WorldWideScience

Sample records for space density distributions

  1. EVOLUTION OF DARK MATTER PHASE-SPACE DENSITY DISTRIBUTIONS IN EQUAL-MASS HALO MERGERS

    International Nuclear Information System (INIS)

    Vass, Ileana M.; Kazanzidis, Stelios; Valluri, Monica; Kravtsov, Andrey V.

    2009-01-01

    We use dissipationless N-body simulations to investigate the evolution of the true coarse-grained phase-space density distribution f(x, v) in equal-mass mergers between dark matter (DM) halos. The halo models are constructed with various asymptotic power-law indices ρ ∝ r -γ ranging from steep cusps to core-like profiles and we employ the phase-space density estimator 'EnBid' developed by Sharma and Steinmetz to compute f(x, v). The adopted force resolution allows robust phase-space density profile estimates in the inner ∼1% of the virial radii of the simulated systems. We confirm that merger events result in a decrease of the coarse-grained phase-space density in accordance with expectations from Mixing Theorems for collisionless systems. We demonstrate that binary mergers between identical DM halos produce remnants that retain excellent memories of the inner slopes and overall shapes of the phase-space density distribution of their progenitors. The robustness of the phase-space density profiles holds for a range of orbital energies, and a variety of encounter configurations including sequences of several consecutive merger events, designed to mimic hierarchical merging, and collisions occurring at different cosmological epochs. If the progenitor halos are constructed with appreciably different asymptotic power-law indices, we find that the inner slope and overall shape of the phase-space density distribution of the remnant are substantially closer to that of the initial system with the steepest central density cusp. These results explicitly demonstrate that mixing is incomplete in equal-mass mergers between DM halos, as it does not erase memory of the progenitor properties. Our results also confirm the recent analytical predictions of Dehnen regarding the preservation of merging self-gravitating central density cusps.

  2. Effect of nonuniform radial density distribution on the space charge dominated beam bunching

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V. S.

    2011-01-01

    Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.

  3. Evolution of Quantum Phase Space Distribution: a Trajectory-Density Approach

    International Nuclear Information System (INIS)

    Xue-Feng, Zhang; Yu-Jun, Zheng

    2009-01-01

    The trajectory-density method of a quantum system is developed by using local Koopman and Frobenius–Perron operators. We propose a new scheme of approximation from two sets of trajectory-density mixed equations. By examining the local generation and termination of trajectories, we show how they can be adopted to the propagation of negative values of the Wigner function even if it starts off positive everywhere

  4. Density Distribution Sunflower Plots

    Directory of Open Access Journals (Sweden)

    William D. Dupont

    2003-01-01

    Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .

  5. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  6. Density Distributions of Cyclotrimethylenetrinitramines (RDX)

    International Nuclear Information System (INIS)

    Hoffman, D M

    2002-01-01

    As part of the US Army Foreign Comparative Testing (FCT) program the density distributions of six samples of class 1 RDX were measured using the density gradient technique. This technique was used in an attempt to distinguish between RDX crystallized by a French manufacturer (designated insensitive or IRDX) from RDX manufactured at Holston Army Ammunition Plant (HAAP), the current source of RDX for Department of Defense (DoD). Two samples from different lots of French IRDX had an average density of 1.7958 ± 0.0008 g/cc. The theoretical density of a perfect RDX crystal is 1.806 g/cc. This yields 99.43% of the theoretical maximum density (TMD). For two HAAP RDX lots the average density was 1.786 ± 0.002 g/cc, only 98.89% TMD. Several other techniques were used for preliminary characterization of one lot of French IRDX and two lot of HAAP RDX. Light scattering, SEM and polarized optical microscopy (POM) showed that SNPE and Holston RDX had the appropriate particle size distribution for Class 1 RDX. High performance liquid chromatography showed quantities of HMX in HAAP RDX. French IRDX also showed a 1.1 C higher melting point compared to HAAP RDX in the differential scanning calorimetry (DSC) consistent with no melting point depression due to the HMX contaminant. A second part of the program involved characterization of Holston RDX recrystallized using the French process. After reprocessing the average density of the Holston RDX was increased to 1.7907 g/cc. Apparently HMX in RDX can act as a nucleating agent in the French RDX recrystallization process. The French IRDX contained no HMX, which is assumed to account for its higher density and narrower density distribution. Reprocessing of RDX from Holston improved the average density compared to the original Holston RDX, but the resulting HIRDX was not as dense as the original French IRDX. Recrystallized Holston IRDX crystals were much larger (3-500 (micro)m or more) then either the original class 1 HAAP RDX or French

  7. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    International Nuclear Information System (INIS)

    Gazol, Adriana; Kim, Jongsoo

    2013-01-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n ∼ –3 ), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ∼0.2 to ∼5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n ∼> 7.1 cm –3 ) goes from ∼1.1 to ∼16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  8. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  9. Solar corona electron density distribution

    International Nuclear Information System (INIS)

    Esposito, P.B.; Edenhofer, P.; Lueneburg, E.

    1980-01-01

    Three and one-half months of single-frequency (f= 0 2.2 x 10 9 Hz) time delay data (earth-to-spacecraft and return signal travel time) were acquired from the Helios 2 spacecraft around the time of its solar occupation (May 16, 1976). Following the determination of the spacecraft trajectory the excess time delay due to the integrated effect of free electrons along the signal's ray path could be separated and modeled. An average solar corona, equatorial, electron density profile, during solar minimum, was deduced from time delay measurements acquired within 5--60 solar radii (R/sub S/) of the sun. As a point of reference, at 10 R/sub S/ from the sun we find an average electron density of 4500 el cm -3 . However, there appears to be an asymmtry in the electron density as the ray path moved from the west (preoccultation) to east (post-occulation) solar limb. This may be related to the fact that during entry into occulation the heliographic latitude of the ray path (at closes approach to the sun) was about 6 0 , whereas during exit it became -7 0 . The Helios electron density model is compared with similar models deduced from a variety of different experimental techniques. Within 5--20 R/sub S/ of the sun the models separate according to solar minimum or maximum conditions; however, anomalies are evident

  10. Negative density-distribution relationship in butterflies.

    Science.gov (United States)

    Päivinen, Jussi; Grapputo, Alessandro; Kaitala, Veijo; Komonen, Atte; Kotiaho, Janne S; Saarinen, Kimmo; Wahlberg, Niklas

    2005-03-01

    Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals), we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.

  11. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  12. Meson phase space density from interferometry

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    1993-01-01

    The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects

  13. Phase space density representations in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1989-01-01

    Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable

  14. Density distributions and depth in flocks

    Science.gov (United States)

    Lewis, J. M.; Turner, M. S.

    2017-12-01

    Recent experimental evidence suggests that interactions in flocks of birds do not involve a characteristic length scale. Bird flocks have also been revealed to have an inhomogeneous density distribution, with the density of birds near the border greater than near the centre. We introduce a strictly metric-free model for collective behaviour that incorporates a distributed motional bias, providing control of the density distribution. A simple version of this model is then able to provide a good fit to published data for the density variation across flocks of Starlings. We find that it is necessary for individuals on the edge of the flock to have an inward motional bias but that birds in the interior of the flock instead must have an outward bias. We discuss the ability of individuals to determine their depth within a flock and show how this might be achieved by relatively simple analysis of their visual environment.

  15. Integrated Logistics Support Analysis of the International Space Station Alpha, Background and Summary of Mathematical Modeling and Failure Density Distributions Pertaining to Maintenance Time Dependent Parameters

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.

  16. Negative density-distribution relationship in butterflies

    Directory of Open Access Journals (Sweden)

    Kotiaho Janne S

    2005-03-01

    Full Text Available Abstract Background Because "laws of nature" do not exist in ecology, much of the foundations of community ecology rely on broad statistical generalisations. One of the strongest generalisations is the positive relationship between density and distribution within a given taxonomic assemblage; that is, locally abundant species are more widespread than locally sparse species. Several mechanisms have been proposed to create this positive relationship, and the testing of these mechanisms is attracting increasing attention. Results We report a strong, but counterintuitive, negative relationship between density and distribution in the butterfly fauna of Finland. With an exceptionally comprehensive data set (data includes all 95 resident species in Finland and over 1.5 million individuals, we have been able to submit several of the mechanisms to powerful direct empirical testing. Without exception, we failed to find evidence for the proposed mechanisms creating a positive density-distribution relationship. On the contrary, we found that many of the mechanisms are equally able to generate a negative relationship. Conclusion We suggest that one important determinant of density-distribution relationships is the geographical location of the study: on the edge of a distribution range, suitable habitat patches are likely to be more isolated than in the core of the range. In such a situation, only the largest and best quality patches are likely to be occupied, and these by definition can support a relatively dense population leading to a negative density-distribution relationship. Finally, we conclude that generalizations about the positive density-distribution relationship should be made more cautiously.

  17. The influence of density distribution on the stability of beams

    International Nuclear Information System (INIS)

    Guy, F.W.; Lapostolle, P.M.; Wangler, T.P.

    1987-01-01

    We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth? Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams? We consider these and related questions

  18. Current distribution tomography for determination of internal current density distributions

    International Nuclear Information System (INIS)

    Gailey, P.C.

    1993-01-01

    A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields

  19. Central depression of nuclear charge density distribution

    International Nuclear Information System (INIS)

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-01-01

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  20. Tomographic Measurements of Longitudinal Phase Space Density

    CERN Document Server

    Hancock, S; McIntosh, E; Metcalf, M

    1999-01-01

    Tomography : the reconstruction of a two-dimensional image from a series of its one-dimensional projections is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. One of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion in a particle accelerator. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The algorithm was developed in Mathematica TM in order to exploit the extensive built-in functions and graphics. Subsequently, it has been recoded in Fortran 90 with the aim of reducing the execution time by at least a factor of one hundred. The choice of Fortran 90 was governed by the desire ultimately to exploit parallel architectures, but sequential compilation and execution have already largely yielded the required gain in speed. The use of the method to produce longitudinal phase space plots, animated sequences o...

  1. Coulomb displacement energies and neutron density distributions

    International Nuclear Information System (INIS)

    Shlomo, S.

    1979-01-01

    We present a short review of the present status of the theory of Coulomb displacement energies, ΔEsub(c), discussing the Okamoto-Nolem-Schiffer anomaly and its solution. We emphasize, in particular, that contrary to previous hopes, ΔEsub(c) does not determine rsub(ex), the root-mean square (rms) radius of the excess (valence) neutron density distribution. Instead, ΔEsub(c) is very sensitive to the value of Δr = rsub(n) - rsub(p), the difference between the rms radii of the density distributions of all neutrons and all protons. For neutron rich nuclei, such as 48 Ca and 208 Pb, a value of Δr = 0.1 fm is found to be consistent with ΔEsub(c). This value of Δr, which is considerably smaller than that (of 0.2 - 0.3 fm) predicted by some common Hartree-Fock calculations, seems to be confirmed by very recent experimental results. (orig.)

