WorldWideScience

Sample records for space environment criteria

  1. Space Environment Modeling

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  2. Radiation environment in space

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  3. Space radiation environment

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  4. Environment monitoring from space

    Takagi, M.

    1994-01-01

    Environmental problems such as acid rain, ozone depletion, deforestation, erosion, and the greenhouse effect are of increasing concern, and continuous earth observation from artificial satellites has been contributing significant information on the environment since the 1960s. Earth observation from space has the advantages of wide area coverage at potentially high resolutions, periodic and long-term observation capability, data acquisition with uniform quality and repeatability, and ability to observe using different types of sensors. Problems to be solved in earth observation include the need for preprocessing of satellite data, understanding the relationship between observed physical parameters and objects, and the high volume of data for processing. In Japan, a research project on the higher-order utilization of remote sensing data from space was organized in 1985, and the results led to recognition of the importance of satellite observation. It was then decided to undertake a program to improve the understanding of the earth environment by satellite. Five research plans were selected: a basic study on earth observation by microwaves; global change analysis of the biosphere; a study of the physical process of the water cycle over land; a study of air-sea interaction; and higher-order processing of earth observation information. In recognition of the international nature of satellite data, as well as the capabilities of Canada and Japan in computer, communication, and multimedia technologies, bilateral cooperation is proposed in the area of earth environment information systems based on satellite observation

  5. Space Flight Ionizing Radiation Environments

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  6. Considering the space environment

    Boudenot, J.C.; Fillon, T.; Barrillot, C.; Calvet, M.C.

    1999-01-01

    The high levels of radiation encountered in space and in the upper atmosphere can affect the onboard electronics in satellites, launch vehicles and aircraft. The main categories of radiation in space have been classified into four distinct types; radiation belts, solar flares, cosmic radiation and the solar wind. Most of the risk to modern electronic systems arises from heavy ions. In geostationary and low polar orbits, these originate mainly as protons from solar flares. In medium earth orbits, the main source is trapped protons and the South Atlantic anomaly. (authors)

  7. The space radiation environment

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  8. Space Environment Information System (SPENVIS)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  9. Space Weather, Environment and Societies

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  10. Performance Criteria of Nuclear Space Propulsion Systems

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  11. Public spaces and urban sustainability in the tropical built environment

    Yusof, Y. M.; Kozlowski, M.

    2018-01-01

    Sustainability is an overarching sense of responsibility towards the future. On a city-wide level, urban sustainability incorporates a wide body of changes especially as they relate to the built environment, all of which intended at creating a livable place. This paper discusses existing public spaces in view of their achievement against a set of criteria for the built environment. The paper introduces performance design criteria for the tropical built environment. The key findings indicate that long-term strategies, guidance and directions for the city and region can achieve development which corresponds to local climate, synergies and provide a higher proportion of public spaces that offer something for everyone.

  12. Controlling criteria for radiation exposure of astronauts and space workers

    Katoh, Kazuaki

    1989-01-01

    Space workers likely to suffer from radiation exposure in the outer space are currently limited to the U.S. and Soviet Union, and only a small amount of data and information is available concerning the techniques and criteria for control of radiation exposure in this field. Criteria used in the Soviet Union are described first. The criteria (TRS-75), called the Radiation Safety Criteria for Space Navigation, are tentative ones set up in 1975. They are based on risk assessment. The standard radiation levels are established based on unit flight time: 50rem for 1 month, 80rem for 3 months, 110rem for 6 months and 150rem for 12 months. These are largely different from the emergency exposure limit of 100mSv (10rem) specified in a Japanese law, and the standard annual exposure value of 50mSv (5rem) for workers in nuclear power plants at normal times. For the U.S., J.A. Angelo, Jr., presented a paper titled 'Radiation Protection Issues and Techniques concerning Extended Manned Space Missions' at an IAEA meeting held in 1988. Though the criteria shown in the paper are not formal ones at the national level, similar criteria are expected to be adopted by the nation in the near future. The exposure limits recommended in the paper include a depth dose of 1-4Sv for the whole life span of a worker. (Nogami, K.)

  13. System survivability in nuclear and space environments

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  14. NASA Space Environments Technical Discipline Team Space Weather Activities

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  15. Information Space, Information Field, Information Environment

    Victor Ya. Tsvetkov

    2014-08-01

    Full Text Available The article analyzes information space, information field and information environment; shows that information space can be natural and artificial; information field is substantive and processual object and articulates the space property; information environment is concerned with some object and acts as the surrounding in relation to it and is considered with regard to it. It enables to define information environment as a subset of information space. It defines its passive description. Information environment can also be defined as a subset of information field. It corresponds to its active description.

  16. Institutional and pedagogical criteria for productive open source learning environments

    Svendsen, Brian Møller; Ryberg, Thomas; Semey, Ian Peter

    2004-01-01

    In this article we present some institutional and pedagogical criteria for making an informed decision in relation to identifying and choosing a productive open source learning environment. We argue that three concepts (implementation, maintainability and further development) are important when...... considering the sustainability and cost efficiency of an open source system, and we outline a set of key points for evaluating an open source software in terms of cost of system adoption. Furthermore we identify a range of pedagogical concepts and criteria to emphasize the importance of considering...... the relation between the local pedagogical practice and the pedagogical design of the open source learning environment. This we illustrate through an analysis of an open source system and our own pedagogical practice at Aalborg University, Denmark (POPP)....

  17. Physics of the Space Environment

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  18. Solar/Space Environment Data (Satellites)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) monitors the geospace and solar environments using a variety of space weather sensors aboard its fleet of...

  19. Space Environments and Spacecraft Effects Organization Concept

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  20. Space environments and their effects on space automation and robotics

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  1. The Near-Earth Space Radiation Environment

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  2. Terrestrial Environment (Climatic) Criteria Guidelines for use in Aerospace Vehicle Development. 2008 Revision

    Johnson, D. L. (Editor)

    2008-01-01

    This document provides guidelines for the terrestrial environment that are specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles, payloads, and associated ground support equipment. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; George C. Marshall Space Flight Center, Huntsville, AL; and the White Sands Missile Range, NM. This document presents the latest available information on the terrestrial environment applicable to the design and operations of aerospace vehicles and supersedes information presented in NASA-HDBK-1001 and TM X-64589, TM X-64757, TM-78118, TM-82473, and TM-4511. Information is included on winds, atmospheric thermodynamic models, radiation, humidity, precipitation, severe weather, sea state, lightning, atmospheric chemistry, seismic criteria, and a model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. In addition, a section has been included to provide information on the general distribution of natural environmental extremes in the conterminous United States, and world-wide, that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A section on atmospheric attenuation has been added since measurements by sensors on certain Earth orbital experiment missions are influenced by the Earth s atmosphere. There is also a section on mission analysis, prelaunch monitoring, and flight evaluation as related to the terrestrial environment inputs. The information in these guidelines is recommended for use in the development of aerospace vehicle and related equipment design and associated operational criteria, unless otherwise stated in contract work specifications. The terrestrial environmental data in these guidelines are

  3. Space Ethics and Protection of the Space Environment

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  4. Situative Space Tracking within Smart Environments

    Surie, Dipak; Jäckel, Florian; Janlert, Lars-Erik

    2010-01-01

    This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking syste......-laboratory smart home environment where a global precision of 83.4% and a global recall of 88.6% were obtained.......This paper describes our efforts in modeling and tracking a human agent’s situation based on his/her possibilities to perceive and act upon objects (both physical and virtual) within smart environments. A Situative Space Model is proposed. WLAN signal-strength-based situative space tracking system...

  5. International Space Station External Contamination Environment for Space Science Utilization

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  6. The near coastal environment monitored from space

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  7. Living with a Star Space Environment Testbed

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  8. Radiation Effects in the Space Telecommunications Environment

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  9. Radiation Effects in the Space Telecommunications Environment

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  10. Book Review: Physics of the Space Environment

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  11. Criteria for Public Open Space Enhancement to Achieve Social Interaction: a Review Paper

    Salih, S. A.; Ismail, S.

    2017-12-01

    A This paper presents a various literatures, studies, transcripts and papers aiming to provide an overview of some theories and existing research on the significance of natural environments and green open spaces to achieve social interaction and outdoor recreation. The main objective of the paper is to identify the factors that affecting social interaction in green open spaces, through proving that an appropriate open spaces is important to enhance social interaction and community. This study employs (qualitative) summarizing content analysis method which mainly focused on collect and summarizing of documentation such as transcripts, articles, papers, and books from more than 25 source, regarding the importance of public open spaces for the community. The summarizing content analysis of this paper is the fundament for a qualitative oriented procedure of text interpretation used to analyse the information gathered. Results of this study confirms that sound social interaction need an appropriate physical space including criteria of: design, activities, access and linkage, administration and maintenance, place attachment and users’ characteristics, also previous studies in this area have a health perspective with measures of physical activity of open spaces in general.

  12. Human Pathophysiological Adaptations to the Space Environment

    Gian C. Demontis

    2017-08-01

    Full Text Available Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning to months (i.e., loss of bone density and muscle atrophy of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.

  13. Camelot 3: Habitability criteria space research and design studio

    Arroyo, F.; Budet, O.; Garcia, A.; Lee, J.; Lopez, R.; Lugo, R.; Mateo, A.; Mellado, R.; Mendez, H.; Ortiz, N.

    1989-01-01

    Acknowledging the importance of human beings on a mission to Mars, the University of Puerto Rico studied both psychological and physiological aspects. Different conditions necessary for human health and well-being were considered. As a result, habitability criteria were developed. The criteria are as follows: personal identification; social interaction; unpredictable conditions; contact with nature; mental landscapes; privacy; equalitarian conditions; variety; functionality; sensory stimulation; music and environmental sound; stability and security; comfort; and sense of orientation.

  14. Space Analogue Environments: Are the Populations Comparable?

    Sandal, G. M.

    Background: Much of our present understanding about psychology in space is based on studies of groups operating in so-called analogue environments where personnel are exposed to many of the same stressors as those experienced by astronauts in space. One possible problem with extrapolating results is that personnel operating in various hazardous and confined environments might differ in characteristics influencing coping, interaction, and performance. The object of this study was to compare the psychological similarity of these populations in order to get a better understanding of whether this extrapolation is justifiable. The samples investigated include polar crossings (N= 22), personnel on Antarctic research stations (N= 183), several military occupations (N= 187), and participants in space simulation studies (N=20). Methods: Personnel in each of these environments were assessed using the Personality Characteristic Inventory (PCI) and Utrecht Coping List (UCL). The PCI is a multidimensional trait assessment battery that measures various aspects of achievement orientation and social competence. The UCL is a questionnaire designed to assess habitual coping strategies when encountering stressful or demanding situations. Results: Only minor differences in use of habitual coping strategies were evident across the different samples. In relation to personality scores, the military subjects and participants in space simulation studies indicated higher competitiveness and negative instrumentality compared to both the personnel on Antarctic research stations and participants in polar expedition. Among the personnel on Antarctic research stations, significant gender differences were found with women scoring lower on competitiveness, negative instrumentality and impatience/irritability. Compared to the other samples, the participants in polar expeditions were found to be more homogeneous in personality and no significant gender differences were evident on the traits that

  15. 76 FR 20070 - Commercial Space Transportation Safety Approval Performance Criteria

    2011-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331, Washington, DC 20591, telephone.... Nield, Associate Administrator for Commercial Space Transportation. [FR Doc. 2011-8534 Filed 4-8-11; 8...

  16. Criteria For Specifikation Of The Indoor Environment Of Active House

    Foldbjerg, Peter; Hansen, Ellen Kathrine; Duer, Karsten

    2011-01-01

    The Active House Alliance has been formed by companies and organisations in the building design, components and construction industry to with the intention to improve the quality of the built environment through a balanced focus on indoor environment, energy and environment – and where the aspects...... of human health and wellbeing will be specifically considered. This paper presents the first version of the Active House specification for indoor environment for residential buildings (where specifications for energy and environment also exist). It is based on the EN 15251 philosophy, and with specific...... requirements to daylight, thermal environment, IAQ and acoustics. Requirements have been tightened compared to EN 15251, and will necessitate performance simulations....

  17. Reading space characteristics in campus environment

    Tampubolon, A. C.; Kusuma, H. E.

    2018-03-01

    Reading activity is a part of daily learning activities that are usually done by college students and takes place in the facilities that are provided by the campus. However, students tend to have a perception of a particular location that is considered appropriate with the activities undertaken. This study identified students’ perceptions of reading space characteristics in campus environment which are considered able to accommodate reading activity. Exploratory qualitative research methods were used to collect data from selected types of space and the reasons for the students in choosing the specifics space to do their reading. The results showed that students do not only use library facilities as a support unit of academic activities. This study found that students tend to use some places with non-library function, such as students’ union room, hallway, and classroom. Students perceive reading space by its physical and social characteristics. The physical consist of ambiance, quiet place, tranquility, availability of facilities, the level of coolness, lighting, location accessibility, connection with nature, convenience furniture, air quality, aesthetics, the flexibility of activities, the crowd of place, the level of shade, outdoor, ownership, and indoor. While the social characteristics of the reading space are to have privacy, favorable reading position, and the presence of others.

  18. Institutional factors as criteria for business environment identification

    Klovienė, Lina

    2012-01-01

    The paper focuses on the analysis of business environment in the context of performance measurement. Performance measurement is useful for an organization when it fits into the external and internal environment of the organization. The first requirement is to identify the business environment in order to analyze performance measurement. Institutional theory identifies internal and external environmental factors as institutional factors, according to which the behaviour of an organization coul...

  19. The ESA Space Environment Information System (SPENVIS)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  20. Criteria for the Development of Complex Teaching-Learning Environments.

    Achtenhagen, Frank

    2001-01-01

    Relates aspects of the didactic tradition, especially the German didactic tradition, to the theory and practice of instructional design. Focuses on processes that are necessary to the modeling of reality and describes the design and development of a virtual enterprise as a complex teaching-learning environment in a German business school.…

  1. Protection of the natural environment - philosophy and criteria

    Larsson, Carl-Magnus; Sundell-Bergman, S.

    1999-01-01

    Nuclear operations give rise to small releases of radionuclides to the environment either under controlled conditions (immediate releases) or uncontrolled from waste repositories in the near or far future (delayed releases). The radiation doses to man from the discharges can be estimated using radioecological and dispersion modelling methods. The system for limiting exposure of individual members of the public is currently based on the recommendation by the ICRP. Their risk philosophy, which stems from the fact that the probability of cancer resulting from radiation will be linear with dose, has hitherto gained broad acceptances for setting authorised dose-limits for man. A discussion has recently emerged on the protection of the natural environment from harmful radiation effects. In this case there is concern for the viability of the population rather than the individuals. As our understanding of important mechanisms regarding the protection of the environment is limited it seems appropriate to adopt a precautionary approach. In matters where little is known about the risks the precautionary principle has a major role to play. Concomitantly, the best available technology (BAT), as stated in the precautionary principle, could be employed to minimise discharges of radionuclides. The development of a regulatory frame-work requires that an objective is set and that standards and indicators are derived in a multi-tiered approach. By applying the precautionary principle for environmental radiation protection the safety margins have to increase. However improving knowledge may in due time lead to more rational decision-making

  2. Space environment studies for the SZ-4 spacecraft

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  3. JPL Space Telecommunications Radio System Operating Environment

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  4. Nutritional criteria for closed-loop space food systems

    Rambaut, P. C.

    1980-01-01

    The nutritional requirements for Skylab crews are summarized as a data base for long duration spaceflight nutrient requirements. Statistically significant increases in energy consumption were detected after three months, along with CO2/O2 exhalation during exercise and thyroxine level increases. Linoleic acid amounting to 3-4 g/day was found to fulfill all fat requirements, and carbohydrate and protein (amino acid) necessities are discussed, noting that vigorous exercise programs avoid deconditioning which enhances nitrogen loss. Urinary calcium losses continued at a rate 100% above a baseline figure, a condition which ingestion of vitamin D2 did not correct. Projections are given that spaceflights lasting more than eight years will necessitate recycling of human waste for nutrient growth, which can be processed into highly efficient space food with a variety of tastes.

  5. Sustainable development criteria for Built Environment projects in South Africa (CSIR)

    Gibberd, Jeremy T

    2010-01-01

    Full Text Available This paper is based on work undertaken for the Gauteng Department of Agriculture and Rural Development (GDARD) developing a set of sustainable development criteria for built environment projects requiring environmental impact assessments. (Gibberd...

  6. Natural Hazards of the Space Environment

    Evans, Steven W.; Kross, Dennis A. (Technical Monitor)

    2000-01-01

    Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.

  7. The Living With a Star Space Environment Testbed Payload

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  8. The ionizing radiation environment in space and its effects

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  9. Space environment effects on polymers in low earth orbit

    Grossman, E.; Gouzman, I.

    2003-01-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment

  10. Status Report of Simulated Space Radiation Environment Facility

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  11. Status Report of Simulated Space Radiation Environment Facility

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  12. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  13. Study on Space Audit Assessment Criteria for Public Higher Education Institution in Malaysia: Space Capacity Assessment

    Wan Hamdan Wan Samsul Zamani

    2016-01-01

    Full Text Available The aim of this study is to measure the capacity rate of learning space based on the as-built drawing provided by the institutions or if the as-built drawing is missing, the researcher have to prepare measured drawing as per actual on site. The learning space Capacity Index is developed by analyzing the space design in as-built drawing or measured drawing and the list of learning spaces available at the institution. The Capacity Index is classified according to the level of Usable Floor Area (UFA and Occupancy Load (OL according to learning space design capacity. The classification of Capacity Index is demonstrated through linguistic value and the color-coded key. From the said index, the institution can easily identify whether the existing learning space is currently best used or vice versa and standard space planning compliance in Malaysia Public Higher Education Institutions. The data will assist the management to clarify whether to maximize the use of existing space or to request for new learning space.

  14. Women's Health Issues in the Space Environment

    Jennings, Richard T.

    1999-01-01

    Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.

  15. Mutagenic effects of space environment and protons on rice

    Wang Cailian; Chen Qiufang; Shen Mei

    1998-07-01

    Dry seeds of 5 rice varieties were carried by recoverable satellite for space mutation, and were irradiated by 4∼8 MeV protons with various doses. The mutagenic effects was studied. The results indicated that the space environment could cause chromosomal structure aberration and had stimulating mitosis action in root tip cells. As compared with γ-rays and protons, the effects of space environment flight were lower on chromosomal aberration but were significantly higher on mitosis index. Space environment and protons induce high frequency of chlorophyll deficient mutation and mutation in plant height and heading date in M 2 generation. Frequency of beneficial mutation induced by space environment and protons were higher than those induced by γ-rays

  16. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  17. Overview of fiber optics in the natural space environment

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences

  18. The Living With a Star Space Environment Testbed Program

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  19. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  20. Microorganisms and biomolecules in space hard environment

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  1. The Near-Earth Space Radiation for Electronics Environment

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  2. Radiations in space and global environment

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  3. Transformation of colour space dedicated to an experimental analysis fulfilling the applicability criteria

    Ziemba, A; Fornalik-Wajs, E

    2014-01-01

    The choice of colour space is very important in the digital image analysis by reason of accuracy and computational time. Particle Image Velocimetry and Particle Image Thermometry are the optical methods commonly applied in the fluid dynamics and heat transfer. Especially in PIT method, the analysis of colour images is significant. In this paper, transformation of RGB to HSI colour space dedicated to PIT will be presented. Derivation of formulas together with its graphical representation will be discussed. Fulfilment of applicability criteria will be shown. This theoretical approach to digital image processing supplements the knowledge about the optical experimental methods.

  4. Space environment durability of beta cloth in LDEF thermal blankets

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  5. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  6. Optimization of application execution in the GridSpace environment

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  7. ISS External Contamination Environment for Space Science Utilization

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  8. The Living With a Star Space Environment Testbed Experiments

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  9. The Living With a Star Program Space Environment Testbed

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  10. To What Extent Do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues

    Calado, Florbela M.; Scharfenberg, Franz-Josef; Bogner, Franz X.

    2015-01-01

    Our article proposes a set of six criteria for analysing science-technology-society-environment (STSE) issues in regular textbooks as to how they are expected to contribute to students' scientific literacy. We chose genetics and gene technology as fields prolific in STSE issues. We derived our criteria (including 26 sub-criteria) from a literature…

  11. Teamwork in high-risk environments analogous to space

    Kanki, Barbara G.

    1990-01-01

    Mountaineering expeditions combine a number of factors which make them potentially good analogs to the planetary exploration facet of long-duration space missions. A study of mountain climbing teams was conducted in order to evaluate the usefulness of the environment as a space analog and to specifically identify the factors and issues surrounding teamwork and 'successful' team performance in two mountaineering environments. This paper focuses on social/organizational factors, including team size and structure, leadership styles and authority structure which were found in the sample of 22 climb teams (122 individuals). The second major issue discussed is the construction of a valid performance measure in this high-risk environment.

  12. Modeling of space environment impact on nanostructured materials. General principles

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  13. Constraining the mSUGRA parameter space through entropy and abundance criteria

    Cabral-Rosetti, Luis G.; Mondragon, Myriam; Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas

    2007-01-01

    We explore the use of two criteria to constrain the allowed parameter space in mSUGRA models; both criteria are based in the calculation of the present density of neutralinos χ0 as Dark Matter in the Universe. The first one is the usual ''abundance'' criterion that requieres that present neutralino relic density complies with 0.0945 < ΩCDMh2 < 0.1287, which are the 2σ bounds according to WMAP. To calculate the relic density we use the public numerical code micrOMEGAS. The second criterion is the original idea presented in [3] that basically applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas, and then evaluate the change in entropy per particle of this gas between the freeze-out era and present day virialized structures. An 'entropy consistency' criterion emerges by comparing theoretical and empirical estimates of this entropy. One of the objetives of the work is to analyze the joint application of both criteria, already done in [3], to see if their results, using approximations for the calculations of the relic density, agree with the results coming from the exact numerical results of micrOMEGAS. The main objetive of the work is to use this method to constrain the parameter space in mSUGRA models that are inputs for the calculations of micrOMEGAS, and thus to get some bounds on the predictions for the SUSY spectra

  14. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  15. Fictional space in participatory design of engaging interactive environments

    Dindler, Christian

    2010-01-01

    practices of visitors and museum knowledge. The second and larger part of the contribution addresses the issue of shaping design inquiries. This part is summarized through the overarching notion of fictional space denoting a perspective on the creation of a design space where established norms...... spaces for museums and science centres. The dissertation is composed of seven research papers framed by a general overview that summarises the arguments made in the papers and outlines related work and research method. The contribution reflects a dual yet intertwined concern for understanding engagement...... in exhibition spaces and shaping design inquiries around the notion of engaging interactive environments. The first part of the contribution relates to conceptualising aspects of engagement in relation to interactive environments. The perspective of participatory engagement is presented as an overarching...

