WorldWideScience

Sample records for space dimensional reduction

  1. Coset space dimensional reduction of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))

    1992-10-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).

  2. Coset space dimensional reduction of gauge theories

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1992-01-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.)

  3. Dimensional reduction from entanglement in Minkowski space

    International Nuclear Information System (INIS)

    Brustein, Ram; Yarom, Amos

    2005-01-01

    Using a quantum field theoretic setting, we present evidence for dimensional reduction of any sub-volume of Minkowksi space. First, we show that correlation functions of a class of operators restricted to a sub-volume of D-dimensional Minkowski space scale as its surface area. A simple example of such area scaling is provided by the energy fluctuations of a free massless quantum field in its vacuum state. This is reminiscent of area scaling of entanglement entropy but applies to quantum expectation values in a pure state, rather than to statistical averages over a mixed state. We then show, in a specific case, that fluctuations in the bulk have a lower-dimensional representation in terms of a boundary theory at high temperature. (author)

  4. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  5. On dimensional reduction over coset spaces

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    Gauge theories defined in higher dimensions can be dimensionally reduced over coset spaces giving definite predictions for the resulting four-dimensional theory. We present the most interesting features of these theories as well as an attempt to construct a model with realistic low energy behaviour within this framework. (author)

  6. Coset Space Dimensional Reduction approach to the Standard Model

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1988-01-01

    We present a unified theory in ten dimensions based on the gauge group E 8 , which is dimensionally reduced to the Standard Mode SU 3c xSU 2 -LxU 1 , which breaks further spontaneously to SU 3L xU 1em . The model gives similar predictions for sin 2 θ w and proton decay as the minimal SU 5 G.U.T., while a natural choice of the coset space radii predicts light Higgs masses a la Coleman-Weinberg

  7. The N=4 supersymmetric E8 gauge theory and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Olive, D.; West, P.

    1983-01-01

    Reasons are given to suggest that the N=4 supersymmetric E 8 gauge theory be considered as a serious candidate for a physical theory. The symmetries of this theory are broken by a scheme based on coset space dimensional reduction. The resulting theory possesses four conventional generations of low-mass fermions together with their mirror particles. (orig.)

  8. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  9. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  10. An alternative dimensional reduction prescription

    International Nuclear Information System (INIS)

    Edelstein, J.D.; Giambiagi, J.J.; Nunez, C.; Schaposnik, F.A.

    1995-08-01

    We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to drop the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular 2-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher dimensional space. (author). 12 refs

  11. Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction.

    Science.gov (United States)

    Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias

    2018-05-16

    There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered.

  12. Feature Space Dimensionality Reduction for Real-Time Vision-Based Food Inspection

    Directory of Open Access Journals (Sweden)

    Mai Moussa CHETIMA

    2009-03-01

    Full Text Available Machine vision solutions are becoming a standard for quality inspection in several manufacturing industries. In the processed-food industry where the appearance attributes of the product are essential to customer’s satisfaction, visual inspection can be reliably achieved with machine vision. But such systems often involve the extraction of a larger number of features than those actually needed to ensure proper quality control, making the process less efficient and difficult to tune. This work experiments with several feature selection techniques in order to reduce the number of attributes analyzed by a real-time vision-based food inspection system. Identifying and removing as much irrelevant and redundant information as possible reduces the dimensionality of the data and allows classification algorithms to operate faster. In some cases, accuracy on classification can even be improved. Filter-based and wrapper-based feature selectors are experimentally evaluated on different bakery products to identify the best performing approaches.

  13. The dimensional reduction in a multi-dimensional cosmology

    International Nuclear Information System (INIS)

    Demianski, M.; Golda, Z.A.; Heller, M.; Szydlowski, M.

    1986-01-01

    Einstein's field equations are solved for the case of the eleven-dimensional vacuum spacetime which is the product R x Bianchi V x T 7 , where T 7 is a seven-dimensional torus. Among all possible solutions, the authors identify those in which the macroscopic space expands and the microscopic space contracts to a finite size. The solutions with this property are 'typical' within the considered class. They implement the idea of a purely dynamical dimensional reduction. (author)

  14. Central subspace dimensionality reduction using covariance operators.

    Science.gov (United States)

    Kim, Minyoung; Pavlovic, Vladimir

    2011-04-01

    We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.

  15. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  16. Dimensional Reduction and Hadronic Processes

    International Nuclear Information System (INIS)

    Signer, Adrian; Stoeckinger, Dominik

    2008-01-01

    We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.

  17. Reduction of respiratory ghosting motion artifacts in conventional two-dimensional multi-slice Cartesian turbo spin-echo: which k-space filling order is the best?

    Science.gov (United States)

    Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi

    2018-06-01

    The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.

  18. Study of the X-Ray Diagnosis of Unstable Pelvic Fracture Displacements in Three-Dimensional Space and its Application in Closed Reduction.

    Science.gov (United States)

    Shi, Chengdi; Cai, Leyi; Hu, Wei; Sun, Junying

    2017-09-19

    ABSTRACTS Objective: To study the method of X-ray diagnosis of unstable pelvic fractures displaced in three-dimensional (3D) space and its clinical application in closed reduction. Five models of hemipelvic displacement were made in an adult pelvic specimen. Anteroposterior radiographs of the pelvis were analyzed in PACS. The method of X-ray diagnosis was applied in closed reductions. From February 2012 to June 2016, 23 patients (15 men, 8 women; mean age, 43.4 years) with unstable pelvic fractures were included. All patients were treated by closed reduction and percutaneous cannulate screw fixation of the pelvic ring. According to Tile's classification, the patients were classified into type B1 in 7 cases, B2 in 3, B3 in 3, C1 in 5, C2 in 3, and C3 in 2. The operation time and intraoperative blood loss were recorded. Postoperative images were evaluated by Matta radiographic standards. Five models of displacement were made successfully. The X-ray features of the models were analyzed. For clinical patients, the average operation time was 44.8 min (range, 20-90 min) and the average intraoperative blood loss was 35.7 (range, 20-100) mL. According to the Matta standards, 7 cases were excellent, 12 cases were good, and 4 were fair. The displacements in 3D space of unstable pelvic fractures can be diagnosed rapidly by X-ray analysis to guide closed reduction, with a satisfactory clinical outcome.

  19. Dimensional reduction in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica

    1994-12-31

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.

  20. Dimensional reduction in anomaly mediation

    International Nuclear Information System (INIS)

    Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ε arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ε dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity

  1. Extended supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2000-01-01

    Since the generators of the two SU(2) groups which comprise SO(4) are not Hermitian conjugates of each other, the simplest supersymmetry algebra in four-dimensional Euclidean space more closely resembles the N=2 than the N=1 supersymmetry algebra in four-dimensional Minkowski space. An extended supersymmetry algebra in four-dimensional Euclidean space is considered in this paper; its structure resembles that of N=4 supersymmetry in four-dimensional Minkowski space. The relationship of this algebra to the algebra found by dimensionally reducing the N=1 supersymmetry algebra in ten-dimensional Euclidean space to four-dimensional Euclidean space is examined. The dimensional reduction of N=1 super Yang-Mills theory in ten-dimensional Minkowski space to four-dimensional Euclidean space is also considered

  2. Dimensionality reduction with unsupervised nearest neighbors

    CERN Document Server

    Kramer, Oliver

    2013-01-01

    This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustr...

  3. Dimensionality reduction of collective motion by principal manifolds

    Science.gov (United States)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  4. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1995-09-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  5. Dimensional reduction for D3-brane moduli

    International Nuclear Information System (INIS)

    Cownden, Brad; Frey, Andrew R.; Marsh, M.C. David; Underwood, Bret

    2016-01-01

    Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.

  6. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  7. Adaptive Sampling for Nonlinear Dimensionality Reduction Based on Manifold Learning

    DEFF Research Database (Denmark)

    Franz, Thomas; Zimmermann, Ralf; Goertz, Stefan

    2017-01-01

    We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approxi...... to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime.......We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space...

  8. Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery

    Science.gov (United States)

    Ochilov, S.; Alam, M. S.; Bal, A.

    2006-05-01

    Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.

  9. On the space dimensionality based on metrics

    International Nuclear Information System (INIS)

    Gorelik, G.E.

    1978-01-01

    A new approach to space time dimensionality is suggested, which permits to take into account the possibility of altering dimensionality depending on the phenomenon scale. An attempt is made to give the definition of dimensionality, equivalent to a conventional definition for the Euclidean space and variety. The conventional definition of variety dimensionality is connected with the possibility of homeomorphic reflection of the Euclidean space on some region of each variety point

  10. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  11. Dimensional reduction of a generalized flux problem

    International Nuclear Information System (INIS)

    Moroz, A.

    1992-01-01

    In this paper, a generalized flux problem with Abelian and non-Abelian fluxes is considered. In the Abelian case we shall show that the generalized flux problem for tight-binding models of noninteracting electrons on either 2n- or (2n + 1)-dimensional lattice can always be reduced to an n-dimensional hopping problem. A residual freedom in this reduction enables one to identify equivalence classes of hopping Hamiltonians which have the same spectrum. In the non-Abelian case, the reduction is not possible in general unless the flux tensor factorizes into an Abelian one times are element of the corresponding algebra

  12. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    Science.gov (United States)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  13. Denoising and dimensionality reduction of genomic data

    Science.gov (United States)

    Capobianco, Enrico

    2005-05-01

    Genomics represents a challenging research field for many quantitative scientists, and recently a vast variety of statistical techniques and machine learning algorithms have been proposed and inspired by cross-disciplinary work with computational and systems biologists. In genomic applications, the researcher deals with noisy and complex high-dimensional feature spaces; a wealth of genes whose expression levels are experimentally measured, can often be observed for just a few time points, thus limiting the available samples. This unbalanced combination suggests that it might be hard for standard statistical inference techniques to come up with good general solutions, likewise for machine learning algorithms to avoid heavy computational work. Thus, one naturally turns to two major aspects of the problem: sparsity and intrinsic dimensionality. These two aspects are studied in this paper, where for both denoising and dimensionality reduction, a very efficient technique, i.e., Independent Component Analysis, is used. The numerical results are very promising, and lead to a very good quality of gene feature selection, due to the signal separation power enabled by the decomposition technique. We investigate how the use of replicates can improve these results, and deal with noise through a stabilization strategy which combines the estimated components and extracts the most informative biological information from them. Exploiting the inherent level of sparsity is a key issue in genetic regulatory networks, where the connectivity matrix needs to account for the real links among genes and discard many redundancies. Most experimental evidence suggests that real gene-gene connections represent indeed a subset of what is usually mapped onto either a huge gene vector or a typically dense and highly structured network. Inferring gene network connectivity from the expression levels represents a challenging inverse problem that is at present stimulating key research in biomedical

  14. Multichannel transfer function with dimensionality reduction

    KAUST Repository

    Kim, Han Suk

    2010-01-17

    The design of transfer functions for volume rendering is a difficult task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel. In this paper, we propose a new method for transfer function design. Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. The high-dimensional data of the domain is reduced by applying recently developed nonlinear dimensionality reduction algorithms. In this paper, we used Isomap as well as a traditional algorithm, Principle Component Analysis (PCA). Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. In this publication we report on the impact of the dimensionality reduction algorithms on transfer function design for confocal microscopy data.

  15. Pole masses of quarks in dimensional reduction

    International Nuclear Information System (INIS)

    Avdeev, L.V.; Kalmykov, M.Yu.

    1997-01-01

    Pole masses of quarks in quantum chromodynamics are calculated to the two-loop order in the framework of the regularization by dimensional reduction. For the diagram with a light quark loop, the non-Euclidean asymptotic expansion is constructed with the external momentum on the mass shell of a heavy quark

  16. Teleportation schemes in infinite dimensional Hilbert spaces

    International Nuclear Information System (INIS)

    Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori

    2005-01-01

    The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples

  17. General dimensional reduction of ten-dimensional supergravity and superstring

    International Nuclear Information System (INIS)

    Ferrara, S.; Porrati, M.

    1986-01-01

    Dimensional reductions of supergravity theories are shown to yield to specific glasses of four-dimensional no-scale models with N=4, 2 or 1 residual supersymmetry. N=1 ''maximal'' supergravity lagrangian, corresponding to the ''untwisted'' sector of orbifold compactification of superstrings, contains nine families and has a no-scale structure based on the Kaehler manifold [SU(3, 3+3n)/SU(3)xSU(3+3n)]x[SU(1, 1)/U(1)]. The quantum consistency of the resulting theories give information on the non Kaluza-Klein (string) ''twisted'' sector. (orig.)

  18. Construction of N=8 supergravity theories by dimensional reduction

    International Nuclear Information System (INIS)

    Boucher, W.

    1985-01-01

    In this paper I ask which N=8 supergravity theories in four dimensions can be obtained by dimensional reduction of the N=1 supergravity theory in eleven dimensions. Several years ago Scherk and Schwarz produced a particular class of N = 8 theories by giving a dimensional reduction scheme on the restricted class of coset spaces, G/H, with dim H=0 (and therefore dim G=7). I generalize their considerations by looking at arbitrary (seven-dimensional) coset spaces. Also, instead of giving a particular ansatz which happens to work, I set about the distinctly more difficult task of determining all ansatzes which produce N=8 theories. The basic ingredient of my dimensional reduction scheme is the demand that certain symmetries, including supersymmetry, be truncated consistently. I find the surprising result that the only N=8 theories obtainable within the contexts of my scheme are those theories already written down by Scherk and Schwarz. In particular dim H=0 and dim G=7. Independently of these considerations, I prove that any dimensional reduction scheme which consistently truncates supersymmetry must also be consistent with the equations of motion. I discuss Lorentz-invariant solutions of the theories of Scherk and Schwarz, pointing out that since the ansatz of Scherk and Schwarz consistently truncates supersymmetry, any solution of these theories is also a solution of the N=1 supergravity theory in eleven dimensions and, hence, in particular that there is a Freund-Rubin-type ansatz for these theories. However I demonstrate that for most gauge groups the ansatz must be trivial which implies that for these theories the cosmological constant of any Lorentz-invariant solution must be zero (classically). Finally, I make some comparisons with work by Manton on dimensional reduction. (orig.)

  19. Coset space dimension reduction of gauge theories

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1989-01-01

    A very interesting approach in the attempts to unify all the interactions is to consider that a unification takes place in higher than four dimensions. The most ambitious program based on the old Kaluza-Klein idea is not able to reproduce the low energy chiral nature of the weak interactions. A suggested way out was the introduction of Yang-Mills fields in the higher dimensional theory. From the particle physics point of view the most important question is how such a theory behaves in four dimensions and in particular in low energies. Therefore most of our efforts concern studies of the properties of an attractive scheme, the Coset-Space-Dimensional-Reduction (C.S.D.R.) scheme, which permits the study of the effective four dimensional theory coming from a gauge theory defined in higher dimensions. Here we summarize the C.S.D.R. procedure the main the rems which are obeyed and to present a realistic model which is the result of the model building efforts that take into account all the C.S.D.R. properties. (orig./HSI)

  20. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    Science.gov (United States)

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  1. Kantowski-Sachs multidimensional cosmological models and dynamical dimensional reduction

    International Nuclear Information System (INIS)

    Demianski, M.; Rome Univ.; Golda, Z.A.; Heller, M.; Szydlowski, M.

    1988-01-01

    Einstein's field equations are solved for a multidimensional spacetime (KS) x Tsup(m), where (KS) is a four-dimensional Kantowski-Sachs spacetime and Tsup(m) is an m-dimensional torus. Among all possible vacuum solutions there is a large class of spacetimes in which the macroscopic space expands and the microscopic space contracts to a finite volume. We also consider a non-vacuum case and we explicitly solve the field equations for the matter satisfying the Zel'dovich equation of state. In non-vacuum models, with matter satisfying an equation of state p = γρ, O ≤ γ < 1, at a sufficiently late stage of evolution the microspace always expands and the dynamical dimensional reduction does not occur. (author)

  2. N-Dimensional LLL Reduction Algorithm with Pivoted Reflection

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2018-01-01

    Full Text Available The Lenstra-Lenstra-Lovász (LLL lattice reduction algorithm and many of its variants have been widely used by cryptography, multiple-input-multiple-output (MIMO communication systems and carrier phase positioning in global navigation satellite system (GNSS to solve the integer least squares (ILS problem. In this paper, we propose an n-dimensional LLL reduction algorithm (n-LLL, expanding the Lovász condition in LLL algorithm to n-dimensional space in order to obtain a further reduced basis. We also introduce pivoted Householder reflection into the algorithm to optimize the reduction time. For an m-order positive definite matrix, analysis shows that the n-LLL reduction algorithm will converge within finite steps and always produce better results than the original LLL reduction algorithm with n > 2. The simulations clearly prove that n-LLL is better than the original LLL in reducing the condition number of an ill-conditioned input matrix with 39% improvement on average for typical cases, which can significantly reduce the searching space for solving ILS problem. The simulation results also show that the pivoted reflection has significantly declined the number of swaps in the algorithm by 57%, making n-LLL a more practical reduction algorithm.

  3. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  4. Relativistic phase space: dimensional recurrences

    International Nuclear Information System (INIS)

    Delbourgo, R; Roberts, M L

    2003-01-01

    We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius R and taking the limit as R→∞. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension

  5. Spinors and supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2001-01-01

    Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes

  6. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    Science.gov (United States)

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  7. Cosmological string solutions by dimensional reduction

    International Nuclear Information System (INIS)

    Behrndt, K.; Foerste, S.

    1993-12-01

    We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed

  8. On infinite-dimensional state spaces

    International Nuclear Information System (INIS)

    Fritz, Tobias

    2013-01-01

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V −1 U 2 V=U 3 , then finite-dimensionality entails the relation UV −1 UV=V −1 UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V −1 U 2 V=U 3 holds only up to ε and then yields a lower bound on the dimension.

  9. On infinite-dimensional state spaces

    Science.gov (United States)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  10. Multichannel transfer function with dimensionality reduction

    KAUST Repository

    Kim, Han Suk; Schulze, Jü rgen P.; Cone, Angela C.; Sosinsky, Gina E.; Martone, Maryann E.

    2010-01-01

    . Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum

  11. Stochastic confinement and dimensional reduction. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-03-01

    By Monte Carlo calculations on a 16 4 lattice the authors investigate four dimensional SU(2) lattice guage theory with respect to the conjecture that at large distances this theory reduces approximately to two dimensional SU(2) lattice gauge theory. Good numerical evidence is found for this conjecture. As a by-product the SU(2) string tension is also measured and good agreement is found with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (Auth.)

  12. Stochastic confinement and dimensional reduction. Pt. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-01-01

    By Monte Carlo calculations on a 12 4 lattice we investigate four-dimensional SU(2) lattice gauge theory with respect to the conjecture that at large distances this theory reduces approximately to two-dimensional SU(2) lattice gauge theory. We find good numerical evidence for this conjecture. As a by-product we also measure the SU(2) string tension and find reasonable agreement with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (orig.)

  13. Parallel Framework for Dimensionality Reduction of Large-Scale Datasets

    Directory of Open Access Journals (Sweden)

    Sai Kiranmayee Samudrala

    2015-01-01

    Full Text Available Dimensionality reduction refers to a set of mathematical techniques used to reduce complexity of the original high-dimensional data, while preserving its selected properties. Improvements in simulation strategies and experimental data collection methods are resulting in a deluge of heterogeneous and high-dimensional data, which often makes dimensionality reduction the only viable way to gain qualitative and quantitative understanding of the data. However, existing dimensionality reduction software often does not scale to datasets arising in real-life applications, which may consist of thousands of points with millions of dimensions. In this paper, we propose a parallel framework for dimensionality reduction of large-scale data. We identify key components underlying the spectral dimensionality reduction techniques, and propose their efficient parallel implementation. We show that the resulting framework can be used to process datasets consisting of millions of points when executed on a 16,000-core cluster, which is beyond the reach of currently available methods. To further demonstrate applicability of our framework we perform dimensionality reduction of 75,000 images representing morphology evolution during manufacturing of organic solar cells in order to identify how processing parameters affect morphology evolution.

  14. MFV Reductions of MSSM Parameter Space

    CERN Document Server

    AbdusSalam, S.S.; Quevedo, F.

    2015-01-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours...

  15. Dimensional reduction near the deconfinement transition

    International Nuclear Information System (INIS)

    Kurkela, A.

    2009-01-01

    It is expected that incorporating the center symmetry in the conventional dimensionally reduced effective theory for high-temperature SU(N) Yang-Mills theory, EQCD, will considerably extend its applicability towards the deconfinement transition. In this talk, I will discuss the construction of such center-symmetric effective theories and present results from their lattice simulations in the case of two colors. The simulations demonstrate that unlike EQCD, the new center symmetric theory undergoes a second order confining phase transition in complete analogy with the full theory. I will also describe the perturbative and non-perturbative matching of the parameters of the effective theory, and outline ways to further improve its description of the physics near the deconfinement transition. (author)

  16. Dimensionality reduction of quality of life indicators

    Directory of Open Access Journals (Sweden)

    Andrea Jindrová

    2012-01-01

    Full Text Available Selecting indicators for assessing the quality of life at the regional level is not unambigous. Currently, there are no precisely defined indicators that would give comprehensive information about the quality of life on a local level. In this paper we focus on the determination (selection of groups of indicators that can be interpreted, on the basis of studied literature, as factors characterizing the quality of life. Furthermore, on the application of methods to reduce the dimensionality of these indicators, from the source of the database CULS KROK, which provides statistics on the regional and districts level. To reduce the number of indicators and the subsequent creation of derived variables that capture the relationships between selected indicators multivariate statistical analysis methods, especially method of principal components and factor analysis were used. This paper also indicates the methodology grant project “Methodological Approaches to assess Subjective Aspects of the life quality in regions of the Czech Republic”.

  17. Method of dimensionality reduction in contact mechanics and friction

    CERN Document Server

    Popov, Valentin L

    2015-01-01

    This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...

  18. Manifold learning to interpret JET high-dimensional operational space

    International Nuclear Information System (INIS)

    Cannas, B; Fanni, A; Pau, A; Sias, G; Murari, A

    2013-01-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption. (paper)

  19. Metric dimensional reduction at singularities with implications to Quantum Gravity

    International Nuclear Information System (INIS)

    Stoica, Ovidiu Cristinel

    2014-01-01

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being just non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained

  20. Effective Image Database Search via Dimensionality Reduction

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Aanæs, Henrik

    2008-01-01

    Image search using the bag-of-words image representation is investigated further in this paper. This approach has shown promising results for large scale image collections making it relevant for Internet applications. The steps involved in the bag-of-words approach are feature extraction, vocabul......Image search using the bag-of-words image representation is investigated further in this paper. This approach has shown promising results for large scale image collections making it relevant for Internet applications. The steps involved in the bag-of-words approach are feature extraction......, vocabulary building, and searching with a query image. It is important to keep the computational cost low through all steps. In this paper we focus on the efficiency of the technique. To do that we substantially reduce the dimensionality of the features by the use of PCA and addition of color. Building...... of the visual vocabulary is typically done using k-means. We investigate a clustering algorithm based on the leader follower principle (LF-clustering), in which the number of clusters is not fixed. The adaptive nature of LF-clustering is shown to improve the quality of the visual vocabulary using this...

  1. 3-dimensional interactive space (3DIS)

    International Nuclear Information System (INIS)

    Veitch, S.; Veitch, J.; West, S.J.

    1991-01-01

    This paper reports on the 3DIS security system which uses standard CCTV cameras to create 3-Dimensional detection zones around valuable assets within protected areas. An intrusion into a zone changes light values and triggers an alarm that is annunciated, while images from multiple cameras are recorded. 3DIS lowers nuisance alarm rates and provides superior automated surveillance capability. Performance is improved over 2-D systems because activity around, above or below the zone does to cause an alarm. Invisible 3-D zones protect assets as small as a pin or as large as a 747 jetliner. Detection zones are created by excising subspaces from the overlapping fields of view of two or more video cameras. Hundred of zones may co-exist, operating simultaneously. Intrusion into any 3-D zone will cause a coincidental change in light values, triggering an alarm specific to that space

  2. Mappings with closed range and finite dimensional linear spaces

    International Nuclear Information System (INIS)

    Iyahen, S.O.

    1984-09-01

    This paper looks at two settings, each of continuous linear mappings of linear topological spaces. In one setting, the domain space is fixed while the range space varies over a class of linear topological spaces. In the second setting, the range space is fixed while the domain space similarly varies. The interest is in when the requirement that the mappings have a closed range implies that the domain or range space is finite dimensional. Positive results are obtained for metrizable spaces. (author)

  3. A Tannakian approach to dimensional reduction of principal bundles

    Science.gov (United States)

    Álvarez-Cónsul, Luis; Biswas, Indranil; García-Prada, Oscar

    2017-08-01

    Let P be a parabolic subgroup of a connected simply connected complex semisimple Lie group G. Given a compact Kähler manifold X, the dimensional reduction of G-equivariant holomorphic vector bundles over X × G / P was carried out in Álvarez-Cónsul and García-Prada (2003). This raises the question of dimensional reduction of holomorphic principal bundles over X × G / P. The method of Álvarez-Cónsul and García-Prada (2003) is special to vector bundles; it does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of G-equivariant principal bundles over X × G / P, and to establish a Hitchin-Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that X is a complex projective manifold.

  4. Model space dimensionalities for multiparticle fermion systems

    International Nuclear Information System (INIS)

    Draayer, J.P.; Valdes, H.T.

    1985-01-01

    A menu driven program for determining the dimensionalities of fixed-(J) [or (J,T)] model spaces built by distributing identical fermions (electrons, neutrons, protons) or two distinguihable fermion types (neutron-proton and isospin formalisms) among any mixture of positive and negative parity spherical orbitals is presented. The algorithm, built around the elementary difference formula d(J)=d(M=J)-d(M=J+1), takes full advantage of M->-M and particle-hole symmetries. A 96 K version of the program suffices for as compilated a case as d[(+1/2, +3/2, + 5/2, + 7/2-11/2)sup(n-26)J=2 + ,T=7]=210,442,716,722 found in the 0hω valence space of 56 126 Ba 70 . The program calculates the total fixed-(Jsup(π)) or fixed-(Jsup(π),T) dimensionality of a model space generated by distributing a specified number of fermions among a set of input positive and negative parity (π) spherical (j) orbitals. The user is queried at each step to select among various options: 1. formalism - identical particle, neutron-proton, isospin; 2. orbits -bumber, +/-2*J of all orbits; 3. limits -minimum/maximum number of particles of each parity; 4. specifics - number of particles, +/-2*J (total), 2*T; 5. continue - same orbit structure, new case quit. Though designed for nuclear applications (jj-coupling), the program can be used in the atomic case (LS-coupling) so long as half integer spin values (j=l+-1/2) are input for the valnce orbitals. Mutiple occurrences of a given j value are properly taken into account. A minor extension provides labelling information for a generalized seniority classification scheme. The program logic is an adaption of methods used in statistical spectroscopy to evaluate configuration averages. Indeed, the need for fixed symmetry leve densities in spectral distribution theory motivated this work. The methods extend to other group structures where there are M-like additive quantum labels. (orig.)

  5. A finite-dimensional reduction method for slightly supercritical elliptic problems

    Directory of Open Access Journals (Sweden)

    Riccardo Molle

    2004-01-01

    Full Text Available We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.

  6. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  7. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

    International Nuclear Information System (INIS)

    Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial

    2016-01-01

    Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the

  8. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

    Science.gov (United States)

    Tripathy, Rohit; Bilionis, Ilias; Gonzalez, Marcial

    2016-09-01

    Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the

  9. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Rohit, E-mail: rtripath@purdue.edu; Bilionis, Ilias, E-mail: ibilion@purdue.edu; Gonzalez, Marcial, E-mail: marcial-gonzalez@purdue.edu

    2016-09-15

    Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of simulations required to learn a generic multivariate response grows exponentially as the input dimension increases. This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace (AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is a much easier problem than the original problem of learning a high-dimensional function. The classic approach to discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to be estimated from the data. To train the

  10. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  11. Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-10-01

    We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)

  12. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  13. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  14. A Recurrent Probabilistic Neural Network with Dimensionality Reduction Based on Time-series Discriminant Component Analysis.