  2. Topological vector spaces and distributions

    CERN Document Server

    Horvath, John

    2012-01-01

    ""The most readable introduction to the theory of vector spaces available in English and possibly any other language.""-J. L. B. Cooper, MathSciNet ReviewMathematically rigorous but user-friendly, this classic treatise discusses major modern contributions to the field of topological vector spaces. The self-contained treatment includes complete proofs for all necessary results from algebra and topology. Suitable for undergraduate mathematics majors with a background in advanced calculus, this volume will also assist professional mathematicians, physicists, and engineers.The precise exposition o

  3. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    Science.gov (United States)

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adaptive density trajectory cluster based on time and space distance

    Science.gov (United States)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  5. Resummation of transverse momentum distributions in distribution space

    International Nuclear Information System (INIS)

    Ebert, Markus A.; Tackmann, Frank J.

    2016-11-01

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q_T in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution's evolution kernel directly in distribution space. We apply this technique to the q_T distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln"n(q"2_T/Q"2)/q"2_T]_+ appearing in the physical q_T distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  6. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds.

    Science.gov (United States)

    Bhattacharya, Abhishek; Dunson, David B

    2012-08-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.

  7. Probability Distribution for Flowing Interval Spacing

    International Nuclear Information System (INIS)

    Kuzio, S.

    2001-01-01

    The purpose of this analysis is to develop a probability distribution for flowing interval spacing. A flowing interval is defined as a fractured zone that transmits flow in the Saturated Zone (SZ), as identified through borehole flow meter surveys (Figure 1). This analysis uses the term ''flowing interval spacing'' as opposed to fractured spacing, which is typically used in the literature. The term fracture spacing was not used in this analysis because the data used identify a zone (or a flowing interval) that contains fluid-conducting fractures but does not distinguish how many or which fractures comprise the flowing interval. The flowing interval spacing is measured between the midpoints of each flowing interval. Fracture spacing within the SZ is defined as the spacing between fractures, with no regard to which fractures are carrying flow. The Development Plan associated with this analysis is entitled, ''Probability Distribution for Flowing Interval Spacing'', (CRWMS M and O 2000a). The parameter from this analysis may be used in the TSPA SR/LA Saturated Zone Flow and Transport Work Direction and Planning Documents: (1) ''Abstraction of Matrix Diffusion for SZ Flow and Transport Analyses'' (CRWMS M and O 1999a) and (2) ''Incorporation of Heterogeneity in SZ Flow and Transport Analyses'', (CRWMS M and O 1999b). A limitation of this analysis is that the probability distribution of flowing interval spacing may underestimate the effect of incorporating matrix diffusion processes in the SZ transport model because of the possible overestimation of the flowing interval spacing. Larger flowing interval spacing results in a decrease in the matrix diffusion processes. This analysis may overestimate the flowing interval spacing because the number of fractures that contribute to a flowing interval cannot be determined from the data. Because each flowing interval probably has more than one fracture contributing to a flowing interval, the true flowing interval spacing could be

  8. Probabilistic Q-function distributions in fermionic phase-space

    International Nuclear Information System (INIS)

    Rosales-Zárate, Laura E C; Drummond, P D

    2015-01-01

    We obtain a positive probability distribution or Q-function for an arbitrary fermionic many-body system. This is different to previous Q-function proposals, which were either restricted to a subspace of the overall Hilbert space, or used Grassmann methods that do not give probabilities. The fermionic Q-function obtained here is constructed using normally ordered Gaussian operators, which include both non-interacting thermal density matrices and BCS states. We prove that the Q-function exists for any density matrix, is real and positive, and has moments that correspond to Fermi operator moments. It is defined on a finite symmetric phase-space equivalent to the space of real, antisymmetric matrices. This has the natural SO(2M) symmetry expected for Majorana fermion operators. We show that there is a physical interpretation of the Q-function: it is the relative probability for observing a given Gaussian density matrix. The distribution has a uniform probability across the space at infinite temperature, while for pure states it has a maximum value on the phase-space boundary. The advantage of probabilistic representations is that they can be used for computational sampling without a sign problem. (fast track communication)

  9. Measuring neutron flux density in near-vessel space of a commercial WWER-1000 reactor

    International Nuclear Information System (INIS)

    Borodkin, G.I.; Eremin, A.N.; Lomakin, S.S.; Morozov, A.G.

    1987-01-01

    Distribution of neutron flux density in two experimental channels on the reactor vessel external surface and in ionization chamber channel of a commercial WWER-1000 reactor, is measured by the activation detector technique. Azimuthal distributions of fast and thermal neutron fluxes and height distributions of fast neutron flux density within energy range >1.2 and 2.3 MeV are obtained. Conclusion is made, that reactor core state and its structural peculiarities in the measurement range essentially affect space and energy distribution of neutron field near the vessel. It should be taken into account when determining permissible neutron fluence for the reactor vessel

  10. Central depression of the charge density distributions in lead isotopes

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-01-01

    The central-depression parameters is determined by fitting the charge density distributions in lead isotopes to a three-parameter Fermi distribution. The central-depression parameter increases with the number of neutrons due to the isovector coupling channel of the nuclear interaction and its dependency on density. (author)

  11. Central depression of the charge density distributions in lead isotopes

    International Nuclear Information System (INIS)

    Haddad, S.

    2007-01-01

    The central-depression parameter is determined by fitting the charge density distributions in lead isotopes to a three-parameter Fermi distribution. The central-depression parameter increases with the number of neutrons due to the isovector coupling channel of the nuclear interaction and its dependency on density. (author)

  12. Resummation of transverse momentum distributions in distribution space

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Markus A.; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-11-15

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q{sub T} in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution's evolution kernel directly in distribution space. We apply this technique to the q{sub T} distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln{sup n}(q{sup 2}{sub T}/Q{sup 2})/q{sup 2}{sub T}]{sub +} appearing in the physical q{sub T} distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  13. Resummation of transverse momentum distributions in distribution space

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Markus A.; Tackmann, Frank J. [Theory Group, Deutsches Elektronen-Synchrotron (DESY),D-22607 Hamburg (Germany)

    2017-02-22

    Differential spectra in observables that resolve additional soft or collinear QCD emissions exhibit Sudakov double logarithms in the form of logarithmic plus distributions. Important examples are the total transverse momentum q{sub T} in color-singlet production, N-jettiness (with thrust or beam thrust as special cases), but also jet mass and more complicated jet substructure observables. The all-order logarithmic structure of such distributions is often fully encoded in differential equations, so-called (renormalization group) evolution equations. We introduce a well-defined technique of distributional scale setting, which allows one to treat logarithmic plus distributions like ordinary logarithms when solving these differential equations. In particular, this allows one (through canonical scale choices) to minimize logarithmic contributions in the boundary terms of the solution, and to obtain the full distributional logarithmic structure from the solution’s evolution kernel directly in distribution space. We apply this technique to the q{sub T} distribution, where the two-dimensional nature of convolutions leads to additional difficulties (compared to one-dimensional cases like thrust), and for which the resummation in distribution (or momentum) space has been a long-standing open question. For the first time, we show how to perform the RG evolution fully in momentum space, thereby directly resumming the logarithms [ln{sup n} (q{sub T}{sup 2}/Q{sup 2})/q{sub T}{sup 2}]{sub +} appearing in the physical q{sub T} distribution. The resummation accuracy is then solely determined by the perturbative expansion of the associated anomalous dimensions.

  14. Distributed Graph-Based State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Kant, Gijs; Rensink, Arend; De Lara, J.; Varro, D.

    LTSMIN provides a framework in which state space generation can be distributed easily over many cores on a single compute node, as well as over multiple compute nodes. The tool works on the basis of a vector representation of the states; the individual cores are assigned the task of computing all

  15. A two-population sporadic meteoroid bulk density distribution and its implications for environment models

    Science.gov (United States)

    Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.

    2017-12-01

    The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.

  16. Uncovering the Density of Matter from Multiplicity Distribution

    International Nuclear Information System (INIS)

    Bialas, A.

    2010-01-01

    Multiplicity distributions in the form of superposition of Poisson distributions which are observed in multiparticle production are interpreted as reflection of a two-step nature of this process: the creation and evolution of the strongly interacting fluid, followed by its uncorrelated decay into observed hadrons. A method to uncover the density of the fluid from the observed multiplicity distribution is described. (author)

  17. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  18. ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION

    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    2012-01-01

    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  19. Distributed Space Missions for Earth System Monitoring

    CERN Document Server

    2013-01-01

    A key addition to Springer's Space Technology Library series, this edited volume features the work of dozens of authors and offers a wealth of perspectives on distributed Earth observation missions. In sum, it is an eloquent synthesis of the fullest possible range of current approaches to a fast-developing field characterized by growing membership of the 'space club' to include nations formerly regarded as part of the Third World. The volume's four discrete sections focus on the topic's various aspects, including the key theoretical and technical issues arising from the division of payloads onto different satellites. The first is devoted to analyzing distributed synthetic aperture radars, with bi- and multi-static radars receiving separate treatment. This is followed by a full discussion of relative dynamics, guidance, navigation and control. Here, the separate topics of design; establishment, maintenance and control; and measurements are developed with relative trajectory as a reference point, while the dis...

  20. Electron density distribution in Si and Ge using multipole, maximum ...

    Indian Academy of Sciences (India)

    Si and Ge has been studied using multipole, maximum entropy method (MEM) and ... and electron density distribution using the currently available versatile ..... data should be subjected to maximum possible utility for the characterization of.

  1. Longitudinal momentum distributions in transverse coordinate space

    International Nuclear Information System (INIS)

    Kumar, Narinder; Mondal, Chandan

    2016-01-01

    In the present work, we study the longitudinal momentum distributions in the transverse coordinate space in a light-front quark-diquark model inspired by soft-wall AdS/QCD. We take the phenomenological light-front quark-diquark model proposed by Gutsche et. al. In this model, the light-front wave functions (LFWFs) for the proton are constructed from the two particle wave functions obtained in soft-wall AdS/QCD

  2. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  3. Bulk density and porosity distributions in a compost pile

    NARCIS (Netherlands)

    Ginkel, van J.T.; Raats, P.A.C.; Haneghem, van I.A.

