in space, and discuss the issues that will affect the use of FPGAs within particle physics experiments.

  9. NASA Electronic Parts and Packaging (NEPP) Program - Update

    Science.gov (United States)

    LaBel, Kenneth A.; Sampson, Michael J.

    2010-01-01

    This slide presentation reviews the goals and mission of the NASA Electronic Parts and Packaging (NEPP) Program. The NEPP mission is to provide guidance to NASA for the selection and application of microelectronics technologies, to improve understanding of the risks related to the use of these technologies in the space environment and to ensure that appropriate research is performed to meet NASA mission assurance needs. The program has been supporting NASA for over 20 years. The focus is on the reliability aspects of electronic devices. In this work the program also supports the electronics industry. There are several areas that the program is involved in: Memories, systems on a chip (SOCs), data conversion devices, power MOSFETS, power converters, scaled CMOS, capacitors, linear devices, fiber optics, and other electronics such as sensors, cryogenic and SiGe that are used in space systems. Each of these area are reviewed with the work that is being done in reliability and effects of radiation on these technologies.

  10. Creating a flexible learning environment.

    Science.gov (United States)

    Taylor, B A; Jones, S; Winters, P

    1990-01-01

    Lack of classroom space is a common problem for many hospital-based nurse educators. This article describes how nursing educators in one institution redesigned fixed classroom space into a flexible learning center that accommodates their various programs. Using the nursing process, the educators assessed their needs, planned the learning environment, implemented changes in the interior design, and evaluated the outcome of the project. The result was a learning environment conducive to teaching and learning.

  11. Materials on the International Space Station - Forward Technology Solar Cell Experiment

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Lorentzen, J. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.

    2005-01-01

    This paper describes a space solar cell experiment currently being built by the Naval Research Laboratory (NRL) in collaboration with NASA Glenn Research Center (GRC), and the US Naval Academy (USNA). The experiment has been named the Forward Technology Solar Cell Experiment (FTSCE), and the purpose is to rapidly put current and future generation space solar cells on orbit and provide validation data for these technologies. The FTSCE is being fielded in response to recent on-orbit and ground test anomalies associated with space solar arrays that have raised concern over the survivability of new solar technologies in the space environment and the validity of present ground test protocols. The FTSCE is being built as part of the Fifth Materials on the International Space Station (MISSE) Experiment (MISSE-5), which is a NASA program to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment. Telemetry, command, control, and communication (TNC) for the FTSCE will be achieved through the Amateur Satellite Service using the PCSat2 system, which is an Amateur Radio system designed and built by the USNA. In addition to providing an off-the-shelf solution for FTSCE TNC, PCSat2 will provide a communications node for the Amateur Radio satellite system. The FTSCE and PCSat2 will be housed within the passive experiment container (PEC), which is an approximately 2ft x2ft x 4in metal container built by NASA Langley Research Center (NASA LaRC) as part of the MISSE-5 program. NASA LaRC has also supplied a thin film materials experiment that will fly on the exterior of the thermal blanket covering the PCSat2. The PEC is planned to be transported to the ISS on a Shuttle flight. The PEC will be mounted on the exterior of the ISS by an astronaut during an extravehicular activity (EVA). After nominally one year, the PEC will be retrieved and returned to Earth. At the time of writing this paper, the

  12. Hyperbolic statics in space-time

    OpenAIRE

    Pavlov, Dmitry; Kokarev, Sergey

    2014-01-01

    Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...

  13. Fire safety in space

    DEFF Research Database (Denmark)

    Jomaas, Grunde; Torero, Jose L.; Eigenbrod, Christian

    2015-01-01

    experiments has been based on existing knowledge of scenarios that are relevant, yet challenging, for a spacecraft environment. Given that there is always airflow in the space station, all the experiments are conducted with flame spread in either concurrent or opposed flow, though with the flow being stopped...... undocked from the International Space Station (ISS). The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle re-enters the atmosphere. The unmanned, pressurized environment in the Saffire experiments allows for the largest sample sizes ever...

  14. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  15. Path Planning for Non-Circular, Non-Holonomic Robots in Highly Cluttered Environments.

    Science.gov (United States)

    Samaniego, Ricardo; Lopez, Joaquin; Vazquez, Fernando

    2017-08-15

    This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot's footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.