  16. Lead-Free Experiment in a Space Environment

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  17. Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations

    Novruzov, Emil

    2017-11-01

    This paper is concerned with blow-up phenomena for the nonlinear dispersive wave equation on the real line, ut -uxxt +[ f (u) ] x -[ f (u) ] xxx +[ g (u) + f″/(u) 2 ux2 ] x = 0 that includes the Camassa-Holm equation as well as the hyperelastic-rod wave equation (f (u) = ku2 / 2 and g (u) = (3 - k) u2 / 2) as special cases. We establish some a local-in-space blow-up criterion (i.e., a criterion involving only the properties of the data u0 in a neighborhood of a single point) simplifying and precising earlier blow-up criteria for this equation.

  18. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  19. Advanced Engineering Environments for Space Transportation System Development

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  20. A study of dynamical behavior of space environment

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  1. The Effects of Space Environment on Wireless Communication Devices' Performance

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  2. Space - A unique environment for process modeling R&D

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  3. Crystal Growth and Other Materials Physical Researches in Space Environment

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  4. Reproduction in the space environment: Part I. Animal reproductive studies

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  5. CRITERIA OF LANGUAGE AND PROGRAMMING ENVIRONMENT SELECTION FOR USE IN THE CAPACITY OF EDUCATIONAL AIDS

    Petro H. Shevchuk

    2010-09-01

    Full Text Available The role of educational aids is to a large degree treated to be determinative in provision with its efficiency. The languages and programming environments are stated in the article as those that belong to educational aids. The criteria and backgrounds of their selection for educational purpose at the lessons of programming at comprehensive school are treated in the article. The examples of principle characteristics comparison of Pascal and C# are also cited. The article points at the necessity of further analysis of programming languages sampling for use as educational aids in teaching programming.

  6. Analysis on Space Environment from the Anomalies of Geosynchronous Satellites

    Jaejin Lee

    2009-12-01

    Full Text Available While it is well known that space environment can produce spacecraft anomaly, defining space environment effects for each anomalies is difficult. This is caused by the fact that spacecraft anomaly shows various symptoms and reproducing it is impossible. In this study, we try to find the conditions of when spacecraft failures happen more frequently and give satellite operators useful information. Especially, our study focuses on the geosynchronous satellites which cost is high and required high reliability. We used satellite anomaly data given by Satellite News Digest which is internet newspaper providing space industry news. In our analysis, 88 anomaly cases occurred from 1997 to 2008 shows bad corelation with Kp index. Satellite malfunctions were likely to happen in spring and fall and in local time from midnight to dawn. In addition, we found the probability of anomaly increase when high energy electron flux is high. This is more clearly appeared in solar minimum than maximum period.

  7. Space Use in the Commons: Evaluating a Flexible Library Environment

    Andrew D. Asher

    2017-06-01

    Full Text Available Abstract Objective – This article evaluates the usage and user experience of the Herman B Wells Library’s Learning Commons, a newly renovated technology and learning centre that provides services and spaces tailored to undergraduates’ academic needs at Indiana University Bloomington (IUB. Methods – A mixed-method research protocol combining time-lapse photography, unobtrusive observation, and random-sample surveys was employed to construct and visualize a representative usage and activity profile for the Learning Commons space. Results – Usage of the Learning Commons by particular student groups varied considerably from expectations based on student enrollments. In particular, business, first and second year students, and international students used the Learning Commons to a higher degree than expected, while humanities students used it to a much lower degree. While users were satisfied with the services provided and the overall atmosphere of the space, they also experienced the negative effects of insufficient space and facilities due to the space often operating at or near its capacity. Demand for collaboration rooms and computer workstations was particularly high, while additional evidence suggests that the Learning Commons furniture mix may not adequately match users’ needs. Conclusions – This study presents a unique approach to space use evaluation that enables researchers to collect and visualize representative observational data. This study demonstrates a model for quickly and reliably assessing space use for open-plan and learning-centred academic environments and for evaluating how well these learning spaces fulfill their institutional mission.

  8. Towards the Next Generation of Space Environment Prediction Capabilities.

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  9. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  10. Assessing Built Environment Walkability using Activity-Space Summary Measures.

    Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R

    There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.

  11. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  12. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  13. Modelling the near-Earth space environment using LDEF data

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  14. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    National Aeronautics and Space Administration — In recent times long-term stay has become a common occurrence in the International Space Station (ISS). However adaptation to the space environment can sometimes...

  15. Crew behavior and performance in space analog environments

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  16. Effect of science laboratory centrifuge of space station environment

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  17. Research Progress and Prospect of GNSS Space Environment Science

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  18. Diagnostic criteria for adverse health effects in the environs of wind turbines.

    McMurtry, Robert Y; Krogh, Carmen Me

    2014-10-01

    In an effort to address climate change, governments have pursued policies that seek to reduce greenhouse gases. Alternative energy, including wind power, has been proposed by some as the preferred approach. Few would debate the need to reduce air pollution, but the means of achieving this reduction is important not only for efficiency but also for health protection. The topic of adverse health effects in the environs of industrial wind turbines (AHE/IWT) has proven to be controversial and can present physicians with challenges regarding the management of an exposure to IWT. Rural physicians in particular must be aware of the possibility of people presenting to their practices with a variety of sometimes confusing complaints. An earlier version of the diagnostic criteria for AHE/IWT was published in August 2011. A revised case definition and a model for a study to establish a confirmed diagnosis is proposed.

  19. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities.

    Wang, Tieyu; Zhou, Yunqiao; Bi, Cencen; Lu, Yonglong; He, Guizhen; Giesy, John P

    2017-07-01

    There is a need to formulate water environment standards (WESs) from the current water quality criteria (WQC) in China. To this end, we briefly summarize typical mechanisms applied in several countries with longer histories of developing WESs, and three limitations to formulating WESs in China were identified. After analyzing the feasibility factors including economic development, scientific support capability and environmental policies, we realized that China is still not ready for a complete change from its current nation-wide unified WES system to a local-standard-based system. Thus, we proposed a framework for transformation from WQC to WESs in China. The framework consists of three parts, including responsibilities, processes and policies. The responsibilities include research authorization, development of guidelines, and collection of information, at both national and local levels; the processes include four steps and an impact factor system to establish water quality standards; and the policies include seven specific proposals. Copyright © 2016. Published by Elsevier B.V.

  20. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  1. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  2. Artificial intelligence and the space station software support environment

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  3. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  4. BUSEFL: The Boston University Space Environment Forecast Laboratory

    Contos, A.R.; Sanchez, L.A.; Jorgensen, A.M.

    1996-01-01

    BUSEFL (Boston University Space Environment Forecast Laboratory) is a comprehensive, integrated project to address the issues and implications of space weather forecasting. An important goal of the BUSEFL mission is to serve as a testing ground for space weather algorithms and operational procedures. One such algorithm is the Magnetospheric Specification and Forecast Model (MSFM), which may be implemented in possible future space weather prediction centers. Boston University Student-satellite for Applications and Training (BUSAT), the satellite component of BUSEFL, will incorporate four experiments designed to measure (1) the earth close-quote s magnetic field, (2) distribution of energetic electrons trapped in the earth close-quote s radiation belts, (3) the mass and charge composition of the ion fluxes along the magnetic field lines and (4) the auroral forms at the foot of the field line in the auroral zones. Data from these experiments will be integrated into a ground system to evaluate space weather prediction codes. Data from the BUSEFL mission will be available to the scientific community and the public through media such as the World Wide Web (WWW). copyright 1996 American Institute of Physics

  5. Space Environment Modelling with the Use of Artificial Intelligence Methods

    Lundstedt, H.; Wintoft, P.; Wu, J.-G.; Gleisner, H.; Dovheden, V.

    1996-12-01

    Space based technological systems are affected by the space weather in many ways. Several severe failures of satellites have been reported at times of space storms. Our society also increasingly depends on satellites for communication, navigation, exploration, and research. Predictions of the conditions in the satellite environment have therefore become very important. We will here present predictions made with the use of artificial intelligence (AI) techniques, such as artificial neural networks (ANN) and hybrids of AT methods. We are developing a space weather model based on intelligence hybrid systems (IHS). The model consists of different forecast modules, each module predicts the space weather on a specific time-scale. The time-scales range from minutes to months with the fundamental time-scale of 1-5 minutes, 1-3 hours, 1-3 days, and 27 days. Solar and solar wind data are used as input data. From solar magnetic field measurements, either made on the ground at Wilcox Solar Observatory (WSO) at Stanford, or made from space by the satellite SOHO, solar wind parameters can be predicted and modelled with ANN and MHD models. Magnetograms from WSO are available on a daily basis. However, from SOHO magnetograms will be available every 90 minutes. SOHO magnetograms as input to ANNs will therefore make it possible to even predict solar transient events. Geomagnetic storm activity can today be predicted with very high accuracy by means of ANN methods using solar wind input data. However, at present real-time solar wind data are only available during part of the day from the satellite WIND. With the launch of ACE in 1997, solar wind data will on the other hand be available during 24 hours per day. The conditions of the satellite environment are not only disturbed at times of geomagnetic storms but also at times of intense solar radiation and highly energetic particles. These events are associated with increased solar activity. Predictions of these events are therefore

  6. Specification of the near-Earth space environment with SHIELDS

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; Godinez, Humberto C.; Jeffery, Christopher Andrew Munn

    2017-01-01

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.

  7. Operational environments for electrical power wiring on NASA space systems

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  8. Urban green spaces assessment approach to health, safety and environment

    B. Akbari Neisiani

    2016-04-01

    Full Text Available The city is alive with dynamic systems, where parks and urban green spaces have high strategic importance which help to improve living conditions. Urban parks are used as visual landscape with so many benefits such as reducing stress, reducing air pollution and producing oxygen, creating opportunities for people to participate in physical activities, optimal environment for children and decreasing noise pollution. The importance of parks is such extent that are discussed as an indicator of urban development. Hereupon the design and maintenance of urban green spaces requires integrated management system based on international standards of health, safety and the environment. In this study, Nezami Ganjavi Park (District 6 of Tehran with the approach to integrated management systems have been analyzed. In order to identify the status of the park in terms of the requirements of the management system based on previous studies and all Tehran Municipality’s considerations, a check list has been prepared and completed by park survey and interview with green space experts. The results showed that the utility of health indicators were 92.33 % (the highest and environmental and safety indicators were 72 %, 84 % respectively. According to SWOT analysis in Nezami Ganjavi Park some of strength points are fire extinguishers, first aid box, annual testing of drinking water and important weakness is using unseparated trash bins also as an opportunities, there are some interesting factors for children and parents to spend free times. Finally, the most important threat is unsuitable park facilities for disabled.

  9. Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program

    Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.

    2000-01-01

    To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.

  10. The Design Space of Multi-Language Development Environments

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  11. Do Inner Planets Modulate the Space Environment of the Earth?

    Jung-Hee Kim

    2014-03-01

    Full Text Available Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth’s neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets’ wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth’s neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.

  12. Process material management in the Space Station environment

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  13. DISILICIDE BASE REFRACTORY METAL COATINGS IN SPACE ENVIRONMENT

    Bocarsly, Sidney I.

    1963-03-15

    Studies of probable effects of space environment exposure of Durak B'' (a Chromizing Corp. proprietary disilicide coating) coated Mo are described. It was concluded that, in a high-temperature environment, solar radiation will not affect the material system. Sputtering will not cause a structural problem, but it may cause a change in optical properties. Meteoroids may cause coating spalling and minimum to possibly total failure. Some protection system will probably be necessary. Vacuum will cause some coating evaporation. The rate will be temperature-dependent and probably of a low order. The possible problem area is that the evaporation appears to occur preferentially at crack sites. Ionized nitrogen and hydrogen may react with the coating and charge physical or mechanical properties. (A.G.W.)

  14. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  15. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  16. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  17. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  18. Effects of the space environment on the health and safety of space workers

    Hull, W. E.

    1980-07-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  19. Effects of the space environment on the health and safety of space workers

    Hull, W. E.

    1980-01-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  20. Culture and error in space: implications from analog environments.

    Helmreich, R L

    2000-09-01

    An ongoing study investigating national, organizational, and professional cultures in aviation and medicine is described. Survey data from 26 nations on 5 continents show highly significant national differences regarding appropriate relationships between leaders and followers, in group vs. individual orientation, and in values regarding adherence to rules and procedures. These findings replicate earlier research on dimensions of national culture. Data collected also isolate significant operational issues in multi-national flight crews. While there are no better or worse cultures, these cultural differences have operational implications for the way crews function in an international space environment. The positive professional cultures of pilots and physicians exhibit a high enjoyment of the job and professional pride. However, a negative component was also identified characterized by a sense of personal invulnerability regarding the effects of stress and fatigue on performance. This misperception of personal invulnerability has operational implications such as failures in teamwork and increased probability of error. A second component of the research examines team error in operational environments. From observational data collected during normal flight operations, new models of threat and error and their management were developed that can be generalized to operations in space and other socio-technological domains. Five categories of crew error are defined and their relationship to training programs in team performance, known generically as Crew Resource Management, is described. The relevance of these data for future spaceflight is discussed.

  1. Adaptation of radiation shielding code to space environment

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  2. Farming of Vegetables in Space-Limited Environments

    He, Jie

    2015-10-01

    Vegetables that contain most of the essential components of human nutrition are perishable and cannot be stocked. To secure vegetable supply in space limited cities such as Singapore, there are different farming methods to produce vegetables. These include low-cost urban community gardening and innovative rooftop and vertical farms integrated with various technologies such as hydroponics, aquaponics and aeroponics. However, for large-scale vegetable production in space-limited Singapore, we need to develop farming systems that not only increase productivity many-fold per unit of land but also produce all types of vegetable, all year-round for today and the future. This could be resolved through integrated vertical aeroponic farming system. Manipulation of root-zone (RZ) environments such as cooling the RZ, modifying mineral nutrients and introducing elevated RZ CO2 using aeroponics can further boost crop productivity beyond what can be achieved from more efficient use of land area. We could also adopt energy saving light emitting diodes (LEDs) for vertical aeroponic farming system to promote uniform growth and to improve the utilisation of limited space via shortening the growth cycle, thus improving vegetable production in a cost-effective manner.

  3. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Clark, Toni A.

    2014-01-01

    Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.

  4. Protection from Induced Space Environments Effects on the International Space Station

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  5. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  6. Electro-Mechanical Systems for Extreme Space Environments

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  7. Secondary electron emission and its role in the space environment

    Němeček, Z.; Pavlů, J.; Richterová, I.; Šafránková, J.; Vaverka, J.

    2018-01-01

    The role of dust in the space environment is of increasing interest in recent years and also the fast development of fusion devices with a magnetic confinement brought new issues in the plasma-surface interaction. Among other processes, secondary electron emission plays an important role for dust charging in interplanetary space and its importance increases at and above the surfaces of airless bodies like planets, moons, comets or asteroids. A similar situation can be found in many industrial applications where the dust is a final product or an unintentional impurity. The present paper reviews the progress in laboratory investigations of the secondary emission process as well as an evolution of the modeling of the interaction of energetic electrons with dust grains of different materials and sizes. The results of the model are discussed in view of latest laboratory simulations and they are finally applied on the estimation of an interaction of the solar wind and magnetospheric plasmas with the dust attached to or levitating above the lunar surface.

  8. OverView of Space Applications for Environment (SAFE) initiative

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  9. Fiber-based laser MOPA transmitter packaging for space environment

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  10. Robust free-space optical communication for indoor information environment

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  11. OverView of Space Applications for Environment (SAFE) initiative

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  12. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  13. Piezoelectric PVDF materials performance and operation limits in space environments

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  14. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  15. SPACE, COLOR AND QUALITY OF LIFE IN A NUBIAN ENVIRONMENT

    Diana Kamel

    2012-03-01

    Full Text Available The Egyptian Nubians relocated after the construction of the High Dam South of Aswan to a completely different setting, adjusted with difficulty to their new environment and changed part of it to suit their needs. This paper is a longitudinal study; it deals with the issue of continuity in the patterns of lifestyle within the present Egyptian Nubian community. The aim is to seek evidence on such continuity and to explain the repercussions of previous socio-economic values on the actual residential built and lived-in environment. The methodology is based on earlier studies that were done before relocation and immediately after, also on site visits made by the authors to detect the current aspects of the built-environment. The field study focuses on changes made to the interior and exterior spaces, on the use of decorative patterns and color of the walls and on the residents’ lifestyle. The tools for data gathering are annotated photographs and semi-structured interviews. The cases are chosen from a random sample in one of the 33 villages that constitute the Kom-Ombo site – the village of Eneba (Aniba. Results show evidence of change in all investigated aspects with a slight continuity in some of the culturally related values.

  16. VirtualSpace: A vision of a machine-learned virtual space environment

    Bortnik, J.; Sarno-Smith, L. K.; Chu, X.; Li, W.; Ma, Q.; Angelopoulos, V.; Thorne, R. M.

    2017-12-01

    Space borne instrumentation tends to come and go. A typical instrument will go through a phase of design and construction, be deployed on a spacecraft for several years while it collects data, and then be decommissioned and fade into obscurity. The data collected from that instrument will typically receive much attention while it is being collected, perhaps in the form of event studies, conjunctions with other instruments, or a few statistical surveys, but once the instrument or spacecraft is decommissioned, the data will be archived and receive progressively less attention with every passing year. This is the fate of all historical data, and will be the fate of data being collected by instruments even at the present time. But what if those instruments could come alive, and all be simultaneously present at any and every point in time and space? Imagine the scientific insights, and societal gains that could be achieved with a grand (virtual) heliophysical observatory that consists of every current and historical mission ever deployed? We propose that this is not just fantasy but is imminently doable with the data currently available, with the present computational resources, and with currently available algorithms. This project revitalizes existing data resources and lays the groundwork for incorporating data from every future mission to expand the scope and refine the resolution of the virtual observatory. We call this project VirtualSpace: a machine-learned virtual space environment.

  17. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  18. A search for new MRI criteria for dissemination in space in subjects with a clinically isolated syndrome

    Korteweg, T; Tintore, M; Uitdehaag, B M J

    2009-01-01

    The International Panel on the Diagnosis of Multiple Sclerosis (MS) incorporated the Barkhof/Tintoré (B/T) magnetic resonance criteria into their diagnostic scheme to provide evidence of dissemination in space of central nervous system lesions, a prerequisite for diagnosing MS in patients who...... on information from a single scan. Apparently, findings from contrast-enhanced and follow-up magnetic resonance scans are needed to improve the diagnostic algorithm....

  19. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  20. Free-space optical channel characterization in a coastal environment

    Alheadary, Wael Ghazy

    2017-12-28

    Recently, FSO (Free-Space Optical Communication) has received a lot of attention thanks to its high data-rate transmission via unbounded unlicensed bandwidth. However, some weather conditions lead to significant degradation of the FSO link performance. Based on this context and in order to have a better understanding of the capabilities of FSO communication in a coastal environment, the effects of temperature and humidity on an FSO system are investigated in this study. An experiment is conducted using an open source FSO system that achieves a transmission rate of 1 Gbit/s at a distance of 70 m. Two new mathematical models are proposed to represent the effects of temperature and humidity on our developed FSO system operating at a wavelength of 1 550 nm. The first model links the FSO attenuation coeffcient to the air temperature in coastal regions, while the second model links the FSO attenuation coeffcient to the humidity and the dew-point temperature. The key finding of this study is that FSO links can achieve maximum availability in a coastal city with normal variations in temperature and humidity.

  1. Trees in Urban and City Environments: a review of the selection criteria with particular reference to nature conservation in New Zealand Cities

    (Late David Given

    2008-07-01

    Full Text Available The overall aim of this research was to review the general criteria for selection of trees for urban environments and city environments. The reason for this research was to assess the extent to which criteria for tree selection can contribute to nature conservation in cities. We conducted an extensive review of the literature, looking for publications about the selection criteria. In particular, we looked for any previous published reviews of the criteria. With reference to the criteria used in New Zealand, we undertook an unstructured review of the practices adopted in most cities. A review of the literature revealed many publications about different criteria but only one publication in which there was a general review of the criteria used for selecting trees for urban environments. By way of contrast, lists of tree species deemed to be suitable (or unsuitable for urban planting are widely available, and some include information about selection criteria, but often with little background explanation. Worldwide, commonly used criteria included commercial availability of species, compatibility with urban environments, landscape design, low maintenance, avoidance of nuisance factors and historical practice. The most common criteria are concerned with the concept of choosing species compatible with local climate and soils. Anecdotal evidence suggests that more and more cities are using a mix of criteria including those that may contribute to conservation and restoration of native biota. We suggest that there should be greater use of ecological, genetic and biogeographical criteria to meet the needs of nature conservation in New Zealand cities.

  2. 77 FR 58607 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    2012-09-21

    ...: Notification of criteria used to evaluate the National Aerospace Training and Research (NASTAR) Center safety... approval for the ability of its Falcon 12/4 Altitude Chamber to replicate pressures experienced at altitude...). NASTAR's Falcon 12/4 Altitude Chamber is capable of replicating any pressure experienced at altitudes...

  3. 78 FR 28275 - Office of Commercial Space Transportation; Safety Approval Performance Criteria

    2013-05-14

    ... provide as a service, scenario based physiology training, which includes hypobaric chamber training. BST may offer its scenario based physiology altitude training as a service to a prospective launch and...: Notification of criteria used to evaluate the Black Sky Training, Inc. (BST) safety approval application...

  4. Dynamic Educational e-Content Selection Using Multiple Criteria in Web-Based Personalized Learning Environments.

    Manouselis, Nikos; Sampson, Demetrios

    This paper focuses on the way a multi-criteria decision making methodology is applied in the case of agent-based selection of offered learning objects. The problem of selection is modeled as a decision making one, with the decision variables being the learner model and the learning objects' educational description. In this way, selection of…

  5. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Sztejnberg Manuel; Xiao Shanjie; Satvat Nader; Limón Felisa; Hopkins John; Jevremović Tatjana

    2006-01-01

    The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On th...

  6. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  7. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  8. Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space.

    Ntranos, Achilles; Lublin, Fred

    2016-10-01

    Multiple sclerosis (MS) is one of the most diverse human diseases. Since its first description by Charcot in the nineteenth century, the diagnostic criteria, clinical course classification, and treatment goals for MS have been constantly revised and updated to improve diagnostic accuracy, physician communication, and clinical trial design. These changes have improved the clinical outcomes and quality of life for patients with the disease. Recent technological and research breakthroughs will almost certainly further change how we diagnose, classify, and treat MS in the future. In this review, we summarize the key events in the history of MS, explain the reasoning behind the current criteria for MS diagnosis, classification, and treatment, and provide suggestions for further improvements that will keep enhancing the clinical practice of MS.