    Science.gov (United States)

    Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio

    2015-12-01

    This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

  15. One-loop dimensional reduction of the linear σ model

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Silva-Neto, M.B.; Svaiter, N.F.

    1997-05-01

    We perform the dimensional reduction of the linear σ model at one-loop level. The effective of the reduced theory obtained from the integration over the nonzero Matsubara frequencies is exhibited. Thermal mass and coupling constant renormalization constants are given, as well as the thermal renormalization group which controls the dependence of the counterterms on the temperature. We also recover, for the reduced theory, the vacuum instability of the model for large N. (author)

  16. A Paley-Wiener theorem for reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2006-01-01

    Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. The image under the Fourier transform of the space of K-finite compactly supported smooth functions on X is characterized.

  17. Dimensionality Reduction Methods: Comparative Analysis of methods PCA, PPCA and KPCA

    Directory of Open Access Journals (Sweden)

    Jorge Arroyo-Hernández

    2016-01-01

    Full Text Available The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived from the original space, of fewer dimensions, that allow a description of the data at a lower cost. Due to their importance, they are widely used in processes associated with learning machine. This article presents a comparative analysis of PCA, PPCA and KPCA dimensionality reduction methods. A reconstruction experiment of worm-shape data was performed through structures of landmarks located in the body contour, with methods having different number of main components. The results showed that all methods can be seen as alternative processes. Nevertheless, thanks to the potential for analysis in the features space and the method for calculation of its preimage presented, KPCA offers a better method for recognition process and pattern extraction

  18. The (2+1)-dimensional axial universes—solutions to the Einstein equations, dimensional reduction points and Klein–Fock–Gordon waves

    International Nuclear Information System (INIS)

    Fiziev, P P; Shirkov, D V

    2012-01-01

    The paper presents a generalization and further development of our recent publications, where solutions of the Klein–Fock–Gordon equation defined on a few particular D = (2 + 1)-dimensional static spacetime manifolds were considered. The latter involve toy models of two-dimensional spaces with axial symmetry, including dimensional reduction to the one-dimensional space as a singular limiting case. Here, the non-static models of space geometry with axial symmetry are under consideration. To make these models closer to physical reality, we define a set of ‘admissible’ shape functions ρ(t, z) as the (2 + 1)-dimensional Einstein equation solutions in the vacuum spacetime, in the presence of the Λ-term and for the spacetime filled with the standard ‘dust’. It is curious that in the last case the Einstein equations reduce to the well-known Monge–Ampère equation, thus enabling one to obtain the general solution of the Cauchy problem, as well as a set of other specific solutions involving one arbitrary function. A few explicit solutions of the Klein–Fock–Gordon equation in this set are given. An interesting qualitative feature of these solutions relates to the dimensional reduction points, their classification and time behavior. In particular, these new entities could provide us with novel insight into the nature of P- and T-violations and of the Big Bang. A short comparison with other attempts to utilize the dimensional reduction of the spacetime is given. (paper)

  19. Fourier inversion on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den

    1999-01-01

    Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we

  20. Harmonic analysis on reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported

  1. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    Science.gov (United States)

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  2. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    Science.gov (United States)

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Radon reduction in crawl-space houses

    International Nuclear Information System (INIS)

    Osborne, M.C.; Moore, D.G.; Southerlan, R.E.; Brennan, T.; Pyle, B.E.

    1989-01-01

    This paper gives results of an EPA study of radon-mitigation alternatives for crawl space houses in several houses in Nashville, TN. Application of one of these alternative mitigation options, suction under a polyethylene membrane, has been successful in significantly reducing radon levels in both the crawl space and the house. The large radon concentrations measured under unvented plastic ground covers and the moisture barriers found in many crawl spaces can act as radon-rich reservoirs capable of contaminating a crawl space and house during periods of depressurization. With the exhaust components of the mitigation system in place, radon levels below the plastic decreased by more than 95% under both passive and active suction conditions. Based on the study, the design of a cost-effective subplastic suction passive radon mitigation system for crawl spaces seems promising

  4. How the flip target behaves in four-dimensional space

    International Nuclear Information System (INIS)

    Antillon, A.; Kats, J.

    1985-01-01

    We use available coupling theory for understanding how a flip target in a 4-dimensional phase space reduces a gaussian beam of particles. Experimental evidence at the AGS can be qualitatively explained by this theory

  5. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  6. Dimensional Analysis with space discrimination applied to Fickian difussion phenomena

    International Nuclear Information System (INIS)

    Diaz Sanchidrian, C.; Castans, M.

    1989-01-01

    Dimensional Analysis with space discrimination is applied to Fickian difussion phenomena in order to transform its partial differen-tial equations into ordinary ones, and also to obtain in a dimensionl-ess fom the Ficks second law. (Author)

  7. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    2012-01-01

    Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...

  8. Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering

    Science.gov (United States)

    2013-01-01

    Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024

  9. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  10. Green function and scattering amplitudes in many dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1991-06-01

    Methods for solving scattering are studied in many dimensional space. Green function and scattering amplitudes are given in terms of the requested asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many dimensional space. Phase-shift analysis are developed for hypercentral potentials and for non-hypercentral potentials with the hyperspherical adiabatic approximation. (author) 16 refs., 3 figs

  11. Green functions and scattering amplitudes in many-dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1993-01-01

    Methods for solving scattering are studied in many-dimensional space. Green function and scattering amplitudes are given in terms of the required asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many-dimensional space. Phase-shift analyses are performed for hypercentral potentials and for non-hypercentral potentials by use of the hyperspherical adiabatic approximation. (author)

  12. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    Higher Dimensional Automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek [26]. For a topologist, they are attractive since they can be modeled as cubical complexes - with an inbuilt restriction for directions´of allowable (d-)paths. In Raussen [25], we...

  13. Dimensionally Stable Structural Space Cable, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the need for an affordable exoplanet-analysis science mission, NASA has recently embarked on the ROSES Technology Development for Exoplanet Missions...

  14. Embedding of attitude determination in n-dimensional spaces

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1988-01-01

    The problem of attitude determination in n-dimensional spaces is addressed. The proper parameters are found, and it is shown that not all three-dimensional methods have useful extensions to higher dimensions. It is demonstrated that Rodriguez parameters are conveniently extendable to other dimensions. An algorithm for using these parameters in the general n-dimensional case is developed and tested with a four-dimensional example. The correct mathematical description of angular velocities is addressed, showing that angular velocity in n dimensions cannot be represented by a vector but rather by a tensor of the second rank. Only in three dimensions can the angular velocity be described by a vector.

  15. Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity

    Directory of Open Access Journals (Sweden)

    Fubiao Feng

    2017-03-01

    Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.

  16. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  17. Supervised linear dimensionality reduction with robust margins for object recognition

    Science.gov (United States)

    Dornaika, F.; Assoum, A.

    2013-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Many existing linear embedding techniques relied on the use of local margins in order to get a good discrimination performance. However, dealing with outliers and within-class diversity has not been addressed by margin-based embedding method. In this paper, we explored the use of different margin-based linear embedding methods. More precisely, we propose to use the concepts of Median miss and Median hit for building robust margin-based criteria. Based on such margins, we seek the projection directions (linear embedding) such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearance-based face recognition. Experiments performed on four public face databases show that the proposed approach can give better generalization performance than the classic Average Neighborhood Margin Maximization (ANMM). Moreover, thanks to the use of robust margins, the proposed method down-grades gracefully when label outliers contaminate the training data set. In particular, we show that the concept of Median hit was crucial in order to get robust performance in the presence of outliers.

  18. Identification of Architectural Functions in A Four-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Firza Utama

    2012-06-01

    Full Text Available This research has explored the possibilities and concept of architectural space in a virtual environment. The virtual environment exists as a different concept, and challenges the constraints of the physical world. One of the possibilities in a virtual environment is that it is able to extend the spatial dimension higher than the physical three-dimension. To take the advantage of this possibility, this research has applied some geometrical four-dimensional (4D methods to define virtual architectural space. The spatial characteristics of 4D space is established by analyzing the four-dimensional structure that can be comprehended by human participant for its spatial quality, and by developing a system to control the fourth axis of movement. Multiple three-dimensional spaces that fluidly change their volume have been defined as one of the possibilities of virtual architecturalspace concept in order to enrich our understanding of virtual spatial experience.

  19. Object-based Dimensionality Reduction in Land Surface Phenology Classification

    Directory of Open Access Journals (Sweden)

    Brian E. Bunker

    2016-11-01

    Full Text Available Unsupervised classification or clustering of multi-decadal land surface phenology provides a spatio-temporal synopsis of natural and agricultural vegetation response to environmental variability and anthropogenic activities. Notwithstanding the detailed temporal information available in calibrated bi-monthly normalized difference vegetation index (NDVI and comparable time series, typical pre-classification workflows average a pixel’s bi-monthly index within the larger multi-decadal time series. While this process is one practical way to reduce the dimensionality of time series with many hundreds of image epochs, it effectively dampens temporal variation from both intra and inter-annual observations related to land surface phenology. Through a novel application of object-based segmentation aimed at spatial (not temporal dimensionality reduction, all 294 image epochs from a Moderate Resolution Imaging Spectroradiometer (MODIS bi-monthly NDVI time series covering the northern Fertile Crescent were retained (in homogenous landscape units as unsupervised classification inputs. Given the inherent challenges of in situ or manual image interpretation of land surface phenology classes, a cluster validation approach based on transformed divergence enabled comparison between traditional and novel techniques. Improved intra-annual contrast was clearly manifest in rain-fed agriculture and inter-annual trajectories showed increased cluster cohesion, reducing the overall number of classes identified in the Fertile Crescent study area from 24 to 10. Given careful segmentation parameters, this spatial dimensionality reduction technique augments the value of unsupervised learning to generate homogeneous land surface phenology units. By combining recent scalable computational approaches to image segmentation, future work can pursue new global land surface phenology products based on the high temporal resolution signatures of vegetation index time series.

  20. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  1. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.

    2017-09-01

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.

  2. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    Science.gov (United States)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  3. Visualising very large phylogenetic trees in three dimensional hyperbolic space

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2004-04-01

    Full Text Available Abstract Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED.

  4. The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction.

    Directory of Open Access Journals (Sweden)

    Ross S Williamson

    2015-04-01

    Full Text Available Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID, uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.

  5. Topology as fluid geometry two-dimensional spaces, volume 2

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...

  6. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  7. Use of dimensionality reduction for structural mapping of hip joint osteoarthritis data

    International Nuclear Information System (INIS)

    Theoharatos, C; Fotopoulos, S; Boniatis, I; Panayiotakis, G; Panagiotopoulos, E

    2009-01-01

    A visualization-based, computer-oriented, classification scheme is proposed for assessing the severity of hip osteoarthritis (OA) using dimensionality reduction techniques. The introduced methodology tries to cope with the confined ability of physicians to structurally organize the entire available set of medical data into semantically similar categories and provide the capability to make visual observations among the ensemble of data using low-dimensional biplots. In this work, 18 pelvic radiographs of patients with verified unilateral hip OA are evaluated by experienced physicians and assessed into Normal, Mild and Severe following the Kellgren and Lawrence scale. Two regions of interest corresponding to radiographic hip joint spaces are determined and representative features are extracted using a typical texture analysis technique. The structural organization of all hip OA data is accomplished using distance and topology preservation-based dimensionality reduction techniques. The resulting map is a low-dimensional biplot that reflects the intrinsic organization of the ensemble of available data and which can be directly accessed by the physician. The conceivable visualization scheme can potentially reveal critical data similarities and help the operator to visually estimate their initial diagnosis. In addition, it can be used to detect putative clustering tendencies, examine the presence of data similarities and indicate the existence of possible false alarms in the initial perceptual evaluation

  8. Mannheim Curves in Nonflat 3-Dimensional Space Forms

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2015-01-01

    Full Text Available We consider the Mannheim curves in nonflat 3-dimensional space forms (Riemannian or Lorentzian and we give the concept of Mannheim curves. In addition, we investigate the properties of nonnull Mannheim curves and their partner curves. We come to the conclusion that a necessary and sufficient condition is that a linear relationship with constant coefficients will exist between the curvature and the torsion of the given original curves. In the case of null curve, we reveal that there are no null Mannheim curves in the 3-dimensional de Sitter space.

  9. The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces

    Science.gov (United States)

    Fath, Elaine

    2015-03-01

    A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.

  10. Positioning Reduction of Deep Space Probes Based on VLBI Tracking

    Science.gov (United States)

    Qiao, S. B.

    2011-11-01

    asymptotic line in the sequence of positioning points. When VLBI stations changed from three to four or vice versa, trend jumps could sometimes exist in the sequence of positioning points. The analysis could be as a reference to the follow-on Chinese Lunar Exploration Project and Yinghuo Project in the positioning reduction of spacecraft. (2) The tracking data of the MEX satellite by the Chinese VLBI Network (CVN) on 2007 May 30 are processed. The results show that using the delays in precision of nanoseconds in the satellite positioning reduction is more effective than the delay rates in precision of picoseconds per second, and the contribution of the delay rates to the positioning is very limited. If the delays and their rates are jointly used in the positioning reduction, the correction to the adopted velocity should also be solved simultaneously with the position parameters. Otherwise the error in the priori velocity would directly influence the positioning precision. In order to improve the positioning precision of Martian satellite, it is very necessary for CVN to actively practice differential VLBI, same beam VLBI and so on. Then the systematic errors and the noise level of observations are further reduced. (3) Through positioning reduction, the trajectory monitoring of pivotal arcs of the CE-1 satellite is accomplished, including the arcs of maneuvers in the approaching stage, lunar capturing stage, circumlunar stage and the stage of controlled landing on the Moon. Especially, based on the tracking observations of radio ranges and VLBI delays of the CE-1 satellite during the controlled landing on the Moon on 2009 March 1, the landing trajectory, the epoch of the landing, and the coordinates of the landing point are determined by positioning reduction. The three-dimensional positioning uncertainty is about 0.55 km. The trace determination of the rover on the lunar surface is made as planned in the follow-on Chinese lunar exploration project. To apply the constraint of

  11. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  12. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  13. Dependent Space and Attribute Reduction on Fuzzy Information System

    Directory of Open Access Journals (Sweden)

    Shu Chang

    2017-01-01

    Full Text Available From equivalence relation RBδ on discourse domain U, we can derive equivalence relation Rδ on the attribute set A. From equivalence relation Rδ on discourse domain A, we can derive a congruence relation on the attribute power set P(A and establish an object dependent space. And then,we discuss the reduction method of fuzzy information system on object dependent space. At last ,the example in this paper demonstrates the feasibility and effectiveness of the reduction method based on the congruence relation Tδ providing an insight into the link between equivalence relation and congruence relation of dependent spaces in the rough set. In this way, the paper can provide powerful theoritical support to the combined using of reduction method, so it is of certain practical value.

  14. Dimensionality Reduction and Information-Theoretic Divergence Between Sets of Ladar Images

    National Research Council Canada - National Science Library

    Gray, David M; Principe, Jose C

    2008-01-01

    ... can be exploited while circumventing many of the problems associated with the so-called "curse of dimensionality." In this study, PCA techniques are used to find a low-dimensional sub-space representation of LADAR image sets...

  15. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  16. Quantum phase space points for Wigner functions in finite-dimensional spaces

    OpenAIRE

    Luis Aina, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.

  17. Quantum phase space points for Wigner functions in finite-dimensional spaces

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas

  18. Minimizing Warehouse Space through Inventory Reduction at Reckitt Benckiser

    OpenAIRE

    KILINC, IZGI SELEN

    2009-01-01

    This dissertation represents a ten week internship at pharmaceutical plant of Reckitt Benckiser for the Warehouse Stock Reduction Project. Due to foreseeable growth by the factory, there is increasing pressure to utilise existing warehouse space by reducing the existing stock level by 50 %. Therefore, this study aims to identify the opportunities to reduce the physical stock held in raw/pack materials in the warehouse and save space for additional manufacturing resources. The analysis demo...

  19. Geometry of quantum dynamics in infinite-dimensional Hilbert space

    Science.gov (United States)

    Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana

    2018-04-01

    We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.

  20. Quantum interest in (3+1)-dimensional Minkowski space

    International Nuclear Information System (INIS)

    Abreu, Gabriel; Visser, Matt

    2009-01-01

    The so-called 'quantum inequalities', and the 'quantum interest conjecture', use quantum field theory to impose significant restrictions on the temporal distribution of the energy density measured by a timelike observer, potentially preventing the existence of exotic phenomena such as 'Alcubierre warp drives' or 'traversable wormholes'. Both the quantum inequalities and the quantum interest conjecture can be reduced to statements concerning the existence or nonexistence of bound states for a certain one-dimensional quantum mechanical pseudo-Hamiltonian. Using this approach, we shall provide a simple variational proof of one version of the quantum interest conjecture in (3+1)-dimensional Minkowski space.

  1. Normalizations of Eisenstein integrals for reductive symmetric spaces

    NARCIS (Netherlands)

    van den Ban, E.P.; Kuit, Job

    2017-01-01

    We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with

  2. Analytic families of eigenfunctions on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    In harmonic analysis on a reductive symmetric space X an important role is played by families of generalized eigenfunctions for the algebra D (X) of invariant dierential operators. Such families arise for instance as matrix coeÆcients of representations that come in series, such as the (generalized)

  3. State Space Reduction for Model Checking Agent Programs

    NARCIS (Netherlands)

    S.-S.T.Q. Jongmans (Sung-Shik); K.V. Hindriks; M.B. van Riemsdijk; L. Dennis; O. Boissier; R.H. Bordini (Rafael)

    2012-01-01

    htmlabstractState space reduction techniques have been developed to increase the efficiency of model checking in the context of imperative programming languages. Unfortunately, these techniques cannot straightforwardly be applied to agents: the nature of states in the two programming paradigms

  4. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  5. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  6. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  7. Dimensional reduction in field theory and hidden symmetries in extended supergravity

    International Nuclear Information System (INIS)

    Kremmer, E.

    1985-01-01

    Dimensional reduction in field theories is discussed both in theories which do not include gravity and in gravity theories. In particular, 11-dimensional supergravity and its reduction to 4 dimensions is considered. Hidden symmetries of supergravity with N=8 in 4 dimensions, global E 7 and local SU(8)-invariances in particular are detected. The hidden symmmetries permit to interpret geometrically the scalar fields

  8. Introducing the Dimensional Continuous Space-Time Theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2013-01-01

    This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.

  9. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir; Lee, Kwangjae; Dursun, Ibrahim; Alamer, Badriah Jaber; Wu, Zhennan; Alarousu, Erkki; Mohammed, Omar F.; Cho, Namchul; Bakr, Osman

    2018-01-01

    . Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation

  10. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  11. State-space dimensionality in short-memory hidden-variable theories

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory (Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104 (2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis introducing the concept of invertible process and report a proof that makes clearer the role played by the topology of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schroedinger equation. A method for generating the economical non-Markovian model for the qubit is also presented.

  12. Rhythmic dynamics and synchronization via dimensionality reduction: application to human gait.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system.

  13. Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment.

    Science.gov (United States)

    Gao, Yang; Wang, Xuesong; Cheng, Yuhu; Wang, Z Jane

    2015-08-01

    To take full advantage of hyperspectral information, to avoid data redundancy and to address the curse of dimensionality concern, dimensionality reduction (DR) becomes particularly important to analyze hyperspectral data. Exploring the tensor characteristic of hyperspectral data, a DR algorithm based on class-aware tensor neighborhood graph and patch alignment is proposed here. First, hyperspectral data are represented in the tensor form through a window field to keep the spatial information of each pixel. Second, using a tensor distance criterion, a class-aware tensor neighborhood graph containing discriminating information is obtained. In the third step, employing the patch alignment framework extended to the tensor space, we can obtain global optimal spectral-spatial information. Finally, the solution of the tensor subspace is calculated using an iterative method and low-dimensional projection matrixes for hyperspectral data are obtained accordingly. The proposed method effectively explores the spectral and spatial information in hyperspectral data simultaneously. Experimental results on 3 real hyperspectral datasets show that, compared with some popular vector- and tensor-based DR algorithms, the proposed method can yield better performance with less tensor training samples required.

  14. Quantization of coset space σ-models coupled to two-dimensional gravity

    International Nuclear Information System (INIS)

    Korotkin, D.; Samtleben, H.

    1996-07-01

    The mathematical framework for an exact quantization of the two-dimensional coset space σ-models coupled to dilaton gravity, that arise from dimensional reduction of gravity and supergravity theories, is presented. The two-time Hamiltonian formulation is obtained, which describes the complete phase space of the model in the whole isomonodromic sector. The Dirac brackets arising from the coset constraints are calculated. Their quantization allows to relate exact solutions of the corresponding Wheeler-DeWitt equations to solutions of a modified (Coset) Knizhnik-Zamolodchikov system. On the classical level, a set of observables is identified, that is complete for essential sectors of the theory. Quantum counterparts of these observables and their algebraic structure are investigated. Their status in alternative quantization procedures is discussed, employing the link with Hamiltonian Chern-Simons theory. (orig.)

  15. Dimensional reduction of exceptional E6,E8 gauge groups and flavour chirality

    International Nuclear Information System (INIS)

    Koca, M.

    1984-01-01

    Ten-dimensional Yang - Mills gauge theories based on the exceptional groups E 6 and E 8 are reduced to four-dimensional flavour-chiral Yang - Mills - Higgs theories where the extra six dimensions are identified with the compact G 2 /SU(3) and SO(7)/SO(6) coset spaces. A ten-dimensional E 8 theory leads to three families of SU(5), one of which lies in the 144-dimensional representation of SO(10)

  16. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  17. Three-dimensional studies on resorption spaces and developing osteons.

    Science.gov (United States)

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  18. Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-11-01

    Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)

  19. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  20. Irreducible quantum group modules with finite dimensional weight spaces

    DEFF Research Database (Denmark)

    Pedersen, Dennis Hasselstrøm

    a finitely generated U q -module which has finite dimensional weight spaces and is a sum of those. Our approach follows the procedures used by S. Fernando and O. Mathieu to solve the corresponding problem for semisimple complex Lie algebra modules. To achieve this we have to overcome a number of obstacles...... not present in the classical case. In the process we also construct twisting functors rigerously for quantum group modules, study twisted Verma modules and show that these admit a Jantzen filtration with corresponding Jantzen sum formula....

  1. Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces

    International Nuclear Information System (INIS)

    Robinson, James C

    2009-01-01

    This paper treats the embedding of finite-dimensional subsets of a Banach space B into finite-dimensional Euclidean spaces. When the Hausdorff dimension of X − X is finite, d H (X − X) k are injective on X. The proof motivates the definition of the 'dual thickness exponent', which is the key to proving that a prevalent set of such linear maps have Hölder continuous inverse when the box-counting dimension of X is finite and k > 2d B (X). A related argument shows that if the Assouad dimension of X − X is finite and k > d A (X − X), a prevalent set of such maps are bi-Lipschitz with logarithmic corrections. This provides a new result for compact homogeneous metric spaces via the Kuratowksi embedding of (X, d) into L ∞ (X)

  2. Intertwined Hamiltonians in two-dimensional curved spaces

    International Nuclear Information System (INIS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-01-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle

  3. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    Science.gov (United States)

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  4. AN EFFECTIVE MULTI-CLUSTERING ANONYMIZATION APPROACH USING DISCRETE COMPONENT TASK FOR NON-BINARY HIGH DIMENSIONAL DATA SPACES

    Directory of Open Access Journals (Sweden)

    L.V. Arun Shalin

    2016-01-01

    Full Text Available Clustering is a process of grouping elements together, designed in such a way that the elements assigned to similar data points in a cluster are more comparable to each other than the remaining data points in a cluster. During clustering certain difficulties related when dealing with high dimensional data are ubiquitous and abundant. Works concentrated using anonymization method for high dimensional data spaces failed to address the problem related to dimensionality reduction during the inclusion of non-binary databases. In this work we study methods for dimensionality reduction for non-binary database. By analyzing the behavior of dimensionality reduction for non-binary database, results in performance improvement with the help of tag based feature. An effective multi-clustering anonymization approach called Discrete Component Task Specific Multi-Clustering (DCTSM is presented for dimensionality reduction on non-binary database. To start with we present the analysis of attribute in the non-binary database and cluster projection identifies the sparseness degree of dimensions. Additionally with the quantum distribution on multi-cluster dimension, the solution for relevancy of attribute and redundancy on non-binary data spaces is provided resulting in performance improvement on the basis of tag based feature. Multi-clustering tag based feature reduction extracts individual features and are correspondingly replaced by the equivalent feature clusters (i.e. tag clusters. During training, the DCTSM approach uses multi-clusters instead of individual tag features and then during decoding individual features is replaced by corresponding multi-clusters. To measure the effectiveness of the method, experiments are conducted on existing anonymization method for high dimensional data spaces and compared with the DCTSM approach using Statlog German Credit Data Set. Improved tag feature extraction and minimum error rate compared to conventional anonymization

  5. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    Science.gov (United States)

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  6. A method of integration of atomistic simulations and continuum mechanics by collecting of dynamical systems with dimensional reduction

    International Nuclear Information System (INIS)

    Kaczmarek, J.

    2002-01-01

    Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary

  7. Electromagnetic-field equations in the six-dimensional space-time R6

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts

  8. Horizontal biases in rats’ use of three-dimensional space

    Science.gov (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate

    2011-01-01

    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  9. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  10. On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Barannik, L.L.

    1996-01-01

    Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained

  11. Dimensional reduction and BRST approach to the description of a Regge trajectory

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Tsulaya, M.M.

    1997-01-01

    The local free field theory for Regge trajectory is described in the framework of the BRST-quantization method. The corresponding BRST-charge is constructed with the help of the method of dimensional reduction

  12. Congruent reduction and mode conversion in 4-dimensional plasmas

    International Nuclear Information System (INIS)

    Friedland, L.; Kaufman, A.N.

    1987-04-01

    Standard eikonal theory reduces, to N=1, the order of the system of equations underlying wave propagation in inhomogeneous plasmas. The condition for this remarkable reducibility is that only one eigenvalue of the unreduced NxN dispersion matrix D(k,x) vanishes at a time. If, however, two or more eigenvalues of D become simultaneously small, the geometric optics reduction scheme becomes singular. These regions are associated with linear mode conversion, and are described by higher order systems. A new reduction scheme based on congruent transformations of D is developed, and it is shown that, in ''degenerate'' plasma regions, a partial reduction of order is possible. The method comprises a constructive step-by-step procedure, which, in the most frequent (doubly) degenerate case, yields a second order system, describing the pairwise mode conversion problems, the solution of which in general geometry has been found recently

  13. Symmetries, integrals, and three-dimensional reductions of Plebanski's second heavenly equation

    International Nuclear Information System (INIS)

    Neyzi, F.; Sheftel, M. B.; Yazici, D.

    2007-01-01

    We study symmetries and conservation laws for Plebanski's second heavenly equation written as a first-order nonlinear evolutionary system which admits a multi-Hamiltonian structure. We construct an optimal system of one-dimensional subalgebras and all inequivalent three-dimensional symmetry reductions of the original four-dimensional system. We consider these two-component evolutionary systems in three dimensions as natural candidates for integrable systems

  14. ODF Maxima Extraction in Spherical Harmonic Representation via Analytical Search Space Reduction

    Science.gov (United States)

    Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo

    2015-01-01

    By revealing complex fiber structure through the orientation distribution function (ODF), q-ball imaging has recently become a popular reconstruction technique in diffusion-weighted MRI. In this paper, we propose an analytical dimension reduction approach to ODF maxima extraction. We show that by expressing the ODF, or any antipodally symmetric spherical function, in the common fourth order real and symmetric spherical harmonic basis, the maxima of the two-dimensional ODF lie on an analytically derived one-dimensional space, from which we can detect the ODF maxima. This method reduces the computational complexity of the maxima detection, without compromising the accuracy. We demonstrate the performance of our technique on both artificial and human brain data. PMID:20879302

  15. Features in chemical kinetics. I. Signatures of self-emerging dimensional reduction from a general format of the evolution law.