    1999-01-01

    This paper mainly deals with the description of the initial distribution of bulk density and porosity at the moment a compost pile is built or rebuilt. A relationship between bulk density and vertical position in a pile is deduced from theoretical and empirical considerations. Formulae to calculate

  4. Probability Distribution for Flowing Interval Spacing

    International Nuclear Information System (INIS)

    S. Kuzio

    2004-01-01

    Fracture spacing is a key hydrologic parameter in analyses of matrix diffusion. Although the individual fractures that transmit flow in the saturated zone (SZ) cannot be identified directly, it is possible to determine the fractured zones that transmit flow from flow meter survey observations. The fractured zones that transmit flow as identified through borehole flow meter surveys have been defined in this report as flowing intervals. The flowing interval spacing is measured between the midpoints of each flowing interval. The determination of flowing interval spacing is important because the flowing interval spacing parameter is a key hydrologic parameter in SZ transport modeling, which impacts the extent of matrix diffusion in the SZ volcanic matrix. The output of this report is input to the ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, the analysis of data and development of a data distribution reported herein is used to develop the uncertainty distribution for the flowing interval spacing parameter for the SZ transport abstraction model. Figure 1-1 shows the relationship of this report to other model reports that also pertain to flow and transport in the SZ. Figure 1-1 also shows the flow of key information among the SZ reports. It should be noted that Figure 1-1 does not contain a complete representation of the data and parameter inputs and outputs of all SZ reports, nor does it show inputs external to this suite of SZ reports. Use of the developed flowing interval spacing probability distribution is subject to the limitations of the assumptions discussed in Sections 5 and 6 of this analysis report. The number of fractures in a flowing interval is not known. Therefore, the flowing intervals are assumed to be composed of one flowing zone in the transport simulations. This analysis may overestimate the flowing interval spacing because the number of fractures that contribute to a flowing interval cannot be

  5. Wigner Function of Density Operator for Negative Binomial Distribution

    International Nuclear Information System (INIS)

    Xu Xinglei; Li Hongqi

    2008-01-01

    By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator

  6. Juvenile Penaeid Shrimp Density, Spatial Distribution and Size ...

    African Journals Online (AJOL)

    The effects of habitat characteristics (mangrove creek, sandflat, mudflat and seagrass meadow) water salinity, temperature, and depth on the density, spatial distribution and size distribution of juveniles of five commercially important penaied shrimp species (Metapenaus monoceros, M. stebbingi, Fenneropenaeus indicus, ...

  7. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  8. Interatomic spacing distribution in multicomponent alloys

    International Nuclear Information System (INIS)

    Toda-Caraballo, I.; Wróbel, J.S.; Dudarev, S.L.; Nguyen-Manh, D.; Rivera-Díaz-del-Castillo, P.E.J.

    2015-01-01

    A methodology to compute the distribution of interatomic distances in highly concentrated multicomponent alloys is proposed. By using the unit cell parameter and bulk modulus of the elements involved, the method accurately describes the distortion in the lattice produced by the interaction of the different atomic species. To prove this, density functional theory calculations have been used to provide the description of the lattice in a monophasic BCC MoNbTaVW high entropy alloy and its five sub-quaternary systems at different temperatures. Short-range order is also well described by the new methodology, where the mean error in the predicted atomic coordinates in comparison with the atomistic simulations is in the order of 1–2 pm over all the compositions and temperatures considered. The new method can be applied to tailor solid solution hardening, highly dependent on the distribution of interatomic distances, and guide the design of new high entropy alloys with enhanced properties

  9. Charge distributions in transverse coordinate space and in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)], E-mail: dshwang@slac.stanford.edu; Kim, Dong Soo [Department of Physics, Kangnung National University, Kangnung 210-702 (Korea, Republic of); Kim, Jonghyun [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2008-11-27

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  10. Charge distributions in transverse coordinate space and in impact parameter space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  11. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  12. The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation

    Directory of Open Access Journals (Sweden)

    YU Wenhao

    2015-01-01

    Full Text Available The distribution pattern and the distribution density of urban facility POIs are of great significance in the fields of infrastructure planning and urban spatial analysis. The kernel density estimation, which has been usually utilized for expressing these spatial characteristics, is superior to other density estimation methods (such as Quadrat analysis, Voronoi-based method, for that the Kernel density estimation considers the regional impact based on the first law of geography. However, the traditional kernel density estimation is mainly based on the Euclidean space, ignoring the fact that the service function and interrelation of urban feasibilities is carried out on the network path distance, neither than conventional Euclidean distance. Hence, this research proposed a computational model of network kernel density estimation, and the extension type of model in the case of adding constraints. This work also discussed the impacts of distance attenuation threshold and height extreme to the representation of kernel density. The large-scale actual data experiment for analyzing the different POIs' distribution patterns (random type, sparse type, regional-intensive type, linear-intensive type discusses the POI infrastructure in the city on the spatial distribution of characteristics, influence factors, and service functions.

  13. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  14. The local dark matter phase-space density and impact on WIMP direct detection

    International Nuclear Information System (INIS)

    Catena, Riccardo; Ullio, Piero

    2012-01-01

    We present a new determination of the local dark matter phase-space density. This result is obtained implementing, in the limit of isotropic velocity distribution and spherical symmetry, Eddington's inversion formula, which links univocally the dark matter distribution function to the density profile, and applying, within a Bayesian framework, a Markov Chain Monte Carlo algorithm to sample mass models for the Milky Way against a broad and variegated sample of dynamical constraints. We consider three possible choices for the dark matter density profile, namely the Einasto, NFW and Burkert profiles, finding that the velocity dispersion, which characterizes the width in the distribution, tends to be larger for the Burkert case, while the escape velocity depends very weakly on the profile, with the mean value we obtain being in very good agreement with estimates from stellar kinematics. The derived dark matter phase-space densities differ significantly — most dramatically in the high velocity tails — from the model usually taken as a reference in dark matter detection studies, a Maxwell-Boltzmann distribution with velocity dispersion fixed in terms of the local circular velocity and with a sharp truncation at a given value of the escape velocity. We discuss the impact of astrophysical uncertainties on dark matter scattering rates and direct detection exclusion limits, considering a few sample cases and showing that the most sensitive ones are those for light dark matter particles and for particles scattering inelastically. As a general trend, regardless of the assumed profile, when adopting a self-consistent phase-space density, we find that rates are larger, and hence exclusion limits stronger, than with the standard Maxwell-Boltzmann approximation. Tools for applying our result on the local dark matter phase-space density to other dark matter candidates or experimental setups are provided

  15. High density storage of antimatter for space propulsion applications

    International Nuclear Information System (INIS)

    Smith, Gerald A.; Coughlin, Dan P.

    2001-01-01

    The specific energy of antimatter is 180 MJ/μg, making it the largest specific energy density material known to humankind. Three challenges remain to be solved for space propulsion applications: first, sufficient amounts must be made to permit missions into deep space; second, efficient methods must be found to turn the antimatter into thrust and Isp; and third, the antimatter must be stored for long periods of time. This paper addresses the third issue. We discuss conventional (electromagnetic) methods of confining antimatter, as well as unconventional concepts, including the use of quantum effects in materials and antimatter chemistry

  16. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    International Nuclear Information System (INIS)

    Buividovich, P.V.; Kalaydzhyan, T.; Polikarpov, M.I.

    2011-11-01

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  17. Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2011-11-15

    We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)

  18. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  19. Extraction of density distributions and particle locations from hologram images

    International Nuclear Information System (INIS)

    Ikeda, Koh; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao.

    1996-01-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. In the hologram, the interferogram between reference beam and particle scattering were recorded. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the plane wave was reconstructed with the low-pass filter, resulting in the information of the density distributions to be obtained. With the high-pass filter, the particle three-dimensional positions was determined, i.e., the same procedure with the original HPIV technique. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  20. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    Science.gov (United States)

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  1. The impact of the phase-space density on the indirect detection of dark matter

    International Nuclear Information System (INIS)

    Ferrer, Francesc; Hunter, Daniel R.

    2013-01-01

    We study the indirect detection of dark matter when the local dark matter velocity distribution depends upon position, as expected for the Milky Way and its dwarf spheroidal satellites, and the annihilation cross-section is not purely s-wave. Using a phase-space distribution consistent with the dark matter density profile, we present estimates of cosmic and gamma-ray fluxes from dark matter annihilations. The expectations for the indirect detection of dark matter can differ significantly from the usual calculation that assumes that the velocity of the dark matter particles follows a Maxwell-Boltzmann distribution

  2. Discerning the neutron density distribution of 208Pb from nucleon elastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Amos, K.; University of Melbourne, VIC; Brown, B.A.; Deb, P.K.

    2001-01-01

    We seek a measure of the neutron density of 208 Pb from analyses of intermediate energy nucleon elastic scattering. The pertinent model for such analyses is based on coordinate space nonlocal optical potentials obtained from model nuclear ground state densities. As a calibration of the use of Skyrme-Hartree-Fock models the elastic scattering from 40 Cawas considered as well. Those potentials give predictions of integral observables and of angular distributions which show sensitivity to the neutron density. When compared with experiment, and correlated with analyses of electron scattering data, the results suggest that 208 Pb has a neutron skin thickness ∼ 0.17 fm

  3. Matter density distributions and elastic form factors of some two ...

    Indian Academy of Sciences (India)

    Ahmed N Abdullah

    2017-08-31

    Aug 31, 2017 ... include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form ... the nuclear structure models based on the experimental data for stable nuclei ... Most exotic nuclei are so short lived that they cannot be used as targets at rest.

  4. Chemical bonding and charge density distribution analysis of ...

    Indian Academy of Sciences (India)

    tice and the electron density distributions in the unit cell of the samples were investigated. Structural ... titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes ... trations (at <1%) is responsible for the formation of .... indicated by dots and calculated powder patterns are.

  5. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  6. Cepheid space distribution and the structure of the galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, Yu N [Moskovskij Gosudarstvennyj Univ. (USSR). Astronomical Inst.; Ivanov, G R; Nikolov, N S [Sofia Univ. (Bulgaria). Dept. of Astronomy

    1981-04-01

    On the basis of PLC relation or the PL relation by Van den Bergh and the PC relation by Dean et al. (1978), the distance of 284 galactic cepheids with photoelectric observations have been derived. The space distribution of these cepheids with 111 additional ones without photoelectric oberservations, is studied. In spite of the strong influence of the absorption matter, which makes a great number of distant cepheids unknown, a conclusion is drawn that the cepheids do not trace spiral arms with only one possible exception: the Carina arm. The cepheid z-coordinate distribution confirms the finding of Fernie (1968) that the cepheid layer is inclined towards the formal galactic plane. On the basis of cepheid space density, a number of vast star complexes are identified in which other young objects, together with cepheids fall. The existence of these complexes is explained by star formation in giant molecular clouds. The cepheid mean period increase towards the galactic centre is most probably connected with the existence of a ring between the Sun and the centre of Galaxy, with the highest density of hydrogen and the highest rate of star formation.