  9. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  10. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase I

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  11. Space Environment Automated Alerts and Anomaly Analysis Assistant (SEA^5) for NASA

    National Aeronautics and Space Administration — We propose to develop a comprehensive analysis and dissemination system (Space Environment Automated Alerts  & Anomaly Analysis Assistant: SEA5) that will...

  12. A Comprehensive CFD Tool for Aerothermal Environment Around Space Vehicles, Phase II

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop an innovative, high fidelity computational tool for accurate prediction of aerothermal environment around space vehicles....

  13. The effects of the space environment on two aramid materials

    Kiefer, R.L.

    1990-01-01

    Two aramid fibers having closely related chemical structures were chosen for important roles in the first tether to be used to connect pairs of orbiting vehicles. The protective outer jackets of the tethers will consist of woven fibers of poly(m-phenylene isophthalamide), commercially available from du Pont as Nomex. A cylindrical sheath of woven Kevlar 29, whose principal constituent is poly(p-phenylene terephthalamide), will be the load-bearing component for the tethers. Orbiting tethers will be in a hostile environment in which short wavelength electromagnetic radiation and energetic charged particles degrade exposed organic materials. At lower orbiting altitudes atomic oxygen is an especially serious hazard. Studies on the effects of ultraviolet radiation and atomic oxygen on fibers and films of Kevlar and Nomex are in progress. In an experiment to simulate the effects of atomic oxygen in space, small tows of Kevlar and Nomex were mounted in a commercial ashing device filled with oxygen at low pressure. An RF discharge in the instrument dissociated the molecular oxygen producing a strongly oxidizing atmosphere containing O(3P)(sup 4). Erosion was measured in terms of mass loss. Kevlar films were exposed to UV radiation in an apparatus consisting of a small vacuum chamber, 23 cm in diameter, into which a mass spectrometer and a quartz window were incorporated. Samples were exposed under vacuum with a 1000 watt xenon-arc lamp. Volatile products could be monitored with the mass spectrometer during the exposures. Transmission infrared spectra were taken before and after exposure to monitor chemical changes in the films

  14. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  15. Studies of Earth Space Environment and Sudden Disappearances of Solar Prominences

    Huang, Tian-Sen

    2005-01-01

    With the support from AFOSR's Minority University Program, we worked on research of Sun-Earth space environment, conducted daily solar observation programs, improved solar instruments, and established...

  16. [Tooth shape and color as criteria for or against orthodontic space closure in case of a missing lateral incisor].

    Wriedt, Susanne; Werner, Patrick; Wehrbein, Heinrich

    2007-01-01

    The aim of this study was to examine the esthetic parameters that are applied, more or less unconsciously, in deciding for or against orthodontic space closure in the case of aplasia or traumatic loss of lateral incisors. The width-height index for teeth 13 to 23 was measured on 200 dental students. The VITA Easyshade system was used to determine the components of the tooth color (L, C, h) and to identify differences between each tooth. Eight investigators subjectively assessed digital photographs of the subjects, opting for or against space closure. The Spearman correlation coefficients were calculated for the parameters measured. A comparison of the parameters showed that not one factor alone was responsible for the decision for or against space closure for esthetic reasons. Orthodontists were more likely to favor space closure when the canine was slightly wider and had a less pointed shape and the differences were very small between canine and central incisor in terms of hue, chroma, and lightness. We observed that the subjective decision on the esthetic aspects of space closure correlates closely with the objective criteria.

  17. New criteria for assessing low wind environment at pedestrian level in Hong Kong

    Du, Yaxing; Mak, Cheuk Ming; Kwok, Kenny

    2017-01-01

    The choice of proper wind comfort criterion is considered to be crucial to reliable assessment of pedestrian level wind comfort. This paper aims to propose a wind comfort criterion that can be applied to Hong Kong, in which the wind comfort is seriously deteriorated by the moderated airflow, part...... represent the weak wind condition and provide suitable assessments of the wind comfort in Hong Kong. Moreover, the findings in this study provide scientific basis for future policy-making and the proposed criteria can also help city planners to improve the pedestrian level wind comfort....

  18. Research on the Design of Public Space Environment for Aging Society

    Fang, Gu; Soo, Kim Chul

    2018-03-01

    This paper studies the living space environment suitable for the elderly, because the elderly and the disabled have become increasingly prominent social problems. Through the discussion of the humanistic environment design method of the elderly and the disabled, the paper puts forward a new environment design which has the traditional characteristics and adapts to the new society to care for the elderly (the disabled).By studying and analyzing the background of social aging, the theory of public space environment design and the needs of the elderly, it is pointed out that the design of public space environment in the aged society needs to be implemented in detail design. The number of elderly people in public space will increase, give full attention to the public space outdoor environment quality, for the elderly to provide a variety of environmental facilities have long-term significance.

  19. Radiation shielding aspects for long manned mission to space - Criteria, survey study and preliminary model

    Sztejnberg, M.; Xiao, S.; Satvat, N.; Limon, F.; Hopkins, J.; Jevremovic, T.; T. Jevremovic)

    2006-01-01

    The prospect of manned space missions out side Earth's or bit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is there fore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured, and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy). National Aeronautics and Space Administration (NASA) anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremovic began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper. (author)

  20. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  1. Multi-criteria Group Decision Making Approach for Teacher Recruitment in Higher Education under Simplified Neutrosophic Environment

    Kalyan Mondal

    2014-12-01

    Full Text Available Teacher recruitment is a multi-criteria group decisionmaking process involving subjectivity, imprecision, and fuzziness that can be suitably represented by neutrosophic sets. Neutrosophic set, a generalization of fuzzy sets is characterized by a truth-membership function, falsity-membership function and an indeterminacy-membership function. These functions are real standard or non-standard subsets of ] 0-, 1+[ .There is no restriction on the sum of the functions, so the sum lies between ]0-, 3+[. A neutrosophic approach is a more general and suitable way to deal with imprecise information, when compared to a fuzzy set. The purpose of this study is to develop a neutrosophic multi-criteria group decision-making model based on hybrid scoreaccuracy functions for teacher recruitment in higher education. Eight criteria obtained from expert opinions are considered for recruitment process. The criteria are namely academic performance index, teaching aptitude, subject knowledge, research experience, leadership quality, personality, management capacity, and personal values. In this paper we use the score and accuracy functions and the hybrid score-accuracy functions of single valued neutrosophic numbers (SVNNs and ranking method for SVNNs. Then, multi-criteria group decision-making method with unknown weights for attributes and incompletely known weights for decision makers is used based on the hybrid score-accuracy functions under single valued neutrosophic environments. We use weight model for attributes based on the hybrid score-accuracy functions to derive the weights of decision makers and attributes from the decision matrices represented by the form of SVNNs to decrease the effect of some unreasonable evaluations. Moreover, we use the overall evaluation formulae of the weighted hybrid scoreaccuracy functions for each alternative to rank the alternatives and recruit the most desirable teachers. Finally, an educational problem for teacher selection is

  2. An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment

    2015-03-26

    47 Appendix A. Shortest Path Code ( VBA ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Appendix B. Quad Chart...efficient shortest path algorithm into the modeling environment, namely Excel VBA . While various algorithms offer the potential for more efficiency in...graphical interface is extremely intuitive and easily accessible to a user with no prior knowledge of the system. Since the Metz model is based on the

  3. A review of lot streaming in a flow shop environment with makespan criteria

    Pedro Gómez-Gasquet

    2013-07-01

    Full Text Available Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of lot streaming in a flow-shop. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on lot streaming in a flow-shop with makespan criteria and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream production scheduling community. Findings and Originality/value: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from an advanced production scheduling perspective, and contributes a set of findings that capture the current state-of-the-art of this topic.

  4. Bio-Inspired Space Environment-Resistant Polymer Composite

    National Aeronautics and Space Administration — Use of inorganic nanoparticles which have been recently explored for therapeutic purposes in the treatment of oxidative stress disorder, cancer and heart diseases...

  5. Fast Neutron Dosimeter for the Space Environment, Phase II

    National Aeronautics and Space Administration — Model calculations and risk assessment estimates indicate that secondary neutrons, with energies ranging between 0.5 to >150 MeV, make a significant contribution...

  6. Striction-based Power Monitoring in Space Environment, Phase II

    National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...

  7. Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009

    Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito

    2012-01-01

    Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...

  8. ANALYSIS OF BUSINESS ENVIRONMENT USING THE MULTI-CRITERIA APPROACH – CASE OF BALKAN’S TRANSITION ECONOMIES

    Saša Obradović

    2012-02-01

    Full Text Available Due to the lack of their own financial resources, attracting the foreign direct investment (FDI isthe main prerequisite for transitional economies in order to increase production and employment, sothat they can ensure the long term sustainable economic growth. In addition, the foreign directinvestment is an important instrument for the economy restructuring, based on market principles.However, achieving this goal is not simple at all. In order to attract foreign investors, it is necessaryto create a favorable business environment in transition countries, which requires a number ofeconomic, institutional, political and other reforms. The aim of this paper is to point out the mainfactors attracting foreign direct investment and, by using the multi-criteria approach, to rank theBalkan’s transition economies depending on the preferences of investors taking into account certaincomponents of the business environment.

  9. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment

    Amal Aldababseh

    2018-03-01

    Full Text Available This research aims at assessing land suitability for large-scale agriculture using multiple spatial datasets which include climate conditions, water potential, soil capabilities, topography and land management. The study case is in the Emirate of Abu Dhabi, in the UAE. The aridity of climate in the region requires accounting for non-renewable sources like desalination and treated sewage effluent (TSE for an accurate and realistic assessment of irrigated agriculture suitability. All datasets were systematically aggregated using an analytical hierarchical process (AHP in a GIS model. A hierarchal structure is built and pairwise comparisons matrices are used to calculate weights of the criteria. All spatial processes were integrated to model land suitability and different types of crops are considered in the analysis. Results show that jojoba and sorghum show the best capabilities to survive under the current conditions, followed by date palm, fruits and forage. Vegetables and cereals proved to be the least preferable options. Introducing desalinated water and TSE enhanced land suitability for irrigated agriculture. These findings have positive implications for national planning, the decision-making process of land alteration for agricultural use and addressing sustainable land management and food security issues.

  10. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  11. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  12. Biodiversity in intertidal rock pools: informing engineering criteria for artificial habitat enhancement in the built environment.

    Firth, Louise B; Schofield, Meredith; White, Freya J; Skov, Martin W; Hawkins, Stephen J

    2014-12-01

    Coastal defence structures are proliferating to counter rising and stormier seas. With increasing concern about the ecological value of built environments, efforts are being made to create novel habitat to increase biodiversity. Rock pools are infrequent on artificial structures. We compared biodiversity patterns between rock pools and emergent rock and assessed the role of pool depth and substratum incline in determining patterns of biodiversity. Rock pools were more taxon rich than emergent substrata. Patterns varied with depth and incline with algal groups being more positively associated with shallow than deeper habitats. Substratum incline had little influence on colonising epibiota, with the exception of canopy algae in deeper habitats where vertical surfaces supported greater taxon richness than horizontal surfaces. The creation of artificial rock pools in built environments will have a positive effect on biodiversity. Building pools of varying depths and inclines and shore heights will provide a range of habitats, increase environmental heterogeneity, therefore creating more possible ecological niches, promoting local biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of space environment on biological characteristics of melanoma B16 cells

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  14. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  15. Screens as light biological variable in microgravitational space environment.

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  16. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  17. The contribution of woody plant materials on the several conditions in a space environment

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  18. Power plants operating in normal conditions, space management, and environment

    Bertron, L.

    1986-01-01

    This paper presents the local populations considerations related to the establishment of a nuclear power plant comprising 4 units of 900 MW: reception of a population in the existing environment, acceptance of the power plant by the local population, effluent releases and environmental impacts, and the power plant future [fr

  19. Office Space: How Will Technology Affect the Education Office Environment?

    Day, C. William

    2009-01-01

    The office environment 10 years from now will be different from the one today. More office personnel will be organized around processes rather than functions. More work activities will be done by teams rather than individuals, and those teams will change over time, as will the nature of the work projects and the people who constitute the team. The…

  20. MURI Center for Materials Chemistry in the Space Environment

    2006-11-30

    ionic species in relevant reaction environments, surface photochemistry expertise, synchrotron-based measurement and irradiation, synthesis of structural...and Ne+ ions with dodecanethiolate and semifluorinated dodecanethiolate self-assembled monolayers (SAM), polyhedral oligomeric silsesquioxane (POSS...POSS/Kapton models as gas phase species, and with alkane thiol self assembled monolayers on gold surfaces, and with liquid squalane. We have also

  1. Alkylating agent (MNU)-induced mutation in space environment

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  2. Effects of Solar Activity and Space Environment in 2003 Oct.

    Kyung-Seok Cho

    2004-12-01

    Full Text Available In this paper, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. Especially, we present several solar and geomagnetic disturbance data produced in Korea : sunspots, geo-magnetograms, aurora, Ionogram, and Total Electron Content (TEC map by GPS data. Finally, we introduce some examples of the satellite orbit and communication effects caused by these activities; e.g., the disturbances of the KOMPSAT-1 operational orbit and HF communication.

  3. Distributed computing environments for future space control systems

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  4. Mesh Networking in the Tactical Environment Using White Space Technolog

    2015-12-01

    facilitate the establishment of a point to multi-point network topology . The base station node handles the compilation of data necessary to determine a...the client nodes from the base station node, the number of client nodes, and the network topology . The metrics chosen for evaluation were picked as a...model, are commonly utilized to simulate quadratic path loss across free space [22]. This model uses the following formula to calculate path loss: L

  5. Human-like robots for space and hazardous environments

    1994-01-01

    The three year goal for the Kansas State USRA/NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of crossing rough terrain, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation, and path planning skills.

  6. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  7. A wind turbine evaluation model under a multi-criteria decision making environment

    Lee, Amy H.I.; Hung, Meng-Chan; Kang, He-Yau; Pearn, W.L.

    2012-01-01

    Highlights: ► This paper proposes an evaluation model to select suitable turbines in a wind farm. ► Interpretive structural modeling is used to know the relationship among factors. ► Fuzzy analytic network process is used to calculate the priorities of turbines. ► The results can be references for selecting the most appropriate wind turbines. - Abstract: Due to the impacts of fossil and nuclear energy on the security, economics, and environment in the world, the demand of alternative energy resources is expanding consistently and tremendously in recent years. Wind energy production, with its safe and environmental characteristics, has become the fastest growing renewable energy source in the world. The construction of new wind farms and the installation of new wind turbines are important processes in order to provide a long-term energy production. In this research, a comprehensive evaluation model, which incorporates interpretive structural modeling (ISM) and fuzzy analytic network process (FANP), is constructed to select suitable turbines when developing a wind farm. A case study is carried out in Taiwan in evaluating the expected performance of several potential types of wind turbines, and experts in a wind farm are invited to contribute their expertise in determining the importance of the factors of the wind turbine evaluation and in rating the performance of the turbines with respect to each factor. The most suitable turbines for installation can finally be generated after the calculations. The results can be references for decision makers in selecting the most appropriate wind turbines.

  8. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  9. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with

  10. USA Space Debris Environment, Operations, and Research Updates

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  11. 10th meeting of the International Conference on Protection of Materials and Structures from Space Environment

    Tagawa, Masahito; Kimoto, Yugo; Protection of Materials and Structures From the Space Environment

    2013-01-01

    The goals of the 10th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-10J, since its inception in 1992, have been to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials, including aspects of LEO, GEO and Deep Space environments, ground-based qualification, and in-flight experiments and lessons learned from operational vehicles that are closely interrelated to disciplines of the atmospheric sciences, solar-terrestrial interactions and space life sciences. The knowledge of environmental conditions on and around the Moon, Mars, Venus and the low Earth orbit as well as other possible candidates for landing such as asteroids have become an important issue, and protecting both hardware and human life from the effects of space environments has taken on a new meaning in light of the increased interest in space travel and colonization of other planets.  And while many materia...

  12. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  13. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  14. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    Ruijsbroek, A.; Mohnen, S.M.; Droomers, M.; Kruize, H.; Gidlow, C.; Grazuleviciene, R.; Andrusaityte, S.; Helbich, M.; Maas, J.; Nieuwenhuijsen, M.J.; Triguero-Mas, M.; Masterson, D.; Ellis, N.; Kempen, E. van; Hardyns, W.; Stronks, K.; Groenewegen, P.P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona

  15. Neighbourhood green space, social environment and mental health : an examination in four European cities

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    Objectives: This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. Methods: The PHENOTYPE study was carried out in 2013 in Barcelona (Spain),

  16. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment

    Høybye, Mette Terp

    2013-01-01

    of the individual patient ’ s needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive...... these concepts, the study demonstrates how the hospital environment is a fl ow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients ’ sense of healing changes with the experience of progression in treatment and the capacity of the hospital space...... to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Discussion. Healing environments are complex relations between practices, space and care, where recognition...

  17. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  18. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  19. A research on the excavation, support, and environment control of large scale underground space

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  20. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  1. Electrical behaviour of a silicone elastomer under simulated space environment

    Roggero, A; Dantras, E; Paulmier, T; Rejsek-Riba, V; Tonon, C; Dagras, S; Balcon, N; Payan, D

    2015-01-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around T g in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon. (paper)

  2. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  3. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment.

    Høybye, Mette Terp

    2013-02-01

    Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best

  4. TDRS-1 single event upsets and the effect of the space environment

    Wilkinson, D.C.; Daughtridge, S.C.; Stone, J.L.; Sauer, H.H.; Darling, P.

    1991-01-01

    The systematic recording of Single Event Upsets on TDRS-1 from 1984 to 1990 allows correlations to be drawn between those upsets and the space environment. In this paper, ground based neutron monitor data are used to illustrate the long-term relationship between galactic cosmic rays and TDRS-1 upsets. The short-term effects of energetic solar particles are illustrated with space environment data from GOES-7

  5. CosmoBon, tree research team, for studying utilization of woody plant in space environment

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Baba, Keiichi; Chida, Yukari

    2012-07-01

    We are proposing to raise woody plants in space for several applications and plant science, as Tree research team, TRT. Trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. We have the serious problem about their size. Bonsai is one of the Japanese traditional arts. We have been investigating the tension wood formation under exotic gravitational environment using Bonsai. CosmoBon is the small tree Bonsai for our space experiment. The tension wood formation in CosmoBon was confirmed as the same as that in the natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  6. Metagenomic analysis of the airborne environment in urban spaces.

    Be, Nicholas A; Thissen, James B; Fofanov, Viacheslav Y; Allen, Jonathan E; Rojas, Mark; Golovko, George; Fofanov, Yuriy; Koshinsky, Heather; Jaing, Crystal J

    2015-02-01

    The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.

  7. The contamination of personal space : boundary construction in a prison environment

    Sibley, David; van Hoven, Bettina

    In this paper, inmates in dormitories in a prison in New Mexico, USA, talk about their everyday lives. We are particularly interested in the ways in which they think about space. Their principal concern appears to be the definition of personal space in an environment where boundaries are weak. The

  8. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  9. Space environment monitoring by low-altitude operational satellites

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  10. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  11. Impact of radioactivity on the environment: problems, state of current knowledge and approaches for identification of radioprotection criteria

    Brechignac, F.

    2001-01-01

    There is currently a revitalized concern about the potential impact of ionizing radiation on the environment that calls for the construction of a system ensuring an adequate radioprotection of the non-human biota and their associated biotopes. This paper first sets the context of the problem both, with respect to the general philosophy of environmental protection as a whole, but also with respect to the consideration of the environment achieved so far in the purpose of human radioprotection. The current accumulated knowledge on the effects of ionizing radiation to biota (fauna and flora) is then briefly reviewed, encompassing effects at individual and community/ecosystem level, situations of acute and chronic exposure to high and low doses, finally leading to the identification of the most critical gaps in scientific knowledge: effects of mixed low dose rates in chronic exposure to communities and ecosystems. The most significant current international efforts towards the identification of environmental radioprotection criteria and standards are finally presented along with some relevant national examples. (author)

  12. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  13. Environment modelling in near Earth space: Preliminary LDEF results

    Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.

    1992-01-01

    Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).

  14. Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.

    2013-01-01

    A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.

  15. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  16. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  17. CosmoBon for studying wood formation under exotic gravitational environment for future space agriculture

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Funada, Ryo; Nakamura, Teruko; Hashimoto, Hirofumi; Yamashita, Masamichi; Cosmobon, Jstwg

    We are proposing to raise woody plants in space for several applications and plant science. Japanese flowering cherry tree is one of a candidate for these studies. Mechanism behind sensing gravity and controlling shape of tree has been studied quite extensively. Even molecular mechanism for the response of plant against gravity has been investigated quite intensively for various species, woody plants are left behind. Morphology of woody branch growth is different from that of stem growth in herbs. Morphology in tree is strongly dominated by the secondary xylem formation. Nobody knows the tree shape grown under the space environment. If whole tree could be brought up to space as research materials, it might provide important scientific knowledge. Furthermore, trees produce excess oxygen, wooden materials for living cabin, and provide biomass for cultivating mushroom and insect as for the space agriculture. Excellent tree shapes which would be deeply related to wood formation improve quality of life under stressful environment in outer space. The serious problem would be their size. Bonsai is one of the Japanese traditional arts. We can study secondly xylem formation, wood formation, under exotic gravitational environment using Bonsai. "CosmoBon" is the small tree Bonsai for our space experiment. It has been recognized that the reaction wood in CosmoBon is formed similar to natural trees. Our goal is to examine feasibility to grow various species of trees in space as bioresource for space agriculture.

  18. Urban Public Space Context and Cognitive Psychology Evolution in Information Environment

    Feng, Chen; Xu, Hua-wei

    2017-11-01

    The rapid development of information technology has had a great impact on the understanding of urban environment, which brings different spatially psychological experience. Information and image transmission has been full with the streets, both the physical space and virtual space have been unprecedentedly blended together through pictures, images, electronic media and other tools, which also stimulates people’s vision and psychology and gives birth to a more complex form of urban space. Under the dual role of spatial mediumlization and media spatialization, the psychological cognitive pattern of urban public space context is changing.

  19. Physical environment design criteria for the new control room in the ENEA TRIGA-RC1 plant

    Alberti, M.; Di Giulio, A.