    Science.gov (United States)

    Nicolini, Paolo; Frezzato, Diego

    2013-06-21

    Simplification of chemical kinetics description through dimensional reduction is particularly important to achieve an accurate numerical treatment of complex reacting systems, especially when stiff kinetics are considered and a comprehensive picture of the evolving system is required. To this aim several tools have been proposed in the past decades, such as sensitivity analysis, lumping approaches, and exploitation of time scales separation. In addition, there are methods based on the existence of the so-called slow manifolds, which are hyper-surfaces of lower dimension than the one of the whole phase-space and in whose neighborhood the slow evolution occurs after an initial fast transient. On the other hand, all tools contain to some extent a degree of subjectivity which seems to be irremovable. With reference to macroscopic and spatially homogeneous reacting systems under isothermal conditions, in this work we shall adopt a phenomenological approach to let self-emerge the dimensional reduction from the mathematical structure of the evolution law. By transforming the original system of polynomial differential equations, which describes the chemical evolution, into a universal quadratic format, and making a direct inspection of the high-order time-derivatives of the new dynamic variables, we then formulate a conjecture which leads to the concept of an "attractiveness" region in the phase-space where a well-defined state-dependent rate function ω has the simple evolution ω[over dot]=-ω(2) along any trajectory up to the stationary state. This constitutes, by itself, a drastic dimensional reduction from a system of N-dimensional equations (being N the number of chemical species) to a one-dimensional and universal evolution law for such a characteristic rate. Step-by-step numerical inspections on model kinetic schemes are presented. In the companion paper [P. Nicolini and D. Frezzato, J. Chem. Phys. 138, 234102 (2013)] this outcome will be naturally related to the

  16. Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

    KAUST Repository

    Tao, Yufei

    2010-07-01

    reduction in the space and running time. In our experiments, our technique was faster: (i) than distance browsing (a well-known method for solving the problem exactly) by several orders of magnitude, and (ii) than D-shift (an approximate approach with theoretical guarantees in low-dimensional space) by one order of magnitude, and at the same time, outputs better results. © 2010 ACM.

  17. One-dimensional reduction of viscous jets. II. Applications

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  18. One-dimensional reduction of viscous jets. I. Theory

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].

  19. Pure state consciousness and its local reduction to neuronal space

    Science.gov (United States)

    Duggins, A. J.

    2013-01-01

    The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.

  20. Center-vortex dominance after dimensional reduction of SU(2) lattice gauge theory

    OpenAIRE

    Gattnar, J.; Langfeld, K.; Schafke, A.; Reinhardt, H.

    2000-01-01

    The high-temperature phase of SU(2) Yang-Mills theory is addressed by means of dimensional reduction with a special emphasis on the properties of center vortices. For this purpose, the vortex vacuum which arises from center projection is studied in pure 3-dimensional Yang-Mills theory as well as in the 3-dimensional adjoint Higgs model which describes the high temperature phase of the 4-dimensional SU(2) gauge theory. We find center-dominance within the numerical accuracy of 10%.

  1. Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces

    International Nuclear Information System (INIS)

    Arai, A.

    1985-01-01

    We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)

  2. Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides

    Science.gov (United States)

    Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young

    2018-06-01

    A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.

  3. Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Marquard, P.; Mihaila, L.; Steinhauser, M. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik; Piclum, J.H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-02-15

    We compute the relation between the pole quark mass and the minimally subtracted quark mass in the framework of QCD applying dimensional reduction as a regularization scheme. Special emphasis is put on the evanescent couplings and the renormalization of the {epsilon}-scalar mass. As a by-product we obtain the three-loop on-shell renormalization constants Z{sub m}{sup OS} and Z{sub 2}{sup OS} in dimensional regularization and thus provide the first independent check of the analytical results computed several years ago. (orig.)

  4. Sharpening the weak gravity conjecture with dimensional reduction

    International Nuclear Information System (INIS)

    Heidenreich, Ben; Reece, Matthew; Rudelius, Tom

    2016-01-01

    We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.

  5. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    Science.gov (United States)

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  6. Reduction Potato s hydric soil erosion using space technology

    Science.gov (United States)

    Guyot, E.; Rios, V.; Zelaya, D.; Rios, E.; Lepen, F.; Padilla, P.; Soria, F.

    The potato's crop has an econ omic importance in Tucuman's agricultural PBI (Gross Product Income) because its rank is fourth(4°). Production's potato area is a breakable agro system; its geographic location is in Pedemonte's agro-ecological region so is essential to handle hydric erosion. Therefore, the aim of this work is improve crop's potato irrigation management through satellite information merge with farm's practices. The space technology consented to obtain Digital Model Soil using both unique differential and dual frequency GPS signals and total station. The irrigation practices were carried out due to irrigation management (FAO) and satellite imagine software (ENVI). Preliminary results of this experience allowed to follow the crop's growing through multitemporal study; reprogramming farm's irrigation practices intended for manage reduction hydric erosion and heighten economically its productivity for the next period

  7. Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models.

    Directory of Open Access Journals (Sweden)

    Ryan C Williamson

    2016-12-01

    Full Text Available Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction-shared dimensionality and percent shared variance-with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure.

  8. Long-Term International Space Station (ISS) Risk Reduction Activities

    Science.gov (United States)

    Fodroci, M. P.; Gafka, G. K.; Lutomski, M. G.; Maher, J. S.

    2012-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk - given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Hazard Level- 4 [THL] materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years

  9. Topological properties of function spaces $C_k(X,2)$ over zero-dimensional metric spaces $X$

    OpenAIRE

    Gabriyelyan, S.

    2015-01-01

    Let $X$ be a zero-dimensional metric space and $X'$ its derived set. We prove the following assertions: (1) the space $C_k(X,2)$ is an Ascoli space iff $C_k(X,2)$ is $k_\\mathbb{R}$-space iff either $X$ is locally compact or $X$ is not locally compact but $X'$ is compact, (2) $C_k(X,2)$ is a $k$-space iff either $X$ is a topological sum of a Polish locally compact space and a discrete space or $X$ is not locally compact but $X'$ is compact, (3) $C_k(X,2)$ is a sequential space iff $X$ is a Pol...

  10. Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning.

    Science.gov (United States)

    Gönen, Mehmet

    2014-03-01

    Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational approximation algorithm to learn the proposed probabilistic model. We then extend the proposed method to find intrinsic dimensionality of the projected subspace using automatic relevance determination and to handle semi-supervised learning using a low-density assumption. We perform supervised learning experiments on four benchmark multilabel learning data sets by comparing our method with baseline linear dimensionality reduction algorithms. These experiments show that the proposed approach achieves good performance values in terms of hamming loss, average AUC, macro F 1 , and micro F 1 on held-out test data. The low-dimensional embeddings obtained by our method are also very useful for exploratory data analysis. We also show the effectiveness of our approach in finding intrinsic subspace dimensionality and semi-supervised learning tasks.

  11. The literary uses of high-dimensional space

    Directory of Open Access Journals (Sweden)

    Ted Underwood

    2015-12-01

    Full Text Available Debates over “Big Data” shed more heat than light in the humanities, because the term ascribes new importance to statistical methods without explaining how those methods have changed. What we badly need instead is a conversation about the substantive innovations that have made statistical modeling useful for disciplines where, in the past, it truly wasn’t. These innovations are partly technical, but more fundamentally expressed in what Leo Breiman calls a new “culture” of statistical modeling. Where 20th-century methods often required humanists to squeeze our unstructured texts, sounds, or images into some special-purpose data model, new methods can handle unstructured evidence more directly by modeling it in a high-dimensional space. This opens a range of research opportunities that humanists have barely begun to discuss. To date, topic modeling has received most attention, but in the long run, supervised predictive models may be even more important. I sketch their potential by describing how Jordan Sellers and I have begun to model poetic distinction in the long 19th century—revealing an arc of gradual change much longer than received literary histories would lead us to expect.

  12. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  13. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  14. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab, E-mail: gogber@gmail.com [Andronikashvili Institute of Physics, 6 Tamarashvili St., Tbilisi 0177, Georgia (United States); Javakhishvili State University, 3 Chavchavadze Ave., Tbilisi 0128, Georgia (United States); Herrera-Aguilar, Alfredo, E-mail: aha@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Malagón-Morejón, Dagoberto, E-mail: malagon@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel, E-mail: rigel@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico)

    2013-10-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time.

  15. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel

    2013-01-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time

  16. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles

    International Nuclear Information System (INIS)

    Del Frate, F.; Iapaolo, M.; Casadio, S.; Godin-Beekmann, S.; Petitdidier, M.

    2005-01-01

    Dimensionality reduction can be of crucial importance in the application of inversion schemes to atmospheric remote sensing data. In this study the problem of dimensionality reduction in the retrieval of ozone concentration profiles from the radiance measurements provided by the instrument Global Ozone Monitoring Experiment (GOME) on board of ESA satellite ERS-2 is considered. By means of radiative transfer modelling, neural networks and pruning algorithms, a complete procedure has been designed to extract the GOME spectral ranges most crucial for the inversion. The quality of the resulting retrieval algorithm has been evaluated by comparing its performance to that yielded by other schemes and co-located profiles obtained with lidar measurements

  17. Supersymmetry and the Parisi-Sourlas dimensional reduction: A rigorous proof

    International Nuclear Information System (INIS)

    Klein, A.; Landau, L.J.; Perez, J.F.

    1984-01-01

    Functional integrals that are formally related to the average correlation functions of a classical field theory in the presence of random external sources are given a rigorous meaning. Their dimensional reduction to the Schwinger functions of the corresponding quantum field theory in two fewer dimensions is proven. This is done by reexpressing those functional integrals as expectations of a supersymmetric field theory. The Parisi-Sourlas dimensional reduction of a supersymmetric field theory to a usual quantum field theory in two fewer dimensions is proven. (orig.)

  18. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  19. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    Science.gov (United States)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  20. Superconductivity and the existence of Nambu's three-dimensional phase space mechanics

    International Nuclear Information System (INIS)

    Angulo, R.; Gonzalez-Bernardo, C.A.; Rodriguez-Gomez, J.; Kalnay, A.J.; Perez-M, F.; Tello-Llanos, R.A.

    1984-01-01

    Nambu proposed a generalization of hamiltonian mechanics such that three-dimensional phase space is allowed. Thanks to a recent paper by Holm and Kupershmidt we are able to show the existence of such three-dimensional phase space systems in superconductivity. (orig.)

  1. A covariant form of the Maxwell's equations in four-dimensional spaces with an arbitrary signature

    International Nuclear Information System (INIS)

    Lukac, I.

    1991-01-01

    The concept of duality in the four-dimensional spaces with the arbitrary constant metric is strictly mathematically formulated. A covariant model for covariant and contravariant bivectors in this space based on three four-dimensional vectors is proposed. 14 refs

  2. We live in the quantum 4-dimensional Minkowski space-time

    OpenAIRE

    Hwang, W-Y. Pauchy

    2015-01-01

    We try to define "our world" by stating that "we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge group $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ built-in from the outset". We begin by explaining what "space" and "time" are meaning for us - the 4-dimensional Minkowski space-time, then proceeding to the quantum 4-dimensional Minkowski space-time. In our world, there are fields, or, point-like particles. Particle physics is described by the so-called ...

  3. Low dimensionality semiconductors: modelling of excitons via a fractional-dimensional space

    Science.gov (United States)

    Christol, P.; Lefebvre, P.; Mathieu, H.

    1993-09-01

    An interaction space with a fractionnal dimension is used to calculate in a simple way the binding energies of excitons confined in quantum wells, superlattices and quantum well wires. A very simple formulation provides this energy versus the non-integer dimensionality of the physical environment of the electron-hole pair. The problem then comes to determining the dimensionality α. We show that the latter can be expressed from the characteristics of the microstructure. α continuously varies from 3 (bulk material) to 2 for quantum wells and superlattices, and from 3 to 1 for quantum well wires. Quite a fair agreement is obtained with other theoretical calculations and experimental data, and this model coherently describes both three-dimensional limiting cases for quantum wells (L_wrightarrow 0 and L_wrightarrow infty) and the whole range of periods of the superlattice. Such a simple model presents a great interest for spectroscopists though it does not aim to compete with accurate but often tedious variational calculations. Nous utilisons un espace des interactions doté d'une dimension fractionnaire pour calculer simplement l'énergie de liaison des excitons confinés dans les puits quantiques, superréseaux et fils quantiques. Une formulation très simple donne cette énergie en fonction de la dimensionalité non-entière de l'environnement physique de la paire électron-trou. Le problème revient alors à déterminer cette dimensionalité α, dont nous montrons qu'une expression peut être déduite des caractéristiques de la microstructure. α varie continûment de 3 (matériau massif) à 2 pour un puits quantique ou un superréseau, et de 3 à 1 pour un fil quantique, selon le confinement du mouvement des porteurs. Les comparaisons avec d'autres calculs théoriques et données expérimentales sont toujours très convenables, et cette théorie décrit d'une façon cohérente les limites tridimensionnelles du puits quantique (L_wrightarrow 0 et L

  4. ANALYSIS OF IMPACT ON COMPOSITE STRUCTURES WITH THE METHOD OF DIMENSIONALITY REDUCTION

    Directory of Open Access Journals (Sweden)

    Valentin L. Popov

    2015-04-01

    Full Text Available In the present paper, we discuss the impact of rigid profiles on continua with non-local criteria for plastic yield. For the important case of media whose hardness is inversely proportional to the indentation radius, we suggest a rigorous treatment based on the method of dimensionality reduction (MDR and study the example of indentation by a conical profile.

  5. Some remarks on dimensional reduction of Gauge theories and model building

    International Nuclear Information System (INIS)

    Rudolph, G.; Karl-Marx-Universitaet, Leipzig; Volobujev, I.P.

    1989-01-01

    We study the group-theoretical aspect of dimensional reduction of pure gauge theories and propose a method of solving the constraint equations for scalar fields. We show that there are possibilities of model building which differ from those commonly used. In particular, we give examples in which the resulting potential is not of Higgs type. (orig.)

  6. Ultraviolet finiteness of N = 8 supergravity, spontaneously broken by dimensional reduction

    International Nuclear Information System (INIS)

    Sezgin, E.; Nieuwenhuizen, P. van

    1982-06-01

    The one-loop corrections to scalar-scalar scattering in N = 8 supergravity with 4 masses from dimensional reduction, are finite. We discuss various mechanisms that cancel the cosmological constant and infra-red divergences due to finite but non-vanishing tadpoles. (author)

  7. Dimensional reduction of 10d heterotic string effective lagrangian with higher derivative terms

    International Nuclear Information System (INIS)

    Lalak, Z.; Pawelczyk, J.

    1989-11-01

    Dimensional reduction of the 10d Supergravity-Yang-Mills theories containing up to four derivatives is described. Unexpected nondiagonal corrections to 4d gauge kinetic function and negative contributions to scalar potential are found. We analyzed the general structure of the resulting lagrangian and discuss the possible phenomenological consequences. (author)

  8. Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from three dimensions (3D) to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disk-shaped BECs. We analyze the first sound velocity in axially homogeneous cigar-shaped BECs and in radially homogeneous disk-shaped BECs. We consider also the dimensional reduction in a BEC confined by a harmonic potential both in the radial direction and in the axial direction. By using a variational approach, we calculate monopole and quadrupole collective oscillations of the BEC. We find that the frequencies of these collective oscillations are related to the dimensionality and to the repulsive or attractive interatomic interaction

  9. Mass Reduction: The Weighty Challenge for Exploration Space Flight

    Science.gov (United States)

    Kloeris, Vickie L.

    2014-01-01

    Meeting nutritional and acceptability requirements is critical for the food system for an exploration class space mission. However, this must be achieved within the constraints of available resources such as water, crew time, stowage volume, launch mass and power availability. ? Due to resource constraints, exploration class missions are not expected to have refrigerators or freezers for food storage, and current per person food mass must be reduced to improve mission feasibility. ? The Packaged Food Mass Reduction Trade Study (Stoklosa, 2009) concluded that the mass of the current space food system can be effectively reduced by decreasing water content of certain foods and offering nutrient dense substitutes, such as meal replacement bars and beverages. Target nutrient ranges were established based on the nutritional content of the current breakfast and lunch meals in the ISS standard menu. A market survey of available commercial products produced no viable options for meal replacement bar or beverage products. New prototypes for both categories were formulated to meet target nutrient ranges. Samples of prototype products were packaged in high barrier packaging currently used for ISS and underwent an accelerated shelf life study at 31 degC and 41 degC (50% RH) for 24 weeks. Samples were assessed at the following time points: Initial, 6 weeks, 12 weeks, and 24 weeks. Testing at each time point included the following: color, texture, water activity, acceptability, and hexanal analysis (for food bars only). Proof of concept prototypes demonstrated that meal replacement food bars and beverages can deliver a comparable macronutrient profile while reducing the overall mass when compared to the ISS Standard Menu. Future work suggestions for meal replacement bars: Reformulation to include ingredients that reduce hardness and reduce browning to increase shelf life. Micronutrient analysis and potential fortification. Sensory evaluation studies including satiety tests and

  10. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  11. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  12. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  13. Dimensional reduction of a general advection–diffusion equation in 2D channels

    Science.gov (United States)

    Kalinay, Pavol; Slanina, František

    2018-06-01

    Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.

  14. Restoration of dimensional reduction in the random-field Ising model at five dimensions

    Science.gov (United States)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D equality at all studied dimensions.

  15. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  16. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Akhbardeh, Alireza; Jacobs, Michael A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States)

    2012-04-15

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

  17. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

    International Nuclear Information System (INIS)

    Akhbardeh, Alireza; Jacobs, Michael A.

    2012-01-01

    Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B 1 inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both

  18. Dirac equation in 5- and 6-dimensional curved space-time manifolds

    International Nuclear Information System (INIS)

    Vladimirov, Yu.S.; Popov, A.D.

    1984-01-01

    The program of plotting unified multidimensional theory of gravitation, electromagnetism and electrically charged matter with transition from 5-dimensional variants to 6-dimensional theory possessing signature (+----+) is developed. For recording the Dirac equation in 5- and 6-dimensional curved space-time manifolds the tetrad formalism and γ-matrix formulation of the General Relativity Theory are used. It is shown that the 6-dimensional theory case unifies the two private cases of 5-dimensional theory and corresponds to two possibilities of the theory developed by Kadyshevski

  19. Continuous imaging space in three-dimensional integral imaging

    International Nuclear Information System (INIS)

    Zhang Lei; Yang Yong; Wang Jin-Gang; Zhao Xing; Fang Zhi-Liang; Yuan Xiao-Cong

    2013-01-01

    We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Reduction formalism for dimensionally regulated one-loop N-point integrals

    International Nuclear Information System (INIS)

    Binoth, T.; Guillet, J.Ph.; Heinrich, G.

    2000-01-01

    We consider one-loop scalar and tensor integrals with an arbitrary number of external legs relevant for multi-parton processes in massless theories. We present a procedure to reduce N-point scalar functions with generic 4-dimensional external momenta to box integrals in (4-2ε) dimensions. We derive a formula valid for arbitrary N and give an explicit expression for N=6. Further a tensor reduction method for N-point tensor integrals is presented. We prove that generically higher dimensional integrals contribute only to order ε for N≥5. The tensor reduction can be solved iteratively such that any tensor integral is expressible in terms of scalar integrals. Explicit formulas are given up to N=6

  1. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  2. Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2010-01-01

    Nearest Neighbor (NN) search in high-dimensional space is an important problem in many applications. From the database perspective, a good solution needs to have two properties: (i) it can be easily incorporated in a relational database, and (ii

  3. The curvature and the algebra of Killing vectors in five-dimensional space

    International Nuclear Information System (INIS)

    Rcheulishvili, G.

    1990-12-01

    This paper presents the Killing vectors for a five-dimensional space with the line element. The algebras which are formed by these vectors are written down. The curvature two-forms are described. (author). 10 refs

  4. N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction

    International Nuclear Information System (INIS)

    Christiansen, H.R.; Cunha, M.S.; Helayel Neto, Jose A.; Manssur, L.R.U; Nogueira, A.L.M.A.

    1998-02-01

    An N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component field formalism. By adopting a dimensional reduction procedure, the N=2-D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential. (author)

  5. Reductive Lie-admissible algebras applied to H-spaces and connections

    International Nuclear Information System (INIS)

    Sagle, A.A.

    1982-01-01

    An algebra A with multiplication xy is Lie-admissible if the vector space A with new multiplication [x,y] = xy-yx is a Lie algebra; we denote this Lie algebra by A - . Thus, an associative algebra is Lie-admissible but a Cayley algebra is not Lie-admissible. In this paper we show how Lie-admissible algebras arise from Lie groups and their application to differential geometry on Lie groups via the following theorem. Let A be an n-dimensional Lie-admissible algebra over the reals. Let G be a Lie group with multiplication function μ and with Lie algebra g which is isomorphic to A - . Then there exiss a corrdinate system at the identify e in G which represents μ by a function F:gxg→g defined locally at the origin, such that the second derivative, F 2 , at the origin defines on the vector space g the structure of a nonassociative algebra (g, F 2 ). Furthermore this algebra is isomorphic to A and (g, F 2 ) - is isomorphic to A - . Thus roughly, any Lie-admissible algebra is isomorphic to an algebra obtained from a Lie algebra via a change of coordinates in the Lie group. Lie algebras arise by using canonical coordinates and the Campbell-Hausdorff formula. Applications of this show that any G-invariant psuedo-Riemannian connection on G is completely determined by a suitable Lie-admissible algebra. These results extend to H-spaces, reductive Lie-admissible algebras and connections on homogeneous H-spaces. Thus, alternative and other non-Lie-admissible algebras can be utilized

  6. Spinorial characterizations of surfaces into 3-dimensional psuedo-Riemannian space forms

    OpenAIRE

    Lawn , Marie-Amélie; Roth , Julien

    2011-01-01

    9 pages; We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in $\\mathbb{R}^{2,1}$ to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well ...

  7. On High Dimensional Searching Spaces and Learning Methods

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Choros, Kazimierz

    2017-01-01

    , and similarity functions and discuss the pros and cons of using each of them. Conventional similarity functions evaluate objects in the vector space. Contrarily, Weighted Feature Distance (WFD) functions compare data objects in both feature and vector spaces, preventing the system from being affected by some...

  8. Participatory three dimensional mapping for the preparation of landslide disaster risk reduction program

    Science.gov (United States)

    Kusratmoko, Eko; Wibowo, Adi; Cholid, Sofyan; Pin, Tjiong Giok

    2017-07-01

    This paper presents the results of applications of participatory three dimensional mapping (P3DM) method for fqcilitating the people of Cibanteng' village to compile a landslide disaster risk reduction program. Physical factors, as high rainfall, topography, geology and land use, and coupled with the condition of demographic and social-economic factors, make up the Cibanteng region highly susceptible to landslides. During the years 2013-2014 has happened 2 times landslides which caused economic losses, as a result of damage to homes and farmland. Participatory mapping is one part of the activities of community-based disaster risk reduction (CBDRR)), because of the involvement of local communities is a prerequisite for sustainable disaster risk reduction. In this activity, participatory mapping method are done in two ways, namely participatory two-dimensional mapping (P2DM) with a focus on mapping of disaster areas and participatory three-dimensional mapping (P3DM) with a focus on the entire territory of the village. Based on the results P3DM, the ability of the communities in understanding the village environment spatially well-tested and honed, so as to facilitate the preparation of the CBDRR programs. Furthermore, the P3DM method can be applied to another disaster areas, due to it becomes a medium of effective dialogue between all levels of involved communities.

  9. Influence of cusps and intersections on the Wilson loop in ν-dimensional space

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1984-01-01

    A discussion is given about the influence of cusps and intersections on the calculation of the Wilson loop in ν-dimensional space. In particular, for the two-dimensional case, it is shown that there are no divergences. (Author) [pt

  10. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  11. On construction of two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space

    International Nuclear Information System (INIS)

    Saveliev, M.V.

    1983-01-01

    In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)

  12. Unitarity in three-dimensional flat space higher spin theories

    International Nuclear Information System (INIS)

    Grumiller, D.; Riegler, M.; Rosseel, J.

    2014-01-01

    We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.

  13. Attractive and repulsive quantum forces from dimensionality of space

    DEFF Research Database (Denmark)

    Bialynicki-Birula, I.; Cirone, M.A.; Dahl, Jens Peder

    2002-01-01

    Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space.......Two particles of identical mass attract and repel each other even when there exist no classical external forces and their average relative momentum vanishes. This quantum force depends crucially on the number of dimensions of space....

  14. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  15. Three-dimensional assessment of unilateral subcondylar fracture using computed tomography after open reduction

    Directory of Open Access Journals (Sweden)

    Sathya Kumar Devireddy

    2014-01-01

    Full Text Available Objective: The aim was to assess the accuracy of three-dimensional anatomical reductions achieved by open method of treatment in cases of displaced unilateral mandibular subcondylar fractures using preoperative (pre op and postoperative (post op computed tomography (CT scans. Materials and Methods: In this prospective study, 10 patients with unilateral sub condylar fractures confirmed by an orthopantomogram were included. A pre op and post op CT after 1 week of surgical procedure was taken in axial, coronal and sagittal plane along with three-dimensional reconstruction. Standard anatomical parameters, which undergo changes due to fractures of the mandibular condyle were measured in pre and post op CT scans in three planes and statistically analysed for the accuracy of the reduction comparing the following variables: (a Pre op fractured and nonfractured side (b post op fractured and nonfractured side (c pre op fractured and post op fractured side. P < 0.05 was considered as significant. Results: Three-dimensional anatomical reduction was possible in 9 out of 10 cases (90%. The statistical analysis of each parameter in three variables revealed (P < 0.05 that there was a gross change in the dimensions of the parameters obtained in pre op fractured and nonfractured side. When these parameters were assessed in post op CT for the three variables there was no statistical difference between the post op fractured side and non fractured side. The same parameters were analysed for the three variables in pre op fractured and post op fractured side and found significant statistical difference suggesting a considerable change in the dimensions of the fractured side post operatively. Conclusion: The statistical and clinical results in our study emphasised that it is possible to fix the condyle in three-dimensional anatomical positions with open method of treatment and avoid post op degenerative joint changes. CT is the ideal imaging tool and should be used on

  16. Rubin's CMS reduction method for general state-space models

    NARCIS (Netherlands)

    Kraker, de A.; Campen, van D.H.

    1996-01-01

    In this paper the Rubin CMS procedure for the reduction and successive coupling of undamped structural subsystems with symmetric system matrices will be modified for the case of general damping. The final coordinate transformation is based on the use of complex (residual) flexibility modes,

  17. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  18. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  19. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  1. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  2. Geodesics on a hot plate: an example of a two-dimensional curved space

    International Nuclear Information System (INIS)

    Erkal, Cahit

    2006-01-01

    The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion

  3. Geodesics on a hot plate: an example of a two-dimensional curved space

    Energy Technology Data Exchange (ETDEWEB)

    Erkal, Cahit [Department of Geology, Geography, and Physics, University of Tennessee, Martin, TN 38238 (United States)

    2006-07-01

    The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion.

  4. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  5. Data analysis in high-dimensional sparse spaces

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder

    classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...

  6. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces

    CERN Document Server

    Jacob, Birgit

    2012-01-01

    This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir

  7. The algebra of Killing vectors in five-dimensional space

    International Nuclear Information System (INIS)

    Rcheulishvili, G.L.

    1990-01-01

    This paper presents algebras which are formed by the found earlier Killing vectors in the space with linear element ds. Under some conditions, an explicit dependence of r is given for the functions entering in linear element ds. The curvature two-forms are described. 7 refs

  8. Aspects of high-dimensional theories in embedding spaces

    International Nuclear Information System (INIS)

    Maia, M.D.; Mecklenburg, W.

    1983-01-01

    The question of whether physical meaning may be attributed to the extra dimensions provided by embedding procedures as applied to physical space-times is discussed. The similarities and differences of the present picture to that of conventional Kaluza-Klein pictures are commented. (Author) [pt

  9. To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2007-01-01

    We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and the second (Frechet) derivative of a functional. In this way we couple classical average (given by an infinite-dimensional Gaussian integral) and quantum average (given by the von Neumann trace formula). We can interpret this mathematical construction as a procedure of 'dequantization' of quantum mechanics. We represent quantum mechanics as an asymptotic projection of classical statistical mechanics with infinite-dimensional phase space. This space can be represented as the space of classical fields, so quantum mechanics is represented as a projection of 'prequantum classical statistical field theory'

  10. Lifetime of rho meson in correlation with magnetic-dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Mamiya [Nagoya University, Department of Physics, Nagoya (Japan); Matsuzaki, Shinya [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Institute for Advanced Research, Nagoya (Japan)

    2017-04-15

    It is naively expected that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin s{sub z} = 0, ±1) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the ''fate'' of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin s{sub z} = 0 starts to develop, reaches a peak, then vanishes at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for s{sub z} = ±1 monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau level truncation is also addressed. (orig.)