  7. Nearest neighbor spacing distributions of low-lying levels of vibrational nuclei

    International Nuclear Information System (INIS)

    Abul-Magd, A.Y.; Simbel, M.H.

    1996-01-01

    Energy-level statistics are considered for nuclei whose Hamiltonian is divided into intrinsic and collective-vibrational terms. The levels are described as a random superposition of independent sequences, each corresponding to a given number of phonons. The intrinsic motion is assumed chaotic. The level spacing distribution is found to be intermediate between the Wigner and Poisson distributions and similar in form to the spacing distribution of a system with classical phase space divided into separate regular and chaotic domains. We have obtained approximate expressions for the nearest neighbor spacing and cumulative spacing distribution valid when the level density is described by a constant-temperature formula and not involving additional free parameters. These expressions have been able to achieve good agreement with the experimental spacing distributions. copyright 1996 The American Physical Society

  8. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.

    Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  9. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    1999-05-01

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  10. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  11. Extraction of density distributions and particle locations from hologram images

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji; Ikeda, Koh; Madarame, Haruki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In this study, the simultaneous measurement technique for three-dimensional density and three-dimensional velocity distributions was evaluated. The Holographic Particle Image Velocimetry (HPIV) was the technique to record the three-dimensional position of the tracer particle on the hologram. When there were density distributions in the interrogation region, the plane optical wave may be modulated because of the difference of the refraction indices. Then, both of the plane wave modulated by density and the spherical wave by particle scatter were interfered with the reference beam, being recorded on the hologram. With reconstructing the hologram, the both of the modulated plane wave and spherical wave were reconstructed. Since the plane wave and spherical wave had low and high frequency, respectively, the two information could be separated using low-pass and high-pass filter. In the experiment, a jet of carbon-dioxide into air with mist were measured. Both mist particle position and the fringe shift caused by the density distribution were well observed, showing the effectiveness of the proposed technique. (author)

  12. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  13. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  14. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  15. Student Difficulties in Learning Density: A Distributed Cognition Perspective

    Science.gov (United States)

    Xu, Lihua; Clarke, David

    2012-08-01

    Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in classroom interactions, and what consequences these interactions have for individual students' conceptual understanding. This paper reports a detailed analysis of two lessons on density in a 7th Grade Australian science classroom, employing the theory of Distributed Cognition (Hollan et al. 1999; Hutchins 1995). The analysis demonstrated that student understanding of density was shaped strongly by the public classroom discussion on the density of two metal blocks. It also revealed the ambiguities associated with the teacher demonstration and the student practical work. These ambiguities contributed to student difficulties with the concept of density identified in this classroom. The results of this study suggest that deliberate effort is needed to establish shared understanding not only about the purpose of the activities, but also about the meaning of scientific language and the utility of tools. It also suggests the importance of appropriate employment of instructional resources in order to facilitate student scientific understanding.

  16. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  17. X-ray electron density distribution of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)

  18. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  19. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  20. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  1. New Data on the Topside Electron Density Distribution

    Science.gov (United States)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  2. Phase-space distributions and orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Pasquini B.

    2014-06-01

    Full Text Available We review the concept of Wigner distributions to describe the phase-space distributions of quarks in the nucleon, emphasizing the information encoded in these functions about the quark orbital angular momentum.

  3. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    Science.gov (United States)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  4. Space Density of Optically Selected Type 2 Quasars

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2008-12-01

    Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.

  5. Fractal-based exponential distribution of urban density and self-affine fractal forms of cities

    International Nuclear Information System (INIS)

    Chen Yanguang; Feng Jian

    2012-01-01

    Highlights: ► The model of urban population density differs from the common exponential function. ► Fractal landscape influences the exponential distribution of urban density. ► The exponential distribution of urban population suggests a self-affine fractal. ► Urban space can be divided into three layers with scaling and non-scaling regions. ► The dimension of urban form with characteristic scale can be treated as 2. - Abstract: Urban population density always follows the exponential distribution and can be described with Clark’s model. Because of this, the spatial distribution of urban population used to be regarded as non-fractal pattern. However, Clark’s model differs from the exponential function in mathematics because that urban population is distributed on the fractal support of landform and land-use form. By using mathematical transform and empirical evidence, we argue that there are self-affine scaling relations and local power laws behind the exponential distribution of urban density. The scale parameter of Clark’s model indicating the characteristic radius of cities is not a real constant, but depends on the urban field we defined. So the exponential model suggests local fractal structure with two kinds of fractal parameters. The parameters can be used to characterize urban space filling, spatial correlation, self-affine properties, and self-organized evolution. The case study of the city of Hangzhou, China, is employed to verify the theoretical inference. Based on the empirical analysis, a three-ring model of cities is presented and a city is conceptually divided into three layers from core to periphery. The scaling region and non-scaling region appear alternately in the city. This model may be helpful for future urban studies and city planning.

  6. Polar observations of electron density distribution in the Earth’s magnetosphere. 2. Density profiles

    Directory of Open Access Journals (Sweden)

    H. Laakso

    2002-11-01

    Full Text Available Using spacecraft potential measurements of the Polar electric field experiment, we investigate electron density variations of key plasma regions within the magnetosphere, including the polar cap, cusp, trough, plasmapause, and auroral zone. The statistical results were presented in the first part of this study, and the present paper reports detailed structures revealed by individual satellite passes. The high-altitude (> 3 RE polar cap is generally one of the most tenuous regions in the magnetosphere, but surprisingly, the polar cap boundary does not appear as a steep density decline. At low altitudes (1 RE in summer, the polar densities are very high, several 100 cm-3 , and interestingly, the density peaks at the central polar cap. On the noonside of the polar cap, the cusp appears as a dense, 1–3° wide region. A typical cusp density above 4 RE distance is between several 10 cm-3 and a few 100 cm-3 . On some occasions the cusp is crossed multiple times in a single pass, simultaneously with the occurrence of IMF excursions, as the cusp can instantly shift its position under varying solar wind conditions, similar to the magnetopause. On the nightside, the auroral zone is not always detected as a simple density cavity. Cavities are observed but their locations, strengths, and sizes vary. Also, the electric field perturbations do not necessarily overlap with the cavities: there are cavities with no field disturbances, as well as electric field disturbances observed with no clear cavitation. In the inner magnetosphere, the density distributions clearly show that the plasmapause and trough densities are well correlated with geomagnetic activity. Data from individual orbits near noon and midnight demonstrate that at the beginning of geomagnetic disturbances, the retreat speed of the plasmapause can be one L-shell per hour, while during quiet intervals the plasmapause can expand anti-earthward at the same speed. For the trough region, it is found

  7. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  8. Exploiting differentiated tuple distribution in shared data spaces

    NARCIS (Netherlands)

    Russello, G.; Chaudron, M.R.V.; Steen, van M.; Danelutto, M.; Vanneschi, M.

    2004-01-01

    The shared data space model has proven to be an effective paradigm for building distributed applications. However, building an efficient distributed implementation remains a challenge. A plethora of different implementations exists. Each of them has a specific policy for distributing data across

  9. Distribution of flux vacua around singular points in Calabi-Yau moduli space

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Tachikawa, Yuji

    2006-01-01

    We study the distribution of type-IIB flux vacua in the moduli space near various singular loci, e.g. conifolds, ADE singularities on P 1 , Argyres-Douglas point etc, using the Ashok-Douglas density det (R+ω). We find that the vacuum density is integrable around each of them, irrespective of the type of the singularities. We study in detail an explicit example of an Argyres-Douglas point embedded in a compact Calabi-Yau manifold

  10. Carbon density and distribution of six Chinese temperate forests

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for > 99% of the total vegetation C pool.The foliage biomass,small root(diameter < 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability

  11. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    Science.gov (United States)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  12. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    International Nuclear Information System (INIS)

    Van der Horst, R M; Beckers, J; Banine, V Y; Osorio, E A

    2015-01-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure. (fast track communication)

  13. On the link between column density distribution and density scaling relation in star formation regions

    Science.gov (United States)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  14. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  15. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  16. A cosmological model with compact space sections and low mass density

    International Nuclear Information System (INIS)

    Fagundes, H.V.

    1982-01-01

    A general relativistic cosmological model is presented, which has closed space sections and mass density below a critical density similar to that of Friedmann's models. The model may predict double images of cosmic sources. (Author) [pt

  17. Space and energy. [space systems for energy generation, distribution and control

    Science.gov (United States)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  18. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  19. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  20. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.

    2007-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  1. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  2. Density-functional theory based on the electron distribution on the energy coordinate

    Science.gov (United States)

    Takahashi, Hideaki

    2018-03-01

    We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.

  3. Effect of electron irradiation on defect distribution in solar cells for space applications

    International Nuclear Information System (INIS)

    Charles, J.P.; Bruguier, G.; Mialhe, P.; Ruas, R.

    1989-01-01

    The distribution of the recombination centers in the spacecharge region was highly dissymetrical before irradiation. After irradiation by a high density electron beam of 10 15 cm -2 with an energy of 1 MeV, the recombination process predominates in the whole bias range. The irradiation yields both an increase in density of the recombination centers and a more homogeneous distribution of traps in the space charge region with an improvement in the behaviour of cells (via the fill factor). This effect is counterbalanced by poor operation in the base and the emitter with a decrease in the efficiency of the device by 20% [fr

  4. Distributed expert systems for ground and space applications

    Science.gov (United States)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  5. 54 relative density and distribution of tantalus monkey

    African Journals Online (AJOL)

    Tersor

    RANGES OF SAMBISA GAME RESERVE. M. Modu*, A. A. ... density and he found a negative relationship with minimum density. .... analysis. A comprehensive computer software .... a large effect on the abundance and ranging ecology of ...

  6. Kaon transverse charge density from space- and timelike data

    Science.gov (United States)

    Mecholsky, N. A.; Meija-Ott, J.; Carmignotto, M.; Horn, T.; Miller, G. A.; Pegg, I. L.

    2017-12-01

    We used the world data on the kaon form factor to extract the transverse kaon charge density using a dispersion integral of the imaginary part of the kaon form factor in the timelike region. Our analysis includes recent data from e+e- annihiliation measurements extending the kinematic reach of the data into the region of high momentum transfers conjugate to the region of short transverse distances. To calculate the transverse density we created a superset of both timelike and spacelike data and developed an empirical parameterization of the kaon form factor. The spacelike set includes two new data points we extracted from existing cross section data. We estimate the uncertainty on the resulting transverse density to be 5% at b =0.025 fm and significantly better at large distances. New kaon data planned with the 12 GeV Jefferson Lab may have a significant impact on the charge density at distances of b <0.1 fm.

  7. The variation of the density functions on chaotic spheres in chaotic space-like Minkowski space time

    International Nuclear Information System (INIS)

    El-Ahmady, A.E.