    1986-01-01

    Parallelly to the plant modifications, many changes of the instrumentation in the Control Room (CR) were necessary in order to deal with the various aged components and the completion and integration needs turning out from the experience in reactor running. In the room, besides the control activity of the RC1 plant, continuous training and updating activities are currently performed which are intended for the operators working in the control rooms of nuclear power plants. The design of the physical environment of the new CR - carried out in a more general research project between ENEA and Politecnico di Milano - was based on the following fundamental criteria: - to ensure conditions fit for the performance of the suspervision, diagnosis and control tasks the operators are entrusted with; - to set up a model of control room for the more complex power plants. First of all a detailed analysis of the environmental conditions relating to microclimate, lighting and noise was accomplished. Afterwards, the goals to be attained were defined as well as the technical means necessary for providing the operators with comfortable working conditions

  20. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  1. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  2. Habituation to novel visual vestibular environments with special reference to space flight

    Young, L. R.; Kenyon, R. V.; Oman, C. M.

    1981-01-01

    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.

  3. Neighbourhood green space, social environment and mental health: an examination in four European cities.

    Ruijsbroek, Annemarie; Mohnen, Sigrid M; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P

    2017-07-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent (United Kingdom), Doetinchem (The Netherlands), and Kaunas (Lithuania). 3771 adults living in 124 neighbourhoods answered questions on mental health, neighbourhood social environment, and amount and quality of green space. Additionally, audit data on neighbourhood green space were collected. Multilevel regression analyses examined the relation between neighbourhood green space and individual mental health and the influence of neighbourhood social environment. Mental health was only related to green (audit) in Barcelona. The amount and quality of neighbourhood green space (audit and perceived) were related to social cohesion in Doetinchem and Stoke-on-Trent and to neighbourhood attachment in Doetinchem. In all four cities, mental health was associated with social contacts. Neighbourhood green was related to mental health only in Barcelona. Though neighbourhood green was related to social cohesion and attachment, the neighbourhood social environment seems not the underlying mechanism for this relationship.

  4. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  5. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  6. TIROS-N/NOAA A-J space environment monitor subsystem. Technical memo

    Seale, R.A.; Bushnell, R.H.

    1987-04-01

    The Space Environment Monitor (SEM), which is incorporated as a subsystem in the TIROS-N and NOAA A-J satellites, is described. The SEM consists of a Total Energy Detector (TED), a Medium Energy Proton and Electron Detector (MEPED), a High Energy Proton and Alpha Detector (HEPAD) and a Data Processing Unit (DPU). The detectors are intended to provide near-real-time particle data for use in the Space Environment Service Center of National Oceanic and Atmospheric Administration (NOAA) and to provide a long-term scientific data base. Telemeter codes, data reduction, and test instructions are given

  7. Role of Green Spaces in Favorable Microclimate Creating in Urban Environment (Exemplified by Italian Cities)

    Finaeva, O.

    2017-11-01

    The article represents a brief analysis of factors that influence the development of an urban green space system: territorial and climatic conditions, cultural and historical background as well as the modern strategy of historic cities development. The introduction defines the concept of urban greening, green spaces and green space distribution. The environmental parameters influenced by green spaces are determined. By the example of Italian cities the principles of the urban greening system development are considered: the historical aspects of formation of the urban greening system in Italian cities are analyzed, the role of green spaces in the formation of the urban environment structure and the creation of a favorable microclimate is determined, and a set of measures aimed at its improvement is highlighted. The modern principles of urban greening systems development and their characteristic features are considered. Special attention is paid to the interrelation of architectural and green structures in the formation of a favorable microclimate and psychological comfort in the urban environment; various methods of greening are considered by the example of existing architectural complexes depending on the climate of the area and the landscape features. The examples for the choice of plants and the application of compositional techniques are given. The results represent the basic principles of developing an urban green spaces system. The conclusion summarizes the techniques aimed at the microclimate improvement in the urban environment.

  8. Impact of space environment on stability of medicines: Challenges and prospects.

    Mehta, Priti; Bhayani, Dhara

    2017-03-20

    To upkeep health of astronauts in a unique, isolated, and extreme environment of space is the primary goal for a successful space mission, hence, safe and efficacious medications are essential for the wellness of astronauts. Space medication has been challenged with problems related to efficacy. Along with altered physiology, one of the possible reasons could be instability of space medications in the presence of harsh spaceflight environmental conditions. Altered physical and chemical stability can result in reduced potency which can result in reduced efficacy. Right now, medicines from the International Space Station are replaced before their expiration. But, for longer duration missions to Mars or any other asteroid, there will not be any chance of replacement of medicines. Hence, it is desired that medicines maintain the shelf-life throughout the space mission. Stability of medicines used for short term or long term space missions cannot be judged by drug stability guidelines based on terrestrial environmental factors. Unique environmental conditions related to spaceflight include microgravity, excessive vibration, hard vacuum, humidity variation, temperature differences and excessive radiation, which may cause instability of medicines. This write-up provides a review of the problem and countermeasure approaches for pharmaceuticals exposed to the space environment. The first part of the article discusses thought processes behind outlining of International Conference on Harmonization drug stability guidelines, Q1A (R2) and Q1B, and its acceptance limits for accelerated stability study. The second part of the article describes the difference in the radiation environment of deep space compared to radiation environment inside the space shuttle based on penetration power of different types of radiation. In the third part of the article, various promising approaches are listed which can be used for assurance of space medicine stability. One of the approaches is the

  9. Evidence of Molecular Adaptation to Extreme Environments and Applicability to Space Environments

    Filipović, M. D.

    2008-06-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: {it Escherichia coli (E. coli K12}, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0D C ({it Metarhizium frigidum (M.~frigidum} and {it Methanococcoides burtonii (M.~burtonii} and 110D C ({it Methanopyrus kandleri (M.~kandleri}. Although not all the components of heat adaptation can be attributed to novel genes, the {it chaperones} known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved {it chaperons} found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique {it chaperone TF55}. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The followinghyperthermophile genomes incorporated in this software were used forthese studies: {it Methanocaldococcus jannaschii (M.~jannaschii, M.~kandleri, Archaeoglobus fulgidus (A.~fulgidus} and threespecies of {it Pyrococcus}. Common genes were annotated and groupedaccording to their roles in cellular processes where such informationwas available and proteins not previously implicated in theheat-adaptation of hyperthermophiles were identified. Additionalexperimental data are needed in order to learn more about theseproteins. To address non-gene based components of thermaladaptation

  10. Evidence of molecular adaptation to extreme environments and applicability to space environments

    Filipović M.

    2008-01-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: Escherichia coli (E. coli K12, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0ºC (Metarhizium frigidum (M. frigidum and Methanococcoides burtonii (M. burtonii and 110ºC (Methanopyrus kandleri (M. kandleri. Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M. jannaschii, M. kandleri, Archaeoglobus fulgidus (A. fulgidus and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were

  11. Robust online belief space planning in changing environments: Application to physical mobile robots

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  12. Vertebrate development in the environment of space: models, mechanisms, and use of the medaka

    Wolgemuth, D. J.; Herrada, G.; Kiss, S.; Cannon, T.; Forsstrom, C.; Pranger, L. A.; Weismann, W. P.; Pearce, L.; Whalon, B.; Phillips, C. R.

    1997-01-01

    With the advent of space travel, it is of immediate interest and importance to study the effects of exposure to various aspects of the altered environment of space, including microgravity, on Earth-based life forms. Initial studies of space travel have focused primarily on the short-term effects of radiation and microgravity on adult organisms. However, with the potential for increased lengths of time in space, it is critical to now address the effects of space on all phases of an organism's life cycle, from embryogenesis to post-natal development to reproduction. It is already possible for certain species to undergo multiple generations within the confines of the Mir Space Station. The possibility now exists for scientists to consider the consequences of even potentially subtle defects in development through multiple phases of an organism's life cycle, or even through multiple generations. In this discussion, we highlight a few of the salient observations on the effects of the space environment on vertebrate development and reproductive function. We discuss some of the many unanswered questions, in particular, in the context of the choice of appropriate models in which to address these questions, as well as an assessment of the availability of hardware already existing or under development which would be useful in addressing these questions.

  13. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  14. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  15. CliniSpace: a multiperson 3D online immersive training environment accessible through a browser.

    Dev, Parvati; Heinrichs, W LeRoy; Youngblood, Patricia

    2011-01-01

    Immersive online medical environments, with dynamic virtual patients, have been shown to be effective for scenario-based learning (1). However, ease of use and ease of access have been barriers to their use. We used feedback from prior evaluation of these projects to design and develop CliniSpace. To improve usability, we retained the richness of prior virtual environments but modified the user interface. To improve access, we used a Software-as-a-Service (SaaS) approach to present a richly immersive 3D environment within a web browser.

  16. Neighbourhood green space, social environment and mental health: an examination in four European cities

    Ruijsbroek, Annemarie; Mohnen, Sigrid M.; Droomers, Mariël; Kruize, Hanneke; Gidlow, Christopher; Gražulevičiene, Regina; Andrusaityte, Sandra; Maas, Jolanda; Nieuwenhuijsen, Mark J.; Triguero-Mas, Margarita; Masterson, Daniel; Ellis, Naomi; van Kempen, Elise; Hardyns, Wim; Stronks, Karien; Groenewegen, Peter P.

    2017-01-01

    This study examines the relationship between neighbourhood green space, the neighbourhood social environment (social cohesion, neighbourhood attachment, social contacts), and mental health in four European cities. The PHENOTYPE study was carried out in 2013 in Barcelona (Spain), Stoke-on-Trent

  17. Innovative Learning Environments and New Materialism: A Conjunctural Analysis of Pedagogic Spaces

    Charteris, Jennifer; Smardon, Dianne; Nelson, Emily

    2017-01-01

    An Organisation for Economic Cooperation and Development research priority, innovative learning environments (ILEs) have been translated into policy and practice in 25 countries around the world. In Aotearoa/New Zealand, learning spaces are being reconceptualised in relation to this policy work by school leaders who are confronted by an impetus to…

  18. Robust online belief space planning in changing environments: Application to physical mobile robots

    Agha-mohammadi, Ali-akbar; Agarwal, Saurav; Mahadevan, Aditya; Chakravorty, Suman; Tomkins, Daniel; Denny, Jory; Amato, Nancy M.

    2014-01-01

    , such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes

  19. Is green space in the living environment associated with people's feelings of social safety?

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    The authors investigate whether the percentage of green space in people’s living environment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in the

  20. Is green space in the living environment associated with people's feelings of social safety?

    Maas, J.; Spreeuwenberg, P.; Winsum-Westra, M. van; Verheij, R.A.; Vries, S. de; Groenewegen, P.P.

    2009-01-01

    Abstract. The authors investigate whether the percentage of green space in people's living environ- ment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in

  1. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...

  2. Oncogenesis of melanoma B16 cell clones mutagenized by space environment

    Guo Yupeng; Yang Hongsheng; Tang Jingtian; Xu Mei; Geng Chuanying; Fang Qing; Xu Bo; Li Hongyan; Xiang Xing; Pan Lin

    2005-01-01

    Objective: To explore the oncogenesis of the melanoma B16 cell clones mutagenized by space environment, and find the B16 cell clones with remarkably mutated immunogenicity. Methods: B16 cells were carried by the Chinese 20th recoverable satellite to the outer space, and were harvested after 18 days' spaceflight and then monocloned. Four cell clones, which were randomly selected from the total 110 clones obtained , and the control clone were routinely cultured. The cultured cells were injected to 10 groups of C57BL/6J mice, 82.1 mice in each group. Five groups of mice received hypodermic injection and another 5 groups of mice received abdominal injection. The survival time was observed in abdominal injection groups. The mice in hypodermic injection groups were sacrificed after 14 days, the tumor, spleen and thymus were weighted, and the serum IL-2 concentration was determined. Moreover, the melanoma tumor tissues were examined histopathologically. Results: An experiment program suitable to screening space mutagenesis of B16 tumor cell clones in vivo and the observation indices were basically established. One clone was found out which was remarkably different from the control clone in latent period of tumor formation, tumor weight, survival time of the tumor-bearing mice and the expression of IL-2. Conclusions: Cultured melanoma B16 cells could be mutated by outer space environment. The further study will be focused on the influence of space environment on immunogenicity of mutagenized B16 cells. (authors)

  3. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  4. Enhanced Predictions of Time to Critical Dielectric Breakdown of Materials Under Prolonged Exposure to Space Plasma Environments

    National Aeronautics and Space Administration — The leading cause of spacecraft failures and malfunctions due to interactions with the space plasma environment is electrostatic discharge (ESD). The enhanced time...

  5. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  7. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  8. On reflexivity of random walks in a random environment on a metric space

    Rozikov, U.A.

    2002-11-01

    In this paper, we consider random walks in random environments on a countable metric space when jumps of the walks of the fractions are finite. The transfer probabilities of the random walk from x is an element of G (where G is the considering metric space) are defined by vector p(x) is an element of R k , k>1, where {p(x), x is an element of G} is the set of independent and indentically distributed random vectors. For the random walk, a sufficient condition of nonreflexivity is obtained. Examples for metric spaces Z d free groups and free product of finite numbers cyclic groups of the second order and some other metric spaces are considered. (author)

  9. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  10. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  11. The Objectives of NASA's Living with a Star Space Environment Testbed

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  12. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  13. The decision making criteria on radiation protection of population in the cases of an accidental plutonium dispersion into environment

    Savkin, M.N.; Titov, A.V.

    2000-01-01

    Intervention criteria for radiation protection of general public in the case of accidental plutonium release have been elaborated on the basis of experimental radiobiological studies of affects of incorporated plutonium and of long duration medical observation for nuclear workers in Russia and the requirements of the national Radiation Safety Standards. Generic and operational levels for decision-making are given for early and late phases following the accident. Criteria for decision making are established in terms of upper and lower generic and operational levels (UL/LL). Criteria for urgent evacuation in the early stage directed on preventing of serious deterministic effects are defined as projected absorbed dose rate for lung 2x10 -2 Gy/day (UL) and 3x10 -3 Gy/day (LL). The UL corresponds to intake of 300 kBq of 239 Pu and mortal consequences during the first year after the accident as a result of acute interstitial pneumonite. The LL corresponds to intake of 40 kBq of 239 Pu and the threshold of serious radiological effects (disablement as a result of pneumosclerosis) and high level of stochastic effects - cancer of lung. Other basic countermeasures are intended on to be directed mitigation of long term radiological consequences. That is why criteria for them are defined in terms of protected equivalent dose for lungs or avertable effective dose. Criteria for sheltering and individual protection of respiratory tract correspond to committed equivalent dose due to intake during two days 200 mSv (UL) and 20 mSv (LL). Temporary relocation (1-2 years) is recommended if averted monthly effective dose is 30 mSv (UL) and 10 mSv (LL). Permanent relocation is justified if averted life-time effective dose is 1000 mSv (UL) and 200 mSv (LL). Operational levels in terms of density of soil contamination by plutonium are calculated for practical application of the dose criteria. (author)

  14. The Revised Space Environment Models in CREME-MC: A Replacement for CREME96

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Mendenhall, Marcus H.; Reed, Robert A.; Sierawski, Brian; Watts, John W.; Weller, Robert A.

    2010-01-01

    The CREME96 model has been available on the WWW for more than 10 years now. While principally for the estimation of radiation effects on spacecraft electronics, it contains space radiation environment models that have been used for instrument design calculations, estimation of instrumental background, estimation of radiation hazards and many other purposes. Because of the evolution of electronic part design we have found it necessary to revise CREME96, creating CREME-MC. As part of this revision, we are revising and extending the environmental models in CREME96. This talk will describe the revised radiation environment models that are being made available in CREME-MC

  15. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Youn-Kyu Kim

    2015-12-01

    Full Text Available In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton’s laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  16. Sustainable Shaping of Urban Spaces in the Context of the Environment

    Joanna Agnieszka Pawłowicz

    2017-11-01

    Full Text Available The natural environment is of great importance when it comes to developing a city, as it shapes its spaces, defines its roles and performs climatic and protective functions. Industrialization often requires removing landscape obstacles and vegetation to erect new buildings. An urban planner, though, should be aware of the borders that must not be crossed. Designing new streets and buildings should follow a sustainable growth pattern, if the city landscape and its climatic conditions are to improve for generations to come. This paper discusses the aspects of planning and managing urban spaces in such a way as to provide their users with healthy and comfortable living conditions. The paper is based on a survey conducted to gather the opinions of members of a city community on the environment in which they live.

  17. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  18. Simulation of the space debris environment in LEO using a simplified approach

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  19. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  20. Operation of commercially-based microcomputer technology in a space radiation environment

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  1. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  2. Effects of a Green Space Layout on the Outdoor Thermal Environment at the Neighborhood Level

    Chi-Ming Lai

    2012-09-01

    Full Text Available This study attempted to address the existing urban design needs and computer-aided thermal engineering and explore the optimal green space layout to obtain an acceptable thermal environment at the neighborhood scale through a series of building energy and computational fluid dynamics (CFD simulations. The building-energy analysis software eQUEST and weather database TMY2 were adopted to analyze the electric energy consumed by air conditioners and the analysis results were incorporated to derive the heat dissipated from air conditioners. Then, the PHOENICS CFD software was used to analyze how the green space layout influences outdoor thermal environment based on the heat dissipated from air conditioners and the solar heat reemitted from the built surfaces. The results show that a green space located in the center of this investigated area and at the far side of the downstream of a summer monsoon is the recommended layout. The layouts, with green space in the center, can decrease the highest temperature by 0.36 °C.

  3. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  4. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  5. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  6. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  7. Comparison of different techniques for in microgravity-a simple mathematic estimation of cardiopulmonary resuscitation quality for space environment.

    Braunecker, S; Douglas, B; Hinkelbein, J

    2015-07-01

    Since astronauts are selected carefully, are usually young, and are intensively observed before and during training, relevant medical problems are rare. Nevertheless, there is a certain risk for a cardiac arrest in space requiring cardiopulmonary resuscitation (CPR). Up to now, there are 5 known techniques to perform CPR in microgravity. The aim of the present study was to analyze different techniques for CPR during microgravity about quality of CPR. To identify relevant publications on CPR quality in microgravity, a systematic analysis with defined searching criteria was performed in the PubMed database (http://www.pubmed.com). For analysis, the keywords ("reanimation" or "CPR" or "resuscitation") and ("space" or "microgravity" or "weightlessness") and the specific names of the techniques ("Standard-technique" or "Straddling-manoeuvre" or "Reverse-bear-hug-technique" or "Evetts-Russomano-technique" or "Hand-stand-technique") were used. To compare quality and effectiveness of different techniques, we used the compression product (CP), a mathematical estimation for cardiac output. Using the predefined keywords for literature search, 4 different publications were identified (parabolic flight or under simulated conditions on earth) dealing with CPR efforts in microgravity and giving specific numbers. No study was performed under real-space conditions. Regarding compression depth, the handstand (HS) technique as well as the reverse bear hug (RBH) technique met parameters of the guidelines for CPR in 1G environments best (HS ratio, 0.91 ± 0.07; RBH ratio, 0.82 ± 0.13). Concerning compression rate, 4 of 5 techniques reached the required compression rate (ratio: HS, 1.08 ± 0.11; Evetts-Russomano [ER], 1.01 ± 0.06; standard side straddle, 1.00 ± 0.03; and straddling maneuver, 1.03 ± 0.12). The RBH method did not meet the required criteria (0.89 ± 0.09). The HS method showed the highest cardiac output (69.3% above the required CP), followed by the ER technique (33

  8. Application of Advanced Materials Protecting from Influence of Free Space Environment

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for

  9. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  10. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  11. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  12. An Efficient Return Algorithm For Non-Associated Plasticity With Linear Yield Criteria In Principal Stress Space

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars

    2007-01-01

    . The stress return and the formation of the constitutive matrix is carried out in principal stress space. Here the manipulations simplify and rely on geometrical arguments. The singularities arising at the intersection of yield planes are dealt with in a straightforward way also based on geometrical......An efficient return algorithm for stress update in numerical plasticity computations is presented. The yield criterion must be linear in principal stress space and can be composed of any number of yield planes. Each of these yield planes may have an associated or non-associated flow rule...

  13. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  14. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  15. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  16. Design for unusual environment (space). Complementary use of modelling and testing phases

    Cambiaghi, Danilo; Cambiaghi, Andrea

    2004-01-01

    Designing for space requires a great imagination effort from the designer. He must perceive that the stresses experimented by the facilities he is designing will be quite different in space (during the mission), in launch phase and on ground (before launch handling phase), and he must design for all such environmental conditions. Furthermore he must design for mechanical and thermal environment, which often lead to conflicting needs. Virtual models may help very much in balancing the conflicting requirements, but models must be validated to be reliable. Test phase help validating the models, but may overstress the items. The aim of the designer is to reach an efficient and safe design through a balanced use of creativity, modelling and testing

  17. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  18. Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    Cooper, John F.; Hill, Matthew E.; Richardson, John D.; Sturner, Steven J.

    2006-01-01

    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.

  19. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  20. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  1. Design of Compact Particle Detector System Using FPGA for Space Particle Environment Measurement

    K. Ryu

    2007-06-01

    Full Text Available We have designed a high resolution proton and electron telescope for the detection of high energy particles, which constitute a major part of the space environment. The flux of the particles, in the satellite orbits, can vary abruptly according to the position and solar activities. In this study, a conceptual design of the detector, for adapting these variations with a high energy resolution, was made and the performance was estimated. In addition, a parallel processing algorithm was devised and embodied using FPGA for the high speed data processing, capable of detecting high flux without losing energy resolution, on board a satellite.

  2. Individual thermal profiles as a basis for comfort improvement in space and other environments

    Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.

    2002-01-01

    BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.

  3. Challenges for Life Support Systems in Space Environments, Including Food Production

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  4. Public open spaces and walking for recreation: moderation by attributes of pedestrian environments.