  11. Rare event simulation in finite-infinite dimensional space

    International Nuclear Information System (INIS)

    Au, Siu-Kui; Patelli, Edoardo

    2016-01-01

    Modern engineering systems are becoming increasingly complex. Assessing their risk by simulation is intimately related to the efficient generation of rare failure events. Subset Simulation is an advanced Monte Carlo method for risk assessment and it has been applied in different disciplines. Pivotal to its success is the efficient generation of conditional failure samples, which is generally non-trivial. Conventionally an independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which is applicable to high dimensional problems (i.e., a large number of random variables) without suffering from ‘curse of dimension’. Experience suggests that the algorithm may perform even better for high dimensional problems. Motivated by this, for any given problem we construct an equivalent problem where each random variable is represented by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study analytically the limiting behavior of the algorithm as the number of hidden variables increases indefinitely. This leads to a new algorithm that is more generic and offers greater flexibility and control. It coincides with an algorithm recently suggested by independent researchers, where a joint Gaussian distribution is imposed between the current sample and the candidate. The present work provides theoretical reasoning and insights into the algorithm.

  12. Puzzle Imaging: Using Large-Scale Dimensionality Reduction Algorithms for Localization.

    Science.gov (United States)

    Glaser, Joshua I; Zamft, Bradley M; Church, George M; Kording, Konrad P

    2015-01-01

    Current high-resolution imaging techniques require an intact sample that preserves spatial relationships. We here present a novel approach, "puzzle imaging," that allows imaging a spatially scrambled sample. This technique takes many spatially disordered samples, and then pieces them back together using local properties embedded within the sample. We show that puzzle imaging can efficiently produce high-resolution images using dimensionality reduction algorithms. We demonstrate the theoretical capabilities of puzzle imaging in three biological scenarios, showing that (1) relatively precise 3-dimensional brain imaging is possible; (2) the physical structure of a neural network can often be recovered based only on the neural connectivity matrix; and (3) a chemical map could be reproduced using bacteria with chemosensitive DNA and conjugative transfer. The ability to reconstruct scrambled images promises to enable imaging based on DNA sequencing of homogenized tissue samples.

  13. Mining nutrigenetics patterns related to obesity: use of parallel multifactor dimensionality reduction.

    Science.gov (United States)

    Karayianni, Katerina N; Grimaldi, Keith A; Nikita, Konstantina S; Valavanis, Ioannis K

    2015-01-01

    This paper aims to enlighten the complex etiology beneath obesity by analysing data from a large nutrigenetics study, in which nutritional and genetic factors associated with obesity were recorded for around two thousand individuals. In our previous work, these data have been analysed using artificial neural network methods, which identified optimised subsets of factors to predict one's obesity status. These methods did not reveal though how the selected factors interact with each other in the obtained predictive models. For that reason, parallel Multifactor Dimensionality Reduction (pMDR) was used here to further analyse the pre-selected subsets of nutrigenetic factors. Within pMDR, predictive models using up to eight factors were constructed, further reducing the input dimensionality, while rules describing the interactive effects of the selected factors were derived. In this way, it was possible to identify specific genetic variations and their interactive effects with particular nutritional factors, which are now under further study.

  14. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  15. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  16. Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals

    Directory of Open Access Journals (Sweden)

    N.R. Sakthivel

    2014-03-01

    Full Text Available Bearing fault, Impeller fault, seal fault and cavitation are the main causes of breakdown in a mono block centrifugal pump and hence, the detection and diagnosis of these mechanical faults in a mono block centrifugal pump is very crucial for its reliable operation. Based on a continuous acquisition of signals with a data acquisition system, it is possible to classify the faults. This is achieved by the extraction of features from the measured data and employing data mining approaches to explore the structural information hidden in the signals acquired. In the present study, statistical features derived from the vibration data are used as the features. In order to increase the robustness of the classifier and to reduce the data processing load, dimensionality reduction is necessary. In this paper dimensionality reduction is performed using traditional dimensionality reduction techniques and nonlinear dimensionality reduction techniques. The effectiveness of each dimensionality reduction technique is also verified using visual analysis. The reduced feature set is then classified using a decision tree. The results obtained are compared with those generated by classifiers such as Naïve Bayes, Bayes Net and kNN. The effort is to bring out the better dimensionality reduction technique–classifier combination.

  17. Risk score modeling of multiple gene to gene interactions using aggregated-multifactor dimensionality reduction

    Directory of Open Access Journals (Sweden)

    Dai Hongying

    2013-01-01

    Full Text Available Abstract Background Multifactor Dimensionality Reduction (MDR has been widely applied to detect gene-gene (GxG interactions associated with complex diseases. Existing MDR methods summarize disease risk by a dichotomous predisposing model (high-risk/low-risk from one optimal GxG interaction, which does not take the accumulated effects from multiple GxG interactions into account. Results We propose an Aggregated-Multifactor Dimensionality Reduction (A-MDR method that exhaustively searches for and detects significant GxG interactions to generate an epistasis enriched gene network. An aggregated epistasis enriched risk score, which takes into account multiple GxG interactions simultaneously, replaces the dichotomous predisposing risk variable and provides higher resolution in the quantification of disease susceptibility. We evaluate this new A-MDR approach in a broad range of simulations. Also, we present the results of an application of the A-MDR method to a data set derived from Juvenile Idiopathic Arthritis patients treated with methotrexate (MTX that revealed several GxG interactions in the folate pathway that were associated with treatment response. The epistasis enriched risk score that pooled information from 82 significant GxG interactions distinguished MTX responders from non-responders with 82% accuracy. Conclusions The proposed A-MDR is innovative in the MDR framework to investigate aggregated effects among GxG interactions. New measures (pOR, pRR and pChi are proposed to detect multiple GxG interactions.

  18. The principal series for a reductive symmetric space, II. Eisenstein integrals.

    NARCIS (Netherlands)

    Ban, E.P. van den

    1991-01-01

    In this paper we develop a theory of Eisenstein integrals related to the principal series for a reductive symmetric space G=H: Here G is a real reductive group of Harish-Chandra's class, ? an involution of G and H an open subgroup of the group G ? of xed points for ?: The group G itself is a

  19. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  20. Space-frequency analysis and reduction of potential field ambiguity

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    1997-06-01

    Full Text Available Ambiguity of depth estimation of magnetic sources via spectral analysis can be reduced representing its field via a set of space-frequency atoms. This is obtained throughout a continuous wavelet transform using a Morlet analyzing wavelet. In the phase-plane representation even a weak contribution related to deep-seated sources is clearly distinguished with respect a more intense effect of a shallow source, also in the presence of a strong noise. Furthermore, a new concept of local power spectrum allows the depth to both the sources to be correctly interpreted. Neither result can be provided by standard Fourier analysis. Another method is proposed to reduce ambiguity by inversion of potential field data lying along the vertical axis. This method allows a depth resolution to gravity or the magnetic methods and below some conditions helps to reduce their inherent ambiguity. Unlike the case of monopoles, inversion of a vertical profile of gravity data above a cubic source gives correct results for the cube side and density.

  1. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    International Nuclear Information System (INIS)

    Lawn, Marie-Amélie; Roth, Julien

    2011-01-01

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ 2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  2. Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach

    Science.gov (United States)

    Ray, S. Saha

    2018-04-01

    In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.

  3. Riccion from higher-dimensional space-time with D-dimensional ...

    Indian Academy of Sciences (India)

    suggest that space-time above 3 05¢1016 GeV should be fractal. .... Here VD is the volume of SD, g´4·Dµ is the determinant of the metric tensor gMN (M ...... means that above 3.05x1016 GeV, SD is not a smooth surface whereas M4 is smooth.

  4. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  5. Solution of the two-dimensional space-time reactor kinetics equation by a locally one-dimensional method

    International Nuclear Information System (INIS)

    Chen, G.S.; Christenson, J.M.

    1985-01-01

    In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program

  6. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space?

    Science.gov (United States)

    Viecilli, Rodrigo F; Budiman, Amanda; Burstone, Charles J

    2013-02-01

    The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance. Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references. The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction. Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Pair production of Dirac particles in a d + 1-dimensional noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ousmane Samary, Dine [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin); N' Dolo, Emanonfi Elias; Hounkonnou, Mahouton Norbert [University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin)

    2014-11-15

    This work addresses the computation of the probability of fermionic particle pair production in d + 1-dimensional noncommutative Moyal space. Using Seiberg-Witten maps, which establish relations between noncommutative and commutative field variables, up to the first order in the noncommutative parameter θ, we derive the probability density of vacuum-vacuum pair production of Dirac particles. The cases of constant electromagnetic, alternating time-dependent, and space-dependent electric fields are considered and discussed. (orig.)

  8. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  9. An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2014-01-01

    Full Text Available We proposed a face recognition algorithm based on both the multilinear principal component analysis (MPCA and linear discriminant analysis (LDA. Compared with current traditional existing face recognition methods, our approach treats face images as multidimensional tensor in order to find the optimal tensor subspace for accomplishing dimension reduction. The LDA is used to project samples to a new discriminant feature space, while the K nearest neighbor (KNN is adopted for sample set classification. The results of our study and the developed algorithm are validated with face databases ORL, FERET, and YALE and compared with PCA, MPCA, and PCA + LDA methods, which demonstrates an improvement in face recognition accuracy.

  10. Three dimensional monocular human motion analysis in end-effector space

    DEFF Research Database (Denmark)

    Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol

    2009-01-01

    In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinemati...

  11. Large parallel volumes of finite and compact sets in d-dimensional Euclidean space

    DEFF Research Database (Denmark)

    Kampf, Jürgen; Kiderlen, Markus

    The r-parallel volume V (Cr) of a compact subset C in d-dimensional Euclidean space is the volume of the set Cr of all points of Euclidean distance at most r > 0 from C. According to Steiner’s formula, V (Cr) is a polynomial in r when C is convex. For finite sets C satisfying a certain geometric...

  12. Quantum theory of string in the four-dimensional space-time

    International Nuclear Information System (INIS)

    Pron'ko, G.P.

    1986-01-01

    The Lorentz invariant quantum theory of string is constructed in four-dimensional space-time. Unlike the traditional approach whose result was breaking of Lorentz invariance, our method is based on the usage of other variables for description of string configurations. The method of an auxiliary spectral problem for periodic potentials is the main tool in construction of these new variables

  13. Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Brazil, Marcus; Winter, Pawel

    The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem --- proposed by Smith in 1992. A number of refinements of Smith's algorithm have...

  14. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    International Nuclear Information System (INIS)

    William S. Winters

    2002-01-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied

  15. Collapsing perfect fluid in self-similar five dimensional space-time and cosmic censorship

    International Nuclear Information System (INIS)

    Ghosh, S.G.; Sarwe, S.B.; Saraykar, R.V.

    2002-01-01

    We investigate the occurrence and nature of naked singularities in the gravitational collapse of a self-similar adiabatic perfect fluid in a five dimensional space-time. The naked singularities are found to be gravitationally strong in the sense of Tipler and thus violate the cosmic censorship conjecture

  16. Three-dimensional space: locomotory style explains memory differences in rats and hummingbirds.

    Science.gov (United States)

    Flores-Abreu, I Nuri; Hurly, T Andrew; Ainge, James A; Healy, Susan D

    2014-06-07

    While most animals live in a three-dimensional world, they move through it to different extents depending on their mode of locomotion: terrestrial animals move vertically less than do swimming and flying animals. As nearly everything we know about how animals learn and remember locations in space comes from two-dimensional experiments in the horizontal plane, here we determined whether the use of three-dimensional space by a terrestrial and a flying animal was correlated with memory for a rewarded location. In the cubic mazes in which we trained and tested rats and hummingbirds, rats moved more vertically than horizontally, whereas hummingbirds moved equally in the three dimensions. Consistent with their movement preferences, rats were more accurate in relocating the horizontal component of a rewarded location than they were in the vertical component. Hummingbirds, however, were more accurate in the vertical dimension than they were in the horizontal, a result that cannot be explained by their use of space. Either as a result of evolution or ontogeny, it appears that birds and rats prioritize horizontal versus vertical components differently when they remember three-dimensional space.

  17. Nonrenormalizable quantum field models in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1978-01-01

    The construction of no-cutoff Euclidean Green's functions for nonrenormalizable interactions L/sub I/(phi) = lambda∫ddelta (epsilon): expepsilonphi: in four-dimensional space-time is carried out. It is shown that all axioms for the generating functional of the Euclidean Green's function are satisfied except perhaps SO(4) invariance

  18. Hyper dimensional phase-space solver and its application to laser-matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Yoshiaki; Nakamura, Takashi; Yabe, Takashi [Department of Energy Sciences, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2000-03-01

    A new numerical scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space is described. At each time step, the distribution function and its first derivatives are advected in phase space by the Cubic Interpolated Propagation (CIP) scheme. Although a cell within grid points is interpolated by a cubic-polynomial, any matrix solutions are not required. The scheme guarantees the exact conservation of the mass. The numerical results show good agreement with the theory. Even if we reduce the number of grid points in the v-direction, the scheme still gives stable, accurate and reasonable results with memory storage comparable to particle simulations. Owing to this fact, the scheme has succeeded to be generalized in a straightforward way to deal with the six-dimensional, or full-dimensional problems. (author)

  19. On renormalisation of the quantum stress tensor in curved space-time by dimensional regularisation

    International Nuclear Information System (INIS)

    Bunch, T.S.

    1979-01-01

    Using dimensional regularisation, a prescription is given for obtaining a finite renormalised stress tensor in curved space-time. Renormalisation is carried out by renormalising coupling constants in the n-dimensional Einstein equation generalised to include tensors which are fourth order in derivatives of the metric. Except for the special case of a massless conformal field in a conformally flat space-time, this procedure is not unique. There exists an infinite one-parameter family of renormalisation ansatze differing from each other in the finite renormalisation that takes place. Nevertheless, the renormalised stress tensor for a conformally invariant field theory acquires a nonzero trace which is independent of the renormalisation ansatz used and which has a value in agreement with that obtained by other methods. A comparison is made with some earlier work using dimensional regularisation which is shown to be in error. (author)

  20. Hyper dimensional phase-space solver and its application to laser-matter

    International Nuclear Information System (INIS)

    Kondoh, Yoshiaki; Nakamura, Takashi; Yabe, Takashi

    2000-01-01

    A new numerical scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space is described. At each time step, the distribution function and its first derivatives are advected in phase space by the Cubic Interpolated Propagation (CIP) scheme. Although a cell within grid points is interpolated by a cubic-polynomial, any matrix solutions are not required. The scheme guarantees the exact conservation of the mass. The numerical results show good agreement with the theory. Even if we reduce the number of grid points in the v-direction, the scheme still gives stable, accurate and reasonable results with memory storage comparable to particle simulations. Owing to this fact, the scheme has succeeded to be generalized in a straightforward way to deal with the six-dimensional, or full-dimensional problems. (author)

  1. The supersymmetric Adler-Bardeen theorem and regularization by dimensional reduction

    International Nuclear Information System (INIS)

    Ensign, P.; Mahanthappa, K.T.

    1987-01-01

    We examine the subtraction scheme dependence of the anomaly of the supersymmetric, gauge singlet axial current in pure and coupled supersymmetric Yang-Mills theories. Preserving supersymmetry and gauge invariance explicitly by using supersymmetric background field theory and dimensional reduction, we show that only the one-loop value of the axial anomaly is subtraction scheme independent, and that one can always define a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory. In general this subtraction scheme may be non-minimal, but in both the pure and the coupled theories, the Adler-Bardeen theorem is satisfied to two loops in minimal subtraction. (orig.)

  2. Distribution of high-dimensional entanglement via an intra-city free-space link.

    Science.gov (United States)

    Steinlechner, Fabian; Ecker, Sebastian; Fink, Matthias; Liu, Bo; Bavaresco, Jessica; Huber, Marcus; Scheidl, Thomas; Ursin, Rupert

    2017-07-24

    Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robustness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links.

  3. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  4. Canonical Groups for Quantization on the Two-Dimensional Sphere and One-Dimensional Complex Projective Space

    International Nuclear Information System (INIS)

    Sumadi A H A; H, Zainuddin

    2014-01-01

    Using Isham's group-theoretic quantization scheme, we construct the canonical groups of the systems on the two-dimensional sphere and one-dimensional complex projective space, which are homeomorphic. In the first case, we take SO(3) as the natural canonical Lie group of rotations of the two-sphere and find all the possible Hamiltonian vector fields, and followed by verifying the commutator and Poisson bracket algebra correspondences with the Lie algebra of the group. In the second case, the same technique is resumed to define the Lie group, in this case SU (2), of CP'.We show that one can simply use a coordinate transformation from S 2 to CP 1 to obtain all the Hamiltonian vector fields of CP 1 . We explicitly show that the Lie algebra structures of both canonical groups are locally homomorphic. On the other hand, globally their corresponding canonical groups are acting on different geometries, the latter of which is almost complex. Thus the canonical group for CP 1 is the double-covering group of SO(3), namely SU(2). The relevance of the proposed formalism is to understand the idea of CP 1 as a space of where the qubit lives which is known as a Bloch sphere

  5. Dimensional reduction of a Lorentz and CPT-violating Maxwell-Chern-Simons model

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. Jr.; Helayel Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: belich@cbpf.br; helayel@cbpf.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Maranhao Univ., Sao Luiz, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Orlando, M.T.D. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica e Quimica; E-mail: orlando@cce.ufes.br

    2003-01-01

    Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional to D = 1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS) sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, {nu}{sup {mu}}. In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of {nu}{sup {mu}} . Analyzing the dispersion relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some modes. The unitary of the gauge sector is assured without any restriction , while the scalar sector is unitary only in the space-like case. (author)

  6. Dimensional reduction of a Lorentz and CPT-violating Maxwell-Chern-Simons model

    International Nuclear Information System (INIS)

    Belich, H. Jr.; Helayel Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luiz, MA; Orlando, M.T.D.; Espirito Santo Univ., Vitoria, ES

    2003-01-01

    Taking as starting point a Lorentz and CPT non-invariant Chern-Simons-like model defined in 1+3 dimensions, we proceed realizing its dimensional to D = 1+2. One then obtains a new planar model, composed by the Maxwell-Chern-Simons (MCS) sector, a Klein-Gordon massless scalar field, and a coupling term that mixes the gauge field to the external vector, ν μ . In spite of breaking Lorentz invariance in the particle frame, this model may preserve the CPT symmetry for a single particular choice of ν μ . Analyzing the dispersion relations, one verifies that the reduced model exhibits stability, but the causality can be jeopardized by some modes. The unitary of the gauge sector is assured without any restriction , while the scalar sector is unitary only in the space-like case. (author)

  7. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    Science.gov (United States)

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  8. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    Science.gov (United States)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  9. Convergent-beam electron diffraction study of incommensurately modulated crystals. Pt. 2. (3 + 1)-dimensional space groups

    International Nuclear Information System (INIS)

    Terauchi, Masami; Takahashi, Mariko; Tanaka, Michiyoshi

    1994-01-01

    The convergent-beam electron diffraction (CBED) method for determining three-dimensional space groups is extended to the determination of the (3 + 1)-dimensional space groups for one-dimensional incommensurately modulated crystals. It is clarified than an approximate dynamical extinction line appears in the CBED discs of the reflections caused by an incommensurate modulation. The extinction enables the space-group determination of the (3 + 1)-dimensional crystals or the one-dimensional incommensurately modulated crystals. An example of the dynamical extinction line is shown using an incommensurately modulated crystal of Sr 2 Nb 2 O 7 . Tables of the dynamical extinction lines appearing in CBED patterns are given for all the (3 + 1)-dimensional space groups of the incommensurately modulated crystal. (orig.)

  10. Time-dependent gravitating solitons in five dimensional warped space-times

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra-dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for fixed value of the conformal time coordinate. Time dependent solutions containing both topological and non-topological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multi-soliton solutions may describe time-dependent kink-antikink systems.

  11. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  12. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    International Nuclear Information System (INIS)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin; Prager, Marcel; Heiland, Sabine; Schwindling, Franz Sebastian; Rammelsberg, Peter; Nittka, Mathias; Grodzki, David

    2017-01-01

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  13. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenfeld, Tim; Heil, Alexander; Bendszus, Martin [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Prager, Marcel; Heiland, Sabine [Heidelberg University Hospital, Department of Neuroradiology, Heidelberg (Germany); Heidelberg University Hospital, Section of Experimental Radiology, Heidelberg (Germany); Schwindling, Franz Sebastian; Rammelsberg, Peter [Heidelberg University Hospital, Department of Prosthodontics, Heidelberg (Germany); Nittka, Mathias; Grodzki, David [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-12-15

    Dental MRI is often impaired by artefacts due to metallic dental materials. Several sequences were developed to reduce susceptibility artefacts. Here, we evaluated a set of sequences for artefact reduction for dental MRI for the first time. Artefact volume, signal-to-noise ratio (SNR) and image quality were assessed on a 3-T MRI for pointwise encoding time reduction with radial acquisition (PETRA), multiple-slab acquisition with view angle tilting gradient, based on a sampling perfection with application-optimised contrasts using different flip angle evolution (SPACE) sequence (MSVAT-SPACE), slice-encoding for metal-artefact correction (SEMAC) and compared to a standard SPACE and a standard turbo-spin-echo (TSE) sequence. Field-of-view and acquisition times were chosen to enable in vivo application. Two implant-supported prostheses were tested (porcelain fused to metal non-precious alloy and monolithic zirconia). Smallest artefact was measured for TSE sequences with no difference between the standard TSE and the SEMAC. MSVAT-SPACE reduced artefacts about 56% compared to the standard SPACE. Effect of the PETRA was dependent on sample used. Image quality and SNR were comparable for all sequences except PETRA, which yielded poor results. There is no benefit in terms of artefact reduction for SEMAC compared to standard TSE. Usage of MSVAT-SPACE is advantageous since artefacts are reduced and higher resolution is achieved. (orig.)

  14. Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory

    Science.gov (United States)

    Ye, Fei; Marchetti, P. A.; Su, Z. B.; Yu, L.

    2017-09-01

    The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern-Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality. Dedicated to the memory of Mario Tonin.

  15. Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern–Simons theory

    International Nuclear Information System (INIS)

    Ye, Fei; Marchetti, P A; Su, Z B; Yu, L

    2017-01-01

    The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern–Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality. (paper)

  16. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control

    Directory of Open Access Journals (Sweden)

    Minggang Wang

    2012-01-01

    Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.

  18. Search of wormholes in different dimensional non-commutative inspired space-times with Lorentzian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2014-12-01

    In this paper we ask whether the wormhole solutions exist in different dimensional noncommutativity-inspired spacetimes. It is well known that the noncommutativity of the space is an outcome of string theory and it replaced the usual point-like object by a smeared object. Here we have chosen the Lorentzian distribution as the density function in the noncommutativity-inspired spacetime. We have observed that the wormhole solutions exist only in four and five dimensions; however, in higher than five dimensions no wormhole exists. For five dimensional spacetime, we get a wormhole for a restricted region. In the usual four dimensional spacetime, we get a stable wormhole which is asymptotically flat. (orig.)

  19. On spinless null propagation in five-dimensional space-times with approximate space-like Killing symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Breban, Romulus [Institut Pasteur, Paris Cedex 15 (France)

    2016-09-15

    Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment. (orig.)

  20. Room Scanner representation and measurement of three-dimensional spaces using a smartphone

    International Nuclear Information System (INIS)

    Bejarano Rodriguez, Mauricio

    2013-01-01

    An algorithm was designed to measure and represent three-dimensional spaces using the resources available on a smartphone. The implementation of the fusion sensor has enabled to use basic trigonometry to calculate the lengths of the walls and the corners of the room. The OpenGL library was used to create and visualize the three-dimensional model of the measured internal space. A library was created to export the represented model to other commercial formats. A certain level of degradation is obtained once an attempt is made to measure long distances because the algorithm depends on the degree of inclination of the smarthphone to perform the measurements. For this reason, at higher elevations are obtained more accurate measurements. The capture process was changed in order to correct the margin of error to measure soccer field. The algorithm has recorded measurements less than 3% margin of error through the process of subdividing the measurement area. (author) [es

  1. Eigenmodes of three-dimensional spherical spaces and their application to cosmology

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Weeks, Jeffrey; Uzan, Jean-Philippe; Gausmann, Evelise; Luminet, Jean-Pierre

    2002-01-01

    This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity

  2. Eigenmodes of three-dimensional spherical spaces and their application to cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Roland [CE-Saclay, DSM/DAPNIA/Service d' Astrophysique, F-91191 Gif sur Yvette (France); Weeks, Jeffrey [15 Farmer St, Canton, NY 13617-1120 (United States); Uzan, Jean-Philippe [Institut d' Astrophysique de Paris, GReCO, CNRS-FRE 2435, 98 bis, Bd Arago, 75014 Paris (France); Gausmann, Evelise [Instituto de Fisica Teorica, Rua Pamplona, 145 Bela Vista - Sao Paulo - SP, CEP 01405-900 (Brazil); Luminet, Jean-Pierre [Laboratoire Univers et Theories, CNRS-FRE 2462, Observatoire de Paris, F-92195 Meudon (France)

    2002-09-21

    This paper investigates the computation of the eigenmodes of the Laplacian operator in multi-connected three-dimensional spherical spaces. General mathematical results and analytical solutions for lens and prism spaces are presented. Three complementary numerical methods are developed and compared with our analytic results and previous investigations. The cosmological applications of these results are discussed, focusing on the cosmic microwave background (CMB) anisotropies. In particular, whereas in the Euclidean case too-small universes are excluded by present CMB data, in the spherical case, candidate topologies will always exist even if the total energy density parameter of the universe is very close to unity.

  3. Dynamics of a neuron model in different two-dimensional parameter-spaces

    Science.gov (United States)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  4. Optical asymmetric cryptography using a three-dimensional space-based model

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method

  5. The new Big Bang Theory according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.

  6. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  7. The New Big Bang Theory according to Dimensional Continuous Space-Time Theory

    Science.gov (United States)

    Martini, Luiz Cesar

    2014-04-01

    This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.

  8. Three-dimensional theory for interaction between atomic ensembles and free-space light

    International Nuclear Information System (INIS)

    Duan, L.-M.; Cirac, J.I.; Zoller, P.

    2002-01-01

    Atomic ensembles have shown to be a promising candidate for implementations of quantum information processing by many recently discovered schemes. All these schemes are based on the interaction between optical beams and atomic ensembles. For description of these interactions, one assumed either a cavity-QED model or a one-dimensional light propagation model, which is still inadequate for a full prediction and understanding of most of the current experimental efforts that are actually taken in the three-dimensional free space. Here, we propose a perturbative theory to describe the three-dimensional effects in interaction between atomic ensembles and free-space light with a level configuration important for several applications. The calculations reveal some significant effects that were not known before from the other approaches, such as the inherent mode-mismatching noise and the optimal mode-matching conditions. The three-dimensional theory confirms the collective enhancement of the signal-to-noise ratio which is believed to be one of the main advantages of the ensemble-based quantum information processing schemes, however, it also shows that this enhancement needs to be understood in a more subtle way with an appropriate mode-matching method

  9. Method of solving conformal models in D-dimensional space I

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Y.