    2007-01-01

    In this article we introduce types of chaotic spheres in chaotic space-like Minkowski space time M n+1 . The variations of the density functions under the folding of these chaotic spheres are defined. The foldings restriction imposed on the density function are also discussed. The relations between the folding of geometry and pure chaotic manifolds are deduced. Some theorems concerning these relations are presented

  8. A distributed data base management system. [for Deep Space Network

    Science.gov (United States)

    Bryan, A. I.

    1975-01-01

    Major system design features of a distributed data management system for the NASA Deep Space Network (DSN) designed for continuous two-way deep space communications are described. The reasons for which the distributed data base utilizing third-generation minicomputers is selected as the optimum approach for the DSN are threefold: (1) with a distributed master data base, valid data is available in real-time to support DSN management activities at each location; (2) data base integrity is the responsibility of local management; and (3) the data acquisition/distribution and processing power of a third-generation computer enables the computer to function successfully as a data handler or as an on-line process controller. The concept of the distributed data base is discussed along with the software, data base integrity, and hardware used. The data analysis/update constraint is examined.

  9. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  10. 10 CFR 960.5-2-1 - Population density and distribution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that, during... specified in § 960.5-1(a)(1). (b) Favorable conditions. (1) A low population density in the general region...

  11. Molecular dynamics equation designed for realizing arbitrary density: Application to sampling method utilizing the Tsallis generalized distribution

    International Nuclear Information System (INIS)

    Fukuda, Ikuo; Nakamura, Haruki

    2010-01-01

    Several molecular dynamics techniques applying the Tsallis generalized distribution are presented. We have developed a deterministic dynamics to generate an arbitrary smooth density function ρ. It creates a measure-preserving flow with respect to the measure ρdω and realizes the density ρ under the assumption of the ergodicity. It can thus be used to investigate physical systems that obey such distribution density. Using this technique, the Tsallis distribution density based on a full energy function form along with the Tsallis index q ≥ 1 can be created. From the fact that an effective support of the Tsallis distribution in the phase space is broad, compared with that of the conventional Boltzmann-Gibbs (BG) distribution, and the fact that the corresponding energy-surface deformation does not change energy minimum points, the dynamics enhances the physical state sampling, in particular for a rugged energy surface spanned by a complicated system. Other feature of the Tsallis distribution is that it provides more degree of the nonlinearity, compared with the case of the BG distribution, in the deterministic dynamics equation, which is very useful to effectively gain the ergodicity of the dynamical system constructed according to the scheme. Combining such methods with the reconstruction technique of the BG distribution, we can obtain the information consistent with the BG ensemble and create the corresponding free energy surface. We demonstrate several sampling results obtained from the systems typical for benchmark tests in MD and from biomolecular systems.

  12. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    Science.gov (United States)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  13. A new kind of droplet space distribution measuring method

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    A new kind of droplet space distribution measuring technique was introduced mainly, and the experimental device which was designed for the measuring the space distribution and traces of the flying film droplet produced by the bubble breaking up near the free surface of the water. This experiment was designed with a kind of water-sensitivity test paper (rice paper) which could record the position and size of the colored scattering droplets precisely. The rice papers were rolled into cylinders with different diameters by using tools. The bubbles broke up exactly in the center of the cylinder, and the space distribution and the traces of the droplets would be received by analysing all the positions of the droplets produced by the same size bubble on the rice papers. (authors)

  14. Fourier Multipliers on Anisotropic Mixed-Norm Spaces of Distributions

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity of such operat......A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity...

  15. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    Science.gov (United States)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  16. Experimental study of high density foods for the Space Operations Center

    Science.gov (United States)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  17. Distributed computing environments for future space control systems

    Science.gov (United States)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  18. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    Science.gov (United States)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  19. Importance of stand density, inter row spacing, "mother" and "father" row distance in corn seed production

    Directory of Open Access Journals (Sweden)

    Marinković Branko

    2006-01-01

    Full Text Available Importance of stand density, "mother" and "father" row distance is very important for corn seed production. Inter row spacing from 70,60 and 50 cm, and their influence on "mother" grain yield was investigated during 7 years trials. In seed production, at density ratio 6 + 2, beside inter row spacing, yield influence on stand density was followed as well. Five stand densities (40.8000, 52.900, 64.900, 79.400, 89.300, total plant number per ha and density ration 6 + 2, was investigated. The next results were obtained: at 70 cm inter row spacing, the highest yield was achieved with the 64.900 plant/ha stand density (4.35 tha-1 "mother" seed. At the first row, yield was higher for 360 and 550 kgha-1 in dependence from the second and the third "mother" row. At 60 cm inter row spacing, yield was increasing till the highest density, and significant difference, in relation to 40.800 plants/ha, was at 79.400 plants/ha stands density. At the second and the third row in rela­tion to the first "mother" row, yield difference was 430 and 510 kgha-1. The same conclusions can be made at the 50 cm inter row spacing. With the "mother" row space increasing, yield was decreased for 370 and 460 kgha-1.

  20. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  1. X-ray electron charge density distribution in silicon

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    During the last two years new highly accurate X-ray structure amplitudes for silicon have been published. Also the scattering phases of some 'forbidden' reflections have been determined using the X-ray three-beam case. This allows the construction of most precise valence and difference electron density plots and the comparison with those calculated on the basis of the Aldret-Hart X-ray pendelloesung data or theoretically. The density plots are discussed in details of both, the bond and the atomic site. The contributions of various Fourier components and the influence of different temperature factors on the difference density are studied. (author)

  2. Limit distribution function of inhomogeneities in regions with random boundary in the Hilbert space

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Tashpulatov, S.M.

    2004-10-01

    The interaction of charged particle systems with a membrane consisting of nonhomogeneities which are randomly distributed by the same law in the vicinity of appropriate sites of a planax crystal lattice is studied. A system of equations for the self-consistent potential U 1 (x,ξ 0 ,..., ξ N ,...) and the density of induced charges σ(x,ξ 0 ,...,ξ N ,...) is solved on Hilbert space. (author)

  3. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects.

    Science.gov (United States)

    Marcos, S; Tornow, R P; Elsner, A E; Navarro, R

    1997-07-01

    Foveal cone spacing was measured in vivo using an objective technique: ocular speckle interferometry. Cone packing density was computed from cone spacing data. Foveal cone photopigment density difference was measured in the same subjects using retinal densitometry with a scanning laser ophthalmoscope. Both the cone packing density and cone photopigment density difference decreased sharply with increasing retinal eccentricity. From the comparison of both sets of measurements, the computed amounts of photopigment per cone increased slightly with increasing retinal eccentricity. Consistent with previous results, decreases in cone outer segment length are over-compensated by an increase in the outer segment area, at least in retinal eccentricities up to 1 deg.

  4. Space division multiplexing chip-to-chip quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld

    2017-01-01

    nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum...

  5. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  6. Community Based Distribution of Child Spacing Methods at ...

    African Journals Online (AJOL)

    uses volunteer CBD agents. Mrs. E.F. Pelekamoyo. Service Delivery Officer. National Family Welfare Council of Malawi. Private Bag 308. Lilongwe 3. Malawi. Community Based Distribution of. Child Spacing Methods ... than us at the Hospital; male motivators by talking to their male counterparts help them to accept that their ...

  7. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  8. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  9. Creating unstable velocity-space distributions with barium injections

    International Nuclear Information System (INIS)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges

  10. The study of field and density cavity in the near wake region of a space vehicle

    International Nuclear Information System (INIS)

    Luo Qing; Wang Jing; Hu Taoping

    2011-01-01

    Under the static limit,using the method of Fourier transformation, the non-steady, nonlinear interactions between plasma and field in the near wake region of a space vehicle are investigated. Numerical calculations are performed and the results show that there are the formation of the electromagnetic soliton and density caviton in the near wake region of the space vehicle, which can be detected due to the collapse of electric field. Therefore, we can trace out the space vehicle by means of observing the structure and intensity of the density caviton and electromagnetic soliton although the space vehicle may be have a disguised characteristic. (authors)

  11. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  12. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    Science.gov (United States)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  13. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  14. Distribution, density, and productivity of accipiter hawks breeding in Oregon

    Science.gov (United States)

    Richard T. Reynolds; Howard M. Wight

    1978-01-01

    Density of nests and productivity of Sharp-shinned Hawks (Accipiter striatus), Cooper's Hawks (A. cooperii), and Goshawks (A. gentilis) within Oregon are of interest because of recent declines of accipiter hawks in the eastern United States (Schriver 1969, Hackman and Henny 1971, Henny and Wight 1972). One...

  15. Temperature and phase-space density of a cold atom cloud in a quadrupole magnetic trap

    Energy Technology Data Exchange (ETDEWEB)

    Ram, S. P.; Mishra, S. R.; Tiwari, S. K.; Rawat, H. S. [Raja Ramanna Centre for Advanced Technology, Indore (India)

    2014-08-15

    We present studies on modifications in the temperature, number density and phase-space density when a laser-cooled atom cloud from optical molasses is trapped in a quadrupole magnetic trap. Theoretically, for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap is shown first to increase with increasing magnetic field gradient and then to decrease with it after attaining a maximum value at an optimum value of the magnetic-field gradient. The experimentally-measured variation in the phase-space density in the magnetic trap with changing magnetic field gradient is shown to exhibit a similar trend. However, the experimentally-measured values of the number density and the phase-space density are much lower than the theoretically-predicted values. This is attributed to the experimentally-observed temperature in the magnetic trap being higher than the theoretically-predicted temperature. Nevertheless, these studies can be useful for setting a higher phase-space density in the trap by establishing an optimal value of the field gradient for a quadrupole magnetic trap.

  16. Bumping structure of initial energy density distributions and peculiarities of pion spectra in A + A collisions

    International Nuclear Information System (INIS)

    Borysova, M.S.

    2012-01-01

    The effect of a fluctuating bumping structure of the initial conditions on spectra and the collective evolution of matter created in heavy-ion collisions in the frameworks of the Hydro-Kinetic Model is investigated. As motivated by the glasma-flux-tube scenario, the initial conditions are modeled by the set of four high energy-density tube-like fluctuations with longitudinally homogeneous structure within some space-rapidity region in a boost-invariant 2D geometry. It was found that the presence of transversally bumping tube-like fluctuations in initial conditions strongly affects the hydrodynamic evolution and leads to emergence of conspicuous structures in the calculated pion spectra. It was observed that the 4 tube initial configuration generates a four-peak structure in the final azimuthal distributions of one-particle spectra.