    Sugiyama, Takemi; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Adams, Robert J; Daniel, Mark

    2014-05-01

    This study examined whether attributes of pedestrian environments moderate the relationships between access to public open spaces (POS) and adults' recreational walking. Data were collected from participants of the North West Adelaide Health Study in 2007. Recreational walking was determined using self-reported walking frequency. Measures of POS access (presence, count, and distance to the nearest POS) were assessed using a Geographic Information System. Pedestrian environmental attributes included aesthetics, walking infrastructure, barrier/traffic, crime concern, intersection density, and access to walking trails. Regression analyses examined whether associations between POS access and recreational walking were moderated by pedestrian environmental attributes. The sample included 1574 participants (45% men, mean age: 55). POS access measures were not associated with recreational walking. However, aesthetics, walking infrastructure, and access to walking trail were found to moderate the POS-walking relationships. The presence of POS was associated with walking among participants with aesthetically pleasing pedestrian environments. Counter-intuitively, better access to POS was associated with recreational walking for those with poorer walking infrastructure or no access to walking trails. Local pedestrian environments moderate the relationships between access to POS and recreational walking. Our findings suggest the presence of complex relationships between POS availability and pedestrian environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Integrated resource planning and the environment: A guide to the use of multi-criteria decision methods

    Hobbs, B.F.; Meier, P. [IDEA, Inc., Washington, DC (United States)

    1994-07-01

    This report is intended as a guide to the use of multi-criteria decision-making methods (MCDM) for incorporating environmental factors in electric utility integrated resource planning (IRP). Application of MCDM is emerging as an alternative and complementary method to explicit economic valuation for weighting environmental effects. We provide a step-by-step guide to the elements that are common to all MCDM applications. The report discusses how environmental attributes should be selected and defined; how options should be selected (and how risk and uncertainty should be accounted for); how environmental impacts should be quantified (with particular attention to the problems of location); how screening should be conducted; the construction and analysis of trade-off curves; dominance analysis, which seeks to identify clearly superior options, and reject clearly inferior options; scaling of impacts, in which we translate social, economic and environmental impacts into value functions; the determination of weights, with particular emphasis on ensuring that the weights reflect the trade-offs that decision-makers are actually willing to make; the amalgamation of attributes into overall plan rankings; and the resolution of differences among methods, and between individuals. There are many MCDM methods available for accomplishing these steps. They can differ in their appropriateness, ease of use, validity, and results. This report also includes an extensive review of past applications, in which we use the step-by-step guide to examine how these applications satisfied the criteria of appropriateness, ease of use, and validity. Case material is drawn from a wide field of utility applications, ranging from project-level environmental impact statements to capacity bidding programs, and from the results of two case studies conducted as part of this research.

  6. Peripersonal Space: An Index of Multisensory Body–Environment Interactions in Real, Virtual, and Mixed Realities

    Andrea Serino

    2018-01-01

    Full Text Available Human–environment interactions normally occur in the physical milieu and thus by medium of the body and within the space immediately adjacent to and surrounding the body, the peripersonal space (PPS. However, human interactions increasingly occur with or within virtual environments, and hence novel approaches and metrics must be developed to index human–environment interactions in virtual reality (VR. Here, we present a multisensory task that measures the spatial extent of human PPS in real, virtual, and augmented realities. We validated it in a mixed reality (MR ecosystem in which real environment and virtual objects are blended together in order to administer and control visual, auditory, and tactile stimuli in ecologically valid conditions. Within this mixed-reality environment, participants are asked to respond as fast as possible to tactile stimuli on their body, while task-irrelevant visual or audiovisual stimuli approach their body. Results demonstrate that, in analogy with observations derived from monkey electrophysiology and in real environmental surroundings, tactile detection is enhanced when visual or auditory stimuli are close to the body, and not when far from it. We then calculate the location where this multisensory facilitation occurs as a proxy of the boundary of PPS. We observe that mapping of PPS via audiovisual, as opposed to visual alone, looming stimuli results in sigmoidal fits—allowing for the bifurcation between near and far space—with greater goodness of fit. In sum, our approach is able to capture the boundaries of PPS on a spatial continuum, at the individual-subject level, and within a fully controlled and previously laboratory-validated setup, while maintaining the richness and ecological validity of real-life events. The task can therefore be applied to study the properties of PPS in humans and to index the features governing human–environment interactions in virtual or MR. We propose PPS as an

  7. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  8. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  9. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  10. Control of the Onboard Microgravity Environment and Extension of the Service Life of the Long-Term Space Station

    Titov, V. A.

    2018-03-01

    The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.

  11. Investigation on high efficiency volume Bragg gratings performances for spectrometry in space environment

    Loicq, Jérôme; Stockman, Y.; Georges, Marc; Gaspar Venancio, Luis M.

    2017-11-01

    The special properties of Volume Bragg Gratings (VBGs) make them good candidates for spectrometry applications where high spectral resolution, low level of straylight and low polarisation sensitivity are required. Therefore it is of interest to assess the maturity and suitability of VBGs as enabling technology for future ESA missions with demanding requirements for spectrometry. The VBGs suitability for space application is being investigated in the frame of a project led by CSL and funded by the European Space Agency. The goal of this work is twofold: first the theoretical advantages and drawbacks of VBGs with respect to other technologies with identical functionalities are assessed, and second the performances of VBG samples in a representative space environment are experimentally evaluated. The performances of samples of two VBGs technologies, the Photo-Thermo-Refractive (PTR) glass and the DiChromated Gelatine (DCG), are assessed and compared in the Hα, O2-B and NIR bands. The tests are performed under vacuum condition combined with temperature cycling in the range of 200 K to 300K. A dedicated test bench experiment is designed to evaluate the impact of temperature on the spectral efficiency and to determine the optical wavefront error of the diffracted beam. Furthermore the diffraction efficiency degradation under gamma irradiation is assessed. Finally the straylight, the diffraction efficiency under conical incidence and the polarisation sensitivity is evaluated.

  12. The simplified spherical harmonics (SPL) methodology with space and moment decomposition in parallel environments

    Gianluca, Longoni; Alireza, Haghighat

    2003-01-01

    In recent years, the SP L (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP L equations starting from the even-parity form of the S N equations. The SP L equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP L equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp L (Parallel Environment Neutral-particle SP L ). Pensp L solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP L matrices. Pensp L includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  13. Characteristics of personal space during obstacle circumvention in physical and virtual environments.

    Gérin-Lajoie, Martin; Richards, Carol L; Fung, Joyce; McFadyen, Bradford J

    2008-02-01

    It is not known how the flexible protective zone maintained around oneself during locomotion (personal space or PS; see [Gérin-Lajoie M, Richards CL, McFadyen BJ. The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control 2005;9:242-69]) is modulated with walking speed, whether both sides of the PS are symmetrical, and whether the circumvention of physical and virtual obstructions elicit the same use of such PS. Personal space was measured in ten adults as they circumvented a cylindrical obstacle that was stationary within their path. Both left and right passes were performed at natural self-selected, slow and fast walking speeds. The same circumvention task was also performed at natural speeds in an immersive virtual environment (VE) replicating the same obstruction scenario. The shape and size of PS were maintained across walking speeds, and a smaller PS was generally observed on the dominant side. The general shape and lateral bias of the PS were preserved in the VE while its size was slightly increased. The systematic behavior across walking speeds and types of environment and the lateral bias suggest that PS is used to control navigation. This study deepens our understanding of normal adaptive walking behavior and has implications for the development of better tools for the assessment and retraining of locomotor capacity in different populations, from people with walking deficits to elite athletes. Since the PS behavior was shown to be robust in the VE used for this study, the virtual reality technology is proposed as a promising platform for the development of such assessment and retraining applications.

  14. Developing an Adaptive Robotic Assistant for Close-Proximity Human-Robot Interaction in Space Environments

    National Aeronautics and Space Administration — As mankind continues making strides in space exploration and associated technologies, the frequency, duration, and complexity of human space exploration missions...

  15. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  16. Centralized vs. decentralized nursing stations: effects on nurses' functional use of space and work environment.

    Zborowsky, Terri; Bunker-Hellmich, Lou; Morelli, Agneta; O'Neill, Mike

    2010-01-01

    Evidence-based findings of the effects of nursing station design on nurses' work environment and work behavior are essential to improve conditions and increase retention among these fundamental members of the healthcare delivery team. The purpose of this exploratory study was to investigate how nursing station design (i.e., centralized and decentralized nursing station layouts) affected nurses' use of space, patient visibility, noise levels, and perceptions of the work environment. Advances in information technology have enabled nurses to move away from traditional centralized paper-charting stations to smaller decentralized work stations and charting substations located closer to, or inside of, patient rooms. Improved understanding of the trade-offs presented by centralized and decentralized nursing station design has the potential to provide useful information for future nursing station layouts. This information will be critical for understanding the nurse environment "fit." The study used an exploratory design with both qualitative and quantitative methods. Qualitative data regarding the effects of nursing station design on nurses' health and work environment were gathered by means of focus group interviews. Quantitative data-gathering techniques included place- and person-centered space use observations, patient visibility assessments, sound level measurements, and an online questionnaire regarding perceptions of the work environment. Nurses on all units were observed most frequently performing telephone, computer, and administrative duties. Time spent using telephones, computers, and performing other administrative duties was significantly higher in the centralized nursing stations. Consultations with medical staff and social interactions were significantly less frequent in decentralized nursing stations. There were no indications that either centralized or decentralized nursing station designs resulted in superior visibility. Sound levels measured in all

  17. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  18. MUUX-E, a framework of criteria for evaluating the usability, user experience and educational features of m-learning environments

    Patricia-Ann Harpur

    2015-07-01

    Full Text Available Higher education students use mobile phones, equipped for Internet access. Mobile technologies can offer effective, satisfying and accessible m-learning experiences. A contribution has been made to knowledge on evaluating m-learning environments and to mobile human-computer interaction (MHCI, with the innovative synthesis of the MUUX-E Framework, which fills a gap in the domain of m-learning. MUUX-E is a single comprehensive, multi-faceted instrument for evaluating m-learning environments, emphasising usability and user experience in mobile educational contexts. It was developed by extensive literature studies on each aspect, and has five categories, 31 criteria and numerous sub-criteria. Using a design-based research paradigm, MUUX-E was applied iteratively to evaluate and enhance successive versions of m-LR, a mobile application created for a Software Engineering module. Participants were students and expert evaluators. MUUX-E served well to identify problems and strengths. The students were more positive than the experts regarding the benefits of m-LR, yet insightfully reported more system problems.

  19. Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons

    Huang, Chen; Zou, Zhijun; Li, Meiling; Wang, Xin; Huang, Wugang; Yang, Jiangang [University of Shanghai for Science and Technology, Shanghai (China); Li, Wei; Xiao, Xueqin [Shanghai International Gymnastics Stadium, Shanghai (China)

    2007-05-15

    Shanghai International Gymnastics Stadium is the selected object for site-measurement. The site-measurements have been carried out during summer, winter, and the transitional seasons. Their indoor thermal environments were controlled by continuous air-conditioning, intermittent air-conditioning and natural ventilation, respectively. The site-measurement includes outdoor environment (the weather conditions and peripheral hallway), indoor air temperature distribution (the occupant zone temperature, radial temperature near upper openings and the vertical temperature distributions, etc.), and the heat balance of air-conditioning system, etc. It is found that temperature stratification in winter with air-conditioning is most obvious. The maximum difference of vertical temperature is 15{sup o}C in winter. The second largest one is 12{sup o}C in summer, and less than 2{sup o}C in the transitional season. The results of measurements indicate that it is different in the characteristics on energy saving of upper openings during the different seasons. With heat balance measurements, it is discovered that the roof load and ventilated and infiltrated load account for larger percentages in terms of cooling and heating load. In this paper, many discussions on the results of site measurements show some characteristics and regulations of indoor thermal environment in large space building. (author)

  20. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  1. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  2. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  3. CRITERIA OF THE AVIATION NOISE ASSESSMENT FOR AERODROME ENVIRONS ZONING OF THE AIRPORTS AND PROTECTIVE MEASURES JUSTIFICATION

    Oleg A. Kartyshev

    2017-01-01

    Full Text Available Problems in the sphere of an adverse ecological effect assessment of aerodrome environs aviation noise are analyzed. It is noted, that there is no modern standard and methodical base for such assessment. It is shown that when planning the build- ing, and also when developing noise-protective actions for residential areas in the zones of aviation noise increased level im- pact it’s most effectively to carry out acoustic zoning of areas near airports borders and flight routes. The system of transport sources noise rationing in Russia doesn't consider the established practice of its application. The aircraft of noisy types were actively taken out of service and aviation noise impact near the airports decreased, but the problem of noise protection, de- mands control when planning land use. Noise measurements in residential areas, near houses and inside, showed the excess of maximum allowed level values to 25-35 dBA (on equivalent value and to 25-40 dBA (on the maximum value.As a consequence of the European states policy in the sphere of aviation noise management and of aerodrome en- virons zoning noise levels at the airports of Europe and their surroundings were stabilized and the sizes of noise contours were reduced. For different countries there was made the analysis of legislative bases of the implementation of the re-striction requirement for residential areas and the possibility of using the territory under noise impact. For rationing theaerodrome environs noise of the airports it’s offered to take a sound equivalent level in which admissible values are ranged on three zones for the main standard criterion. The authors present acoustic measurements results in houses near the airport Vnukovo on condition of using standard two-chamber trimmable and folding windows with the ventilating valve. It is shown that the popular window designs can't provide inside noise reduction at night to the standard L Amax level = 45 dBA from the aviation source

  4. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  5. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  6. Screening and identification of tillering dwarf mutant of rice induced by space environment

    Xu Jianlong; Li Chunshou; Wang Junmin; Luo Rongting; Zhang Mingxian

    2003-01-01

    Major agronomic traits and dwarfism of the tiller dwarf mutant, R955, induced by space environment from rice variety Bing 95-503 were identified. The results indicated that the traits including days from sowing to heading, 1000-grain weight, grain volume, plant type and awn-growing character were obviously different from those of the 5 tiller dwarfs such as ID-3, which were known for their dwarfing genes. R955 was insensitive to response of GA3, and its dwarfing gene was controlled by recessive gene(s), nonallelic to the tiller dwarfing genes d 3 , d 10 , d 14 , d 17 and d 27 . R955 had good plant type with the plant height near semidwarfism, normal grain size, and as many as 68 productive panicles per plant

  7. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  8. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  9. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  10. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; hide

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  11. Analytical and experimental studies of leak location and environment characterization for the international space station

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin [Stinger Ghaffarian Technologies, Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 (United States); Abel, Joshua; Hawk, Doug [Alliant Techsystems, Inc, 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States); Autrey, David; Glenn, Jodie [Lockheed Martin, 1300 Hercules, Houston, TX 77058 (United States); Bond, Tim; Buffington, Jesse [NASA Johnson Space Flight Center, 2101 NASA Pkwy, Houston, TX 77058 (United States); Cheng, Edward; Ma, Jonathan; Rossetti, Dino [Conceptual Analytics, 8209 Woburn Abbey Rd, Glenn Dale, MD 20769 (United States); DeLatte, Danielle [ASRC Federal Space and Defense, 7000 Muirkirk Meadows Drive, Suite 100, Beltsville, MD 20705 (United States); Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford [NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); Tull, Kimathi [Jackson and Tull, 7375 Executive Pl, Lanham, MD 20706 (United States); Warren, Eric [Wyle STE Group, 1290 Hercules Ave, Houston, TX 77058-2769 (United States)

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  12. Analytical and experimental studies of leak location and environment characterization for the international space station

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH 3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb m/ /yr. to about 1 lb m /day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit

  13. Free-space optical channel characterization and experimental validation in a coastal environment

    Alheadary, Wael Ghazy

    2018-03-05

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  14. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  15. Free-space optical channel characterization and experimental validation in a coastal environment

    Alheadary, Wael Ghazy; Park, Kihong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  16. ISS External Payload Platform - a new opportunity for research in the space environment

    Steimle, Christian; Pape, Uwe

    The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a

  17. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  18. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  19. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    2015-06-01

    TRAINING MARINES FOR OPERATIONS WITH DEGRADED OR DENIED SPACE-ENABLED CAPABILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David M. Garcia 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...could possibly have been linked to the blast as well [19]. Space Debris (4) There are over 20,000 pieces of debris the size of a softball or greater

  20. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  1. Ultralightweight PV Array Materials for Deep Space Mission Environments, Phase I

    National Aeronautics and Space Administration — Photovoltaic arrays for future deep space NASA missions demand multiple functionalities. They must efficiently generate electrical power, have very large areas and...

  2. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  3. FOREWORD: Tackling inverse problems in a Banach space environment: from theory to applications Tackling inverse problems in a Banach space environment: from theory to applications

    Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara

    2012-10-01

    Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety

  4. Automation of closed environments in space for human comfort and safety

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  5. CfDS attends the first meeting of the All-Party Parliamentary Astronomy and Space Environment Group

    Mizon, B.

    1999-06-01

    This group first met on March 11th, 1999, as 'a forum for discussion to further parliamentary interest in astronomy and the space environment affecting terrestrial life and its climate; and to increase awareness of the social, political and philosophical implications of present and future space technologies connected with exploring and understanding the cosmos'. CfDS coordinator Bob Mizon attended the first meeting of the group.

  6. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Beer, Juerg; Steiger, Rudolf von; McCracken, Ken

    2012-01-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  7. Cosmogenic radionuclides. Theory and applications in the terrestrial and space environments

    Beer, Juerg [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz, Duebendorf (Switzerland); Steiger, Rudolf von [International Space Science Insitute, Bern (Switzerland); McCracken, Ken [Maryland Univ., College Park (United States). IPST

    2012-07-01

    Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.

  8. AF-GEOSpace Version 2.0: Space Environment Software Products for 2002

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.

    2002-05-01

    AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric

  9. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  10. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  11. Development of a Flexible Lead-Free Piezoelectric Transducer for Health Monitoring in the Space Environment

    Marco Laurenti

    2015-11-01

    Full Text Available In this work we report on the fabrication process for the development of a flexible piezopolymeric transducer for health monitoring applications, based on lead-free, piezoelectric zinc oxide (ZnO thin films. All the selected materials are compatible with the space environment and were deposited by the RF magnetron sputtering technique at room temperature, in view of preserving the total flexibility of the structures, which is an important requirement to guarantee coupling with cylindrical fuel tanks whose integrity we want to monitor. The overall transducer architecture was made of a c-axis-oriented ZnO thin film coupled to a pair of flexible Polyimide foils coated with gold (Au electrodes. The fabrication process started with the deposition of the bottom electrode on Polyimide foils. The ZnO thin film and the top electrode were then deposited onto the Au/Polyimide substrates. Both the electrodes and ZnO layer were properly patterned by wet-chemical etching and optical lithography. The assembly of the final structure was then obtained by gluing the upper and lower Polyimide foils with an epoxy resin capable of guaranteeing low outgassing levels, as well as adequate thermal and electrical insulation of the transducers. The piezoelectric behavior of the prototypes was confirmed and evaluated by measuring the mechanical displacement induced from the application of an external voltage.

  12. FPGAs operating in a radiation environment: lessons learned from FPGAs in space

    Wirthlin, M J

    2013-01-01

    Field Programmable Gate Arrays (FPGAs) are increasingly being used as a key component of digital systems because of their in-field reprogrammability, low non-recurring engineering costs (NRE), and relatively short design cycle. Recently, there has been great interest in using FPGAs within spacecraft. FPGAs, like all semiconductor devices, are susceptible to the effects of radiation. There is an active research community investigating the effects of radiation on FPGAs and developing methods to mitigate against these effects. There has been significant progress over the last decade in the understanding and developing FPGA technology that is resistant to the effects of radiation. The success of FPGAs within spacecraft suggests that FPGAs may be used in particle physics experiments where radiation levels are considerable higher than the conventional terrestrial earth environment. This paper will summarize the effects of radiation on FPGAs, methods to mitigate against these effects, provide a case study of a successful FPGA system operating in space, and discuss the issues that will affect the use of FPGAs within particle physics experiments.

  13. Inventorying the molecular potential of Cupriavidus and Ralstonia strains surviving harsh space-related environments

    Mijnendonckx, Kristel; van Houdt, Rob; Provoost, Ann; Bossus, Albert; Ott, C. Mark; Venkateswaran, Kasthuri; Leys, Natalie

    The craving of modern man to explore life beyond earth presents a lot of challenges. The control of microbial contamination of the confined manned spacecraft is an important aspect that has to be taken into account in this journey. Because the human body contains a huge amount of microorganisms, the crew itself is the most important contamination source. But contamination can also originate from residing environmental microorganisms or from materials that are supplied from the Earth. These microbial contaminations can cause problems for the astronauts -well documented to have a decreased immunity -and the infrastructure of the space station. In this study, 14 different Cupriavidus metallidurans and Ralstonia pickettii strains, isolated from such space-related environments, where characterised in detail. These unique strains were isolated from drinking water that returned from ISS (3), from the cooling water system of the American ISS segment (4), from a swab sample of the Mars Odyssey Orbitor surface prior to flight (4), and from an air sample taken in the space assembly facility PHSF during Mars exploration Rover assembly (3). Their resistance to heavy metals and antibiotics was screened. The C. metallidurans isolates were more resistant to Zn2+ and Hg+ but more sensitive to Ni2+ than the R. pickettii strains. The MIC values for Cu2+ ranged from 1,5mM to 12mM, for Co2+ from 1,58mM to 12,63mM and for Cd2+ from 0,25mM to 1mM. For Ni2+ , the MIC values were between 2 and 8mM, except for the strain C. metallidurans IV (0502478) that was able to grow on Ni+2 concentrations up to 48mM. A metal of special interest was Ag+ because it is used to sanitize ISS drinking water. The strains isolated from air and surface samples showed a MIC value ranging from 0,35µM to 4µM. The isolates from the water samples had MIC values from 0,3µM to 2µM, which is lower than (or comparable with) the lowest limit of the silver concentration used in the ISS (1,9µM -4,6µM). However, all

  14. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment.

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-04-22

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people's stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant's home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  15. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Catharine Ward Thompson

    2016-04-01

    Full Text Available Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments.

  16. Mitigating Stress and Supporting Health in Deprived Urban Communities: The Importance of Green Space and the Social Environment

    Ward Thompson, Catharine; Aspinall, Peter; Roe, Jenny; Robertson, Lynette; Miller, David

    2016-01-01

    Environment-health research has shown significant relationships between the quantity of green space in deprived urban neighbourhoods and people’s stress levels. The focus of this paper is the nature of access to green space (i.e., its quantity or use) necessary before any health benefit is found. It draws on a cross-sectional survey of 406 adults in four communities of high urban deprivation in Scotland, United Kingdom. Self-reported measures of stress and general health were primary outcomes; physical activity and social wellbeing were also measured. A comprehensive, objective measure of green space quantity around each participant’s home was also used, alongside self-report measures of use of local green space. Correlated Component Regression identified the optimal predictors for primary outcome variables in the different communities surveyed. Social isolation and place belonging were the strongest predictors of stress in three out of four communities sampled, and of poor general health in the fourth, least healthy, community. The amount of green space in the neighbourhood, and in particular access to a garden or allotment, were significant predictors of stress. Physical activity, frequency of visits to green space in winter months, and views from the home were predictors of general health. The findings have implications for public health and for planning of green infrastructure, gardens and public open space in urban environments. PMID:27110803

  17. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  18. Use of Color in Child Care Environments: Application of Color for Wayfinding and Space Definition in Alabama Child Care Environments.

    Read, Marilyn A.