    1996-01-01

    We study the Hilbert space of conformal field theory in D-dimensional space. The latter is shown to have model-independent structure. The states of matter fields and gauge fields form orthogonal subspaces. The dynamical principle fixing the choice of model may be formulated either in each of these subspaces or in their direct sum. In the latter case, gauge interactions are necessarily present in the model. We formulate the conditions specifying the class of models where gauge interactions are being neglected. The anomalous Ward identities are derived. Different values of anomalous parameters (D-dimensional analogs of a central charge, including operator ones) correspond to different models. The structure of these models is analogous to that of 2-dimensional conformal theories. Each model is specified by D-dimensional analog of null vector. The exact solutions of the simplest models of this type are examined. It is shown that these models are equivalent to Lagrangian models of scalar fields with a triple interaction. The values of dimensions of such fields are calculated, and the closed sets of differential equations for higher Green functions are derived. Copyright copyright 1996 Academic Press, Inc

  10. Development of the three dimensional flow model in the SPACE code

    International Nuclear Information System (INIS)

    Oh, Myung Taek; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    SPACE (Safety and Performance Analysis CodE) is a nuclear plant safety analysis code, which has been developed in the Republic of Korea through a joint research between the Korean nuclear industry and research institutes. The SPACE code has been developed with multi-dimensional capabilities as a requirement of the next generation safety code. It allows users to more accurately model the multi-dimensional flow behavior that can be exhibited in components such as the core, lower plenum, upper plenum and downcomer region. Based on generalized models, the code can model any configuration or type of fluid system. All the geometric quantities of mesh are described in terms of cell volume, centroid, face area, and face center, so that it can naturally represent not only the one dimensional (1D) or three dimensional (3D) Cartesian system, but also the cylindrical mesh system. It is possible to simulate large and complex domains by modelling the complex parts with a 3D approach and the rest of the system with a 1D approach. By 1D/3D co-simulation, more realistic conditions and component models can be obtained, providing a deeper understanding of complex systems, and it is expected to overcome the shortcomings of 1D system codes. (author)

  11. Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-04-25

    Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d-2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.

  12. Quantum limits to information about states for finite dimensional Hilbert space

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1990-01-01

    A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs

  13. Nonperturbative construction of nonrenormalizable models of quantum field theory in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1979-01-01

    Construction of non-cutoff Euclidean Green's functions for nonrenormalizable interactions Lsub(I)(phi)=lambda∫dσ(epsilon):expepsilonphi: in four-dimensional space-time is presented. It is shown that all axioms for the generating functional of E.G.F. are satisfied except perhaps the SO(4) invariance. It is shown that the singularities of E.G.F. for coinciding points are not worse than those of the free theory. (author)

  14. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  15. A Fast and High-precision Orientation Algorithm for BeiDou Based on Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    ZHAO Jiaojiao

    2015-05-01

    Full Text Available A fast and high-precision orientation algorithm for BeiDou is proposed by deeply analyzing the constellation characteristics of BeiDou and GEO satellites features.With the advantage of good east-west geometry, the baseline vector candidate values were solved by the GEO satellites observations combined with the dimensionality reduction theory at first.Then, we use the ambiguity function to judge the values in order to obtain the optical baseline vector and get the wide lane integer ambiguities. On this basis, the B1 ambiguities were solved. Finally, the high-precision orientation was estimated by the determinating B1 ambiguities. This new algorithm not only can improve the ill-condition of traditional algorithm, but also can reduce the ambiguity search region to a great extent, thus calculating the integer ambiguities in a single-epoch.The algorithm is simulated by the actual BeiDou ephemeris and the result shows that the method is efficient and fast for orientation. It is capable of very high single-epoch success rate(99.31% and accurate attitude angle (the standard deviation of pitch and heading is respectively 0.07°and 0.13°in a real time and dynamic environment.

  16. Dimensionality reduction for the quantitative evaluation of a smartphone-based Timed Up and Go test.

    Science.gov (United States)

    Palmerini, Luca; Mellone, Sabato; Rocchi, Laura; Chiari, Lorenzo

    2011-01-01

    The Timed Up and Go is a clinical test to assess mobility in the elderly and in Parkinson's disease. Lately instrumented versions of the test are being considered, where inertial sensors assess motion. To improve the pervasiveness, ease of use, and cost, we consider a smartphone's accelerometer as the measurement system. Several parameters (usually highly correlated) can be computed from the signals recorded during the test. To avoid redundancy and obtain the features that are most sensitive to the locomotor performance, a dimensionality reduction was performed through principal component analysis (PCA). Forty-nine healthy subjects of different ages were tested. PCA was performed to extract new features (principal components) which are not redundant combinations of the original parameters and account for most of the data variability. They can be useful for exploratory analysis and outlier detection. Then, a reduced set of the original parameters was selected through correlation analysis with the principal components. This set could be recommended for studies based on healthy adults. The proposed procedure could be used as a first-level feature selection in classification studies (i.e. healthy-Parkinson's disease, fallers-non fallers) and could allow, in the future, a complete system for movement analysis to be incorporated in a smartphone.

  17. M-Isomap: Orthogonal Constrained Marginal Isomap for Nonlinear Dimensionality Reduction.

    Science.gov (United States)

    Zhang, Zhao; Chow, Tommy W S; Zhao, Mingbo

    2013-02-01

    Isomap is a well-known nonlinear dimensionality reduction (DR) method, aiming at preserving geodesic distances of all similarity pairs for delivering highly nonlinear manifolds. Isomap is efficient in visualizing synthetic data sets, but it usually delivers unsatisfactory results in benchmark cases. This paper incorporates the pairwise constraints into Isomap and proposes a marginal Isomap (M-Isomap) for manifold learning. The pairwise Cannot-Link and Must-Link constraints are used to specify the types of neighborhoods. M-Isomap computes the shortest path distances over constrained neighborhood graphs and guides the nonlinear DR through separating the interclass neighbors. As a result, large margins between both interand intraclass clusters are delivered and enhanced compactness of intracluster points is achieved at the same time. The validity of M-Isomap is examined by extensive simulations over synthetic, University of California, Irvine, and benchmark real Olivetti Research Library, YALE, and CMU Pose, Illumination, and Expression databases. The data visualization and clustering power of M-Isomap are compared with those of six related DR methods. The visualization results show that M-Isomap is able to deliver more separate clusters. Clustering evaluations also demonstrate that M-Isomap delivers comparable or even better results than some state-of-the-art DR algorithms.

  18. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method

    KAUST Repository

    Zhang, Lianbin; Chen, Guoying; Hedhili, Mohamed N.; Zhang, Hongnan; Wang, Peng

    2012-01-01

    In this study, three-dimensional (3D) graphene assemblies are prepared from graphene oxide (GO) by a facile in situ reduction-assembly method, using a novel, low-cost, and environment-friendly reducing medium which is a combination of oxalic acid

  19. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  20. Min-Max Spaces and Complexity Reduction in Min-Max Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Gaubert, Stephane, E-mail: Stephane.Gaubert@inria.fr [Ecole Polytechnique, INRIA and CMAP (France); McEneaney, William M., E-mail: wmceneaney@ucsd.edu [University of California San Diego, Dept. of Mech. and Aero. Eng. (United States)

    2012-06-15

    Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds a different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.

  1. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  2. Three-dimensional space changes after premature loss of a maxillary primary first molar.

    Science.gov (United States)

    Park, Kitae; Jung, Da-Woon; Kim, Ji-Yeon

    2009-11-01

    A space maintainer is generally preferred when a primary first molar is lost before or during active eruption of the first permanent molars in order to prevent space loss. However, controversy prevails regarding the space loss after eruption of the permanent first molars. The purpose of this study was to examine spatial changes subsequent to premature loss of a maxillary primary first molar after the eruption of the permanent first molars. Thirteen children, five girls and eight boys, expecting premature extraction of a maxillary primary first molar because of caries and/or failed pulp therapy, were selected. Spatial changes were investigated using a three-dimensional laser scanner by comparing the primary molar space, arch width, arch length, and arch perimeter before and after the extraction of a maxillary primary first molar. Also, the inclination and angulation changes in the maxillary primary canines, primary second molars, and permanent first molars adjacent to the extraction site were investigated before and after the extraction of the maxillary primary first molar in order to examine the source of space loss. There was no statistically significant space loss on the extraction side compared to the control side (P = 0.33). No consistent findings were seen on the inclination and angulation changes on the extraction side. The premature loss of a maxillary primary first molar, in cases with class I molar relationship, has limited influence on the space in permanent dentition.

  3. METHOD OF DIMENSIONALITY REDUCTION IN CONTACT MECHANICS AND FRICTION: A USERS HANDBOOK. I. AXIALLY-SYMMETRIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Valentin L. Popov

    2014-04-01

    Full Text Available The Method of Dimensionality Reduction (MDR is a method of calculation and simulation of contacts of elastic and viscoelastic bodies. It consists essentially of two simple steps: (a substitution of the three-dimensional continuum by a uniquely defined one-dimensional linearly elastic or viscoelastic foundation (Winkler foundation and (b transformation of the three-dimensional profile of the contacting bodies by means of the MDR-transformation. As soon as these two steps are completed, the contact problem can be considered to be solved. For axial symmetric contacts, only a small calculation by hand is required which does not exceed elementary calculus and will not be a barrier for any practically-oriented engineer. Alternatively, the MDR can be implemented numerically, which is almost trivial due to the independence of the foundation elements. In spite of their simplicity, all the results are exact. The present paper is a short practical guide to the MDR.

  4. Three-dimensional space charge distribution measurement in electron beam irradiated PMMA

    International Nuclear Information System (INIS)

    Imaizumi, Yoichi; Suzuki, Ken; Tanaka, Yasuhiro; Takada, Tatsuo

    1996-01-01

    The localized space charge distribution in electron beam irradiated PMMA was investigated using pulsed electroacoustic method. Using a conventional space charge measurement system, the distribution only in the depth direction (Z) can be measured assuming the charges distributed uniformly in the horizontal (X-Y) plane. However, it is difficult to measure the distribution of space charge accumulated in small area. Therefore, we have developed the new system to measure the three-dimensional space charge distribution using pulsed electroacoustic method. The system has a small electrode with a diameter of 1mm and a motor-drive X-Y stage to move the sample. Using the data measured at many points, the three-dimensional distribution were obtained. To estimate the system performance, the electron beam irradiated PMMA was used. The electron beam was irradiated from transmission electron microscope (TEM). The depth of injected electron was controlled using the various metal masks. The measurement results were compared with theoretically calculated values of electron range. (author)

  5. Dynamics of a neuron model in different two-dimensional parameter-spaces

    International Nuclear Information System (INIS)

    Rech, Paulo C.

    2011-01-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades. - Research highlights: → We report parameter-spaces obtained for the Hindmarsh-Rose neuron model. → Regardless of the combination of parameters, a typical scenario is preserved. → The scenario presents a comb-shaped chaotic region immersed in a periodic region. → Periodic regions near the chaotic region are in period-adding bifurcation cascades.

  6. Euclidean scalar Green function in a higher dimensional global monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2002-01-01

    We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5

  7. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures

    DEFF Research Database (Denmark)

    Eckardt, Henrik; Lind, Dennis; Toendevold, Erik

    2015-01-01

    was evaluated on reconstructed coronal and sagittal images of the acetabulum. Results - The fracture severity and patient characteristics were similar in the 2 groups. In the 3D group, 46 of 72 patients (0.6) had a perfect result after open reduction and internal fixation, and in the control group, 17 of 42 (0...

  8. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    Energy Technology Data Exchange (ETDEWEB)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal [Tomas Bata University in Zlin Nad Stranemi 4511, 760 05 Zlin, Czech republic jasek@fai.utb.cz, dvorakj@aconte.cz, martina.jankova@email.cz, michal.sedlacek@email.cz (Czech Republic)

    2016-06-08

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  9. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    International Nuclear Information System (INIS)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-01-01

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements’ own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  10. Possibilities of identifying cyber attack in noisy space of n-dimensional abstract system

    Science.gov (United States)

    Jašek, Roman; Dvořák, Jiří; Janková, Martina; Sedláček, Michal

    2016-06-01

    This article briefly mentions some selected options of current concept for identifying cyber attacks from the perspective of the new cyberspace of real system. In the cyberspace, there is defined n-dimensional abstract system containing elements of the spatial arrangement of partial system elements such as micro-environment of cyber systems surrounded by other suitably arranged corresponding noise space. This space is also gradually supplemented by a new image of dynamic processes in a discreet environment, and corresponding again to n-dimensional expression of time space defining existence and also the prediction for expected cyber attacksin the noise space. Noises are seen here as useful and necessary for modern information and communication technologies (e.g. in processes of applied cryptography in ICT) and then the so-called useless noises designed for initial (necessary) filtering of this highly aggressive environment and in future expectedly offensive background in cyber war (e.g. the destruction of unmanned means of an electromagnetic pulse, or for destruction of new safety barriers created on principles of electrostatic field or on other principles of modern physics, etc.). The key to these new options is the expression of abstract systems based on the models of microelements of cyber systems and their hierarchical concept in structure of n-dimensional system in given cyberspace. The aim of this article is to highlight the possible systemic expression of cyberspace of abstract system and possible identification in time-spatial expression of real environment (on microelements of cyber systems and their surroundings with noise characteristics and time dimension in dynamic of microelements' own time and externaltime defined by real environment). The article was based on a partial task of faculty specific research.

  11. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Arehart Eric

    2009-03-01

    Full Text Available Abstract Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194. We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI database (n = 29967 and a control set of sequences (coding region not associated with SNP sites randomly selected from the NCBI database (n = 29967. We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in

  12. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

    Directory of Open Access Journals (Sweden)

    Huanhuan Li

    2017-08-01

    Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

  13. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

    Science.gov (United States)

    Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

    2017-08-04

    The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

  14. Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies

    Directory of Open Access Journals (Sweden)

    Enrico eChiovetto

    2013-02-01

    Full Text Available A long standing hypothesis in the neuroscience community is that the CNS generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as muscle synergies. Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety of motor tasks into a well-determined spatial, temporal or spatio-temporal organization. This plurality of definitions and their separate application to complex tasks have so far complicated the comparison and interpretation of the results obtained across studies, and it has always remained unclear why and when one synergistic decomposition should be preferred to another one. By using well-understood motor tasks such as elbow flexions and extensions, we aimed in this study to clarify better what are the motor features characterized by each kind of decomposition and to assess whether, when and why one of them should be preferred to the others. We found that three temporal synergies, each one of them accounting for specific temporal phases of the movements could account for the majority of the data variation. Similar performances could be achieved by two synchronous synergies, encoding the agonist-antagonist nature of the two muscles considered, and by two time-varying muscle synergies, encoding each one a task-related feature of the elbow movements, specifically their direction. Our findings support the notion that each EMG decomposition provides a set of well-interpretable muscle synergies, identifying reduction of dimensionality in different aspects of the movements. Taken together, our findings suggest that all decompositions are not equivalent and may imply different neurophysiological substrates

  15. A Novel Medical Freehand Sketch 3D Model Retrieval Method by Dimensionality Reduction and Feature Vector Transformation

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2016-01-01

    Full Text Available To assist physicians to quickly find the required 3D model from the mass medical model, we propose a novel retrieval method, called DRFVT, which combines the characteristics of dimensionality reduction (DR and feature vector transformation (FVT method. The DR method reduces the dimensionality of feature vector; only the top M low frequency Discrete Fourier Transform coefficients are retained. The FVT method does the transformation of the original feature vector and generates a new feature vector to solve the problem of noise sensitivity. The experiment results demonstrate that the DRFVT method achieves more effective and efficient retrieval results than other proposed methods.

  16. Separable Reduction and Supporting Properties of Fréchet-Like Normals in Banach Spaces

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Mordukhovich, B. S.

    1999-01-01

    Roč. 51, č. 1 (1999), s. 26-48 ISSN 0008-414X R&D Projects: GA AV ČR IAA1019702; GA ČR GA201/98/1449 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : nonsmooth analysis * Banach spaces * separable reduction Subject RIV: BA - General Mathematics Impact factor: 0.357, year: 1999

  17. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q 0 )/(q/q 0 ), where (q/q 0 ) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  18. Families of null surfaces in the Minkowski tri dimensional space-time and its associated differential equations

    International Nuclear Information System (INIS)

    Silva O, G.; Garcia G, P.

    2004-01-01

    In this work we describe the procedure to obtain all the family of third order ordinary differential equations connected by a contact transformation such that in their spaces of solutions is defined a conformal three dimensional Minkowski metric. (Author)

  19. Superintegrability in two-dimensional Euclidean space and associated polynomial solutions

    International Nuclear Information System (INIS)

    Kalnins, E.G.; Miller, W. Jr; Pogosyan, G.S.

    1996-01-01

    In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the spectral functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial base for each of the nonsubgroup base, not just the subgroup cartesian and polar coordinate case, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the N-dimensional isotropic quantum oscillator. 28 refs., 1 tab

  20. The Application of a Three-Dimensional Printed Product to Fill the Space After Organ Removal.

    Science.gov (United States)

    Weng, Jui-Yu; Wang, Che-Chuna; Chen, Pei-Jar; Lim, Sher-Wei; Kuo, Jinn-Rung

    2017-11-01

    Maintaining body integrity, especially in Asian societies, is an independent predictor of organ donation. Herein, we report the case of an 18-year-old man who suffered a traumatic brain injury with ensuing brain death caused by a car accident. According to the family's wishes, we used a 3-dimensional printer to create simulated heart, kidneys, and liver to fill the spaces after the patient's organs were removed. This is the first case report to introduce this new clinical application of 3-dimensional printed products during transplantation surgery. This new clinical application may have supportive psychological effects on the family and caregivers; however, given the varied responses to our procedure, this ethical issue is worth discussing. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    Lim, Doo-Hyun

    2006-03-01

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  2. The Group Evacuation Behavior Based on Fire Effect in the Complicated Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2014-01-01

    Full Text Available In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.

  3. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  4. Non-Euclidean geometry and curvature two-dimensional spaces, volume 3

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...

  5. Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles

    International Nuclear Information System (INIS)

    Marchiolli, M.A.; Ruzzi, M.

    2012-01-01

    We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics. - Highlights: ► We construct a discrete version of the Weyl–Wigner–Moyal formalism. ► Coherent states for finite-dimensional discrete phase spaces are established. ► Discrete coordinate and momentum operators are properly defined. ► Uncertainty principles depend on the topology of finite physical systems. ► Corrections for the discrete Heisenberg uncertainty relation are also obtained.

  6. Influence of cusps and intersections on the calculation of the Wilson loop in ν-dimensional space

    International Nuclear Information System (INIS)

    Bezerra, V.B.

    1984-01-01

    A discussion is given about the influence of cusps and intersections on the calculation of the Wilson Loop in ν-dimensional space. In particular, for the two-dimensional case, it is shown that there are no divergences. (Author) [pt

  7. Application of data mining in three-dimensional space time reactor model

    International Nuclear Information System (INIS)

    Jiang Botao; Zhao Fuyu

    2011-01-01

    A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial

  8. On the dimensional reduction of a gravitational theory containing higher-derivative terms

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1990-02-01

    From the higher-dimensional gravitational theory L-circumflex=R-circumflex-2Λ-circumflex-α-circumflex 1 R-circumflex 2 =α-circumflex 2 R-circumflex AB R-circumflex AB -α-circumflex 3 R-circumflex ABCD R-circumflex ABCD , we derive the effective four-dimensional Lagrangian L. (author). 12 refs

  9. Stability and Existence Results for Quasimonotone Quasivariational Inequalities in Finite Dimensional Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it [University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics (Italy)

    2016-02-15

    We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.

  10. Stability and Existence Results for Quasimonotone Quasivariational Inequalities in Finite Dimensional Spaces

    International Nuclear Information System (INIS)

    Castellani, Marco; Giuli, Massimiliano

    2016-01-01

    We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered

  11. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  12. Neutrino stress tensor regularization in two-dimensional space-time

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Unruh, W.G.

    1977-01-01

    The method of covariant point-splitting is used to regularize the stress tensor for a massless spin 1/2 (neutrino) quantum field in an arbitrary two-dimensional space-time. A thermodynamic argument is used as a consistency check. The result shows that the physical part of the stress tensor is identical with that of the massless scalar field (in the absence of Casimir-type terms) even though the formally divergent expression is equal to the negative of the scalar case. (author)

  13. Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method

    International Nuclear Information System (INIS)

    Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.

    2010-01-01

    The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.

  14. A three-dimensional phase space dynamical model of the Earth's radiation belt

    International Nuclear Information System (INIS)

    Boscher, D. M.; Beutier, T.; Bourdarie, S.

    1996-01-01

    A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained

  15. Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization

    International Nuclear Information System (INIS)

    Keller, Kai Johannes

    2010-04-01

    The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)

  16. Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kai Johannes

    2010-04-15

    The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)

  17. State-space representation of instationary two-dimensional airfoil aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)

    2004-03-01

    In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.

  18. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  19. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  20. Three-dimensionality of space and the quantum bit: an information-theoretic approach

    International Nuclear Information System (INIS)

    Müller, Markus P; Masanes, Lluís

    2013-01-01

    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry ‘minimal amounts of direction information’, interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d = 3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements. (paper)

  1. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Piot, P. [NICADD, DeKalb

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force in the beam combined with elegant [4] and explore the limitation of the 1D model often used

  2. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits

    OpenAIRE

    Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane

    2013-01-01

    We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR's constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to ide...

  3. Exploring the effects of dimensionality reduction in deep networks for force estimation in robotic-assisted surgery

    Science.gov (United States)

    Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia

    2016-03-01

    Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.

  4. A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Thanh-Son

    2011-01-01

    We establish an explicit form of a non-Abelian SO(8) monopole in a 9-dimensional space and show that it is indeed a direct generalization of Dirac and Yang monopoles. Using the generalized Hurwitz transformation, we have found a connection between a 16-dimensional harmonic oscillator and a 9-dimensional hydrogenlike atom in the field of the SO(8) monopole (MICZ-Kepler problem). Using the built connection the group of dynamical symmetry of the 9-dimensional MICZ-Kepler problem is found as SO(10, 2).

  5. Universality and the dynamical space-time dimensionality in the Lorentzian type IIB matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tsuchiya, Asato [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2017-03-27

    The type IIB matrix model is one of the most promising candidates for a nonperturbative formulation of superstring theory. In particular, its Lorentzian version was shown to exhibit an interesting real-time dynamics such as the spontaneous breaking of the 9-dimensional rotational symmetry to the 3-dimensional one. This result, however, was obtained after regularizing the original matrix integration by introducing “infrared” cutoffs on the quadratic moments of the Hermitian matrices. In this paper, we generalize the form of the cutoffs in such a way that it involves an arbitrary power (2p) of the matrices. By performing Monte Carlo simulation of a simplified model, we find that the results become independent of p and hence universal for p≳1.3. For p as large as 2.0, however, we find that large-N scaling behaviors do not show up, and we cannot take a sensible large-N limit. Thus we find that there is a certain range of p in which a universal large-N limit can be taken. Within this range of p, the dynamical space-time dimensionality turns out to be (3+1), while for p=2.0, where we cannot take a sensible large-N limit, we observe a (5+1)d structure.

  6. Research on the development of space target detecting system and three-dimensional reconstruction technology

    Science.gov (United States)

    Li, Dong; Wei, Zhen; Song, Dawei; Sun, Wenfeng; Fan, Xiaoyan

    2016-11-01

    With the development of space technology, the number of spacecrafts and debris are increasing year by year. The demand for detecting and identification of spacecraft is growing strongly, which provides support to the cataloguing, crash warning and protection of aerospace vehicles. The majority of existing approaches for three-dimensional reconstruction is scattering centres correlation, which is based on the radar high resolution range profile (HRRP). This paper proposes a novel method to reconstruct the threedimensional scattering centre structure of target from a sequence of radar ISAR images, which mainly consists of three steps. First is the azimuth scaling of consecutive ISAR images based on fractional Fourier transform (FrFT). The later is the extraction of scattering centres and matching between adjacent ISAR images using grid method. Finally, according to the coordinate matrix of scattering centres, the three-dimensional scattering centre structure is reconstructed using improved factorization method. The three-dimensional structure is featured with stable and intuitive characteristic, which provides a new way to improve the identification probability and reduce the complexity of the model matching library. A satellite model is reconstructed using the proposed method from four consecutive ISAR images. The simulation results prove that the method has gotten a satisfied consistency and accuracy.

  7. Classical testing particles and (4 + N)-dimensional theories of space-time

    International Nuclear Information System (INIS)

    Nieto-Garcia, J.A.

    1986-01-01

    The Lagrangian theory of a classical relativistic spinning test particle (top) developed by Hanson and Regge and by Hojman is briefly reviewed. Special attention is devoted to the constraints imposed on the dynamical variables associated with the system of this theory. The equations for a relativistic top are formulated in a way suitable for use in the study of geometrical properties of the 4 + N-dimensional Kaluza-Klein background. It is shown that the equations of motion of a top in five dimensions reduce to the Hanson-Regge generalization of the Bargmann-Michel-Telegdi equations of motion in four dimensions when suitable conditions on the spin tensor are imposed. The classical bosonic relativistic string theory is discussed and the connection of this theory with the top theory is examined. It is found that the relation between the string and the top leads naturally to the consideration of a 3-dimensional extended system (called terron) which sweeps out a 4-dimensional surface as it evolves in a space-time. By using a square root procedure based on ideas by Teitelboim a theory of a supersymmetric top is developed. The quantization of the new supersymmetric system is discussed. Conclusions and suggestions for further research are given

  8. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  9. A New Ensemble Method with Feature Space Partitioning for High-Dimensional Data Classification

    Directory of Open Access Journals (Sweden)

    Yongjun Piao

    2015-01-01

    Full Text Available Ensemble data mining methods, also known as classifier combination, are often used to improve the performance of classification. Various classifier combination methods such as bagging, boosting, and random forest have been devised and have received considerable attention in the past. However, data dimensionality increases rapidly day by day. Such a trend poses various challenges as these methods are not suitable to directly apply to high-dimensional datasets. In this paper, we propose an ensemble method for classification of high-dimensional data, with each classifier constructed from a different set of features determined by partitioning of redundant features. In our method, the redundancy of features is considered to divide the original feature space. Then, each generated feature subset is trained by a support vector machine, and the results of each classifier are combined by majority voting. The efficiency and effectiveness of our method are demonstrated through comparisons with other ensemble techniques, and the results show that our method outperforms other methods.

  10. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Convergence rates and finite-dimensional approximations for nonlinear ill-posed problems involving monotone operators in Banach spaces

    International Nuclear Information System (INIS)

    Nguyen Buong.

    1992-11-01

    The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization constructed by dual mapping for nonlinear ill-posed problems involving monotone operators in real reflective Banach spaces. The obtained results are considered in combination with finite-dimensional approximations for the space. An example is considered for illustration. (author). 15 refs

  12. On Kubo-Martin-Schwinger states of classical dynamical systems with the infinite-dimensional phase space

    International Nuclear Information System (INIS)

    Arsen'ev, A.A.

    1979-01-01

    Example of a classical dynamical system with the infinite-dimensional phase space, satisfying the analogue of the Kubo-Martin-Schwinger conditions for classical dynamics, is constructed explicitly. Connection between the system constructed and the Fock space dynamics is pointed out

  13. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  14. An Integrated Approach to Parameter Learning in Infinite-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The availability of sophisticated modern physics codes has greatly extended the ability of domain scientists to understand the processes underlying their observations of complicated processes, but it has also introduced the curse of dimensionality via the many user-set parameters available to tune. Many of these parameters are naturally expressed as functional data, such as initial temperature distributions, equations of state, and controls. Thus, when attempting to find parameters that match observed data, being able to navigate parameter-space becomes highly non-trivial, especially considering that accurate simulations can be expensive both in terms of time and money. Existing solutions include batch-parallel simulations, high-dimensional, derivative-free optimization, and expert guessing, all of which make some contribution to solving the problem but do not completely resolve the issue. In this work, we explore the possibility of coupling together all three of the techniques just described by designing user-guided, batch-parallel optimization schemes. Our motivating example is a neutron diffusion partial differential equation where the time-varying multiplication factor serves as the unknown control parameter to be learned. We find that a simple, batch-parallelizable, random-walk scheme is able to make some progress on the problem but does not by itself produce satisfactory results. After reducing the dimensionality of the problem using functional principal component analysis (fPCA), we are able to track the progress of the solver in a visually simple way as well as viewing the associated principle components. This allows a human to make reasonable guesses about which points in the state space the random walker should try next. Thus, by combining the random walker's ability to find descent directions with the human's understanding of the underlying physics, it is possible to use expensive simulations more efficiently and more quickly arrive at the

  15. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    Science.gov (United States)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi

  16. An introduction to data reduction: space-group determination, scaling and intensity statistics.

    Science.gov (United States)

    Evans, Philip R

    2011-04-01

    This paper presents an overview of how to run the CCP4 programs for data reduction (SCALA, POINTLESS and CTRUNCATE) through the CCP4 graphical interface ccp4i and points out some issues that need to be considered, together with a few examples. It covers determination of the point-group symmetry of the diffraction data (the Laue group), which is required for the subsequent scaling step, examination of systematic absences, which in many cases will allow inference of the space group, putting multiple data sets on a common indexing system when there are alternatives, the scaling step itself, which produces a large set of data-quality indicators, estimation of |F| from intensity and finally examination of intensity statistics to detect crystal pathologies such as twinning. An appendix outlines the scoring schemes used by the program POINTLESS to assign probabilities to possible Laue and space groups.