  17. Production of Transverse Controllable Laser Density Distribution in Fermilab/NICADD Photoinjector

    CERN Document Server

    Li, Jianliang; Tikhoplav, Rodion

    2005-01-01

    The Fermilab/NICADD photoinjector laboratory consist of a photoemission electron source based on an L band rf-gun. The CsTe photocathode is illuminated by an ultrashort UV laser. The transport line from the laser to the photocathode was recently upgraded to allow imaging of an object plane located ~20 m from the photocathode. This upgrade allows the generation of transverse laser distributions with controlled nonuniformity, yielding the production of an electron beam with various transverse densities patterns. Measuring the evolution of the artificial pattern on the electron bunch provides information that can be used to benchmark numerical simulations and investigate the impact of space charge. Preliminary data on these investigations are presented in the present paper.

  18. Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.

    2012-09-01

    Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.

  19. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  20. Thermal expansion of an amorphous alloy. Reciprocal-space versus real-space distribution functions

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    This paper describes the relation between the change in the position of the first X-ray diffraction maximum in reciprocal space and the first maximum of the distribution function in real space for the Ge 50 Al 40 Cr 10 amorphous alloy. It is also shown that the first diffraction maximum of the interference function carries the most significant information about the interatomic distances in real space while the subsequent peaks of the interference function are responsible for the shoulders of the main peak of the real-space distribution function. The results are used to support validity of the method previously used to monitor thermal expansion of the glassy alloys using an X-ray diffraction profile

  1. HI column density distribution function at z=0 : Connection to damped Ly alpha statistics

    NARCIS (Netherlands)

    Zwaan, Martin; Verheijen, MAW; Briggs, FH

    We present a measurement of the HI column density distribution function f(N-HI) at the present epoch for column densities > 10(20) cm(-2). These high column densities compare to those measured in damped Ly alpha lines seen in absorption against background quasars. Although observationally rare, it

  2. Density Distribution of Liquid Argon in Nano-channel Poiseuille Flows

    Science.gov (United States)

    She, Jiangwei; Wang, Yuyi; Zhou, Zhe-Wei

    2017-11-01

    The density layering parallel to the boundaries of liquid has been measured in many experiments and also observed in molecular dynamics (MD) simulations. In this study, a detail and systematic investigation of density distribution in nano-scale Poiseuille flows is carried out. Through analyzing the difference of density distribution curves obtained under different conditions, the influence of interaction parameters, configuration form of solid wall and temperature on the layering are investigated. The internal mechanism is also explored in this paper. The detail description of the density distribution results and simulation algorithm is given. National natural science foundation (A020405).

  3. A density distribution algorithm for bone incorporating local orthotropy, modal analysis and theories of cellular solids.

    Science.gov (United States)

    Impelluso, Thomas J

    2003-06-01

    An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.

  4. Spatial variability in the density, distribution and vectorial capacity of ...

    African Journals Online (AJOL)

    Malaria transmission varies from one area to another and there are also local difference in time and space. The objective of the study was to determine the local variability of entomological parameters namely, mosquito abundance, human biting rate (HBR), sporozoite rate for Plasmodium falciparum and entomological ...

  5. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    Science.gov (United States)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  6. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  7. Limits on the transverse phase space density in the Fermilab Booster

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Holmes, S.D.

    1987-09-01

    Recent results on intensity and transverse density limitations in the Fermilab 8-GeV Booster are presented. The evidence suggests that the limits are set by incoherent space-charge effects at low energy. Data are interpreted in terms of the space-charge tune shift and possible means of improving performance further are discussed. 8 refs., 3 figs

  8. Density perturbations due to the inhomogeneous discrete spatial structure of space-time

    International Nuclear Information System (INIS)

    Wolf, C.

    1998-01-01

    For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe

  9. Density and energy distribution of epithermal secondary electrons in a plasma with fast charged particles

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.

    1989-01-01

    The production of intermediate energy secondary electrons in plasmas through collisions with fast charged particles is investigated. The density and the distribution of the secondary electrons are obtained by calculating the generation, slow down and diffusion rates, using basic Rutherford collision cross sections. It is shown that the total density of secondaries is much smaller than the fast particle density and that the energy distribution has roughly a 1/√E dependence. The higher generation secondary populations are also obtained. (orig.)

  10. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  11. Kernel and wavelet density estimators on manifolds and more general metric spaces

    DEFF Research Database (Denmark)

    Cleanthous, G.; Georgiadis, Athanasios; Kerkyacharian, G.

    We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized...... spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established, which are analogous to the existing results in the classical setting of real...

  12. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Usero, Antonio [Observatorio Astronmico Nacional (IGN), C/Alfonso XII, 3, E-28014 Madrid (Spain); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching (Germany); Bigiel, Frank [Institute für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Kruijssen, J. M. Diederik; Schinnerer, Eva [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Kepley, Amanda [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Cormier, Diane; Jiménez-Donaire, Maria J. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada)

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  13. Charaterisation of function spaces via mollification; fractal quantities for distributions

    Directory of Open Access Journals (Sweden)

    Hans Triebel

    2003-01-01

    Full Text Available The aim of this paper is twofold. First we characterise elements f belonging to the Besov spaces Bpqs(ℝn with s∈ℝ,  0distributions generalising well-known corresponding quantities for Radon measures.

  14. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    Science.gov (United States)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  15. Charged particle density distributions in Au + Au collisions at ...

    Indian Academy of Sciences (India)

    Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of ...

  16. Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.

    Science.gov (United States)

    Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I

    2016-03-15

    Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.

  17. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  18. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Judit Vas

    Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  19. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus)

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e. distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g. resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation. PMID:26657240

  20. Nonclassicality indicator for the real phase-space distribution functions

    International Nuclear Information System (INIS)

    Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah

    2010-01-01

    Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.

  1. Time Synchronization and Distribution Mechanisms for Space Networks

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  2. Methods for reconstruction of the density distribution of nuclear power

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2015-01-01

    Highlights: • Two methods for reconstruction of the pin power distribution are presented. • The ARM method uses analytical solution of the 2D diffusion equation. • The PRM method uses polynomial solution without boundary conditions. • The maximum errors in pin power reconstruction occur in the peripheral water region. • The errors are significantly less in the inner area of the core. - Abstract: In analytical reconstruction method (ARM), the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G) and homogeneous nodes with dimensions of a fuel assembly (FA). The solution employs a 2D fourth-order expansion for the axial leakage term. The Nodal Expansion Method (NEM) provides the solution average values as the four average partial currents on the surfaces of the node, the average flux in the node and the multiplying factor of the problem. The expansion coefficients for the axial leakage are determined directly from NEM method or can be determined in the reconstruction method. A new polynomial reconstruction method (PRM) is implemented based on the 2D expansion for the axial leakage term. The ARM method use the four average currents on the surfaces of the node and four average fluxes in corners of the node as boundary conditions and the average flux in the node as a consistency condition. To determine the average fluxes in corners of the node an analytical solution is employed. This analytical solution uses the average fluxes on the surfaces of the node as boundary conditions and discontinuities in corners are incorporated. The polynomial and analytical solutions to the PRM and ARM methods, respectively, represent the homogeneous flux distributions. The detailed distributions inside a FA are estimated by product of homogeneous distribution by local heterogeneous form function. Moreover, the form functions of power are used. The results show that the methods have good accuracy when compared with reference values and

  3. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  4. Generalised partition functions: inferences on phase space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-06-01

    Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the

  5. Investigating the impact of uneven magnetic flux density distribution on core loss estimation

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten; Wang, Yiren

    2017-01-01

    is calculated according to an effective flux density value and the macroscopic dimensions of the cores. However, the flux distribution in the core can alter by core shapes and/or operating conditions due to nonlinear material properties. This paper studies the element-wise estimation of the loss in magnetic......There are several approaches for loss estimation in magnetic cores, and all these approaches highly rely on accurate information about flux density distribution in the cores. It is often assumed that the magnetic flux density evenly distributes throughout the core and the overall core loss...

  6. Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions

    International Nuclear Information System (INIS)

    Leubner, M.P.

    2004-01-01

    Numerous in situ observations indicate clearly the presence of nonthermal electron and ion structures as ubiquitous and persistent feature in a variety of astrophysical plasma environments. In particular, the detected suprathermal particle populations are accurately represented by the family of κ-distributions, a power-law in particle speed. After clarifying the characteristics of high-energy tail distributions under various space plasma conditions, different generation mechanisms of energetic particles are introduced where numerical simulations of wave-particle interaction based on a Fokker-Planck approach demonstrate how Landau interaction ultimately leads to κ-like distributions. Because of lack of theoretical justification, the use of the analytical form of κ-functions was frequently criticized. It is shown that these distributions turn out as consequence of an entropy generalization favored by nonextensive thermo-statistics, thus providing the missing link for powerlaw models of suprathermal tails from fundamental physics, along with a physical interpretation of the structure parameter κ. Moreover, with regard to the full nonextensive formalism, compatible also with negative values of κ, it is demonstrated that core-halo distribution structures, as observed for instance under typical interplanetary plasma conditions, are a natural content of the pseudo-additive entropy concept. The significance of the complete κ-distribution family with regard to observed core-halo electron and double-humped ion velocity space characteristics is illuminated, where the observed peak separation scale of interplanetary proton distributions is compatible with a maximum entropy condition

  7. Security for Multimedia Space Data Distribution over the Internet

    Science.gov (United States)

    Stone, Thom; Picinich, Lou; Givens, John J. (Technical Monitor)

    1995-01-01

    Distribution of interactive multimedia to remote investigators will be required for high quality science on the International Space Station (ISS). The Internet with the World Wide Web (WWW) and the JAVA environment are a good match for distribution of data, video and voice to remote science centers. Utilizing the "open" Internet in a secure manner is the major hurdle in making use of this cost effective, off-the-shelf, universal resource. This paper examines the major security threats to an Internet distribution system for payload data and the mitigation of these threats. A proposed security environment for the Space Station Biological Research Facility (SSBRP) is presented with a short description of the tools that have been implemented or planned. Formulating and implementing a security policy, firewalls, host hardware and software security are also discussed in this paper. Security is a vast topic and this paper can only give an overview of important issues. This paper postulates that a structured approach is required and stresses that security must be built into a network from the start. Ignoring security issues or putting them off until late in the development cycle can be disastrous.

  8. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  9. Cooperating expert systems for space station power distribution management

    International Nuclear Information System (INIS)

    Nguyen, T.A.; Chiou, W.C.