    2003-01-01

    Compared the use of color in physical design features associated with the exterior and interior designs of 101 child care centers in Alabama. Found that color was evidenced on the exterior of the centers at just over half of the sample. The interior environments had warm colors and bright accents in the setting; however, the majority of centers…

  19. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  20. Digitally intensive DC-DC converter for extreme space environments, Phase I

    National Aeronautics and Space Administration — The Space Micro –Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  1. Digitally intensive DC-DC converter for extreme space environments, Phase II

    National Aeronautics and Space Administration — The Space Micro-Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  2. Space and crime in Dutch built environments : Macro and micro scale spatial conditions for residential burglaries and thefts from cars

    Lopez, M.J.J.; Van Nes, A.

    2007-01-01

    At this moment, more knowledge is available on the physical characteristics of the built environment and their relationship to criminal opportunity rather than the spatial characteristics of potential targets and the public and private space between them. To improve this situation, a research

  3. Construction and Evaluation of an Integrated Formal/Informal Learning Environment for Foreign Language Learning across Real and Virtual Spaces

    Waragai, Ikumi; Ohta, Tatsuya; Kurabayashi, Shuichi; Kiyoki, Yasushi; Sato, Yukiko; Brückner, Stefan

    2017-01-01

    This paper presents the prototype of a foreign language learning space, based on the construction of an integrated formal/informal learning environment. Before the background of the continued innovation of information technology that places conventional learning styles and educational methods into new contexts based on new value-standards,…

  4. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment

    Silje A. Wolff

    2014-05-01

    Full Text Available Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA has developed the Micro-Ecological Life Support System Alternative (MELiSSA program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.

  5. Exploration of Unknown Spaces by People Who Are Blind Using a Multi-sensory Virtual Environment

    Lahav, Orly; Mioduser, David

    2004-01-01

    The ability to explore unknown spaces independently, safely and efficiently is a combined product of motor, sensory, and cognitive skills. Normal exercise of this ability directly affects an individual?s quality of life. Mental mapping of spaces and of the possible paths for navigating these spaces is essential for the development of efficient…

  6. Environment

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  7. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  8. Creating Welcoming Spaces for Lesbian, Gay, Bisexual, and Transgender (LGBT) Patients: An Evaluation of the Health Care Environment.

    McClain, Zachary; Hawkins, Linda A; Yehia, Baligh R

    2016-01-01

    Health outcomes are affected by patient, provider, and environmental factors. Previous studies have evaluated patient-level factors; few focusing on environment. Safe clinical spaces are important for lesbian, gay, bisexual, and transgender (LGBT) communities. This study evaluates current models of LGBT health care delivery, identifies strengths and weaknesses, and makes recommendations for LGBT spaces. Models are divided into LGBT-specific and LGBT-embedded care delivery. Advantages to both models exist, and they provide LGBT patients different options of healthcare. Yet certain commonalities must be met: a clean and confidential system. Once met, LGBT-competent environments and providers can advocate for appropriate care for LGBT communities, creating environments where they would want to seek care.

  9. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    Yeh, L.

    1993-01-01

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented

  10. Paradise regained: older adult rock climbers turning space into place in the natural environment

    Mark Hickman

    2015-12-01

    Full Text Available At the time of writing there are over 10 million people aged over 65 living in the UK, and by 2050 the number is predicted to rise to 19 million. This expansion of the ageing population is mirrored worldwide, and over the past ten years has stimulated a growth in age-related studies. However, the idea of a social gerontology of the outdoors is yet to take root. Yet, with the maturing of those born between the years 1946 and 1964, and increased participation in adventurous activities, we suggest that the time is right for scholarship in this specific direction. Accordingly, the aim of this study was to discover how older adult rock climbers perceived their relationship with the natural environment to have changed over the period of their involvement with rock climbing. The investigation used a purposive sample of rock climbers in the north-west of England (n=10 aged between 65 and 74 years (av=69.6 identifying them as ‘young-old’ adults. Oral testimony was collected over two phases, the first with interview-questionnaires, and the second with targeted semi-structured interviews. In order to give a clear voice to participants, manual data handling using was used to establish raw data that were then sorted into themes and verified against internal and external checkers. These were then organized around Peace, Wahl, Mollenkopf and Oswald’s (2014 concept of an ‘environment’ considered within three dimensions: the physical/material, including the natural landscape; the psychological, and the meaning attributed to the place, its evolution across the life course, and how it makes people feel about themselves; and the social/cultural, involving the engagement of people to places, including how the space is used and remembered.

  11. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  12. PRIME: research project on radioecological sensitivity indicators and on multi-criteria methods applied to the environment of an industrial area. Scientific report

    2010-01-01

    Successive studies conducted on the management of nuclear post-accidental circumstances have shown that it must be based on an anticipated characterisation of the radiological vulnerability of the environment, using an overall approach and according ta a strategy that takes inhabitants and their living conditions into account. The PRIME project has investigated and implemented a pilot method for characterising contaminated areas and usable by risk managers dealing with industrial accidents - notably involving radioactive substances - in relationship with a panel of stakeholders: experts, decision-makers and local elected officials, citizens. The method is based on Multi Criteria Analysis (MCA). It aims at modelling the different and sometimes contradicting opinions and at ranking the radio-ecological and socio-economical sensitivity factors of a region towards radioactive pollution, in the order of assisting decision making, These factors are defined by the environmental and anthropic parameters that may aggravate or limit the consequences of radioactive pollution. As the PRIME project was a partnership between scientific laboratories, representatives of public institutions and of civil society, it led to explore innovative forms of cooperation and to develop a tool combining MCA and GIS mapping. (authors)

  13. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  14. A trajectory planning scheme for spacecraft in the space station environment. M.S. Thesis - University of California

    Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.

    1991-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.

  15. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  16. Creative environments for design education and practice : A typology of creative spaces

    Thoring, K.C.; Desmet, P.M.A.; Badke-Schaub, P.G.

    2018-01-01

    This article presents a typology of creative spaces that is relevant to facilitating creative working and learning processes for designers. Drawing on qualitative user research with cultural probes in a design thinking institution, this typology identifies five different types of creative spaces

  17. An Environment for Analyzing Space Optimizations in Call-by-Need Functional Languages

    Nils Dallmeyer

    2017-01-01

    Full Text Available We present an implementation of an interpreter LRPi for the call-by-need calculus LRP, based on a variant of Sestoft's abstract machine Mark 1, extended with an eager garbage collector. It is used as a tool for exact space usage analyses as a support for our investigations into space improvements of call-by-need calculi.

  18. Making Space: A Gay-Straight Alliance's Fight to Build Inclusive Environments

    Collin, Ross

    2013-01-01

    Background: Education researchers are paying increasing attention to student activism and to the social production of school spaces. Few studies, however, have brought these two concerns together to examine how student activists work to rebuild school spaces in line with their political commitments. In the present study, I address this gap at the…

  19. Surviving the space environment - An overview of advanced materials and structures development at the CWRU CCDS

    Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.

    1991-01-01

    The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.

  20. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  1. A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Mckay, Charles; Auty, David; Rogers, Kathy

    1987-01-01

    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.

  2. Reproduction in the space environment: Part II. Concerns for human reproduction

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  3. Facies and depositional environments for the coquinas of the Morro do Chaves Formation, Sergipe-Alagoas Basin, defined by taphonomic and compositional criteria

    Ana Carolina Tavares

    Full Text Available Lacustrine carbonate rocks form important hydrocarbon accumulations along the Brazilian continental margin, some of which are contained in oil fields in which coquinas are one of the main reservoirs (viz. Campos Basin. The complexity and heterogeneity of these deposits make them a challenge in terms of reservoir description. For the necessary classification and paleoenvironmental interpretation of the coquinas, it is essential to evaluate many aspects including biological (such as carbonate productivity, sedimentological (energy regime in the depositional environment, transport of bioclasts, terrigenous supply, taphonomic (fragmentation of shells, abrasion and diagenetic processes. The facies analysis applied in this study is considered a more appropriate classification approach to understand these coquinas, since it is more flexible and comprehensive than the existing classifications for carbonate rocks. The material investigated here consists of rock samples of the coquinas from the Atol Quarry of the Morro do Chaves Formation (Barremian/Aptian, Sergipe-Alagoas Basin. These rocks that crop out in the Atol quarry complex can be considered as a case study for similar coquinas reservoirs found in the Brazilian continental margin basins. Six sedimentary facies were described, using the main taphonomic (fragmentation of shells and compositional (presence of micrite and siliciclastic matrix features as a diagnostic criteria. Two carbonate facies, two mixed carbonate-siliciclastic facies and two siliciclastic facies (mudstones were identified. From the facies succession, combined with a review of the literature on the subject, the following depositional paleoenvironments were defined: high-energy lake platform, lacustrine delta in a high-energy lake platform and lake-centre. In this paper, a new facies model for the studied coquinas succession is proposed.

  4. Criteria CSR

    Vovk, V.; Zateyshikova, O.

    2014-01-01

    In the article the theoretical aspects regarding criteria for assessing CSR proposed by A. Carroll, including: economic, legal, ethical, philanthropic. Based on this, it is proposed to characterize these criteria with respect to the interested parties (stakeholders), including: investors, shareholders suppliers, customers, employees, society and the state. This will make a qualitative assessment of the presence and depth using social responsibility in the company, as well as determine the ext...

  5. Ultra-Lightweight High Efficiency Nanostructured Materials and Coatings for Deep Space Mission Environments, Phase II

    National Aeronautics and Space Administration — NanoSonic has developed a nanostructured spray self-assembly manufacturing method that has resulted in ultra-lightweight ( 1000%), and multi-layer, high efficiency...

  6. Super Lightweight, Metal Rubber Fabric for Extreme Space Environments, Phase I

    National Aeronautics and Space Administration — NanoSonic has fabricated revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films via layer-by-layer, molecular self-assembly, which...

  7. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  8. Micro-Scale Gallium Nitride Pressure Sensors for Advanced Harsh Environment Space Technology

    National Aeronautics and Space Administration — The goal of this research is to study the high-temperature response of the 2-dimesional electron gas (2DEG) that occurs at the interface of aluminum gallium nitride...

  9. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    Al-Ghadhban, Samir

    2014-01-01

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC

  10. Autonomous Phase-Space Mapping and Navigation for Spacecraft Operations in Extreme Orbital Environments

    National Aeronautics and Space Administration — The objective of the proposed research is to generate a suite of algorithms for the autonomous navigation of highly nonlinear orbital regimes. These algorithms must...

  11. Activating Public Space: How to Promote Physical Activity in Urban Environment

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation

  12. The Challenge of Small Satellite Systems to the Space Security Environment

    2012-03-01

    Space, 1945–1995, (New York: Dodd, Mead & Company, Inc . 1984), 142. 40 Moltz, The Politics of Space Security, 93. 41William E. Burrows, Deep Black...Experimental World Circling Spaceship,” Report No. SE: 11827, Douglas Aircraft Company, Inc ., Santa Monica Plant Engineering Division, Contract WBB-038... Nike Zeus nuclear missile as a means to track and intercept targeted adversarial satellites. The commonality of antiballistic missile (ABM) and ASAT

  13. Interactive Spaces: Towards Collaborative structuring and Ubiquitous Presentation in Domestic Environment

    Petersen, Marianne Graves; Grønbæk, Kaj

    2004-01-01

    collaborative structuring and ubiquitous presentation of materials in private homes. With DoHM we propose establishing new relationship between digital and physical hyperspaces, folding hyperspaces into the physical space of the household. Thus we strive to combine the qualities of physical domestic materials...... and spaces with the flexibility and dynamics of digital hyperspaces. We propose a variety of new ubiquitous home appliances called MediaWall, MediaTable, MediaTray and MediaPort, which address these issues....

  14. Interactive Spaces: Towards Collaborative Structuring and Ubiquitous Presentation in Domestic Environments

    Petersen, Marianne Graves; Grønbæk, Kaj

    2004-01-01

    collaborative structuring and ubiquitous presentation of materials in private homes. With DoHM we propose establishing new relationship between digital and physical hyperspaces, folding hyperspaces into the physical space of the household. Thus we strive to combine the qualities of physical domestic materials...... and spaces with the flexibility and dynamics of digital hyperspaces. We propose a variety of new ubiquitous home appliances called MediaWall, MediaTable, MediaTray and MediaPort, which address these issues....

  15. Prediction of temperature variation in a rotating spacecraft in space environment

    Gadalla, Mohamed A.

    2005-01-01

    This paper presents a closed-form prediction model for the temperature distribution of a thick-walled cylindrical space vehicle subjected to solar heating in deep space. The model is based on the coupling between dynamics and solar radiation. Since solar radiation is, in general, incident from a fixed direction, one side of the space vehicle will be shone bright, and the other side dark. Thus the space astronauts, instruments, and cryogenic-fuel tanks are gaining heat on the bright side and losing heat from the dark side. This radiative heat gain and loss become equally significant as the conductive heat transfer through the interior of the space vehicle. Thermal analysis is carried out to predict the effect of the spinning speed and angular position on the temperature variation and gradients attained by speed vehicles outside the Earth's atmosphere. This analysis is based on the non-linearity of the radiative heat dissipation, the significant conductive heat transfer role, and combined boundary conditions that involve the temperature and angular position of the vehicle. An exact analytical solution is obtained inspite of the non-linearity and non-homogeneity in the boundary conditions. The results indicate that the temperature distribution on the outer surface of the space vehicle is nearly independent of the angular position; at sub-cylindrical surface, this independence is achieved at low angular velocity

  16. Biopan-survival I: exposure of the osmophiles synechococcus sp. (Nageli) and haloarcula sp. to the space environment

    Mancinelli, R. L.; White, M. R.; Rothschild, L. J.

    The objective of this study was to determine the survivability of osmophilic microorganisms in space, as well as examine the DNA breakage in osmophilic cells exposed to solar UV-radiation plus vacuum and to vacuum only. The organisms used were an unidentified species of Synechococcus (Nägeli) that inhabits the evaporitic gypsum-halite crusts that form along the marine intertidal, and an unidentified species of the extremely halophilic genus Haloarcula (designated as isolate G) isolated from a evaporitic NaCl crystal. Because these organisms are desiccation resistant and gypsum-halite as well as NaCl attenuate UV-radiation, we hypothesized that these organisms would survive in the space environment, better than most others. The organisms were exposed to the space environment for 2 weeks while in earth orbit aboard the Biopan facility. Ground controls were tested in a space simulation facility. All samples were compared to unexposed samples. Survivability was determined by plate counts and the most probable number technique. DNA breakage was determined by labeling breaks in the DNA with ^32P followed by translation. Results indicate that the osmophilic microbes survived the 2 week exposure. The major cause of cell death was DNA damage. The number of strand breaks in the DNA from vacuum UV exposed cells was greater than the vacuum only exposed cells.

  17. Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments

    2017-01-01

    Plant performance (i.e., fecundity, growth, survival) depends on an individual’s access to space and resources. At the community level, plant performance is reflected in observable vegetation patterning (i.e., spacing distance, density) often controlled by limiting resources. Resource availability is, in turn, strongly dependent on plant patterning mediated by competitive and facilitative plant–plant interactions. Co-occurring competition and facilitation has never been specifically investigated from a hydrodynamic perspective. To address this knowledge gap, and to overcome limitations of field studies, three intermediate-scale laboratory experiments were conducted using a climate-controlled wind tunnel–porous media test facility to simulate the soil–plant–atmosphere continuum. The spacing between two synthetic plants, a design consideration introduced by the authors in a recent publication, was varied between experiments; edaphic and mean atmospheric conditions were held constant. The strength of the above- and belowground plant–plant interactions changed with spacing distance, allowing the creation of a hydrodynamic conceptual model based on established ecological theories. Greatest soil water loss was observed for the experiment with the smallest spacing where competition dominated. Facilitation dominated at the intermediate spacing; little to no interactions were observed for the largest plant spacing. Results suggest that there exists an optimal spacing distance range that lowers plant environmental stress, thus improving plant performance through reduced atmospheric demand and conservation of available soil water. These findings may provide a foundation for improving our understanding of many climatological, ecohydrological, and hydrological problems pertaining to the hydrodynamics of water-limited environments where plant–plant interactions and community self-organization are important. PMID:28807999

  18. Comments on confinement criteria

    Kurak, V.; Schroer, B.; Swieca, J.A.

    1977-01-01

    For a QED 2 model with SU(n) flavour, the nature of the physical states space is more subtle than one expects on the basis of the loop criterion for confinement. One may have colour confinement without confinement of the fundamental flavour representation. Attempts to formulate confinement criteria in which the quark fields play a more fundamental role are discussed [pt

  19. Web-based description of the space radiation environment using the Bethe-Bloch model

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  20. Web-based description of the space radiation environment using the Bethe–Bloch model

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  1. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  2. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  3. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  4. Walkability and walking for transport: characterizing the built environment using space syntax.

    Koohsari, Mohammad Javad; Owen, Neville; Cerin, Ester; Giles-Corti, Billie; Sugiyama, Takemi

    2016-11-24

    Neighborhood walkability has been shown to be associated with walking behavior. However, the availability of geographical data necessary to construct it remains a limitation. Building on the concept of space syntax, we propose an alternative walkability index, space syntax walkability (SSW). This study examined associations of the full walkability index and SSW with walking for transport (WT). Data were collected in 2003-2004 from 2544 adults living in 154 Census Collection Districts (CCD) in Adelaide, Australia. Participants reported past week WT frequency. Full walkability (consisting of net residential density, intersection density, land use mix, and net retail area ratio) and SSW (consisting of gross population density and a space syntax measure of street integration) were calculated for each CCD using geographic information systems and space syntax software. Generalized linear models with negative binomial variance and logarithmic link functions were employed to examine the associations of each walkability index with WT frequency, adjusting for socio-demographic variables. Two walkability indices were closely correlated (ρ = 0.76, p walkability and SSW with WT frequency were positive, with regression coefficients of 1.12 (95% CI: 1.08, 1.17) and 1.14 (95% CI: 1.10, 1.19), respectively. SSW employs readily-available geographic data, yet is comparable to full walkability in its association with WT. The concept and methods of space syntax provide a novel approach to further understanding how urban design influences walking behaviors.

  5. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  6. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    Kabisch, Nadja; Qureshi, Salman; Haase, Dagmar

    2015-01-01

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap

  7. Human–environment interactions in urban green spaces — A systematic review of contemporary issues and prospects for future research

    Kabisch, Nadja, E-mail: nadja.kabisch@geo.hu-berlin.de [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany); Qureshi, Salman [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); School of Architecture, Birmingham Institute of Art and Design, Birmingham City University, The Parkside Building, 5 Cardigan Street, Birmingham B4 7BD (United Kingdom); Haase, Dagmar [Institute of Geography, Humboldt-University Berlin, Unter den Linden 6, 10099 Berlin (Germany); Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig (Germany)

    2015-01-15

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. - Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap.

  8. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  9. Alteration of Lunar Rock Surfaces through Interaction with the Space Environment

    Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.

    2014-01-01

    Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.

  10. Enhancing engagement in multimodality environments by sound movement in a virtual space

    Götzen, Amalia De

    2004-01-01

    of instrumental sounds - has allowed space as a musical instrumental practice to flourish. Electro-acoustic technologies let composers explore new listening dimensions and consider the sounds coming from loudspeakers as possessing different logical meanings from the sounds produced by traditional instruments....... Medea, Adriano Guarnieri's "video opera", is an innovative work stemming from research in multimedia that demonstrates the importance and amount of research dedicated to sound movement in space. Medea is part of the Multi-sensory Expressive Gesture Application project (http://www.megaproject.org). Among...

  11. Human Factors Virtual Analysis Techniques for NASA's Space Launch System Ground Support using MSFC's Virtual Environments Lab (VEL)

    Searcy, Brittani

    2017-01-01

    Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.

  12. Effects of space environment on biological characters of cultured rose seedlings

    Min, L.; Huai, X.; Jinying, L.; Yi, P.; Chunhua, Z.

    Cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology cytology physiology and molecular biology of the seedlings After loaded on the space flight the plant s height number of leaves and fresh weight per seedling were all increased significantly compared to the ground controls The content of chlorophyll was basically unchanged In some cells the ultrastructural changes involved twist contraction and deformation of cell wall curvature and loose arrangement of lamellae of some chloroplasts and a significant increase in number of starch grains per chloroplast In addition the number of mitochondria increased but some mitochondrial outer membrane broke and some mitochondrial cristae disappeared The activities of the defense enzymes such as superoxide dismutase peroxidase and catalyse in rose leaves increased and the content of malondialdehyde decreased In the RAPD analysis with 40 10-mer primers 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls and five primers amplified polymorphic products The rate of DNA variation was 6 34

  13. The space environment of Mercury at the times of the second and third MESSENGER flybys

    Baker, D. N.; Odstrčil, D.; Anderson, B.J.; Arge, C. N.; Benna, M.; Gloeckler, G.; Korth, H.; Mayer, L. R.; Raines, J.M.; Schriver, D.; Slavin, J.A.; Solomon, S.C.; Trávníček, Pavel M.; Zurbuchen, T.H.

    2011-01-01

    Roč. 59, č. 15 (2011), s. 2066-2074 ISSN 0032-0633 Institutional support: RVO:67985815 Keywords : Mercury * solar wind * interplanetary magnetic field Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.224, year: 2011

  14. Mutagenic effect of space environment and "6"0Co-γ Ray on rice quality

    Huang Yongxiang; Guo Tao; Cai Jinyang; Liu Yongzhu; Zhang Jianguo; Wang Hui; Chen Zhiqiang

    2013-01-01

    The mutagenic effects on grain quality of SP_2 (M_2) and SP_3 (M_3) were studied using four rice cultivars by treatments of space flight of recoverable satellite and "6"0Co γ-irradiation on the ground. The result showed that the quality traits of four cultivars after space flight existed widespread variation both in SP_2 and in SP_3, but the range and the direction of variation were varied with genotypes and traits. The space flight also led to the increase in gel consistency, chalkiness rate and chalkiness while the decline in amylose content in two generations, and these trends were similar to those of generations of γ-irradiation. Nevertheless, it seemed that space flight was more favorable to produce generations of increased length-width ratio, reduced chalkiness and gelatinization temperature than those of γ-irradiation. Stability analysis of quality traits between SP_2 (M_2) and SP_3 (M_3) discovered that the correlation coefficients of length-width ratio and amylose content varied from 0.2979 to 0.9039 and from 0.2356 to 0.7142, respectively. Moreover, majority of these coefficients were extremely significant positive, which suggested that early selection in SP_2 for these two traits was effective. (authors)

  15. Does Digitized Virtual Space Allow for Effective Learning in Creating Environments for Theatrical Productions?

    Magruder, Lewis

    2016-01-01

    Learning how to transform an empty space into one alive with dramatic possibilities is one of the challenges facing students in several disciplines--for example, graphic design, filmmaking, gaming, architecture, interior design, visual arts, and designing and directing for the theatre. The author, a professor of directing for the theatre,…

  16. Performance of super-orthogonal space-time trellis code in a multipath environment

    Sokoya, OA

    2007-09-01

    Full Text Available This paper investigates the performance of Super-Orthogonal Space-time Trellis Code (SOSTTC) designed primarily for non-frequency selective (i.e. flat) fading channel but now applied to a frequency selective fading channel. A new decoding trellis...