  16. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    detailed tasks of reading and assembling mechanical parts for an extended period of two uninterrupted hours. However, human subjects self-reported that blue LEDs provided the most white light and the favored light source over the white LED and the ISS fluorescent as a sole artificial light source for space travel. According to NASA standards, findings from this study indicate that LEDs meet criteria for the NASA TRL 7 rating, as study findings showed that commercial LED manufacturers passed the rigorous testing standards of suitability for space flight environments and human factor effects. Recommendations for future research include further testing for space flight using the basis of this study for replication, but reduce study limitations by 1) testing human subjects exposure to LEDs in a simulated space capsule environment over several days, and 2) installing and testing LEDs in space modules being tested for human spaceflight.

  17. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Science.gov (United States)

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  18. Mediating spaces acting for the collaboration in the future school

    Directory of Open Access Journals (Sweden)

    H. Teräväinen

    2012-10-01

    Full Text Available In this paper we report the performance and preliminary results of studies carried outduring the years 2007-2008 in a research project called InnoArch, Places and Spaces for Learning.InnoArch is a part of a large trans-disciplinary InnoSchool consortium (1.1.2007- 28.2.2010 aiming todevelop a set of research-based good practices, processes, models and designs for the Future SchoolConcept. InnoArch research has focused partly on “place and mapping”, which includes a place-based approachto pedagogical processes. On the other hand the research has concentrated on “space andexperience”, which includes architectural or spatial analyses of the building and the neighborhood. The spatial experience on each environmental scale is perceived with all senses: sight, hearing, taste, smell,touch and body awareness. Indoor studies are mainly about “creating and experiencing the space”,something that has great bearing on architectural thinking when designing the future school. The non-physical virtual space is seen as a mediator between the physical environment (neighborhoodand the PjBLL (Project Based Learning Lab at Jakomäki School in Helsinki. Places in the physical environment can be located on the commentary map, which will be constructed in the School Forum byteachers and students.The pupils themselves have an opportunity to personalize the room which is here described as a PjBLL.The room provides possibilities to pursue video observation as well as participative observation and participative design research during architectural workshops. These studies were conducted together with teachers, the pedagogical focus being on TSL processes and the architectural view on physicaland virtual spaces. Sustainability is within the focus of both the environmental studies as well as in lifelongand life-wide learning processes. The pedagogical idea based on inquiry-based learning encourages to strengthen pupils´ epistemic agency in the local community

  19. Could transit sites become some of our great public spaces?

    DEFF Research Database (Denmark)

    Lanng, Ditte Bendix

    of the urban spaces of traffic segregation with regard to sensory and social qualities of different ways of embodied wayfaring. The discussion draws on ethnographic studies into journeys, which entangle at the transit site,as well as re-design studio experiments. These draw to the foreground of design...... social and cultural life. Third, I draw on my studies into journeys at the site to learn about the spatial practicings of the site and of the properties and possibilities of the urban space design. Fourth, I explore in written text and drawing re-design potentials. And last, I sum up propositions...... considerations the engagement between the wayfarer and the environment. The paper is structured in five sections. I set out by introducing the traffic segregated transit site. Second, I outline and argue for the design challenge: to re-design the transit site as an important public space – a central part of our...

  20. Radiation protection at the RA Reactor in 1985, Part -2, Annex 1, Radioactivity control of working environment, dosimetry

    International Nuclear Information System (INIS)

    Ninkovic, M.; Bjelanovic, J.; Minincic, Z.; Komatina, R.; Raicevic, J.

    1985-01-01

    This report contains data and analysis of the of measured sample results collected during radiation protection control in the working environment of the RA reactor. First part contains basic exposure values and statistical review of the the total number of radiation measurements. It includes contents of radioactive gasses and effluents in the air, as well as the level of surface contamination of clothes and uncovered parts of the personnel bodies. Second part deals with the analysis of personnel doses. It was found that the maximum individual dose from external irradiation amounted to 8.2 mSV during past 10 months. Individual exposures for 7/10 of the personnel were less than 1/10 of the annual permissible exposure. Data are compared to radiation doses for last year and previous five years. Third part of this annex contains basic data about the quantity of collected radioactive waste, total quantity of contaminated and decontaminated surfaces. The last part analyzes accidents occurred at the reactor during 1985. It was found that there have been no accidents that could cause significant contamination of working surfaces and components nor radiation exposure of the personnel [sr