    1986-01-01

    In a complex system such as the manned Space Station, it is deemed necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question to arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, the authors have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, they use the two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will serve as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange

  10. Cooperating Expert Systems For Space Station Power Distribution Management

    Science.gov (United States)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  11. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  12. Formation and distribution of international tourism flows in geographical space

    Directory of Open Access Journals (Sweden)

    Oleksandr Korol

    2017-10-01

    Full Text Available Properties of geographical space that are of key importance for international tourism, as length and discreteness, are analyzed in the article. Length makes tourists cover distances, whereas discreteness manifests itself in spatial heterogeneity. Tourism in conditions of homogeneous space is vain. That is, heterogeneity brings sense to travels as well as determines their direction. So, the effect of geographical space’s length and spatial heterogeneity on formation and distribution of tourism flows is assessed, international tourism’s geographical essence is disclosed also. Apperception of geographical space in usual environment and its effect on tourist’s original motives are described. Following the bases of behaviorism, the tourism original motives, in particular those for migration, comfort, contrast and aesthetics are substantiated. The motive for migration is a kind of “pushing” tourists outside their usual environment. To stop all fears that may cause anxiety in destination, the latter should guarantee satisfaction of those human needs which A. Maslow refers to as basic needs. The necessity to satisfy these needs forms in tourists the motive for comfort. Closely located destinations in neighboring countries can be of little difference form usual environment. Driven by the motive for contrast, tourists aspire to visit places that totally differ from their usual environment, and contrast (are exotic to it. Thus, the motive for contrast seemingly “pulls” the tourists up to certain (exotic destinations. Finally, following the considered spatial specificities of land surface and tourist-driving original motives, a conceptual model of formation and distribution of international tourism flows in geographical space is developed.

  13. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    Science.gov (United States)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  14. The force distribution probability function for simple fluids by density functional theory.

    Science.gov (United States)

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  15. Precision time distribution within a deep space communications complex

    Science.gov (United States)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  16. Reinvestigation of the charge density distribution in arc discharge fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  17. Reinvestigation of the charge density distribution in arc discharge fusion system

    International Nuclear Information System (INIS)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-01-01

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices

  18. The effect of electrodeposition process parameters on the current density distribution in an electrochemical cell

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2001-02-01

    Full Text Available Cell voltage – current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.

  19. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  20. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    Science.gov (United States)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  1. Distribution and mixing of a liquid bolus in pleural space.

    Science.gov (United States)

    Bodega, Francesca; Tresoldi, Claudio; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2006-02-28

    Distribution and mixing time of boluses with labeled albumin in pleural space of anesthetized, supine rabbits were determined by sampling pleural liquid at different times in various intercostal spaces (ics), and in cranial and caudal mediastinum. During sampling, lung and chest wall were kept apposed by lung inflation. This was not necessary in costo-phrenic sinus. Here, 10 min after injection, lung inflation increased concentration of labeled albumin by 50%. Lung inflation probably displaces some pleural liquid cranio-caudally, increasing labeled albumin concentration caudally to injection point (6th ics), and decreasing it cranially. Boluses of 0.1-1 ml did not preferentially reach mediastinal regions, as maintained by others. Time for an approximate mixing was approximately 1 h for 0.1 ml, and approximately 30 min for 1 ml. This relatively long mixing time does not substantially affect determination of contribution of lymphatic drainage through stomata to overall removal of labeled albumin from 0.3 ml hydrothoraces lasting 3 h [Bodega, F., Agostoni, E., 2004. Contribution of lymphatic drainage through stomata to albumin removal from pleural space. Respir. Physiol. Neurobiol. 142, 251-263].

  2. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  3. The effect of stocking density and bin feeder space on performance ...

    African Journals Online (AJOL)

    Unknown

    The effect of stocking density and bin feeder space on performance in pigs. G.A. Lavers# and N.S. Ferguson. School of Agricultural Sciences & Agribusiness, University of Natal, P Bag X01, Scottsville 3209. #Email: lavers@agric.unp.ac.za. Introduction. Pigs housed individually have been shown to have higher feed intakes ...

  4. The effect of stocking density and bin feeder space on performance ...

    African Journals Online (AJOL)

    The effect of stocking density and bin feeder space on performance in pigs. G.A. Lavers, N.S. Ferguson. Abstract. (South African J of Animal Science, 2000, 30, Supplement 1: 70-71). Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. The effect of plant density with different row spacing on quality of the ...

    African Journals Online (AJOL)

    This research was aimed to assess the influence of density with different row spacing on sunflower crop in two different locations in southern Italy. The experiment was laid out in a randomized block design with four replicates. It involved the comparison of sunflower grown in the field on 25 m2 (5 x 5 m) plots at three plant ...

  6. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  7. Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.

  8. Diffusion with space memory modelled with distributed order space fractional differential equations

    Directory of Open Access Journals (Sweden)

    M. Caputo

    2003-06-01

    Full Text Available Distributed order fractional differential equations (Caputo, 1995, 2001; Bagley and Torvik, 2000a,b were fi rst used in the time domain; they are here considered in the space domain and introduced in the constitutive equation of diffusion. The solution of the classic problems are obtained, with closed form formulae. In general, the Green functions act as low pass fi lters in the frequency domain. The major difference with the case when a single space fractional derivative is present in the constitutive equations of diffusion (Caputo and Plastino, 2002 is that the solutions found here are potentially more fl exible to represent more complex media (Caputo, 2001a. The difference between the space memory medium and that with the time memory is that the former is more fl exible to represent local phenomena while the latter is more fl exible to represent variations in space. Concerning the boundary value problem, the difference with the solution of the classic diffusion medium, in the case when a constant boundary pressure is assigned and in the medium the pressure is initially nil, is that one also needs to assign the fi rst order space derivative at the boundary.

  9. A Noninformative Prior on a Space of Distribution Functions

    Directory of Open Access Journals (Sweden)

    Alexander Terenin

    2017-07-01

    Full Text Available In a given problem, the Bayesian statistical paradigm requires the specification of a prior distribution that quantifies relevant information about the unknowns of main interest external to the data. In cases where little such information is available, the problem under study may possess an invariance under a transformation group that encodes a lack of information, leading to a unique prior—this idea was explored at length by E.T. Jaynes. Previous successful examples have included location-scale invariance under linear transformation, multiplicative invariance of the rate at which events in a counting process are observed, and the derivation of the Haldane prior for a Bernoulli success probability. In this paper we show that this method can be extended, by generalizing Jaynes, in two ways: (1 to yield families of approximately invariant priors; and (2 to the infinite-dimensional setting, yielding families of priors on spaces of distribution functions. Our results can be used to describe conditions under which a particular Dirichlet Process posterior arises from an optimal Bayesian analysis, in the sense that invariances in the prior and likelihood lead to one and only one posterior distribution.

  10. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models

    International Nuclear Information System (INIS)

    Gulisashvili, Archil; Stein, Elias M.

    2010-01-01

    We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.

  11. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    Science.gov (United States)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  12. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    International Nuclear Information System (INIS)

    Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Nagashima, Masahiro

    2014-01-01

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  13. Anti-hierarchical evolution of the active galactic nucleus space density in a hierarchical universe

    Energy Technology Data Exchange (ETDEWEB)

    Enoki, Motohiro [Faculty of Business Administration, Tokyo Keizai University, Kokubunji, Tokyo 185-8502 (Japan); Ishiyama, Tomoaki [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kobayashi, Masakazu A. R. [Research Center for Space and Cosmic Evolution, Ehime University, Matsuyama, Ehime 790-8577 (Japan); Nagashima, Masahiro, E-mail: enokimt@tku.ac.jp [Faculty of Education, Nagasaki University, Nagasaki, Nagasaki 852-8521 (Japan)

    2014-10-10

    Recent observations show that the space density of luminous active galactic nuclei (AGNs) peaks at higher redshifts than that of faint AGNs. This downsizing trend in the AGN evolution seems to be contradictory to the hierarchical structure formation scenario. In this study, we present the AGN space density evolution predicted by a semi-analytic model of galaxy and AGN formation based on the hierarchical structure formation scenario. We demonstrate that our model can reproduce the downsizing trend of the AGN space density evolution. The reason for the downsizing trend in our model is a combination of the cold gas depletion as a consequence of star formation, the gas cooling suppression in massive halos, and the AGN lifetime scaling with the dynamical timescale. We assume that a major merger of galaxies causes a starburst, spheroid formation, and cold gas accretion onto a supermassive black hole (SMBH). We also assume that this cold gas accretion triggers AGN activity. Since the cold gas is mainly depleted by star formation and gas cooling is suppressed in massive dark halos, the amount of cold gas accreted onto SMBHs decreases with cosmic time. Moreover, AGN lifetime increases with cosmic time. Thus, at low redshifts, major mergers do not always lead to luminous AGNs. Because the luminosity of AGNs is correlated with the mass of accreted gas onto SMBHs, the space density of luminous AGNs decreases more quickly than that of faint AGNs. We conclude that the anti-hierarchical evolution of the AGN space density is not contradictory to the hierarchical structure formation scenario.

  14. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    Science.gov (United States)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  15. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  16. Composite space charge density functions for the calculation of gamma sensitivity of self-powered neutron detectors, using Warren's model

    Science.gov (United States)

    Mahant, A. K.; Rao, P. S.; Misra, S. C.

    1994-07-01

    In the calculational model developed by Warren and Shah for the computation of the gamma sensitivity ( Sγ) it has been observed that the computed Sγ value is quite sensitive to the space charge distribution function assumed for the insulator region and the energy of the gamma photons. The Sγ of SPNDs with Pt, Co and V emitters (manufactured by Thermocoax, France) has been measured at 60Co photon energy and a good correlation between the measured and computed values has been obtained using a composite space charge density function (CSCD), the details of which are presented in this paper. The arguments are extended for evaluating the Sγ values of several SPNDs for which Warren and Shah reported the measured values for a prompt fission gamma spectrum obtained in a swimming pool reactor. These results are also discussed.

  17. Quasiparticle density of states, localization, and distributed disorder in the cuprate superconductors

    Science.gov (United States)

    Sulangi, Miguel Antonio; Zaanen, Jan

    2018-04-01

    We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.

  18. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  19. Constructing Common Information Space across Distributed Emergency Medical Teams

    DEFF Research Database (Denmark)

    Zhang, Zhan; Sarcevic, Aleksandra; Bossen, Claus

    2017-01-01

    This paper examines coordination and real-time information sharing across four emergency medical teams in a high-risk and distributed setting as they provide care to critically injured patients within the first hour after injury. Through multiple field studies we explored how common understanding...... of critical patient data is established across these heterogeneous teams and what coordination mechanisms are being used to support information sharing and interpretation. To analyze the data, we drew on the concept of Common Information Spaces (CIS). Our results showed that teams faced many challenges...... in achieving efficient information sharing and coordination, including difficulties in locating and assembling team members, communicating and interpreting information from the field, and accommodating differences in team goals and information needs, all while having minimal technology support. We reflect...