  17. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  18. IoT-based user-driven service modeling environment for a smart space management system.

    Choi, Hoan-Suk; Rhee, Woo-Seop

    2014-11-20

    The existing Internet environment has been extended to the Internet of Things (IoT) as an emerging new paradigm. The IoT connects various physical entities. These entities have communication capability and deploy the observed information to various service areas such as building management, energy-saving systems, surveillance services, and smart homes. These services are designed and developed by professional service providers. Moreover, users' needs have become more complicated and personalized with the spread of user-participation services such as social media and blogging. Therefore, some active users want to create their own services to satisfy their needs, but the existing IoT service-creation environment is difficult for the non-technical user because it requires a programming capability to create a service. To solve this problem, we propose the IoT-based user-driven service modeling environment to provide an easy way to create IoT services. Also, the proposed environment deploys the defined service to another user. Through the personalization and customization of the defined service, the value and dissemination of the service is increased. This environment also provides the ontology-based context-information processing that produces and describes the context information for the IoT-based user-driven service.

  19. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  20. pySPACE-a signal processing and classification environment in Python.

    Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank

    2013-01-01

    In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.

  1. pySPACE - A Signal Processing and Classification Environment in Python

    Mario Michael Krell

    2013-12-01

    Full Text Available In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace, signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG. The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.

  2. Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

    Belloir, Jean-Marc

    2016-01-01

    CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such as space imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramatically increased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors have substantial advantages over CCDs which make them great candidates to replace CCDs in future space missions. However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidly degrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or the fusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure. These displacement damage effects lead to the formation of stable defects and to the introduction of states in the forbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, non ionizing radiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the image sensor sensitivity and dynamic range. The aim of the present work is to extend the understanding of the effect of displacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on the shape of the dark current distribution depending on the particle type, energy and fluence but also on the image sensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the dark current distribution induced by displacement damage in nuclear or space environments is experimentally validated and physically justified. Another central part of this work consists in using the dark current spectroscopy technique for the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects. Many types of defects are detected and two of them are identified

  3. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  4. The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation.

    Yue-Hua Hu

    Full Text Available The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process and space (neutral process to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis plantation plots, 50 eucalyptus (Eucalyptus urophylla plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.

  5. Using Blackboard Wiki Pages as a Shared Space for Simulating the Professional Translation Work Environment

    Vine, Juliet

    2015-01-01

    The Work-Integrated Simulation for Translators module is part of a three year undergraduate degree in translation. The semester long module aims to simulate several aspects of the translation process using the Blackboard virtual learning environment's Wikis as the interface for completing translation tasks. For each translation task, one of the…

  6. Reconciling regulatory space with external accountability through WTO adjudication : trade, environment and development

    Weimer, M.

    2017-01-01

    This article argues in favour of broadening the trade and environment debate in the World Trade Organization (WTO) to include a developmental perspective. WTO litigation involving environmental regulation touches upon the issue of global justice and the power asymmetries structurally embedded in the

  7. LumaFluid: a responsive environment to stimulate social interaction in public spaces

    Monaci, G.; Gritti, T.; Van Beers, M.; Vermeulen, A.J.W.A.; Nab, B.; Thomassen, I.; Heijboer, M.; Suijkerbuijk, S.; Walmink, W.; Hendriks, M.

    2012-01-01

    LumaFluid is an interactive environment that explores new ways to stimulate emotional and social engagement through immersive light effects. A computer vision system detects and tracks persons present inthe LumaFluid square. Using this location information, colored spotlights highlight each person

  8. Case Study of Using High Performance Commercial Processors in a Space Environment

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  9. Estimation of optical attenuation in reduced visibility conditions in different environments across free space optics link

    Dev, K.; Nebuloni, R.; Capsoni, C.; Fišer, Ondřej; Brázda, V.

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1708-1713 ISSN 1751-8725 Institutional support: RVO:68378289 Keywords : light attenuation * optical sensors * free-space optical communication Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.187, year: 2016 http://digital-library.theiet.org/content/journals/10.1049/iet-map.2016.0872

  10. Evaluation of InGaAS array detector suitability to space environment

    Tauziede, L.; Beulé, K.; Boutillier, M.; Bernard, F.; Reverchon, J.-L.; Buffaz, A.

    2017-11-01

    InGaAs material has a natural cutoff wavelength of 1.65µm so it is naturally suitable for detection in Short Wavelength InfraRed (SWIR) spectral range. Regarding Earth Observation Spacecraft missions this spectral range can be used for the CO2 concentration measurements in the atmosphere. CNES (French Space agency) is studying a new mission, Microcarb with a spectral band centered on 1.6µm wavelength. InGaAs detector looks attractive for space application because its low dark current allows high temperature operation, reducing by the way the needed instrument resources. The Alcatel Thales III-VLab group has developed InGaAs arrays technology (320x256 & 640x512) that has been studied by CNES, using internal facilities. Performance tests and technological evaluation were performed on a 320x256 pixels array with a pitch of 30µm. The aim of this evaluation was to assess this new technology suitability for space applications. The carried out test plan includes proton radiations with Random Telegraph Signal (RTS) study, operating lifetest and evolution of performances as a function of the operating temperature.

  11. The psychology of home environments: a call for research on residential space.

    Graham, Lindsay T; Gosling, Samuel D; Travis, Christopher K

    2015-05-01

    Homes are important: People devote much of their thought, time, and resources to selecting, modifying, and decorating their living spaces, and they may be devastated when their homes must be sold or are destroyed. Yet the empirical psychological literature says virtually nothing about the roles that homes might play in people's lives. We argue that homes provide an informative context for a wide variety of studies examining how social, developmental, cognitive, and other psychological processes play out in a consequential real-world setting. The topic of homes is also well suited to collaborations with a diverse array of disciplines ranging from architecture and engineering to sociology and law. We illustrate the potential insights to be gained from studying homes with an exploratory study that maps the psychological ambiances (e.g., romance, comfort, togetherness) that people desire in their homes; we identify six broad ambiance dimensions (restoration, kinship, storage, stimulation, intimacy, productivity) that show mean differences across rooms. We connect these findings to existing work on situation selection in emotion regulation. These ideas provide only an initial foray into the domain of residential space, but they hint at the productive roles that homes and other spaces could play in psychological theorizing and research. © The Author(s) 2015.

  12. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  13. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  14. Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and on-orbit experiments

    Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.

    2018-01-01

    This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.

  15. Assessing hydrodynamic space use of brown trout, Salmo trutta, in a complex flow environment: a return to first principles.

    Kerr, James R; Manes, Costantino; Kemp, Paul S

    2016-11-01

    It is commonly assumed that stream-dwelling fish should select positions where they can reduce energetic costs relative to benefits gained and enhance fitness. However, the selection of appropriate hydrodynamic metrics that predict space use is the subject of recent debate and a cause of controversy. This is for three reasons: (1) flow characteristics are often oversimplified, (2) confounding variables are not always controlled and (3) there is limited understanding of the explanatory mechanisms that underpin the biophysical interactions between fish and their hydrodynamic environment. This study investigated the space use of brown trout, Salmo trutta, in a complex hydrodynamic flow field created using an array of different sized vertically oriented cylinders in a large open-channel flume in which confounding variables were controlled. A hydrodynamic drag function (D) based on single-point time-averaged velocity statistics that incorporates the influence of turbulent fluctuations was used to infer the energetic cost of steady swimming. Novel hydrodynamic preference curves were developed and used to assess the appropriateness of D as a descriptor of space use compared with other commonly used metrics. Zones in which performance-enhancing swimming behaviours (e.g. Kármán gaiting, entraining and bow riding) that enable fish to hold position while reducing energetic costs (termed 'specialised behaviours') were identified and occupancy was recorded. We demonstrate that energy conservation strategies play a key role in space use in an energetically taxing environment with the majority of trout groups choosing to frequently occupy areas in which specialised behaviours may be adopted or by selecting low-drag regions. © 2016. Published by The Company of Biologists Ltd.

  16. Dissemination actions and the popularization of the Exact Sciences by virtual environments and non-formal spaces of education

    Carlos Coimbra-Araujo

    2017-08-01

    Full Text Available For several reasons, the Exact Sciences have been shown as one of the areas of scientific knowledge that most demand actions in non-formal spaces of education. One of the main reasons lies in the fact that Mathematics, Physics, Chemistry and Astronomy are traditionally addressed, within the school environment and in the formal curriculum, unrelated to the student reality. Such subjects are often seen as a set of inflexible and incomprehensible principles. In this aspect, the present work reviews the main problems surrounding the teaching of the mentioned scientific areas, highlighting non-formal tools for the teaching of Mathematics, Physics, Chemistry, Astronomy and, in particular, the modern virtual environments of teaching modeled by Computing Science. Other historical difficulties that the formal education of Exact Sciences has suffered in Brazil are also presented, as well some of the main non-formal resources sought to complement the curriculum that is usually presented in the classroom.

  17. Concepts, strategies and potentials using hypo-g and other features of the space environment for commercialization using higher plants

    Krikorian, A. D.

    1985-01-01

    Opportunities for releasing, capturing, constructing and/or fixing the differential expressions or response potentials of the higher plant genome in the hypo-g environment for commercialization are explored. General strategies include improved plant-growing, crop and forestry production systems which conserve soil, water, labor and energy resources, and nutritional partitioning and mobilization of nutrients and synthates. Tissue and cell culture techniques of commercial potential include the growing and manipulation of cultured plant cells in vitro in a bioreactor to produce biologicals and secondary plants of economic value. The facilitation of plant breeding, the cloning of specific pathogen-free materials, the elimination of growing point or apex viruses, and the increase of plant yield are other O-g applications. The space environment may be advantageous in somatic embryogenesis, the culture of alkaloids, and the development of completely new crop plant germ plasm.

  18. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  19. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  20. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  1. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources

    Hecquet, Ch.

    2009-03-01

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  2. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  3. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  4. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    Al-Ghadhban, Samir

    2014-12-23

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC. In addition, we propose an adaptive MLSTBC schemes that are capable of accommodating the channel signal-to-noise ratio variation of wireless systems by near instantaneously adapting the uplink transmission configuration. The main results demonstrate that significant effective throughput improvements can be achieved while maintaining a certain target bit error rate.

  5. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  6. A Guide to the Application of Probability Risk Assessment Methodology and Hazard Risk Frequency Criteria as a Hazard Control for the Use of the Mobile Servicing System on the International Space Station

    D'silva, Oneil; Kerrison, Roger

    2013-09-01

    A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs

  7. Shaping and Being Shaped by Environments for Learning Science. Continuities with the Space and Democratic Vision of a Century Ago

    Cavicchi, Elizabeth

    2017-07-01

    Environments of learning often remain unnoticed and unacknowledged. This study follows a student and myself as we became aware of our local environment at MIT and welcomed that environment as a vibrant contributor to our learning. We met this environment in part through its educational heritage in two centennial anniversaries: John Dewey's 1916 work Democracy and Education and MIT's 1916 move from Boston to the Cambridge campus designed by architect William Welles Bosworth. Dewey argued that for learning to arise through constructive, active engagement among students, the environment must be structured to accommodate investigation. In designing an environment conducive to practical and inventive studies, Bosworth created organic classical forms harboring the illusion of symmetry, while actually departing from it. Students and I are made open to the effects of this environment through the research pedagogy of "critical exploration in the classroom," which informs my practice of listening and responding, and teaching while researching; it lays fertile grounds for the involvement of one student and myself with our environment. Through viewing the moon and sky by eye, telescope, airplane, and astrolabe, the student developed as an observer. She became connected with the larger universe, and critical of formalisms that encage mind and space. Applying Euclid's geometry to the architecture outdoors, the student noticed and questioned classical features in Bosworth's buildings. By encountering these buildings while accompanied by their current restorer, we came to see means by which their structure and design promote human interaction and environmental sustainability as intrinsic to education. The student responded creatively to Bosworth's buildings through photography, learning view-camera, and darkroom techniques. In Dewey's view, democracy entails rejecting dualisms endemic in academic culture since the Greek classical era. Dewey regarded experimental science, where

  8. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  9. Final Report: 03-LW-005 Space-Time Secure Communications for Hostile Environments

    Candy, J V; Poggio, A J; Chambers, D H; Guidry, B L; Robbins, C L; Hertzog, C A; Dowla, F; Burke, G; Kane, R

    2005-10-31

    The development of communications for highly reverberative environments is a major concern for both the private and military sectors whether the application is aimed at the securing a stock order or stalking hostile in a tunnel or cave. Other such environments can range from a hostile urban setting populated with a multitude of buildings and vehicles to the simple complexity of a large number of sound sources that are common in the stock exchange, or military operations in an environment with a topographic features hills, valleys, mountains or even a maze of buried water pipes attempting to transmit information about any chemical anomalies in the water system servicing a city or town. These inherent obstructions cause transmitted signals to reflect, refract and disperse in a multitude of directions distorting both their shape and arrival times at network receiver locations. Imagine troops attempting to communicate on missions in underground caves consisting of a maze of chambers causing multiple echoes with the platoon leader trying to issue timely commands to neutralize terrorists. This is the problem with transmitting information in a complex environment. Waves are susceptible to multiple paths and distortions created by a variety of possible obstructions, which may exist in the particular propagation medium. This is precisely the communications problem we solve using the physics of wave propagation to not only mitigate the noxious effects created by the hostile medium, but also to utilize it in a constructive manner enabling a huge benefit in communications. We employ time-reversal (T/R) communications to accomplish this task. This project is concerned with the development of secure communications techniques that can operate even in the most extreme conditions while maintaining a secure link between host and client stations. We developed an approach based on the concept of time-reversal (T/R) signal processing. In fact, the development of T/R communication

  10. Induced Environment Contamination Monitor (IECM), air sampler - Results from the Space Transport System (STS-2) flight

    Peters, P. N.; Hester, H. B.; Bertsch, W.; Mayfield, H.; Zatko, D.

    1983-01-01

    An investigation involving sampling the rapidly changing environment of the Shuttle cargo bay is considered. Four time-integrated samples and one rapid acquisition sample were collected to determine the types and quantities of contaminants present during ascent and descent of the Shuttle. The sampling times for the various bottles were controlled by valves operated by the Data Acquisition and Control System (DACS) of the IECM. Many of the observed species were found to be common solvents used in cleaning surfaces. When the actual volume sampled is taken into account, the relative mass of organics sampled during descent is about 20 percent less than during ascent.

  11. Analyzing Test-As-You-Fly Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  12. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  13. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  14. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R

    Mancinelli, R. L.

    2015-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary

  15. The Affect of the Space Environment on the Survival of Halorubrum Chaoviator and Synechococcus (Nageli): Data from the Space Experiment OSMO on EXPOSE-R

    Mancinelli, R. L.

    2014-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life

  16. [Hygienic principles of the design of the space and architectural environment of kindergartens].

    Stepanova, M I; Kuchma, V R

    In the article there are considered current requirements for the design of the architectural environment of preschool institutions. These requirements provide conditions ofpreservation and promotion of health ofpreschool children. Among them are: the association of rooms according to a functional purpose; division of children collectives according to the age; rational placement of main rooms for the prevention ofpenetration of noise and pollution; ensuring convenientfunctional connections between different premises and group rooms and the parcel ofpreschool institutions; optimal solution of the light mode; rational air and thermal mode. There are made proposals for the expansion of the list of hygienic principles of the design of buildings of kindergartens: provision of conditions for realization of physical activity of children, the safe use of electronic educational equipment, and the creation of the barrier-free environment. There was established the insufficiency of areas of group rooms for the realization of voluntary motor activity of children in modern kindergartens and the need of the revision of the standard of the area of the group room per one child.

  17. Planning in the Continuous Operations Environment of the International Space Station

    Maxwell, Theresa; Hagopian, Jeff

    1996-01-01

    The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.

  18. Nuclear characteristics of epoxy resin as a space environment neutron shielding

    Adeli, Ruhollah [Nuclear Science and Technology Research Institute, Yazd (Iran, Islamic Republic of). Central Iran Research Complex; Shirmardi, Seyed Pezhman [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Mazinani, Saideh [Amirkabir Nanotechnology Research Institute, Tehran (Iran, Islamic Republic of); Ahmadi, Seyed Javad [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2017-03-15

    In recent years many investigations have been done for choosing applicable light neutron shielding in space environmental applications. In this study, we have considered the neutron radiation-protective characteristics of neat epoxy resin, a thermoplastic polymer material and have compared it with various candidate materials in neutron radiation protection such as Al 6061 alloy and Polyethylene. The aim of this investigation is the effect of type of moderator for fast neutron, notwithstanding neutron absorbers fillers. The nuclear interactions and the effective dose at shields have been studied with the Monte Carlo N-Particle transport code (MCNP), using variance reductions to reduce the relative error. Among the candidates, polymer matrix showed a better performance in attenuating fast neutrons and caused a lower neutron and secondary photon effective dose.

  19. Environment-behaviour studies: A synergetic bridge between designers and users of open space

    Barbara Goličnik

    2005-01-01

    Full Text Available This paper critically reflects on a kind and use of knowledge about the users of urban open public spaces in urban planning and design. It shows that designers’ perceptions about usage-spatial relationships are inadequate and many times very different form the actual situations. The findings are based on results from workshops with urban landscape designers and on the basis of observation and behavioural mapping in squares and parks of city centres of two European cities, Edinburgh and Ljubljana. As the behavioural maps graphically express structural relationships between physical qualities of places and their users, they represent a useful tool for improvement of designers’ knowledge and perception about potential and actual use of a place. In this respect they represent a basis for better cooperation and synergy between users and planners or designers, as the knowledge about any possible or expected behavioural patterns in places may lead into effective and responsive design.

  20. GaAs Led based NIEL spectrometer for the space radiation environment

    Houdayer, A.J.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.

    1999-01-01

    A NIEL (non-ionizing-energy-loss) spectrometer for the Mir space station is described. The NIEL spectrometer package contained 20 GaAs LEDs, 10 SiC LEDs and 13 locations for TLD-700s. In order to probe different energy regions of the radiation field, the package is divided into 4 compartments covered by absorbers of varying thicknesses. This device has been submitted to proton irradiation. The effects on both the response time and the intensity of the light were measured as a function of the fluence. One of the advantages of LEDs as radiation monitors is their sensitivity and it is shown that it would be possible to detect a fluence of 4*10 7 p/cm 2 of 10 MeV protons, with sensitivity scaled as 1/E for other energies. (A.C.)

  1. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  2. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  3. The simplified spherical harmonics (SP{sub L}) methodology with space and moment decomposition in parallel environments

    Gianluca, Longoni; Alireza, Haghighat [Florida University, Nuclear and Radiological Engineering Department, Gainesville, FL (United States)

    2003-07-01

    In recent years, the SP{sub L} (simplified spherical harmonics) equations have received renewed interest for the simulation of nuclear systems. We have derived the SP{sub L} equations starting from the even-parity form of the S{sub N} equations. The SP{sub L} equations form a system of (L+1)/2 second order partial differential equations that can be solved with standard iterative techniques such as the Conjugate Gradient (CG). We discretized the SP{sub L} equations with the finite-volume approach in a 3-D Cartesian space. We developed a new 3-D general code, Pensp{sub L} (Parallel Environment Neutral-particle SP{sub L}). Pensp{sub L} solves both fixed source and criticality eigenvalue problems. In order to optimize the memory management, we implemented a Compressed Diagonal Storage (CDS) to store the SP{sub L} matrices. Pensp{sub L} includes parallel algorithms for space and moment domain decomposition. The computational load is distributed on different processors, using a mapping function, which maps the 3-D Cartesian space and moments onto processors. The code is written in Fortran 90 using the Message Passing Interface (MPI) libraries for the parallel implementation of the algorithm. The code has been tested on the Pcpen cluster and the parallel performance has been assessed in terms of speed-up and parallel efficiency. (author)

  4. Increasing available FIFO space to prevent messaging queue deadlocks in a DMA environment

    Blocksome, Michael A [Rochester, MN; Chen, Dong [Croton On Hudson, NY; Gooding, Thomas [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Parker, Jeff [Rochester, MN

    2012-02-07

    Embodiments of the invention may be used to manage message queues in a parallel computing environment to prevent message queue deadlock. A direct memory access controller of a compute node may determine when a messaging queue is full. In response, the DMA may generate an interrupt. An interrupt handler may stop the DMA and swap all descriptors from the full messaging queue into a larger queue (or enlarge the original queue). The interrupt handler then restarts the DMA. Alternatively, the interrupt handler stops the DMA, allocates a memory block to hold queue data, and then moves descriptors from the full messaging queue into the allocated memory block. The interrupt handler then restarts the DMA. During a normal messaging advance cycle, a messaging manager attempts to inject the descriptors in the memory block into other messaging queues until the descriptors have all been processed.

  5. Population and prehistory II: space-limited human populations in constant environments.

    Puleston, Cedric O; Tuljapurkar, Shripad

    2008-09-01

    We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single non-trivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact.

  6. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  7. Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life

    Race, Margaret

    Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

  8. ISS and Space Environment Interactions in Event of Plasma Contactor Failure

    Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2000-01-01

    The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.

  9. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  10. External tank chill effect on the space transportation system launch pad environment

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  11. The Space-Time Cube as part of a GeoVisual Analytics Environment to support the understanding of movement data

    Kveladze, Irma; Kraak, M. J.; van Elzakker, C. P. J. M.

    2015-01-01

    This paper reports the results of an empirical usability experiment on the performance of the space-time cube in a GeoVisual analytics environment. It was developed to explore movement data based on the requirements of human geographers. The interactive environment consists of multiple coordinated...

  12. Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans

    Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.

    2001-01-01

    Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.

  13. Monuments in the Structure of an Urban Environment: The Source of Social Memory and the Marker of the Urban Space

    Antonova, N.; Grunt, E.; Merenkov, A.