  17. Dimensional Reduction of N=1, E_8 SYM over SU(3)/U(1) x U(1) x Z_3 and its four-dimensional effective action

    CERN Document Server

    Irges, Nikos; Zoupanos, George

    2011-01-01

    We present an extension of the Standard Model inspired by the E_8 x E_8 Heterotic String. In order that a reasonable effective Lagrangian is presented we neglect everything else other than the ten-dimensional N=1 supersymmetric Yang-Mills sector associated with one of the gauge factors and certain couplings necessary for anomaly cancellation. We consider a compactified space-time M_4 x B_0 / Z_3, where B_0 is the nearly-Kaehler manifold SU(3)/U(1) x U(1) and Z_3 is a freely acting discrete group on B_0. Then we reduce dimensionally the E_8 on this manifold and we employ the Wilson flux mechanism leading in four dimensions to an SU(3)^3 gauge theory with the spectrum of a N=1 supersymmetric theory. We compute the effective four-dimensional Lagrangian and demonstrate that an extension of the Standard Model is obtained with interesting features including a conserved baryon number and fixed tree level Yukawa couplings and scalar potential. The spectrum contains new states such as right handed neutrinos and heavy ...

  18. The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification

    Energy Technology Data Exchange (ETDEWEB)

    Jason L. Wright; Milos Manic

    2010-05-01

    This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.

  19. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  20. arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere

    CERN Document Server

    Closset, Cyril; Seong, Rak-Kyeong

    2018-05-04

    It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.

  1. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    Science.gov (United States)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed

  2. Classical and quantum investigations of four-dimensional maps with a mixed phase space

    International Nuclear Information System (INIS)

    Richter, Martin

    2012-01-01

    Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.

  3. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  4. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  5. Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    KAUST Repository

    Chavez Chavez, Gustavo Ivan; Turkiyyah, George; Zampini, Stefano; Keyes, David E.

    2017-01-01

    and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a

  6. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    Science.gov (United States)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  7. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    International Nuclear Information System (INIS)

    Gorbatsevich, Vladimir V

    2012-01-01

    The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra is considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.

  8. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    Science.gov (United States)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  9. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

  10. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  11. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  12. Geometry of lengths, areas, and volumes two-dimensional spaces, volume 1

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the first of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The first volume begins with length measurement as dominated by the Pythagorean Theorem (three proofs) with application to number theory; areas measured by slicing and scaling, where Archimedes uses the physical weights and balances to calculate spherical volume and is led to the invention of calculus; areas by cut and paste, leading to the Bolyai-Gerwien theorem on squaring polygons; areas by counting, leading to the theory of continued fractions, the efficient rational approximation of real numbers, and Minkowski's theorem on convex bodies; straight-edge and compass constructions, giving c...

  13. Black objects and hoop conjecture in five-dimensional space-time

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)

    2010-02-21

    We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.

  14. Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Duc Khac Do

    2014-07-01

    Full Text Available This paper presents a method to design controllers that force a quadrotor vertical take-off and landing (VTOL aircraft to globally asymptotically track a reference trajectory in three-dimensional space. Motivated by the vehicle's steering practice, the roll and pitch angles are considered as immediate controls plus the total thrust force  provided by the aircraft's four rotors to control the position and yaw angle of the aircraft. The control design is based on the newly introduced one-step ahead backstepping, the standard backstepping and Lyapunov's direct methods. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to obtain global tracking control results. The paper also includes a design of observers that exponentially estimate the aircraft's linear velocity vector and disturbances. Simulations illustrate the results.

  15. Non extensive statistics and entropic gravity in a non-integer dimensional space

    International Nuclear Information System (INIS)

    Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.

    2013-01-01

    Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)

  16. Application of dimensional regularization to single chain polymer static properties: Conformational space renormalization of polymers. III

    International Nuclear Information System (INIS)

    Oono, Y.; Ohta, T.; Freed, K.F.

    1981-01-01

    A dimensional regularization approach to the renormalization group treatment of polymer excluded volume is formulated in chain conformation space where monomers are specified by their spatial positions and their positions along the chain and the polymers may be taken to be monodisperse. The method utilizes basic scale invariance considerations. First, it is recognized that long wavelength macroscopic descriptions must be well defined in the limit that the minimum atomic or molecular scale L is set to zero. Secondly, the microscopic theory is independent of the conveniently chosen macroscopic scale of length k. The freedom of choice of k is exploited along with the assumed renormalizability of the theory to provide the renormalization group equations which directly imply the universal scaling laws for macroscopic properties. The renormalizability of the model implies the existence of the general relations between the basic macroparameters, such as chain length, excluded volume, etc., and their microscopic counterparts in the microscopic model for the system. These macro--micro relations are defined through the condition that macroscopic quantities be well defined for polymer chains for any spatial dimensionality. The method is illustrated by calculating the end vector distribution function for all values of end vectors R. The evaluation of this distribution function currently requires the use of expansions in e = 4-d. In this case our distribution reduces to known limits for R→0 or infinity. Subsequent papers will present calculations of the polymer coherent scattering function, the monomer spatial distribution function, and concentration dependent properties

  17. Quantum trajectories in complex space: One-dimensional stationary scattering problems

    International Nuclear Information System (INIS)

    Chou, C.-C.; Wyatt, Robert E.

    2008-01-01

    One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems

  18. Massive quantum field theory in two-dimensional Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Bunch, T.S.; Christensen, S.M.; Fulling, S.A.

    1978-01-01

    The stress tensor of a massive scalar field, as an integral over normal modes (which are not mere plane waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormalization ansatz suggested by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees with the explicit results of Bernard and Duncan for a special model, and (3) has a nonzero vacuum expectation value in the two-dimensional ''Milne universe'' (flat space in hyperbolic coordinates). Following Wald, we prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the renormalization procedure. The general approach of this paper is applicable to four-dimensional models

  19. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  20. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  1. Vehicle Color Recognition with Vehicle-Color Saliency Detection and Dual-Orientational Dimensionality Reduction of CNN Deep Features

    Science.gov (United States)

    Zhang, Qiang; Li, Jiafeng; Zhuo, Li; Zhang, Hui; Li, Xiaoguang

    2017-12-01

    Color is one of the most stable attributes of vehicles and often used as a valuable cue in some important applications. Various complex environmental factors, such as illumination, weather, noise and etc., result in the visual characteristics of the vehicle color being obvious diversity. Vehicle color recognition in complex environments has been a challenging task. The state-of-the-arts methods roughly take the whole image for color recognition, but many parts of the images such as car windows; wheels and background contain no color information, which will have negative impact on the recognition accuracy. In this paper, a novel vehicle color recognition method using local vehicle-color saliency detection and dual-orientational dimensionality reduction of convolutional neural network (CNN) deep features has been proposed. The novelty of the proposed method includes two parts: (1) a local vehicle-color saliency detection method has been proposed to determine the vehicle color region of the vehicle image and exclude the influence of non-color regions on the recognition accuracy; (2) dual-orientational dimensionality reduction strategy has been designed to greatly reduce the dimensionality of deep features that are learnt from CNN, which will greatly mitigate the storage and computational burden of the subsequent processing, while improving the recognition accuracy. Furthermore, linear support vector machine is adopted as the classifier to train the dimensionality reduced features to obtain the recognition model. The experimental results on public dataset demonstrate that the proposed method can achieve superior recognition performance over the state-of-the-arts methods.

  2. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  3. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.

    2015-10-01

    In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.

  4. Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system

    International Nuclear Information System (INIS)

    Fang, Guochang; Tian, Lixin; Sun, Mei; Fu, Min

    2012-01-01

    A novel three-dimensional energy-saving and emission-reduction chaotic system is proposed, which has not yet been reported in present literature. The system is established in accordance with the complicated relationship between energy-saving and emission-reduction, carbon emissions and economic growth. The dynamic behavior of the system is analyzed by means of Lyapunov exponents and bifurcation diagrams. With undetermined coefficient method, expressions of homoclinic orbits of the system are obtained. The Šilnikov theorem guarantees that the system has Smale horseshoes and the horseshoes chaos. Artificial neural network (ANN) is used to identify the quantitative coefficients in the simulation models according to the statistical data of China, and an empirical study of the real system is carried out with the results in perfect agreement with actual situation. It is found that the sooner and more perfect energy-saving and emission-reduction is started, the easier and sooner the maximum of the carbon emissions will be achieved so as to reduce carbon emissions and energy intensity. Numerical simulations are presented to demonstrate the results. -- Highlights: ► Use non-linear dynamical method to model the energy-saving and emission-reduction system. ► The energy-saving and emission-reduction attractor is obtained. ► Identify the unknown parameters of the energy-saving and emission-reduction system based on the statistical data. ► Evaluating the achievements of energy-saving and emission-reduction by the time-varying energy intensity calculation formula. ► Some statistical results based on the statistical data in China are presented, which are vivid and adherent to the reality.

  5. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    Science.gov (United States)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  6. Green functions and dimensional reduction of quantum fields on product manifolds

    International Nuclear Information System (INIS)

    Haba, Z

    2008-01-01

    We discuss Euclidean Green functions on product manifolds P=N x M. We show that if M is compact and N is not compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R D-1 x S β , where S β is a circle of radius β, then the result reduces to the well-known approximation of the D-dimensional finite temperature quantum field theory by (D - 1)-dimensional one in the high-temperature limit. Analytic continuation of Euclidean fields is discussed briefly

  7. Scale-dependent Patterns in One-dimensional Fracture Spacing and Aperture Data

    Science.gov (United States)

    Roy, A.; Perfect, E.

    2013-12-01

    One-dimensional scanline data about fracture spacing and size attributes such as aperture or length are mostly considered in separate studies that compute the cumulative frequency of these attributes without regard to their actual spatial sequence. In a previous study, we showed that spacing data can be analyzed using lacunarity to identify whether fractures occur in clusters. However, to determine if such clusters also contain the largest fractures in terms of a size attribute such as aperture, it is imperative that data about the size attribute be integrated with information about fracture spacing. While for example, some researchers have considered aperture in conjunction with spacing, their analyses were either applicable only to a specific type of data (e.g. multifractal) or failed to characterize the data at different scales. Lacunarity is a technique for analyzing multi-scale non-binary data and is ideally-suited for characterizing scanline data with spacing and aperture values. We present a technique that can statistically delineate the relationship between size attributes and spatial clustering. We begin by building a model scanline that has complete partitioning of fractures with small and large apertures between the intercluster regions and clusters. We demonstrate that the ratio of lacunarity for this model to that of its counterpart for a completely randomized sequence of apertures can be used to determine whether large-aperture fractures preferentially occur next to each other. The technique is then applied to two natural fracture scanline datasets, one with most of the large apertures occurring in fracture clusters, and the other with more randomly-spaced fractures, without any specific ordering of aperture values. The lacunarity ratio clearly discriminates between these two datasets and, in the case of the first example, it is also able to identify the range of scales over which the widest fractures are clustered. The technique thus developed for

  8. A Comparative Study of 3-Dimensional Titanium Versus 2-Dimensional Titanium Miniplates for Open Reduction and Fixation of Mandibular Parasymphysis Fracture.

    Science.gov (United States)

    Mittal, Yogesh; Varghese, K George; Mohan, S; Jayakumar, N; Chhag, Somil

    2016-03-01

    Three dimensional titanium plating system was developed by Farmand in 1995 to meet the requirements of semi rigid fixation with lesser complication. The purpose of this in vivo prospective study was to evaluate and compare the clinical effectiveness of three dimensional and two dimensional Titanium miniplates for open reduction and fixation of mandibular parasymphysis fracture. Thirty patients with non-comminuted mandibular parasymphysis fractures were divided randomly into two equal groups and were treated with 2 mm 3D and 2D miniplate system respectively. All patients were systematically monitored at 1st, 2nd, 3rd, 6th week, 3rd and 6th month postoperatively. The outcome parameters recorded were severity of pain, infection, mobility, occlusion derangement, paresthesia and implant failure. The data so collected was analyzed using independent t test and Chi square test (α = .05). The results showed that one patient in each group had post-operative infection, occlusion derangement and mobility (p > .05). In Group A, one patient had paresthesia while in Group B, two patients had paresthesia (p > .05). None of the patients in both the groups had implant failure. There was no statistically significant difference between 3D and 2D miniplate system in all the recorded parameters at all the follow-ups (p > .05). 3D miniplates were found to be better than 2D miniplates in terms of cost, ease of surgery and operative time. However, 3D miniplates were unfavorable for cases where fracture line was oblique and in close proximity to mental foramen, where they were difficult to adapt and more chances for tooth-root damage and inadvertent injury to the mental nerve due to traction.

  9. Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Herranz, Francisco J

    2009-01-01

    The superposition of the Kepler-Coulomb potential on the 3D Euclidean space with three centrifugal terms has recently been shown to be maximally superintegrable (Verrier and Evans 2008 J. Math. Phys. 49 022902) by finding an additional (hidden) integral of motion which is quartic in the momenta. In this paper, we present the generalization of this result to the N-dimensional spherical, hyperbolic and Euclidean spaces by making use of a unified symmetry approach that makes use of the curvature parameter. The resulting Hamiltonian, formed by the (curved) Kepler-Coulomb potential together with N centrifugal terms, is shown to be endowed with 2N - 1 functionally independent integrals of the motion: one of them is quartic and the remaining ones are quadratic. The transition from the proper Kepler-Coulomb potential, with its associated quadratic Laplace-Runge-Lenz N-vector, to the generalized system is fully described. The role of spherical, nonlinear (cubic) and coalgebra symmetries in all these systems is highlighted

  10. Individual-based models for adaptive diversification in high-dimensional phenotype spaces.

    Science.gov (United States)

    Ispolatov, Iaroslav; Madhok, Vaibhav; Doebeli, Michael

    2016-02-07

    Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can be introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Training astronauts using three-dimensional visualisations of the International Space Station.

    Science.gov (United States)

    Rycroft, M; Houston, A; Barker, A; Dahlstron, E; Lewis, N; Maris, N; Nelles, D; Bagaoutdinov, R; Bodrikov, G; Borodin, Y; Cheburkov, M; Ivanov, D; Karpunin, P; Katargin, R; Kiselyev, A; Kotlayarevsky, Y; Schetinnikov, A; Tylerov, F

    1999-03-01

    Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.

  12. Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.

    Science.gov (United States)

    Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter

    2018-04-09

    Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Three-dimensional MRI Analysis of Femoral Head Remodeling After Reduction in Patients With Developmental Dysplasia of the Hip.

    Science.gov (United States)

    Tsukagoshi, Yuta; Kamada, Hiroshi; Kamegaya, Makoto; Takeuchi, Ryoko; Nakagawa, Shogo; Tomaru, Yohei; Tanaka, Kenta; Onishi, Mio; Nishino, Tomofumi; Yamazaki, Masashi

    2018-05-02

    Previous reports on patients with developmental dysplasia of the hip (DDH) showed that the prereduced femoral head was notably smaller and more nonspherical than the intact head, with growth failure observed at the proximal posteromedial area. We evaluated the shape of the femoral head cartilage in patients with DDH before and after reduction, with size and sphericity assessed using 3-dimensional (3D) magnetic resonance imaging (MRI). We studied 10 patients with unilateral DDH (all female) who underwent closed reduction. Patients with avascular necrosis of the femoral head on the plain radiograph 1 year after reduction were excluded. 3D MRI was performed before reduction and after reduction, at 2 years of age. 3D-image analysis software was used to reconstruct the multiplanes. After setting the axial, coronal, and sagittal planes in the software (based on the femoral shaft and neck axes), the smallest sphere that included the femoral head cartilage was drawn, the diameter was measured, and the center of the sphere was defined as the femoral head center. We measured the distance between the center and cartilage surface every 30 degrees on the 3 reconstructed planes. Sphericity of the femoral head was calculated using a ratio (the distance divided by each radius) and compared between prereduction and postreduction. The mean patient age was 7±3 and 26±3 months at the first and second MRI, respectively. The mean duration between the reduction and second MRI was 18±3 months. The femoral head diameter was 26.7±1.5 and 26.0±1.6 mm on the diseased and intact sides, respectively (P=0.069). The ratios of the posteromedial area on the axial plane and the proximoposterior area on the sagittal plane after reduction were significantly larger than before reduction (P<0.01). We demonstrated that the size of the reduced femoral head was nearly equal to that of the intact femoral head and that the growth failure area of the head before reduction, in the proximal posteromedial

  14. Higher-dimensional Bianchi type-VIh cosmologies

    Science.gov (United States)

    Lorenz-Petzold, D.

    1985-09-01

    The higher-dimensional perfect fluid equations of a generalization of the (1 + 3)-dimensional Bianchi type-VIh space-time are discussed. Bianchi type-V and Bianchi type-III space-times are also included as special cases. It is shown that the Chodos-Detweiler (1980) mechanism of cosmological dimensional-reduction is possible in these cases.

  15. Evaluation of Reduced Power Spectra from Three-Dimensional k-Space

    Science.gov (United States)

    Saur, J.; von Papen, M.

    2014-12-01

    We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in kk-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in kk-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with k∥˜kα⊥k_\\|sim k_perp^alpha, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κkappa on the field-to-flow angle θtheta between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θtheta-independent cascade with the spectral slope of the perpendicular cascade κ(θ=90∘)kappa(theta{=}90^circ). This happens at frequencies f>fmaxf>f_mathrm{max}, where fmax(L,α,θ)f_mathrm{max}(L,alpha,theta) is a function of outer scale LL, critical balance exponent αalpha and field-to-flow angle θtheta. We also discuss potential damping terms acting on the kk-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence κ(θ)kappa(theta) as found by textit{Horbury et al.} (2008) and textit{Chen et al.} (2010) can be explained with a damped critically balanced turbulence model.

  16. On reduction and exact solutions of nonlinear many-dimensional Schroedinger equations

    International Nuclear Information System (INIS)

    Barannik, A.F.; Marchenko, V.A.; Fushchich, V.I.

    1991-01-01

    With the help of the canonical decomposition of an arbitrary subalgebra of the orthogonal algebra AO(n) the rank n and n-1 maximal subalgebras of the extended isochronous Galileo algebra, the rank n maximal subalgebras of the generalized extended classical Galileo algebra AG(a,n) the extended special Galileo algebra AG(2,n) and the extended whole Galileo algebra AG(3,n) are described. By using the rank n subalgebras, ansatze reducing the many dimensional Schroedinger equations to ordinary differential equations is found. With the help of the reduced equation solutions exact solutions of the Schroedinger equation are considered

  17. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Tenkanen, Tuomas V.I. [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Vuorinen, Aleksi [Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland); Weir, David J. [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Department of Physics and Helsinki Institute of Physics,P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2){sub L}×U(1){sub Y} gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  18. Algorithm for statistical noise reduction in three-dimensional ion implant simulations

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Jaraiz, M.; Bailon, L.; Barbolla, J.

    2001-01-01

    As integrated circuit devices scale into the deep sub-micron regime, ion implantation will continue to be the primary means of introducing dopant atoms into silicon. Different types of impurity profiles such as ultra-shallow profiles and retrograde profiles are necessary for deep submicron devices in order to realize the desired device performance. A new algorithm to reduce the statistical noise in three-dimensional ion implant simulations both in the lateral and shallow/deep regions of the profile is presented. The computational effort in BCA Monte Carlo ion implant simulation is also reduced

  19. Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons

    Directory of Open Access Journals (Sweden)

    Ernestina Martel

    2018-06-01

    Full Text Available Dimensionality reduction represents a critical preprocessing step in order to increase the efficiency and the performance of many hyperspectral imaging algorithms. However, dimensionality reduction algorithms, such as the Principal Component Analysis (PCA, suffer from their computationally demanding nature, becoming advisable for their implementation onto high-performance computer architectures for applications under strict latency constraints. This work presents the implementation of the PCA algorithm onto two different high-performance devices, namely, an NVIDIA Graphics Processing Unit (GPU and a Kalray manycore, uncovering a highly valuable set of tips and tricks in order to take full advantage of the inherent parallelism of these high-performance computing platforms, and hence, reducing the time that is required to process a given hyperspectral image. Moreover, the achieved results obtained with different hyperspectral images have been compared with the ones that were obtained with a field programmable gate array (FPGA-based implementation of the PCA algorithm that has been recently published, providing, for the first time in the literature, a comprehensive analysis in order to highlight the pros and cons of each option.

  20. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    Science.gov (United States)

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  1. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  2. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  3. Reduction of the dimensionality and comparative analysis of multivariate radiological data

    International Nuclear Information System (INIS)

    Seddeek, M.K.; Kozae, A.M.; Sharshar, T.; Badran, H.M.

    2009-01-01

    Computational methods were used to reduce the dimensionality and to find clusters of multivariate data. The variables were the natural radioactivity contents and the texture characteristics of sand samples. The application of discriminate analysis revealed that samples with high negative values of the former score have the highest contamination with black sand. Principal component analysis (PCA) revealed that radioactivity concentrations alone are sufficient for the classification. Rough set analysis (RSA) showed that the concentration of 238 U, 226 Ra or 232 Th, combined with the concentration of 40 K, can specify the clusters and characteristics of the sand. Both PCA and RSA show that 238 U, 226 Ra and 232 Th behave similarly. RSA revealed that one or two of them can be omitted without degrading predictions.

  4. A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme

    Science.gov (United States)

    Ghoman, Satyajit S.

    The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of

  5. Linearized fermion-gravitation system in a (2+1)-dimensional space-time with Chern-Simons data

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1990-01-01

    The fermion-graviton system at linearized level in a (2+1)-dimensional space-time with the gravitational Chern-Simons term is studied. In this approximation it is shown that this system presents anomalous rotational properties and spin, in analogy with the gauge field-matter system. (A.C.A.S.) [pt

  6. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    Science.gov (United States)

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  7. Numerical relativity for D dimensional space-times: Head-on collisions of black holes and gravitational wave extraction

    International Nuclear Information System (INIS)

    Witek, Helvi; Nerozzi, Andrea; Zilhao, Miguel; Herdeiro, Carlos; Gualtieri, Leonardo; Cardoso, Vitor; Sperhake, Ulrich

    2010-01-01

    Higher dimensional black holes play an exciting role in fundamental physics, such as high energy physics. In this paper, we use the formalism and numerical code reported in [1] to study the head-on collision of two black holes. For this purpose we provide a detailed treatment of gravitational wave extraction in generic D dimensional space-times, which uses the Kodama-Ishibashi formalism. For the first time, we present the results of numerical simulations of the head-on collision in five space-time dimensions, together with the relevant physical quantities. We show that the total radiated energy, when two black holes collide from rest at infinity, is approximately (0.089±0.006)% of the center of mass energy, slightly larger than the 0.055% obtained in the four-dimensional case, and that the ringdown signal at late time is in very good agreement with perturbative calculations.

  8. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    International Nuclear Information System (INIS)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  9. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  10. The extensions of space-time. Physics in the 8-dimensional homogeneous space D = SU(2,2)/K

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-07-01

    The Minkowski space-time is only a boundary of a bigger homogeneous space of the conformal group. The conformal group is the symmetry group of our most fundamental massless wave equations. These extended groups and spaces have many remarkable properties and physical implications. (author). 36 refs

  11. Forward Modeling of Reduced Power Spectra from Three-dimensional k-space

    Science.gov (United States)

    von Papen, Michael; Saur, Joachim

    2015-06-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSDs) from arbitrary energy distributions in {\\boldsymbol{k}} -space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with {{k}\\parallel }∼ k\\bot α and α \\lt 1, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor’s hypothesis. We further investigate the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward θ-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency {{f}2D}(L,α ,θ ), which is analytically estimated and depends on outer scale L, critical balance exponent α, and field-to-flow angle θ. We discuss anisotropic damping terms acting on the {\\boldsymbol{k}} -space distribution of energy and their effects on the PSD. Further, we show that the spectral anisotropies κ (θ ) as found by Horbury et al. and Chen et al. in the solar wind are in accordance with a damped critically balanced cascade of kinetic Alfvén waves. We also model power spectra obtained by Papen et al. in Saturn’s plasma sheet and find that the change of spectral indices inside 9 {{R}s} can be explained by damping on electron scales.

  12. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    Science.gov (United States)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  13. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article

  14. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    Science.gov (United States)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  15. Interacting noise sources shape patterns of arm movement variability in three-dimensional space.

    Science.gov (United States)

    Apker, Gregory A; Darling, Timothy K; Buneo, Christopher A

    2010-11-01

    Reaching movements are subject to noise in both the planning and execution phases of movement production. The interaction of these noise sources during natural movements is not well understood, despite its importance for understanding movement variability in neurologically intact and impaired individuals. Here we examined the interaction of planning and execution related noise during the production of unconstrained reaching movements. Subjects performed sequences of two movements to targets arranged in three vertical planes separated in depth. The starting position for each sequence was also varied in depth with the target plane; thus required movement sequences were largely contained within the vertical plane of the targets. Each final target in a sequence was approached from two different directions, and these movements were made with or without visual feedback of the moving hand. These combined aspects of the design allowed us to probe the interaction of execution and planning related noise with respect to reach endpoint variability. In agreement with previous studies, we found that reach endpoint distributions were highly anisotropic. The principal axes of movement variability were largely aligned with the depth axis, i.e., the axis along which visual planning related noise would be expected to dominate, and were not generally well aligned with the direction of the movement vector. Our results suggest that visual planning-related noise plays a dominant role in determining anisotropic patterns of endpoint variability in three-dimensional space, with execution noise adding to this variability in a movement direction-dependent manner.

  16. Contribution of execution noise to arm movement variability in three-dimensional space.

    Science.gov (United States)

    Apker, Gregory A; Buneo, Christopher A

    2012-01-01

    Reaching movements are subject to noise associated with planning and execution, but precisely how these noise sources interact to determine patterns of endpoint variability in three-dimensional space is not well understood. For frontal plane movements, variability is largest along the depth axis (the axis along which visual planning noise is greatest), with execution noise contributing to this variability along the movement direction. Here we tested whether these noise sources interact in a similar way for movements directed in depth. Subjects performed sequences of two movements from a single starting position to targets that were either both contained within a frontal plane ("frontal sequences") or where the first was within the frontal plane and the second was directed in depth ("depth sequences"). For both sequence types, movements were performed with or without visual feedback of the hand. When visual feedback was available, endpoint distributions for frontal and depth sequences were generally anisotropic, with the principal axes of variability being strongly aligned with the depth axis. Without visual feedback, endpoint distributions for frontal sequences were relatively isotropic and movement direction dependent, while those for depth sequences were similar to those with visual feedback. Overall, the results suggest that in the presence of visual feedback, endpoint variability is dominated by uncertainty associated with planning and updating visually guided movements. In addition, the results suggest that without visual feedback, increased uncertainty in hand position estimation effectively unmasks the effect of execution-related noise, resulting in patterns of endpoint variability that are highly movement direction dependent.

  17. Relativistic three-dimensional Lippmann-Schwinger cross sections for space radiation applications

    Science.gov (United States)

    Werneth, C. M.; Xu, X.; Norman, R. B.; Maung, K. M.