    2017-10-01

    The major research objective was to analyze the role of monuments in the formation of local residents’ and guests’ representations about the city, its history and traditions. The authors consider the system of monuments’ location in the urban space as a way of its social construction, as the system of influence on citizens’ aesthetic feelings, as the formation of their attitudes towards maintaining of continuity in the activities of different generations for the improvement of the territory of their permanent residence. Methodology. An urban monument is considered in two ways: as a transfer of historical memory and as a social memory transfer, which includes the experience of previous generations. One of the main provisions of the study is the idea that monuments can lose their former social value, transforming into “simple” objects of a public place. The study was conducted in the city of Yekaterinburg, one of the largest, cultural, scientific and industrial Russian megalopolises in 2015. The primary data was collected using standardized interviews. Four hundred and twenty respondents at the age of and above 18 were questioned on the basis of quota sampling. Interviews with respondents were conducted in order to identify key problems involved and reasons for shaping respondents’ representations of monuments in the urban environment typical for the population of Russian megalopolises. The standardized interview guide included 15 questions. Findings and discussion. Our investigation has revealed that different monuments fulfil various functions in an urban environment (ideological, aesthetic, transferring, valuable, etc.). The study has unequivocally confirmed that objects in the urban space have a different emotional colour background: people paint them in accordance with the feelings that arise in their perception. Hence, some monuments effectively fulfil the functions of social memory transfer: they are remembered, they tell us about the events to

  14. Environment

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  15. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  16. A technical basis to relax the dew point specification for the environment in the vapor space in DWPF canisters

    Louthan, M.R. Jr.

    1995-05-01

    This memorandum establishes the technical basis to conclude that relaxing, from 0 C to 20 C, the dew point specification for the atmosphere in the vapor space (free volume) of a DWPF canister will not provide an environment that will cause significant amounts of corrosion induced degradation of the canister wall. The conclusion is based on engineering analysis, experience and review of the corrosion literature. The basic assumptions underlying the conclusion are: (1) the canister was fabricated from Type 304L stainless steel; (2) the corrosion behavior of the canister material, including base metal, fusion zones and heat effected zones, is typified by literature data for, and industrial experience with, 300 series austenitic stainless steels; and (3) the glass-metal crevices created during the pouring operation will not alter the basic corrosion resistance of the steel although such crevices might serve as sites for the initiation of minor amounts of corrosion on the canister wall

  17. The hydrodynamics of plant spacing distance: Optimizing consumptive and non-consumptive water use in water-limited environments

    Trautz, A.; Illangasekare, T. H.; Rodriguez-Iturbe, I.; Howington, S. E.

    2017-12-01

    The availability of soil moisture in water-stressed environments is one of the primary factors controlling plant performance and overall plant community productivity and structure. The minimization of non-consumptive water loss, or water not utilized by plants (i.e. consumptive use), to bare soil evaporation is a key plant survival strategy and important agricultural consideration. Competitive (negative) and facilitative (positive) interactions between individual plants play a pivotal role in controlling the local coupled soil-plant-atmosphere hydrodynamics that affect both consumptive and non-consumptive water use. The strength of these two types of interactions vary with spacing distance between individuals. In a recent PNAS publication, we hypothesized that there exists a quantifiable spacing distance between plants that optimizes the balance between competition and facilitation, and hence maximizes water conservation. This study expands upon on our previous work, for which only a subset of the data generated was used, through the development and testing of a numerical model that can test a conceptual model we presented. The model simulates soil-plant-atmosphere continuum heat and mass transfer hydrodynamics, taking into account the complex feedbacks that exist between the near-surface atmosphere, subsurface, and plants. This model has been developed to explore the combined effects of subsurface competition and micro-climatic amelioration (i.e., facilitation) on local soil moisture redistribution and fluxes in the context of water-stressed environments that experienced sustained winds. We believe the results have the potential to provide new insights into climatological, ecohydrological, and hydrological problems pertaining to: the extensively used and much debated stress-gradient hypothesis, plant community population self-organization, agricultural best practices (e.g., water management), and spatial heterogeneity of land-atmosphere fluxes.

  18. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  19. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  20. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  1. Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment: Advantages and Limitations

    Harald Zandler

    2015-04-01

    Full Text Available In spite of considerable efforts to monitor global vegetation, biomass quantification in drylands is still a major challenge due to low spectral resolution and considerable background effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in an arid region characterized by challenging conditions for satellite-based analysis: The Eastern Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both sensors, correlated these indices with field-mapped biomass while considering the multiple comparison problem, and assessed the predictive performance of single-variable linear models constructed with data from each of the sensors. Results showed an increased performance of the hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not feasible in this region, underlining the importance of repeated model building. This study indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass prediction in the world’s arid environments.

  2. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    Erez, Mattan

    2018-02-21

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.

  3. Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad

    Shahid Naeem

    2018-01-01

    Full Text Available Increasing trends of urbanization lead to vegetation degradation in big cities and affect the urban thermal environment. This study investigated (1 the cooling effect of urban green space spatial patterns on Land Surface Temperature (LST; (2 how the surrounding environment influences the green space cool islands (GCI, and vice versa. The study was conducted in two Asian capitals: Beijing, China and Islamabad, Pakistan by utilizing Gaofen-1 (GF-1 and Landsat-8 satellite imagery. Pearson’s correlation and normalized mutual information (NMI were applied to investigate the relationship between green space characteristics and LST. Landscape metrics of green spaces including Percentage of Landscape (PLAND, Patch Density (PD, Edge Density (ED, and Landscape Shape Index (LSI were selected to calculate the spatial patterns of green spaces, whereas GCI indicators were defined by Green Space Range (GR, Temperature Difference (TD, and Temperature Gradient (TG. The results indicate that both vegetation composition and configuration influence LST distributions; however, vegetation composition appeared to have a slightly greater effect. The cooling effect can be produced more effectively by increasing green space percentage, planting trees in large patches with equal distribution, and avoiding complex-shaped green spaces. The GCI principle indicates that LST can be decreased by increasing the green space area, increasing the water body fraction, or by decreasing the fraction of impervious surfaces. GCI can also be strengthened by decreasing the fraction of impervious surfaces and increasing the fraction of water body or vegetation in the surrounding environment. The cooling effect of vegetation and water could be explained based on their thermal properties. Beijing has already enacted the green-wedge initiative to increase the vegetation canopy. While designing the future urban layout of Islamabad, the construction of artificial lakes within the urban green

  4. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  5. Human Systems Design Criteria

    Rasmussen, Jens

    1982-01-01

    This paper deals with the problem of designing more humanised computer systems. This problem can be formally described as the need for defining human design criteria, which — if used in the design process - will secure that the systems designed get the relevant qualities. That is not only...... the necessary functional qualities but also the needed human qualities. The author's main argument is, that the design process should be a dialectical synthesis of the two points of view: Man as a System Component, and System as Man's Environment. Based on a man's presentation of the state of the art a set...... of design criteria is suggested and their relevance discussed. The point is to focus on the operator rather than on the computer. The crucial question is not to program the computer to work on its own conditions, but to “program” the operator to function on human conditions....

  6. Application of Multiple Criteria Decision Making to Renovation of Multi-Residential Historic Buildings

    Galiotto, Nicolas; Flourentzou, Flourentzos; Thalmann, Philippe

    2013-01-01

    project, which fulfills simultaneously and optimally all three pillars of sustainability. Multiple criteria decision making methodologies can help to improve the decision environment and handle the whole space of constraints. It therefore leads the stakeholders to find consensual solutions. In this paper...

  7. Evaluation criteria for spectral design of camouflage

    Škerlind, Christina; Fagerström, Jan; Hallberg, Tomas; Kariis, Hans

    2015-10-01

    In development of visual (VIS) and infrared (IR) camouflage for signature management, the aim is the design of surface properties of an object to spectrally match or adapt to a background and thereby minimizing the contrast perceived by a threatening sensor. The so called 'ladder model" relates the requirements for task measure of effectiveness with surface structure properties through the steps signature effectiveness and object signature. It is intended to link materials properties via platform signature to military utility and vice versa. Spectral design of a surface intends to give it a desired wavelength dependent optical response to fit a specific application of interest. Six evaluation criteria were stated, with the aim to aid the process to put requirement on camouflage and for evaluation. The six criteria correspond to properties such as reflectance, gloss, emissivity, and degree of polarization as well as dynamic properties, and broadband or multispectral properties. These criteria have previously been exemplified on different kinds of materials and investigated separately. Anderson and Åkerlind further point out that the six criteria rarely were considered or described all together in one and same publication previously. The specific level of requirement of the different properties must be specified individually for each specific situation and environment to minimize the contrast between target and a background. The criteria or properties are not totally independent of one another. How they are correlated is part of the theme of this paper. However, prioritization has been made due to the limit of space. Therefore all of the interconnections between the six criteria will not be considered in the work of this report. The ladder step previous to digging into the different material composition possibilities and choice of suitable materials and structures (not covered here), includes the object signature and decision of what the spectral response should be

  8. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  9. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    Johnson, K.; Kim, R.; Echeverry, J.

    Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS

  10. THE MOBILE SPACE AND MOBILE TARGETING ENVIRONMENT FOR INTERNET USERS: FEATURES OF MODEL SUBMISSION AND USING IN EDUCATION

    V. Bykov

    2013-08-01

    Full Text Available Article submitted the results of the analysis of the use of mobile devices in education. The substantiation of the definition of user mobility in the Internet space, taking into account the variability of mobile devices and communications. The use of mobile devices in the educational process is based on the paradigm of open and equal access to quality education. Considered the technology of using different types of devices and their functions . The conditions of user mobility in the internet environment, the factors influencing it, the creation and storage of mobile communications resources . Provided with basic mathematical model of user behavior in a virtual network. A model of migration as a user from device to device , and its geographic move , and then use the resulting model for the design of distance learning systems . Preliminary forecasts have been made on the development of education in the transition from the remote technology to open. It is assumed the appearance of new types of personal devices that will combine the power of a desktop PC and the autonomy of smartphones with constant access for broadband wireless connection to the Internet. The use of cloud technology to store and process information resources training helps centralize and synchronize data and access to them from different devices.

  11. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-01-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T g decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10 15 cm −2 , the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10 15 cm −2 , the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  12. Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.

    Boyle, Christopher; Kim, Il Yong

    2011-06-03

    Since the late 1980s, computational analysis of total hip arthroplasty (THA) prosthesis components has been completed using macro-level bone remodeling algorithms. The utilization of macro-sized elements requires apparent bone densities to predict cancellous bone strength, thereby, preventing visualization and analysis of realistic trabecular architecture. In this study, we utilized a recently developed structural optimization algorithm, design space optimization (DSO), to perform a micro-level three-dimensional finite element bone remodeling simulation on the human proximal femur pre- and post-THA. The computational simulation facilitated direct performance comparison between two commercially available prosthetic implant stems from Zimmer Inc.: the Alloclassic and the Mayo conservative. The novel micro-level approach allowed the unique ability to visualize the trabecular bone adaption post-operation and to quantify the changes in bone mineral content by region. Stress-shielding and strain energy distribution were also quantified for the immediate post-operation and the stably fixated, post-remodeling conditions. Stress-shielding was highest in the proximal region and remained unchanged post-remodeling; conversely, the mid and distal portions show large increases in stress, suggesting a distal shift in the loadpath. The Mayo design conserves bone mass, while simultaneously reducing the incidence of stress-shielding compared to the Alloclassic, revealing a key benefit of the distinctive geometry. Several important factors for stable fixation, determined in clinical evaluations from the literature, were evident in both designs: high levels of proximal bone loss and distal bone densification. The results suggest this novel computational framework can be utilized for comparative hip prosthesis shape, uniquely considering the post-operation bone remodeling as a design criterion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  14. All Digital Switch-Mode DC/DC Converters with BIST Functionality for Harsh Space Environments, Phase I

    National Aeronautics and Space Administration — The Space Micro Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  15. Integration of three important urban spaces in the city of Patras. A design research on the relationship of characteristics of space and the enriched environment

    Vasiliki Kondyli

    2015-09-01

    Full Text Available This contribution presents a design project that focuses on three important urban spaces in the city of Patras. The contribution deals with some of the fundamental problems which depict in these particular areas. Two of the most essential issues of these abandoned and isolated places are the accessibility of pedestrians and the lack of identity. A design experiment is developed, identifying disadvantages of the space and taking into consideration groups of people that are interested in an upcoming change, This experiment is based on knowledge of neuroscience about space and it deals with human’s experience and senses. It focuses on open urban spaces and the consolidation of a cultural and historical place into daily life.

  16. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  17. Evaluation of air quality in environmental impact assessments. Evaluation criteria and standards with a view to effective precautionary care of the environment; Die Bewertung der Luftqualitaet bei Umweltvertraeglichkeitspruefungen. Bewertungsmassstaebe und Standards zur Konkretisierung einer wirksamen Umweltvorsorge

    Kuehling, W.; Peters, H.J.

    1994-12-31

    Since the beginning of the debate surrounding the environmental impact statement in Germany, opinion is divided over what yardsticks should be applied in assessing a scheme`s environmental impact, and what consequences they involve for the environment. This book is a comprehensive compilation of air quality standards by substances and objects of protection containing a definition of the term ``active precautionary care of the environment`` as mentioned in section 1 of the act on environmental impact statements (UVPG). The reasons that the book is important for day-to-day work with environmental impact statements lie, for one thing, in its technical relevance and, for the other, in the fact that the proposed assessment criteria are legally unobjectionable. The book stakes out the legal boundaries, points out differentiated criteria for the definition of standards, selects relevant substances, explains the procedure in defining standards and the evaluation grid used, demonstrates how the standards are applied, and contains a tabulated summary. Part two of the book deals with the investigated compounds and groups of compounds. (orig./HP) [Deutsch] Seit der UVP-Debatte in Deutschland ist strittig, welcher Massstab bei der Beurteilung der Umweltvertraeglichkeit einer Massnahme anzulegen ist und wie deren Umweltauswirkungen zu bewerten sind. Mit der vorliegenden Arbeit liegt eine umfassende stoff- und schutzgutorientierte Zusammenstellung von Luftqualitaetsstandards und eine Interpretation des Begriffes ``wirksame Umweltvorsorge`` nach Para. 1 UVPG vor. Die Bedeutung der Arbeit fuer die UVP-Praxis liegt neben der fachwissenschaftlichen Relevanz vor allem auch in der juristischen Absicherung der vorgeschlagenen Bewertungsmassstaebe. (orig./HP)

  18. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary

  19. Workplaces as Transformative Learning Spaces

    Maslo, Elina

    2010-01-01

    some other examples on “successful learning” from the formal, informal and non-formal learning environments, trying to prove those criteria. This presentation provides a view on to new examples on transformative learning spaces we discovered doing research on Workplace Learning in Latvia as a part......Abstract to the Vietnam Forum on Lifelong Learning: Building a Learning Society Hanoi, 7-8 December 2010 Network 2: Competence development as Workplace Learning Title of proposal: Workplaces as Transformative Learning Spaces Author: Elina Maslo, dr. paed., University of Latvia, elina@latnet.lv Key...... words: learning, lifelong learning, adult learning, workplace learning, transformative learning spaces During many years of research on lifelong foreign language learning with very different groups of learners, we found some criteria, which make learning process successful. Since then we tried to find...

  20. Assessment of the effects of the zero gravity environment on the health and safety of space workers

    1980-01-01

    A review was conducted of currently available information relating to adverse effects to the health and safety that space power system (SPS) space workers may experience. Currently available information on the responses of humans to space flight is somewhat limited and was obtained under conditions which are grossly different from conditions to be experienced by future space workers. The limitations in information and differences in conditions were considered in the assessment of potential health and safety hazards to the SPS space workers. The study did not disclose any adverse effects that would result in long term deviations to the medical physiological health of space workers so long as proper preventive or ameliorating action were taken.

  1. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment, Phase I

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  2. Bibliography of the space processing program. Volume 1: A compilation through June 1974, Parts 1 and 2. [space manufacturing/spacecraft construction materials - aerospace environments

    Shoultz, M. B.; Mcclurken, E. W., Jr.

    1975-01-01

    A compilation of NASA research efforts in the area of space environmental effects on materials and processes is presented. Topics considered are: (1) fluid mechanics and heat transfer; (2) crystal growth and containerless melts; (3) acoustics; (4) glass and ceramics; (5) electrophoresis; (6) welding; and (7) exobiology.

  3. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station

    Krikorian, A. D.

    1996-01-01

    How cells manage without gravity and how they change in the absence of gravity are basic questions that only prolonged life on a Space station will enable us to answer. We know from investigations carried out on various kinds of Space vehicles and stations that profound physiological effects can and often to occur. We need to know more of the basic biochemistry and biophysics both of cells and of whole organisms in conditions of reduced gravity. The unique environment of Space affords plant scientists an unusual opportunity to carry out experiments in microgravity, but some major challenges must be faced before this can be done with confidence. Various laboratory activities that are routine on Earth take on special significance and offer problems that need imaginative resolution before even a relatively simple experiment can be reliably executed on a Space station. For example, scientists might wish to investigate whether adaptive or other changes that have occurred in the environment of Space are retained after return to Earth-normal conditions. Investigators seeking to carry out experiments in the low-gravity environment of Space using cultured cells will need to solve the problem of keeping cultures quiescent for protracted periods before an experiment is initiated, after periodic sampling is carried out, and after the experiment is completed. This review gives an evaluation of a range of strategies that can enable one to manipulate cell physiology and curtail growth dramatically toward this end. These strategies include cryopreservation, chilling, reduced oxygen, gel entrapment strategies, osmotic adjustment, nutrient starvation, pH manipulation, and the use of mitotic inhibitors and growth-retarding chemicals. Cells not only need to be rendered quiescent for protracted periods but they also must be recoverable and further grown if it is so desired. Elaboration of satisfactory procedures for management of cells and tissues at "near zero or minimal growth" will

  4. Developing Near Real-time Data-assimilative Models and Tools for the Space Environment, Phase I

    National Aeronautics and Space Administration — The IDA4D and AMIE data assimilation methods are currently of limited use for real-time space weather applications because either they don't run in real-time (IDA4D)...

  5. Assessment of the effects of the zero gravity environment on the health and safety of space workers. Summary report

    1980-02-18

    A review was conducted of currently available information relating to adverse effects to the health and safety that SPS space workers may experience. Currently available information on the responses of humans to space flight is somewhat limited and was obtained under conditions which are grossly different from conditions to be experienced by future space workers. The limitations in information and differences in conditions have been considered in the assessment of potential health and safety hazards to the SPS space workers. The study did not disclose any adverse effects that would result in long term deviations to the medical or physiological health of space workers so long as proper preventive or ameleorating actions were taken.

  6. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  7. Space space space

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  8. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  9. Non-ionizing and ionizing dosimetry in a space radiation environment with GaAs and SiC LEDs

    Houdayer, A.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.C.; Carlone, C.; Simard, JF.

    1996-01-01

    This paper describes a dosimetry experiment that will be carried onboard the Russian MIR space station. The experiment will compare the ionizing and Non-ionizing Energy Loss (NEL) in semiconductors of the radiation encountered in space. The ionizing dose will be detected using ThermoLuminescent Dosimeter (TLD) whereas SiC and GaAs LEDs will be used to measure the nonionizing component. The tray will be mounted on the outside of the station for a minimum period of 4 months. The goal of the experiment is to determine the feasibility of using SiC and GaAs LEDs as NEL dosimeters in space. (author)

  10. Design Criteria in Revitalizing Old Warehouse District on the Kalimas Riverbank Area of Surabaya City

    Endang Titi Sunarti Darjosanjoto

    2015-09-01

    Full Text Available Neglected warehouse buildings along the Kalimas River have created a poor urban façade in terms of visual quality. However the city government is planning to encourage tourism activities that take advantage of Kalimas River and its surrounding environment. If there is no good plan in accordance with the concept of local identity for old city of Surabaya, it will reduce it as a tourist attraction. In reference to the issue above, design criteria needs to be compiled for revitalizing the old warehouse district, which is expected to revive the identity of this district and be able to support the city’s tourism. This study was conducted by recording field observations, and the data was analyzed using the character appraisal method. The character appraisal analysis method is presented in the form of street picture data, which is divided into determined segments. The results show that there are five components including place attachment, sustainable urban design, green open space design, ecological riverfront design, and activity support that should be considered in the revitalization of the warehouse district. Those components are divided into two parts: building and open space at the riverbank. There are 13 design criteria for building at the riverbank, while there are 14 design criteria for open space at the riverbank. These design criteria can enrich the warehouse district’s revitalization by improving the visual quality of the urban environment.Keywords: design criteria; warehouse district; riverbank; Surabaya; revitalization.

  11. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  12. Information Environment is an Integral Element of Informational Space in the Process of Professional Development of Future Teacher of Physical Culture

    Yuri V. Dragnev

    2012-04-01

    Full Text Available The article examines information environment as an integral element of information space in the process of professional development of future teacher of physical culture, notes that the strategic objective of the system of higher education is training of competent future teacher of physical culture in the field of information technologies, when information competence and information culture are major components of professionalism in modern information-oriented society

  13. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  14. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  15. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  16. To Ensure the Integrity of the Cryogenic Propellant Depot Tank Within the Expected Radiation and Space Debris Environment, Phase II

    National Aeronautics and Space Administration — HyPerComp Engineering, Inc. (HEI) proposes to develop well characterized, structurally reliable filament wound composite pressure vessels for use in both cryogenic...

  17. Cost-Effective ISS Space-Environment Technology Validation of Advanced Roll-Out Solar Array (ROSA), Phase II

    National Aeronautics and Space Administration — DSS proposes to systematically mature, mitigate risk for; and perform hardware-based ground validations / demonstrations of a low-cost, high technology payoff,...

  18. High Fidelity Measurement of Free Space Solar Particle Event and Galactic Cosmic Ray Environments at Intermediate Energies

    Leitgab, M.

    2018-02-01

    A charged particle measurement experiment mounted externally to the Deep Space Gateway is proposed, contributing to improving astronaut radiation exposure management during Solar Particle Events and Extra Vehicular Activities.

  19. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known

  20. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort.

    Paquet, Catherine; Coffee, Neil T; Haren, Matthew T; Howard, Natasha J; Adams, Robert J; Taylor, Anne W; Daniel, Mark

    2014-07-01

    We investigated whether residential environment characteristics related to food (unhealthful/healthful food sources ratio), walkability and public open spaces (POS; number, median size, greenness and type) were associated with incidence of four cardio-metabolic risk factors (pre-diabetes/diabetes, hypertension, dyslipidaemia, abdominal obesity) in a biomedical cohort (n=3205). Results revealed that the risk of developing pre-diabetes/diabetes was lower for participants in areas with larger POS and greater walkability. Incident abdominal obesity was positively associated with the unhealthful food environment index. No associations were found with hypertension or dyslipidaemia. Results provide new evidence for specific, prospective associations between the built environment and cardio-metabolic risk factors. Copyright © 2014 Elsevier Ltd. All rights reserved.