    2017-12-01

    Radiation transport codes require accurate nuclear cross sections to compute particle fluences inside shielding materials. The Tripathi semi-empirical reaction cross section, which includes over 60 parameters tuned to nucleon-nucleus (NA) and nucleus-nucleus (AA) data, has been used in many of the world's best-known transport codes. Although this parameterization fits well to reaction cross section data, the predictive capability of any parameterization is questionable when it is used beyond the range of the data to which it was tuned. Using uncertainty analysis, it is shown that a relativistic three-dimensional Lippmann-Schwinger (LS3D) equation model based on Multiple Scattering Theory (MST) that uses 5 parameterizations-3 fundamental parameterizations to nucleon-nucleon (NN) data and 2 nuclear charge density parameterizations-predicts NA and AA reaction cross sections as well as the Tripathi cross section parameterization for reactions in which the kinetic energy of the projectile in the laboratory frame (TLab) is greater than 220 MeV/n. The relativistic LS3D model has the additional advantage of being able to predict highly accurate total and elastic cross sections. Consequently, it is recommended that the relativistic LS3D model be used for space radiation applications in which TLab > 220MeV /n .

  18. Noise-induced phase space transport in two-dimensional Hamiltonian systems.

    Science.gov (United States)

    Pogorelov, I V; Kandrup, H E

    1999-08-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

  19. Positioning in a flat two-dimensional space-time: The delay master equation

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio

    2010-01-01

    The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.

  20. Black hole formation and space-time fluctuations in two dimensional dilaton gravity and complementarity

    International Nuclear Information System (INIS)

    Das, S.R.; Mukherji, S.

    1994-01-01

    We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs

  1. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  2. Three dimensional range geometry and texture data compression with space-filling curves.

    Science.gov (United States)

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  3. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  4. Extending the Generalised Pareto Distribution for Novelty Detection in High-Dimensional Spaces.

    Science.gov (United States)

    Clifton, David A; Clifton, Lei; Hugueny, Samuel; Tarassenko, Lionel

    2014-01-01

    Novelty detection involves the construction of a "model of normality", and then classifies test data as being either "normal" or "abnormal" with respect to that model. For this reason, it is often termed one-class classification. The approach is suitable for cases in which examples of "normal" behaviour are commonly available, but in which cases of "abnormal" data are comparatively rare. When performing novelty detection, we are typically most interested in the tails of the normal model, because it is in these tails that a decision boundary between "normal" and "abnormal" areas of data space usually lies. Extreme value statistics provides an appropriate theoretical framework for modelling the tails of univariate (or low-dimensional) distributions, using the generalised Pareto distribution (GPD), which can be demonstrated to be the limiting distribution for data occurring within the tails of most practically-encountered probability distributions. This paper provides an extension of the GPD, allowing the modelling of probability distributions of arbitrarily high dimension, such as occurs when using complex, multimodel, multivariate distributions for performing novelty detection in most real-life cases. We demonstrate our extension to the GPD using examples from patient physiological monitoring, in which we have acquired data from hospital patients in large clinical studies of high-acuity wards, and in which we wish to determine "abnormal" patient data, such that early warning of patient physiological deterioration may be provided.

  5. Learning the inverse kinetics of an octopus-like manipulator in three-dimensional space.

    Science.gov (United States)

    Giorelli, M; Renda, F; Calisti, M; Arienti, A; Ferri, G; Laschi, C

    2015-05-13

    This work addresses the inverse kinematics problem of a bioinspired octopus-like manipulator moving in three-dimensional space. The bioinspired manipulator has a conical soft structure that confers the ability of twirling around objects as a real octopus arm does. Despite the simple design, the soft conical shape manipulator driven by cables is described by nonlinear differential equations, which are difficult to solve analytically. Since exact solutions of the equations are not available, the Jacobian matrix cannot be calculated analytically and the classical iterative methods cannot be used. To overcome the intrinsic problems of methods based on the Jacobian matrix, this paper proposes a neural network learning the inverse kinematics of a soft octopus-like manipulator driven by cables. After the learning phase, a feed-forward neural network is able to represent the relation between manipulator tip positions and forces applied to the cables. Experimental results show that a desired tip position can be achieved in a short time, since heavy computations are avoided, with a degree of accuracy of 8% relative average error with respect to the total arm length.

  6. METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Denys Vasyliev

    2017-03-01

    Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.

  7. Comparison of three-dimensional orthodontic load systems of different commercial archwires for space closure.

    Science.gov (United States)

    Gajda, Steven; Chen, Jie

    2012-03-01

    To experimentally quantify the effects of the loop design on three-dimensional orthodontic load systems of two types of commercial closing loop archwires: Teardrop and Keyhole. An orthodontic force tester and custom-made dentoform were used to measure the load systems produced on two teeth during simulated space closure. The system included three force components along and three moment components about three clinically defined axes on two target teeth: the left maxillary canine and the lateral incisor. The archwires were attached to the dentoform and were activated following a standard clinical procedure. The resulting six load components produced by the two archwires were reported and compared. The results were also compared with those of the T-loop archwire published previously. The three designs deliver similar loading patterns; however, the component magnitudes are dependent on the design. All of the designs result in lingual tipping of the teeth, canine lingual-mesial displacement, canine crown-mesial-in rotation, and incisor crown-distal-in rotation.

  8. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC 7078 RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bianchini, P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Chanamé, J. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 782-0436, Santiago (Chile); Chandar, R. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Ferraro, F. R.; Massari, D. [Dipartimento di Fisica e Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Ford, H., E-mail: bellini@stsci.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ∼60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  9. Synthesis of molecular hexatechnetium clusters by means of dimensional reduction of their polymeric complexes

    International Nuclear Information System (INIS)

    Ikai, T.; Yoshimura, T.; Shinohara, A.; Takayama, T.; Sekine, T.

    2006-01-01

    Selenide capping hexatechnetium cluster complex [Tc 6 (μ 3 -Se) 8 CN 6 ] 4- (1) was prepared by the reactions of one-dimensional polymer complex [Tc 6 (μ 3 -Se) 8 Br 4 ] 2- and cyanides at high temperature. Similar reaction of sulfide capping hexatechnetium cluster complex, [Tc 6 (μ 3 -S) 8 Br 6 ] 4- with cyanide gave the terminal substituted complex [Tc 6 (μ 3 -S) 8 CN 6 ] 4- (2). The single-crystal X-ray analysis of 1 and 2, showed that the Tc-Tc bond lengths become longer with lager ionic radius of the face capping ligands in the order S -1 , and that of 2 showed it at 2119 cm -1 . Each of cyclic voltammogram of 1 and 2 showed a reversible one electron redox wave assignable to the Tc 6 III /Tc 5 III Tc IV process. These redox potentials shift to the positive about 0.4V compared to those of the Re cluster analogs. (author)

  10. Quantification of Artifact Reduction With Real-Time Cine Four-Dimensional Computed Tomography Acquisition Methods

    International Nuclear Information System (INIS)

    Langner, Ulrich W.; Keall, Paul J.

    2010-01-01

    Purpose: To quantify the magnitude and frequency of artifacts in simulated four-dimensional computed tomography (4D CT) images using three real-time acquisition methods- direction-dependent displacement acquisition, simultaneous displacement and phase acquisition, and simultaneous displacement and velocity acquisition- and to compare these methods with commonly used retrospective phase sorting. Methods and Materials: Image acquisition for the four 4D CT methods was simulated with different displacement and velocity tolerances for spheres with radii of 0.5 cm, 1.5 cm, and 2.5 cm, using 58 patient-measured tumors and respiratory motion traces. The magnitude and frequency of artifacts, CT doses, and acquisition times were computed for each method. Results: The mean artifact magnitude was 50% smaller for the three real-time methods than for retrospective phase sorting. The dose was ∼50% lower, but the acquisition time was 20% to 100% longer for the real-time methods than for retrospective phase sorting. Conclusions: Real-time acquisition methods can reduce the frequency and magnitude of artifacts in 4D CT images, as well as the imaging dose, but they increase the image acquisition time. The results suggest that direction-dependent displacement acquisition is the preferred real-time 4D CT acquisition method, because on average, the lowest dose is delivered to the patient and the acquisition time is the shortest for the resulting number and magnitude of artifacts.

  11. Gauge constructs and immersions of four-dimensional spacetimes in (4 + k)-dimensional flat spaces: algebraic evaluation of gravity fields

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2003-01-01

    Local action of the fundamental group SO(a, 4 + k - a) is used to show that any solution of an algebraically closed differential system, that is generated from matrix Lie algebra valued 1-forms on a four-dimensional parameter space, will generate families of immersions of four-dimensional spacetimes R 4 in flat (4 + k)-dimensional spaces M 4+k with compatible signature. The algorithm is shown to work with local action of SO(a, 4 + k - a) replaced by local action of GL(4 + k). Immersions generated by local action of the Poincare group on the target spacetime are also obtained. Evaluations of the line elements, immersion loci and connection and curvature forms of these immersions are algebraic. Families of immersions that depend on one or more arbitrary functions are calculated for 1 ≤ k ≤ 4. Appropriate sections of graphs of the conformal factor for two and three interacting line singularities immersed in M 6 are given in appendix A. The local immersion theorem given in appendix B shows that all local solutions of the immersion problem are obtained by use of this method and an algebraic extension in exceptional cases

  12. Quantifying multi-dimensional functional trait spaces of trees: empirical versus theoretical approaches

    Science.gov (United States)

    Ogle, K.; Fell, M.; Barber, J. J.

    2016-12-01

    Empirical, field studies of plant functional traits have revealed important trade-offs among pairs or triplets of traits, such as the leaf (LES) and wood (WES) economics spectra. Trade-offs include correlations between leaf longevity (LL) vs specific leaf area (SLA), LL vs mass-specific leaf respiration rate (RmL), SLA vs RmL, and resistance to breakage vs wood density. Ordination analyses (e.g., PCA) show groupings of traits that tend to align with different life-history strategies or taxonomic groups. It is unclear, however, what underlies such trade-offs and emergent spectra. Do they arise from inherent physiological constraints on growth, or are they more reflective of environmental filtering? The relative importance of these mechanisms has implications for predicting biogeochemical cycling, which is influenced by trait distributions of the plant community. We address this question using an individual-based model of tree growth (ACGCA) to quantify the theoretical trait space of trees that emerges from physiological constraints. ACGCA's inputs include 32 physiological, anatomical, and allometric traits, many of which are related to the LES and WES. We fit ACGCA to 1.6 million USFS FIA observations of tree diameters and heights to obtain vectors of trait values that produce realistic growth, and we explored the structure of this trait space. No notable correlations emerged among the 496 trait pairs, but stepwise regressions revealed complicated multi-variate structure: e.g., relationships between pairs of traits (e.g., RmL and SLA) are governed by other traits (e.g., LL, radiation-use efficiency [RUE]). We also simulated growth under various canopy gap scenarios that impose varying degrees of environmental filtering to explore the multi-dimensional trait space (hypervolume) of trees that died vs survived. The centroid and volume of the hypervolumes differed among dead and live trees, especially under gap conditions leading to low mortality. Traits most predictive

  13. The economic benefits of rainwater-runoff reduction by urban green spaces: a case study in Beijing, China.

    Science.gov (United States)

    Zhang, Biao; Xie, Gaodi; Zhang, Canqiang; Zhang, Jing

    2012-06-15

    Urbanization involves the replacement of vegetated surfaces with impervious built surfaces, and it often results in an increase in the rate and volume of rainwater surface runoff. Urban green spaces play a positive role in rainwater-runoff reduction. However, few studies have explored the benefits of rainwater-runoff reduction by urban green spaces. Based on inventory data of urban green spaces in Beijing, the paper evaluated the economic benefits of rainwater-runoff reduction by urban green spaces, using the rainwater-runoff-coefficient method as well as the economic valuation methods. The results showed that, 2494 cubic meters of potential runoff was reduced per hectare of green area and a total volume of 154 million cubic meters rainwater was stored in these urban green spaces, which almost corresponds to the annual water needs of the urban ecological landscape in Beijing. The total economic benefit was 1.34 billion RMB in 2009 (RMB: Chinese currency, US$1=RMB6.83), which is equivalent to three-quarters of the maintenance cost of Beijing's green spaces; the value of rainwater-runoff reduction was 21.77 thousand RMB per hectare. In addition, the benefits in different districts and counties were ranked in the same order as urban green areas, and the average benefits per hectare of green space showed different trends, which may be related to the impervious surface index in different regions. This research will contribute to an understanding of the role that Beijing's green spaces play in rainwater regulation and in the creation and scientific management of urban green spaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    KAUST Repository

    Chavez Chavez, Gustavo Ivan

    2017-12-07

    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.

  15. Dimensional reduction of U(1) x SU(2) Chern-Simons bosonization: Application to the t - J model

    International Nuclear Information System (INIS)

    Marchetti, P.A.

    1996-09-01

    We perform a dimensional reduction of the U(1) x SU(2) Chern-Simons bosonization and apply it to the t - J model, relevant for high T c superconductors. This procedure yields a decomposition of the electron field into a product of two ''semionic'' fields, i.e. fields obeying Abelian braid statistics with statistics parameter θ = 1/4, one carrying the charge and the other the spin degrees of freedom. A mean field theory is then shown to reproduce correctly the large distance behaviour of the correlation functions of the 1D t - J model at >> J. This result shows that to capture the essential physical properties of the model one needs a specific ''semionic'' form of spin-charge separation. (author). 31 refs

  16. On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system

    International Nuclear Information System (INIS)

    Rogers, C; Schief, W K

    2011-01-01

    A 2+1-dimensional version of a non-isothermal gas dynamic system with origins in the work of Ovsiannikov and Dyson on spinning gas clouds is shown to admit a Hamiltonian reduction which is completely integrable when the adiabatic index γ = 2. This nonlinear dynamical subsystem is obtained via an elliptic vortex ansatz which is intimately related to the construction of a Lax pair in the integrable case. The general solution of the gas dynamic system is derived in terms of Weierstrass (elliptic) functions. The latter derivation makes use of a connection with a stationary nonlinear Schrödinger equation and a Steen–Ermakov–Pinney equation, the superposition principle of which is based on the classical Lamé equation

  17. Four dimensional magnetic resonance imaging with retrospective k-space reordering: A feasibility study

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Chen, Nan-kuei; Chu, Mei-Lan

    2015-01-01

    Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N KS ) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C p ) and a number of impacting factors: the number of repeated scans (N R ), number of slices (N S ), number of respiratory phase bins (N P ), N KS , F, R, and initial respiratory phase at image acquisition (P 0 ). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C p and N R was found best represented by an exponential function (C P =100(1−e −0.18N R ), when N S

  18. Reduction in wick drain effectiveness with spacing for Utah silts and clays.

    Science.gov (United States)

    2012-04-01

    Although decreasing the spacing of vertical drains usually decreases the time for consolidation, previous field tests have shown that there is a critical drain spacing for which tighter spacing does not decrease the time for consolidation. This...

  19. The Fate of DDH Hips Showing Cartilaginous or Fibrous Tissue-filled Joint Spaces Following Primary Reduction.

    Science.gov (United States)

    Kim, Hui Taek; Lee, Tae Hoon; Ahn, Tae Young; Jang, Jae Hoon

    Because the use of magnetic resonance imaging is still not universal for the patients with developmental dysplasia of the hip patients, orthopaedists do not generally distinguish widened joint spaces which are "empty" after primary treatment (and therefore still reducible), from those which are filled and much more difficult to treat. To date no studies have focused on the latter hips. We treated and observed the outcomes for 19 hips which showed filled joint spaces after primary treatment. We retrospectively reviewed 19 cases of developmental dysplasia of the hip: (1) who showed a widened joint space on radiographs after primary treatment; and (2) whose magnetic resonance imaging showed that the widened joint space was accompanied by acetabular cartilage hypertrophy and/or was filled with fibrous tissues. All patients were over 1 year old at the time of primary reduction (reduction was closed in 4 patients, open in 6, and open with pelvic osteotomy in 9). Thirteen patients received at least 1 secondary treatment. Final results were classified using a modified Severin classification. Final outcomes were satisfactory in 10 (52.6%) and unsatisfactory in 9 (47.4%). The widened joint spaces gradually filled with bone, resulting in a shallow acetabulum in the patients with unsatisfactory results. Of 9 patients who underwent combined pelvic osteotomy at the time of primary reduction, results were satisfactory in 6 (66.7%), whereas all patients who had only closed or open primary reduction had unsatisfactory results. Combined pelvic osteotomy at the time of primary reduction is advisable in hips with widened joint spaces. However, hips with filled joint spaces after primary treatment often have unsatisfactory results even after additional pelvic and/or femoral osteotomy. Level IV-prognostic study.

  20. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals.

    Directory of Open Access Journals (Sweden)

    Tom Cattaert

    Full Text Available We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR with Model-Based MDR (MB-MDR. We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR, which is a generalization of Multifactor Dimensionality Reduction (MDR to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC, an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS. This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.

  1. Method of solving conformal models in D-dimensional space 2: A family of exactly solvable models in D > 2

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Palchik, M.Ya.

    1996-02-01

    We study a family of exactly solvable models of conformally-invariant quantum field theory in D-dimensional space. We demonstrate the existence of D-dimensional analogs of primary and secondary fields. Under the action of energy-momentum tensor and conserved currents, the primary fields creates an infinite set of (tensor) secondary fields of different generations. The commutators of secondary fields with zero components of current and energy-momentum tensor include anomalous operator terms. We show that the Hilbert space of conformal theory has a special sector which structure is solely defined by the Ward identities independently on the choice of dynamical model. The states of this sector are constructed from secondary fields. Definite self-consistent conditions on the states of the latter sector fix the choice of the field model uniquely. In particular, Lagrangian models do belong to this class of models. The above self-consistent conditions are formulated as follows. Special superpositions Q s , s = 1,2,... of secondary fields are constructed. Each superposition is determined by the requirement that the form of its commutators with energy-momentum tensor and current (i.e. transformation properties) should be identical to that of a primary field. Each equation Q s (x) = 0 is consistent, and defines an exactly solvable model for D ≥ 3. The structure of these models are analogous to that of well-known two dimensional conformal models. The states Q s (x) modul 0> are analogous to the null-vectors of two dimensional theory. In each of these models one can obtain a closed set of differential equations for all the higher Green functions, as well as algebraic equations relating the scale dimension of fundamental field to the D-dimensional analog of a central charge. As an example, we present a detailed discussion of a pair of exactly solvable models in even-dimensional space D ≥ 4. (author). 28 refs

  2. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  3. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    Science.gov (United States)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  4. Evaluation of the potential for reduction in well spacing of the Bakken sand pool, Court Field

    Energy Technology Data Exchange (ETDEWEB)

    Majcher, M.B.; Estrada, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Nexen Inc., Calgary, AB (Canada); Archer, J.C. [Nexen Inc., Calgary, AB (Canada)

    2005-11-01

    For the past 15 years, the Court field has produced hydrocarbons from the Mississippian/Devonian middle Bakken sandstone reservoir. The formation is located in west central Saskatchewan and was deposited in a marine shelf environment and later reworked into tidally influenced sand ridges. Vertical wells and a waterflood recovery scheme have been used to produce heavy crude with an API gravity of 17. A better understanding of the reservoir behaviour is required in order to advance field development and maintain successful waterflood management. Three-dimensional seismic and well logs were used to map the structural complexity of the sand ridge. This study examined the feasibility of using production and seismic data to update and substantiate a simulation model which was used to evaluate downspace potential. Stratigraphic disparities were taken into account as discontinuous interbedded siltstones may be flow barriers that create anisotropy in the permeability zone. Grid orientation was altered to align axially with the permeability trends of the main sand ridge. This study also reviewed an earlier field simulation and generated an updated model. The potential to reduce well spacing was then identified and waterflood optimization of the middle Bakken reservoir was evaluated. It was concluded that the edges of the sand ridge and areas isolated from existing injectors have the greatest potential for infill drilling and additional water injection because of the high sinkhole density. It was noted that drilling edge regions with high oil saturations have a risk of low permeability zones, resulting in low production rates and the possibility of an ineffective waterflood scheme. Therefore, a successful waterflood in the edge zones would require injector-producer pairs in the equivalent sand facies. 4 refs., 36 figs.

  5. TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail.

    Science.gov (United States)

    Nam, Julia EunJu; Mueller, Klaus

    2013-02-01

    Gaining a true appreciation of high-dimensional space remains difficult since all of the existing high-dimensional space exploration techniques serialize the space travel in some way. This is not so foreign to us since we, when traveling, also experience the world in a serial fashion. But we typically have access to a map to help with positioning, orientation, navigation, and trip planning. Here, we propose a multivariate data exploration tool that compares high-dimensional space navigation with a sightseeing trip. It decomposes this activity into five major tasks: 1) Identify the sights: use a map to identify the sights of interest and their location; 2) Plan the trip: connect the sights of interest along a specifyable path; 3) Go on the trip: travel along the route; 4) Hop off the bus: experience the location, look around, zoom into detail; and 5) Orient and localize: regain bearings in the map. We describe intuitive and interactive tools for all of these tasks, both global navigation within the map and local exploration of the data distributions. For the latter, we describe a polygonal touchpad interface which enables users to smoothly tilt the projection plane in high-dimensional space to produce multivariate scatterplots that best convey the data relationships under investigation. Motion parallax and illustrative motion trails aid in the perception of these transient patterns. We describe the use of our system within two applications: 1) the exploratory discovery of data configurations that best fit a personal preference in the presence of tradeoffs and 2) interactive cluster analysis via cluster sculpting in N-D.

  6. Unlocking the Electrocatalytic Activity of Antimony for CO2 Reduction by Two-Dimensional Engineering of the Bulk Material.

    Science.gov (United States)

    Li, Fengwang; Xue, Mianqi; Li, Jiezhen; Ma, Xinlei; Chen, Lu; Zhang, Xueji; MacFarlane, Douglas R; Zhang, Jie

    2017-11-13

    Two-dimensional (2D) materials are known to be useful in catalysis. Engineering 3D bulk materials into the 2D form can enhance the exposure of the active edge sites, which are believed to be the origin of the high catalytic activity. Reported herein is the production of 2D "few-layer" antimony (Sb) nanosheets by cathodic exfoliation. Application of this 2D engineering method turns Sb, an inactive material for CO 2 reduction in its bulk form, into an active 2D electrocatalyst for reduction of CO 2 to formate with high efficiency. The high activity is attributed to the exposure of a large number of catalytically active edge sites. Moreover, this cathodic exfoliation process can be coupled with the anodic exfoliation of graphite in a single-compartment cell for in situ production of a few-layer Sb nanosheets and graphene composite. The observed increased activity of this composite is attributed to the strong electronic interaction between graphene and Sb. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method

    KAUST Repository

    Zhang, Lianbin

    2012-01-01

    In this study, three-dimensional (3D) graphene assemblies are prepared from graphene oxide (GO) by a facile in situ reduction-assembly method, using a novel, low-cost, and environment-friendly reducing medium which is a combination of oxalic acid (OA) and sodium iodide (NaI). It is demonstrated that the combination of a reducing acid, OA, and NaI is indispensable for effective reduction of GO in the current study and this unique combination (1) allows for tunable control over the volume of the thus-prepared graphene assemblies and (2) enables 3D graphene assemblies to be prepared from the GO suspension with a wide range of concentrations (0.1 to 4.5 mg mL-1). To the best of our knowledge, the GO concentration of 0.1 mg mL-1 is the lowest GO concentration ever reported for preparation of 3D graphene assemblies. The thus-prepared 3D graphene assemblies exhibit low density, highly porous structures, and electrically conducting properties. As a proof of concept, we show that by infiltrating a responsive polymer of polydimethylsiloxane (PDMS) into the as-resulted 3D conducting network of graphene, a conducting composite is obtained, which can be used as a sensing device for differentiating organic solvents with different polarity. © 2012 The Royal Society of Chemistry.

  8. 3D-Ising model as a string theory in three-dimensional euclidean space

    International Nuclear Information System (INIS)

    Sedrakyan, A.

    1992-11-01

    A three-dimensional string model is analyzed in the strong coupling regime. The contribution of surfaces with different topology to the partition function is essential. A set of corresponding models is discovered. Their critical indices, which depend on two integers (m,n) are calculated analytically. The critical indices of the three-dimensional Ising model should belong to this set. A possible connection with the chain of three dimensional lattice Pott's models is pointed out. (author) 22 refs.; 2 figs

  9. Noise-induced phase space transport in two-dimensional Hamiltonian systems

    International Nuclear Information System (INIS)

    Pogorelov, I.V.; Kandrup, H.E.

    1999-01-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society

  10. Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD

    Directory of Open Access Journals (Sweden)

    Gagan S Sidhu

    2012-11-01

    Full Text Available This article explores various preprocessing tools that select/create features to help a learner produce a classifier that can use fMRI data to effectively discriminate Attention-Deficit Hyperactivity Disorder (ADHD patients from healthy controls. We consider four different learning tasks: predicting either two (ADHD vs control or three classes (ADHD-1 vs ADHD-3 vs control, where each use either the imaging data only, or the phenotypic and imaging data. After averaging, BOLD-signal normalization, and masking of the fMRI images, we considered applying Fast Fourier Transform (FFT, possibly followed by some Principal Component Analysis (PCA variant (over time: PCA-t; over space and time: PCA-st or the kernelized variant, kPCA-st, to produce inputs to a learner, to determine which learned classifier performs the best – or at least better than the baseline of 64.2%, which is the proportion of the majority class (here, controls.In the two-class setting, PCA-t and PCA-st did not perform statistically better than baseline, whereas FFT and kPCA-st did (FFT, 68.4%; kPCA-st, 70.3%; when combined with the phenotypic data, which by itself produces 72.9% accuracy, all methods performed statistically better than the baseline, but none did better than using the phenotypic data. In the three-class setting, neither the PCA variants, or the phenotypic data classifiers, performed statistically better than the baseline.We next used the FFT output as input to the PCA variants. In the two-class setting, the PCA variants performed statistically better than the baseline using either the FFTed waveforms only (FFT+PCA-t, 69.6%,; FFT+PCA-st, 69.3% ; FFT+kPCA-st, 68.7%, or combining them with the phenotypic data (FFT+PCA-t, 70.6%; FFT+PCA-st, 70.6%; kPCA-st, 76%. In both settings, combining FFT+kPCA-st’s features with the phenotypic data was better than using only the phenotypic data, with the result in the two-class setting being statistically better.

  11. The Euclidean scalar Green function in the five-dimensional Kaluza-Klein magnetic monopole space-time

    International Nuclear Information System (INIS)

    Bezerra de Mello, E.R.

    2006-01-01

    In this paper we present, in a integral form, the Euclidean Green function associated with a massless scalar field in the five-dimensional Kaluza-Klein magnetic monopole superposed to a global monopole, admitting a nontrivial coupling between the field with the geometry. This Green function is expressed as the sum of two contributions: the first one related with uncharged component of the field, is similar to the Green function associated with a scalar field in a four-dimensional global monopole space-time. The second contains the information of all the other components. Using this Green function it is possible to study the vacuum polarization effects on this space-time. Explicitly we calculate the renormalized vacuum expectation value * (x)Φ(x)> Ren , which by its turn is also expressed as the sum of two contributions

  12. A two dimensional fibre reinforced micropolar thermoelastic problem for a half-space subjected to mechanical force

    Directory of Open Access Journals (Sweden)

    Ailawalia Praveen

    2015-01-01

    Full Text Available The purpose of this paper is to study the two dimensional deformation of fibre reinforced micropolar thermoelastic medium in the context of Green-Lindsay theory of thermoelasticity. A mechanical force is applied along the interface of fluid half space and fibre reinforced micropolar thermoelastic half space. The normal mode analysis has been applied to obtain the exact expressions for displacement component, force stress, temperature distribution and tangential couple stress. The effect of anisotropy and micropolarity on the displacement component, force stress, temperature distribution and tangential couple stress has been depicted graphically.

  13. On the de Sitter and Nariai solutions in general relativity and their extension in higher dimensional space-time

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Ishihara, Hideki.

    1983-01-01

    Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)

  14. Reduction of space charge breakdown in e-beam irradiated nano/polymethyl methacrylate composites

    International Nuclear Information System (INIS)

    Zheng Feihu; Zhang Yewen; An Zhenlian; Dong Jianxing; Lei Qingquan

    2013-01-01

    Fast discharge of numerous space charges in dielectric materials can cause space charge breakdown. This letter reports the role of nanoparticles in affecting space charge breakdown of nano/polymethyl methacrylate composites. Space charge distributions in the composites, implanted by electron beam irradiation, were measured by pressure wave propagation method. The results show that the nanoparticles have significant effects on the isothermal charge decay and space charge breakdown in the nanocomposites. The resistance to space charge breakdown in the nanocomposites is attributed to the combined action of the introduction of deep trapping states and the scattering effect by the added nanoparticles.

  15. Continuum modeling of three-dimensional truss-like space structures

    Science.gov (United States)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  16. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    Science.gov (United States)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (The best three-component models do not show a preference for filling in the probability distribution at speeds intermediate to 175 and 700 km s-1 but are nearly degenerate with the best two-component models. We estimate that the high-velocity tail (>1000 km s-1) may

  17. Density prediction and dimensionality reduction of mid-term electricity demand in China: A new semiparametric-based additive model

    International Nuclear Information System (INIS)

    Shao, Zhen; Yang, Shan-Lin; Gao, Fei

    2014-01-01

    Highlights: • A new stationary time series smoothing-based semiparametric model is established. • A novel semiparametric additive model based on piecewise smooth is proposed. • We model the uncertainty of data distribution for mid-term electricity forecasting. • We provide efficient long horizon simulation and extraction for external variables. • We provide stable and accurate density predictions for mid-term electricity demand. - Abstract: Accurate mid-term electricity demand forecasting is critical for efficient electric planning, budgeting and operating decisions. Mid-term electricity demand forecasting is notoriously complicated, since the demand is subject to a range of external drivers, such as climate change, economic development, which will exhibit monthly, seasonal, and annual complex variations. Conventional models are based on the assumption that original data is stable and normally distributed, which is generally insignificant in explaining actual demand pattern. This paper proposes a new semiparametric additive model that, in addition to considering the uncertainty of the data distribution, includes practical discussions covering the applications of the external variables. To effectively detach the multi-dimensional volatility of mid-term demand, a novel piecewise smooth method which allows reduction of the data dimensionality is developed. Besides, a semi-parametric procedure that makes use of bootstrap algorithm for density forecast and model estimation is presented. Two typical cases in China are presented to verify the effectiveness of the proposed methodology. The results suggest that both meteorological and economic variables play a critical role in mid-term electricity consumption prediction in China, while the extracted economic factor is adequate to reveal the potentially complex relationship between electricity consumption and economic fluctuation. Overall, the proposed model can be easily applied to mid-term demand forecasting, and

  18. Effect of Intraoperative Three-Dimensional Imaging During the Reduction and Fixation of Displaced Calcaneal Fractures on Articular Congruence and Implant Fixation

    DEFF Research Database (Denmark)

    Eckardt, Henrik; Lind, Marianne

    2015-01-01

    BACKGROUND: Operative treatment of displaced calcaneal fractures should restore joint congruence, but conventional fluoroscopy is unable to fully visualize the subtalar joint. We questioned whether intraoperative 3-dimensional (3D) imaging would aid in the reduction of calcaneal fractures......, resulting in improved articular congruence and implant positioning. METHOD: Sixty-two displaced calcaneal fractures were operated on using standard fluoroscopic views. When the surgeon had achieved a satisfactory reduction, an intraoperative 3D scan was conducted, malreductions or implant imperfections were...

  19. Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces

    International Nuclear Information System (INIS)

    Oyewumi, K.A.; Bangudu, E.A.

    2003-01-01

    Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)

  20. Enhancement of Solar Cell Efficiency for Space Applications Using Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Postigo P.A.

    2017-01-01

    Full Text Available The effects of having a nanopatterned photonic crystal (PC structure in the surface of a solar cell can be usefully employed to increase the energy conversion efficiency, which may be critical for space applications. In this work, we have measured the reflectance (R and transmittance (T of thin InP layers (270 nm thick bonded to a glass substrate and nanopatterned with holes down to the glass in a triangular symmetry lattice separated by a lattice parameter a=450nm and maintaining a value of r/a=0.32. The optical spectra were measured with angular resolution in the range from 0.55 to 2.0 eV. There are noticeable changes in the spectra of the PC sample, with minima and maxima of the R and T clearly shifted with respect to the unpatterned sample, and new features that alter significantly the overall lineshape of each spectrum. Those features correspond in a first approximation to the well-known Fano-like resonances of the discrete photonic modes of the PC lattice and they have been used before to determine experimentally the position of the PC bands. The observed features can be translated to the optical absorption (A defined as A=1-R-T provided there are low or negligible scattering effects. The generated absorption spectra show enhancements above and below the electronic band edge of the InP that can be correlated with the photonic band structure. Even using a thicker semiconductor layer, the abovementioned effects can justify to use a photonic crystal front surface with sub-wavelength motifs. In this way, we have fabricated and characterized a complete Ge/InGaP solar cell with a 2D-PC on its front surface. An increase in the photocurrent up to a 8% was achieved on a solar cell with a 40% of its surface covered with a PC pattern. Enhancements of the external quantum efficiency (EQE of 22% for a wide range of wavelengths and up to a 46% for specific wavelengths have been measured, without use of any anti-reflection coating (ARC. A correlation

  1. Application of space-angle synthesis to two-dimensional neutral-particle transport problems of weapon physics

    International Nuclear Information System (INIS)

    Roberds, R.M.

    1975-01-01

    A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation

  2. Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for use on International Space Station

    Science.gov (United States)

    Murdoch, Karen; Smith, Fred; Perry, Jay; Green, Steve

    2004-01-01

    When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of Technology Readiness Level (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.

  3. Reduction of metal artifact in three-dimensional computed tomography (3D CT) with dental impression materials.

    Science.gov (United States)

    Park, W S; Kim, K D; Shin, H K; Lee, S H

    2007-01-01

    Metal Artifact still remains one of the main drawbacks in craniofacial Three-Dimensional Computed Tomography (3D CT). In this study, we tried to test the efficacy of additional silicone dental impression materials as a "tooth shield" for the reduction of metal artifact caused by metal restorations and orthodontic appliances. 6 phantoms with 4 teeth were prepared for this in vitro study. Orthodontic bracket, bands and amalgam restorations were placed in each tooth to reproduce various intraoral conditions. Standardized silicone shields were fabricated and placed around the teeth. CT image acquisition was performed with and without silicone shields. Maximum value, mean, and standard deviation of Hounsfield Units (HU) were compared with the presence of silicone shields. In every situation, metal artifacts were reduced in quality and quantity when silicone shields are used. Amalgam restoration made most serious metal artifact. Silicone shields made by dental impression material might be effective way to reduce the metal artifact caused by dental restoration and orthodontic appliances. This will help more excellent 3D image from 3D CT in craniofacial area.

  4. An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images.

    Science.gov (United States)

    Liu, Xiao; Shi, Jun; Zhou, Shichong; Lu, Minhua

    2014-01-01

    The dimensionality reduction is an important step in ultrasound image based computer-aided diagnosis (CAD) for breast cancer. A newly proposed l2,1 regularized correntropy algorithm for robust feature selection (CRFS) has achieved good performance for noise corrupted data. Therefore, it has the potential to reduce the dimensions of ultrasound image features. However, in clinical practice, the collection of labeled instances is usually expensive and time costing, while it is relatively easy to acquire the unlabeled or undetermined instances. Therefore, the semi-supervised learning is very suitable for clinical CAD. The iterated Laplacian regularization (Iter-LR) is a new regularization method, which has been proved to outperform the traditional graph Laplacian regularization in semi-supervised classification and ranking. In this study, to augment the classification accuracy of the breast ultrasound CAD based on texture feature, we propose an Iter-LR-based semi-supervised CRFS (Iter-LR-CRFS) algorithm, and then apply it to reduce the feature dimensions of ultrasound images for breast CAD. We compared the Iter-LR-CRFS with LR-CRFS, original supervised CRFS, and principal component analysis. The experimental results indicate that the proposed Iter-LR-CRFS significantly outperforms all other algorithms.

  5. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  6. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  7. Space Technology for Reduction of Desert Areas on Earth and Weather Control

    Directory of Open Access Journals (Sweden)

    Constantin SANDU

    2018-03-01

    Full Text Available In precedent papers the authors presented the idea of a space system composed of two opposite parabolic mirrors (large and small having the same focal point. This system is able to concentrate solar power in a strong light beam having irradiance of hundreds or thousands of times stronger than the solar irradiance on Earth's orbit. The system can be placed on a Sun synchronous orbit around the Earth or on the Earth’s orbit around the Sun at a distance of several hundred km from ground. When the concentrated light beam is directed toward the Earth surface it can locally melt, vaporize or decomposes tones of ground in its elements. This is happening because when the ground is hit by the light beam, ground temperature can reach thousands of degrees Celsius. At such temperatures the matter is decomposed into constitutive elements. For example, the silicate oxides which are frequently found in the composition of desert ground are decomposed into oxygen and silicon. Similarly, other oxides release oxygen and other type of oxides or constitutive elements. A network of deep and large channels can be dug in this way in hot deserts as Sahara. When these channels are connected with the seas & oceans, a network of water channels is created in those deserts. In this way, the local climate of deserts will change because channel water is vaporized during daytime when air temperature reaches 50ºC and condenses during nighttime when air temperature is around 0ºC. Presence of clouds over the hot deserts can lead to a reduction of ground temperature and rain follows. The channel water can be desalinized for producing drinking water and for irrigation using simple equipment. In addition to these advantages, channel deserts can be a solution for melting of polar ice calottes and flooding of seaside areas that are inhabited areas. On the other hand, the system composed of two opposite mirrors can be used for strength decreasing or deviation of hurricanes and

  8. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    Science.gov (United States)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  9. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    Science.gov (United States)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  10. Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Bazan, A.; Torres, M.; Aragon, J.L.; Quintero-Torres, R.

    2008-01-01

    One of the few examples in which the physical properties of an incommensurable system reflect an underlying higher dimensionality is presented. Specifically, we show that the reflectivity distribution of an incommensurable one-dimensional cavity is given by the density of states of a tight-binding Hamiltonian in a two-dimensional triangular lattice. Such effect is due to an independent phase decoupling of the scattered waves, produced by the incommensurable nature of the system, which mimics a random noise generator. This principle can be applied to design a cavity that avoids resonant reflections for almost any incident wave. An optical analogy, by using three mirrors with incommensurable distances between them, is also presented. Such array produces a countable infinite fractal set of reflections, a phenomena which is opposite to the effect of optical invisibility

  11. Reductions of NO2 detected from space during the 2008 Beijing Olympic Games

    Science.gov (United States)

    Mijling, B.; van der A, R. J.; Boersma, K. F.; Van Roozendael, M.; De Smedt, I.; Kelder, H. M.

    2009-07-01

    During the 2008 Olympic and Paralympic Games in Beijing (from 8 August to 17 September), local authorities enforced strong measures to reduce air pollution during the events. To evaluate the direct effect of these measures, we use the tropospheric NO2 column observations from the satellite instruments GOME-2 and OMI. We interpret these data against simulations from the regional chemistry transport model CHIMERE, based on a 2006 emission inventory, and find a reduction of NO2 concentrations of approximately 60% above Beijing during the Olympic period. The air quality measures were especially effective in the Beijing area, but also noticeable in surrounding cities of Tianjin (30% reduction) and Shijiazhuang (20% reduction).

  12. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  13. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  14. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  15. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.

    Science.gov (United States)

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela

    2017-04-01

    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls.

    Science.gov (United States)

    Biselli, Paolo; Fricke, Kathrin; Grote, Ludger; Braun, Andrew T; Kirkness, Jason; Smith, Philip; Schwartz, Alan; Schneider, Hartmut

    2018-05-01

    Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO 2 ) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min -1 ) intermittently for periods of 5-10 min. We measured CO 2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min -1 ; pspace ventilation (from 2.5±0.4 to 1.6±0.4 L·min -1 ; pspace ventilation correlated with baseline physiological dead space fraction (r 2 =0.36; pspace volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction. Copyright ©ERS 2018.

  17. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    Science.gov (United States)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  18. A new look at the harmonic oscillator problem in a finite-dimensional Hilbert space

    International Nuclear Information System (INIS)

    Bagchi, B.

    1995-01-01

    In this Letter some basic properties of a truncated oscillator are studied. By using finite-dimensional representation matrices of the truncated oscillator we construct new parasupersymmetric schemes and remark on their relevance to the transition operators of the non-interacting N-level system endowed with bosonic modes. ((orig.))

  19. An orientation-space super sampling technique for six-dimensional diffraction contrast tomography

    NARCIS (Netherlands)

    N.R. Viganò (Nicola); K.J. Batenburg (Joost); W. Ludwig (Wolfgang)

    2016-01-01

    textabstractDiffraction contrast tomography (DCT) is an X-ray full-field imaging technique that allows for the non-destructive three-dimensional investigation of polycrystalline materials and the determination of the physical and morphological properties of their crystallographic domains, called

  20. Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces

    Science.gov (United States)

    Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh

    2017-06-01

    Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.

  1. Self-calibration for lab-μCT using space-time regularized projection-based DVC and model reduction

    Science.gov (United States)

    Jailin, C.; Buljac, A.; Bouterf, A.; Poncelet, M.; Hild, F.; Roux, S.

    2018-02-01

    An online calibration procedure for x-ray lab-CT is developed using projection-based digital volume correlation. An initial reconstruction of the sample is positioned in the 3D space for every angle so that its projection matches the initial one. This procedure allows a space-time displacement field to be estimated for the scanned sample, which is regularized with (i) rigid body motions in space and (ii) modal time shape functions computed using model reduction techniques (i.e. proper generalized decomposition). The result is an accurate identification of the position of the sample adapted for each angle, which may deviate from the desired perfect rotation required for standard reconstructions. An application of this procedure to a 4D in situ mechanical test is shown. The proposed correction leads to a much improved tomographic reconstruction quality.

  2. Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime

    International Nuclear Information System (INIS)

    Hashimoto, K; Hirayama, Y; Wiebe, J; Wiesendanger, R; Inaoka, T; Morgenstern, M

    2011-01-01

    By using scanning tunnelling spectroscopy, we study the influence of potential disorder on an adsorbate-induced two-dimensional electron system in the integer quantum Hall regime. The real-space imaged local density of states exhibits transition from localized drift states encircling the potential minima to another type of localized drift states encircling the potential maxima. While the former states show regular round shapes, the latter have irregular-shaped patterns. This difference is induced by different sources for the potential minima and maxima, i.e., substrate donors and an inhomogeneous distribution of the adsorbates, respectively.

  3. Structural characterization of self-assembled semiconductor islands by three-dimensional X-ray diffraction mapping in reciprocal space

    International Nuclear Information System (INIS)

    Holy, V.; Mundboth, K.; Mokuta, C.; Metzger, T.H.; Stangl, J.; Bauer, G.; Boeck, T.; Schmidbauer, M.

    2008-01-01

    For the first time self-organized epitaxially grown semiconductor islands were investigated by a full three-dimensional mapping of the scattered X-ray intensity in reciprocal space. Intensity distributions were measured in a coplanar diffraction geometry around symmetric and asymmetric Bragg reflections. The 3D intensity maps were compared with theoretical simulations based on continuum-elasticity simulations of internal strains in the islands and on kinematical scattering theory whereby local chemical composition and strain profiles of the islands were retrieved

  4. The one-parameter subgroup of rotations generated by spin transformations in three-dimensional real space

    International Nuclear Information System (INIS)

    Gazoya, E.D.K.; Prempeh, E.; Banini, G.K.

    2015-01-01

    The relationship between the spin transformations of the special linear group of order 2, SL (2, C) and the aggregate SO(3) of the three-dimensional pure rotations when considered as a group in itself (and not as a subgroup of the Lorentz group), is investigated. It is shown, by the spinor map X - → AXA ct which is all action of SL(2. C) on the space of Hermitian matrices, that the one- parameter subgroup of rotations generated are precisely those of angles which are multiples 2π. (au)

  5. Logarithmic corrections to the Bekenstein-Hawking entropy for five-dimensional black holes and de Sitter spaces

    International Nuclear Information System (INIS)

    Myung, Y.S.

    2003-01-01

    We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences

  6. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  7. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  8. Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature

    Directory of Open Access Journals (Sweden)

    Francisco José Herranz

    2006-01-01

    Full Text Available A family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed. Such systems admit three integrals of the motion (besides the Hamiltonian which are explicitly given in terms of ambient and geodesic polar coordinates. The resulting expressions cover the six spaces in a unified way as these are parametrized by two contraction parameters that govern the curvature and the signature of the metric on each space. Next two maximally superintegrable Hamiltonians are identified within the initial superintegrable family by finding the remaining constant of the motion. The former potential is the superposition of a (curved central harmonic oscillator with other three oscillators or centrifugal barriers (depending on each specific space, so that this generalizes the Smorodinsky-Winternitz system. The latter one is a superposition of the Kepler-Coulomb potential with another two oscillators or centrifugal barriers. As a byproduct, the Laplace-Runge-Lenz vector for these spaces is deduced. Furthermore both potentials are analysed in detail for each particular space. Some comments on their generalization to arbitrary dimension are also presented.

  9. Present status of the 4-m ILMT data reduction pipeline: application to space debris detection and characterization

    Science.gov (United States)

    Pradhan, Bikram; Delchambre, Ludovic; Hickson, Paul; Akhunov, Talat; Bartczak, Przemyslaw; Kumar, Brajesh; Surdej, Jean

    2018-04-01

    The 4-m International Liquid Mirror Telescope (ILMT) located at the ARIES Observatory (Devasthal, India) has been designed to scan at a latitude of +29° 22' 26" a band of sky having a width of about half a degree in the Time Delayed Integration (TDI) mode. Therefore, a special data-reduction and analysis pipeline to process online the large amount of optical data being produced has been dedicated to it. This requirement has led to the development of the 4-m ILMT data reduction pipeline, a new software package built with Python in order to simplify a large number of tasks aimed at the reduction of the acquired TDI images. This software provides astronomers with specially designed data reduction functions, astrometry and photometry calibration tools. In this paper we discuss the various reduction and calibration steps followed to reduce TDI images obtained in May 2015 with the Devasthal 1.3m telescope. We report here the detection and characterization of nine space debris present in the TDI frames.

  10. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  11. Study on the construction of multi-dimensional Remote Sensing feature space for hydrological drought

    International Nuclear Information System (INIS)

    Xiang, Daxiang; Tan, Debao; Wen, Xiongfei; Shen, Shaohong; Li, Zhe; Cui, Yuanlai

    2014-01-01

    Hydrological drought refers to an abnormal water shortage caused by precipitation and surface water shortages or a groundwater imbalance. Hydrological drought is reflected in a drop of surface water, decrease of vegetation productivity, increase of temperature difference between day and night and so on. Remote sensing permits the observation of surface water, vegetation, temperature and other information from a macro perspective. This paper analyzes the correlation relationship and differentiation of both remote sensing and surface measured indicators, after the selection and extraction a series of representative remote sensing characteristic parameters according to the spectral characterization of surface features in remote sensing imagery, such as vegetation index, surface temperature and surface water from HJ-1A/B CCD/IRS data. Finally, multi-dimensional remote sensing features such as hydrological drought are built on a intelligent collaborative model. Further, for the Dong-ting lake area, two drought events are analyzed for verification of multi-dimensional features using remote sensing data with different phases and field observation data. The experiments results proved that multi-dimensional features are a good method for hydrological drought

  12. Probing the liquid and solid phases in closely spaced two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding

    2014-03-06

    Gas, liquid and solid phases are the most common states of matter in our daily encountered 3-dimensional space. The school example is the H{sub 2}O molecule with its phases vapor, water and ice. Interestingly, electrons - with their point-like nature and negative charges - can also organize themselves under certain conditions to bear properties of these three common phases. At relatively high temperature, where Boltzmann statistics prevails, the ensemble of electrons without interactions can be treated as a gas of free particles. Cooling down the system, this electron gas condenses into a Fermi liquid. Finally, as a result of the repulsive Coulomb forces, electrons try to avoid each other by maximizing their distances. When the Coulomb interaction becomes sufficiently strong, a regular lattice emerges - an electron solid. The story however does not end here. Nature has much more in store for us. Electronic systems in fact exhibit a large variety of phases induced by spatial confinement, an external magnetic field, Coulomb interactions, or interactions involving degrees of freedom other than charge such as spin and valley. Here in this thesis, we restrict ourselves to the study of electrons in a 2-dimenisonal (2D) plane. Already in such a 2D electron system (2DES), several distinct states of matter appear: integer and fractional quantum Hall liquids, the 2D Wigner solid, stripe and bubble phases etc. In 2DES it is sufficient to sweep the perpendicular magnetic field to pass from one of these phases into another. Experimentally, many of these phases can be revealed by simply measuring the resistance. For a quantum Hall state, the longitudinal resistance vanishes, while the Hall resistance exhibits a plateau. The quantum Hall plateau is a manifestation of localization induced by the inevitable sample disorder. Coulomb interaction can also play an important role to localize charges. Even in the disorder-free case, electrons - more precisely quasi-particles in the

  13. Probing the liquid and solid phases in closely spaced two-dimensional systems

    International Nuclear Information System (INIS)

    Zhang, Ding

    2014-01-01

    Gas, liquid and solid phases are the most common states of matter in our daily encountered 3-dimensional space. The school example is the H 2 O molecule with its phases vapor, water and ice. Interestingly, electrons - with their point-like nature and negative charges - can also organize themselves under certain conditions to bear properties of these three common phases. At relatively high temperature, where Boltzmann statistics prevails, the ensemble of electrons without interactions can be treated as a gas of free particles. Cooling down the system, this electron gas condenses into a Fermi liquid. Finally, as a result of the repulsive Coulomb forces, electrons try to avoid each other by maximizing their distances. When the Coulomb interaction becomes sufficiently strong, a regular lattice emerges - an electron solid. The story however does not end here. Nature has much more in store for us. Electronic systems in fact exhibit a large variety of phases induced by spatial confinement, an external magnetic field, Coulomb interactions, or interactions involving degrees of freedom other than charge such as spin and valley. Here in this thesis, we restrict ourselves to the study of electrons in a 2-dimenisonal (2D) plane. Already in such a 2D electron system (2DES), several distinct states of matter appear: integer and fractional quantum Hall liquids, the 2D Wigner solid, stripe and bubble phases etc. In 2DES it is sufficient to sweep the perpendicular magnetic field to pass from one of these phases into another. Experimentally, many of these phases can be revealed by simply measuring the resistance. For a quantum Hall state, the longitudinal resistance vanishes, while the Hall resistance exhibits a plateau. The quantum Hall plateau is a manifestation of localization induced by the inevitable sample disorder. Coulomb interaction can also play an important role to localize charges. Even in the disorder-free case, electrons - more precisely quasi-particles in the partially

  14. Contested space in the pharmacy: public attitudes to pharmacy harm reduction services in the West of Scotland.

    Science.gov (United States)

    Gidman, Wendy; Coomber, Ross

    2014-01-01

    Internationally, community pharmacies have become increasingly involved in providing harm reduction services and health advice to people who use illicit drugs. This paper considers public opinion of community pharmacy services. It discusses attitudes to harm reduction services in the context of stigmatization of addiction and people who use drugs. This exploratory study involved twenty-six purposively sampled members of the public, from the West of Scotland, participating in one of 5 focus groups. The groups were composed to represent known groups of users and non-users of community pharmacy, none of whom were problem drug users. Three thematic categories were identified: methadone service users in community pharmacies; attitudes to harm reduction policies; contested space. Harm reduction service expansion has resulted in a high volume of drug users in and around some Scottish pharmacies. Even if harm reduction services are provided discretely users' behavior can differentiate them from other pharmacy users. Drug users' behavior in this setting is commonly perceived to be unacceptable and can deter other consumers from using pharmacy services. The results of this study infer that negative public opinion is highly suggestive of stereotyping and stigmatization of people who use drugs. Participants considered that (1) community pharmacies were unsuitable environments for harm reduction service provision, as they are used by older people and those with children; (2) current drug policy is perceived as ineffective, as abstinence is seldom achieved and methadone was reported to be re-sold; (3) people who use drugs were avoided where possible in community pharmacies. Community pharmacy harm reduction services increasingly bring together the public and drug users. Study participants were reluctant to share pharmacy facilities with drug users. This paper concludes by suggesting mechanisms to minimize stigmatization. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction

    Science.gov (United States)

    Piacitelli, Gherardo

    We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.

  16. Label Space Reduction in MPLS Networks: How Much Can A Single Stacked Label Do?

    DEFF Research Database (Denmark)

    Solano, Fernando; Stidsen, Thomas K.; Fabregat, Ramon

    2008-01-01

    Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the config......Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS...

  17. Relationship between five-dimensional black holes and de Sitter spaces

    International Nuclear Information System (INIS)

    Myung, Y S

    2004-01-01

    We study a close relationship between the topological anti-de Sitter (TAdS) black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing k by -k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting m with -m. For this purpose we calculate thermal quantities of bulk (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further, we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that in the thermal relation between the TdS spaces and TAdS black holes, the cosmological horizon plays the same role as the horizon of TAdS black holes. Finally we note that the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes

  18. Holography in three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    The holographic description of the three-dimensional Kerr-de Sitter space with a gravitational Chern-Simons term is studied, in the context of dS/CFT correspondence. The space has only one (cosmological) event horizon and its mass and angular momentum are identified from the holographic energy-momentum tensor at the asymptotic infinity. The thermodynamic entropy of the cosmological horizon is computed directly from the first law of thermodynamics, with the conventional Hawking temperature, and it is found that the usual Gibbons-Hawking entropy is modified. It is remarked that, due to the gravitational Chern-Simons term, (a) the results go beyond the analytic continuation from AdS, (b) the maximum-mass/N-bound conjecture may be violated and (c) the three-dimensional cosmology is chiral. A statistical mechanical computation of the entropy, from a Cardy-like formula for a dual CFT at the asymptotic boundary, is discussed. Some remarks on the technical differences in the Chern-Simons energy-momentum tensor, from the literature, are also made

  19. Lip-reading aids word recognition most in moderate noise: a Bayesian explanation using high-dimensional feature space.

    Science.gov (United States)

    Ma, Wei Ji; Zhou, Xiang; Ross, Lars A; Foxe, John J; Parra, Lucas C

    2009-01-01

    Watching a speaker's facial movements can dramatically enhance our ability to comprehend words, especially in noisy environments. From a general doctrine of combining information from different sensory modalities (the principle of inverse effectiveness), one would expect that the visual signals would be most effective at the highest levels of auditory noise. In contrast, we find, in accord with a recent paper, that visual information improves performance more at intermediate levels of auditory noise than at the highest levels, and we show that a novel visual stimulus containing only temporal information does the same. We present a Bayesian model of optimal cue integration that can explain these conflicts. In this model, words are regarded as points in a multidimensional space and word recognition is a probabilistic inference process. When the dimensionality of the feature space is low, the Bayesian model predicts inverse effectiveness; when the dimensionality is high, the enhancement is maximal at intermediate auditory noise levels. When the auditory and visual stimuli differ slightly in high noise, the model makes a counterintuitive prediction: as sound quality increases, the proportion of reported words corresponding to the visual stimulus should first increase and then decrease. We confirm this prediction in a behavioral experiment. We conclude that auditory-visual speech perception obeys the same notion of optimality previously observed only for simple multisensory stimuli.

  20. Lip-reading aids word recognition most in moderate noise: a Bayesian explanation using high-dimensional feature space.

    Directory of Open Access Journals (Sweden)

    Wei Ji Ma

    Full Text Available Watching a speaker's facial movements can dramatically enhance our ability to comprehend words, especially in noisy environments. From a general doctrine of combining information from different sensory modalities (the principle of inverse effectiveness, one would expect that the visual signals would be most effective at the highest levels of auditory noise. In contrast, we find, in accord with a recent paper, that visual information improves performance more at intermediate levels of auditory noise than at the highest levels, and we show that a novel visual stimulus containing only temporal information does the same. We present a Bayesian model of optimal cue integration that can explain these conflicts. In this model, words are regarded as points in a multidimensional space and word recognition is a probabilistic inference process. When the dimensionality of the feature space is low, the Bayesian model predicts inverse effectiveness; when the dimensionality is high, the enhancement is maximal at intermediate auditory noise levels. When the auditory and visual stimuli differ slightly in high noise, the model makes a counterintuitive prediction: as sound quality increases, the proportion of reported words corresponding to the visual stimulus should first increase and then decrease. We confirm this prediction in a behavioral experiment. We conclude that auditory-visual speech perception obeys the same notion of optimality previously observed only for simple multisensory stimuli.