  20. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  1. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  2. Equilibrium phase-space distributions and space charge limits in linacs

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1977-10-01

    Limits on beam current and emittance in proton and heavy ion linear accelerators resulting from space charge forces are calculated. The method involves determining equilibrium distributions in phase space using a continuous focusing, no acceleration, model in two degrees of freedom using the coordinates r and z. A nonlinear Poisson equation must be solved numerically. This procedure is a matching between the longitudinal and transverse directions to minimize the effect of longitudinal-transverse coupling which is believed to be the main problem in emittance growth due to space charge in linacs. Limits on the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator performance are calculated as an example. The beam physics is described by a few space charge parameters so that accelerators with different physical parameters can be compared in a natural way. The main result of this parameter study is that the requirement of a high-intensity beam is best fulfilled with a low-frequency accelerator whereas the requirement of a high-brightness beam is best fulfilled with a high-frequency accelerator

  3. The Influence of Orthographic Neighborhood Density and Word Frequency on Visual Word Recognition: Insights from RT Distributional Analyses

    Directory of Open Access Journals (Sweden)

    Stephen Wee Hun eLim

    2016-03-01

    Full Text Available The effects of orthographic neighborhood density and word frequency in visual word recognition were investigated using distributional analyses of response latencies in visual lexical decision. Main effects of density and frequency were observed in mean latencies. Distributional analyses, in addition, revealed a density x frequency interaction: for low-frequency words, density effects were mediated predominantly by distributional shifting whereas for high-frequency words, density effects were absent except at the slower RTs, implicating distributional skewing. The present findings suggest that density effects in low-frequency words reflect processes involved in early lexical access, while the effects observed in high-frequency words reflect late postlexical checking processes.

  4. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  5. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  6. Calculation of flux density distribution on irradiation field of electron accelerator

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1977-03-01

    The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)

  7. Field line distribution of density at L=4.8 inferred from observations by CLUSTER

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2009-02-01

    Full Text Available For two events observed by the CLUSTER spacecraft, the field line distribution of mass density ρ was inferred from Alfvén wave harmonic frequencies and compared to the electron density ne from plasma wave data and the oxygen density nO+ from the ion composition experiment. In one case, the average ion mass M≈ρ/ne was about 5 amu (28 October 2002, while in the other it was about 3 amu (10 September 2002. Both events occurred when the CLUSTER 1 (C1 spacecraft was in the plasmatrough. Nevertheless, the electron density ne was significantly lower for the first event (ne=8 cm−3 than for the second event (ne=22 cm−3, and this seems to be the main difference leading to a different value of M. For the first event (28 October 2002, we were able to measure the Alfvén wave frequencies for eight harmonics with unprecedented precision, so that the error in the inferred mass density is probably dominated by factors other than the uncertainty in frequency (e.g., magnetic field model and theoretical wave equation. This field line distribution (at L=4.8 was very flat for magnetic latitude |MLAT|≲20° but very steeply increasing with respect to |MLAT| for |MLAT|≳40°. The total variation in ρ was about four orders of magnitude, with values at large |MLAT| roughly consistent with ionospheric values. For the second event (10 September 2002, there was a small local maximum in mass density near the magnetic equator. The inferred mass density decreases to a minimum 23% lower than the equatorial value at |MLAT|=15.5°, and then steeply increases as one moves along the field line toward the ionosphere. For this event we were also able to examine the spatial dependence of the electron density using measurements of ne from all four CLUSTER spacecraft. Our analysis indicates that the density varies with L at L~5 roughly like L−4, and that ne is also locally peaked at the magnetic equator, but with a smaller peak. The value of ne reaches a density minimum

  8. Phase-space densities and effects of resonance decays in a hydrodynamic approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Sinyukov, Yu.M.

    2004-01-01

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate that multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions

  9. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.

    Science.gov (United States)

    Thomas, J A; McGaughey, A J H

    2008-02-28

    The behavior of water molecules inside and outside 1.1, 2.8, 6.9, and 10.4 nm diameter armchair carbon nanotubes (CNTs) is predicted using molecular dynamics simulations. The effects of CNT diameter on mass density, molecular distribution, and molecular orientation are identified for both the confined and unconfined fluids. Within 1 nm of the CNT surface, unconfined water molecules assume a spatially varying density profile. The molecules distribute nonuniformly around the carbon surface and have preferred orientations. The behavior of the unconfined water molecules is invariant with CNT diameter. The behavior of the confined water, however, can be correlated to tube diameter. Inside the 10.4 nm CNT, the molecular behavior is indistinguishable from that of the unconfined fluid. Within the smaller CNTs, surface curvature effects reduce the equilibrium water density and force water molecules away from the surface. This effect changes both the molecular distribution and preferred molecular orientations.

  10. Method of measuring the current density distribution and emittance of pulsed electron beams

    International Nuclear Information System (INIS)

    Schilling, H.B.

    1979-07-01

    This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)

  11. Space distribution and physical properties of cool dwarf stars

    International Nuclear Information System (INIS)

    Staller, R.F.A.

    1979-01-01

    A new study of the space density of red dwarfs based on a sample of red dwarfs in a field of 238 square degrees towards the South Galactic Pole is presented. A blink survey using red and blue copies of Mount Palomar Sky Survey plates of a six square degrees field centered on the South Galactic Pole was performed and the results (approximately 2500 red objects) and the discussion of these results are presented. The time that elapsed before a black dwarf becomes invisible is estimated and is suggested that low-velocity red dwarfs could be explained by contracting black dwarfs. Based on theoretical considerations it can be shown that the existence of a large number of low-velocity stars is in serious conflict with criteria for the stability of the galactic disk. It is shown that if one also takes into account all generations of black dwarfs that are already invisible and therfore old, the mean velocity of all black dwarfs is much higher so that there is no conflict with theory. Luminosity functions of red and black dwarfs in several photometric passbands are calculated. (Auth.)

  12. Density-space potential phase difference in a Kelvin--Helmholtz instability

    International Nuclear Information System (INIS)

    Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.

    1974-01-01

    The low-frequency instability found in a hollow cathode discharge in helium was studied using an ion beam probe as a primary diagnostic tool. Three aspects of the instability are discussed: the location and amplitude of the oscillation and its correlation with the shape of the space potential; the phase angle between density and space potential oscillations; and the comparison of the data with three known instability models: Kelvin--Helmholtz, Rayleigh--Taylor, and drift waves--for mode identification. (U.S.)

  13. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.

    Science.gov (United States)

    Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre

    2015-09-30

    Finite elements method was used to study the influence of tablet thickness and punch curvature on the density distribution inside convex faced (CF) tablets. The modeling of the process was conducted on 2 pharmaceutical excipients (anhydrous calcium phosphate and microcrystalline cellulose) by using Drucker-Prager Cap model in Abaqus(®) software. The parameters of the model were obtained from experimental tests. Several punch shapes based on industrial standards were used. A flat-faced (FF) punch and 3 convex faced (CF) punches (8R11, 8R8 and 8R6) with a diameter of 8mm were chosen. Different tablet thicknesses were studied at a constant compression force. The simulation of the compaction of CF tablets with increasing thicknesses showed an important change on the density distribution inside the tablet. For smaller thicknesses, low density zones are located toward the center. The density is not uniform inside CF tablets and the center of the 2 faces appears with low density whereas the distribution inside FF tablets is almost independent of the tablet thickness. These results showed that FF and CF tablets, even obtained at the same compression force, do not have the same density at the center of the compact. As a consequence differences in tensile strength, as measured by diametral compression, are expected. This was confirmed by experimental tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  15. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    Science.gov (United States)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  16. Distributed Noise Generation for Density Estimation Based Clustering without Trusted Third Party

    Science.gov (United States)

    Su, Chunhua; Bao, Feng; Zhou, Jianying; Takagi, Tsuyoshi; Sakurai, Kouichi

    The rapid growth of the Internet provides people with tremendous opportunities for data collection, knowledge discovery and cooperative computation. However, it also brings the problem of sensitive information leakage. Both individuals and enterprises may suffer from the massive data collection and the information retrieval by distrusted parties. In this paper, we propose a privacy-preserving protocol for the distributed kernel density estimation-based clustering. Our scheme applies random data perturbation (RDP) technique and the verifiable secret sharing to solve the security problem of distributed kernel density estimation in [4] which assumed a mediate party to help in the computation.

  17. Multipole lenses with implicit poles and with harmonic distribution of current density in a coil

    International Nuclear Information System (INIS)

    Skachkov, V.S.

    1984-01-01

    General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed

  18. Long distance free-space quantum key distribution

    International Nuclear Information System (INIS)

    Schmitt-Manderbach, T.

    2007-01-01

    The aim of the presented experiment was to investigate the feasibility of satellite-based global quantum key distribution. In this context, a free-space quantum key distribution experiment over a real distance of 144 km was performed. The transmitter and the receiver were situated in 2500 m altitude on the Canary Islands of La Palma and Tenerife, respectively. The small and compact transmitter unit generated attenuated laser pulses, that were sent to the receiver via a 15-cm optical telescope. The receiver unit for polarisation analysis and detection of the sent pulses was integrated into an existing mirror telescope designed for classical optical satellite communications. To ensure the required stability and efficiency of the optical link in the presence of atmospheric turbulence, the two telescopes were equipped with a bi-directional automatic tracking system. Still, due to stray light and high optical attenuation, secure key exchange would not be possible using attenuated pulses in connection with the standard BB84 protocol. The photon number statistics of attenuated pulses follows a Poissonian distribution. Hence, by removing a photon from all pulses containing two or more photons, an eavesdropper could measure its polarisation without disturbing the polarisation state of the remaining pulse. In this way, he can gain information about the key without introducing detectable errors. To protect against such attacks, the presented experiment employed the recently developed method of using additional ''decoy'' states, i.e., the the intensity of the pulses created by the transmitter were varied in a random manner. By analysing the detection probabilities of the different pulses individually, a photon-number-splitting attack can be detected. Thanks to the decoy-state analysis, the secrecy of the resulting quantum key could be ensured despite the Poissonian nature of the emitted pulses. For a channel attenuation as high as 35 dB, a secret key rate of up to 250 bit

  19. Long distance free-space quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Manderbach, T.

    2007-10-16

    The aim of the presented experiment was to investigate the feasibility of satellite-based global quantum key distribution. In this context, a free-space quantum key distribution experiment over a real distance of 144 km was performed. The transmitter and the receiver were situated in 2500 m altitude on the Canary Islands of La Palma and Tenerife, respectively. The small and compact transmitter unit generated attenuated laser pulses, that were sent to the receiver via a 15-cm optical telescope. The receiver unit for polarisation analysis and detection of the sent pulses was integrated into an existing mirror telescope designed for classical optical satellite communications. To ensure the required stability and efficiency of the optical link in the presence of atmospheric turbulence, the two telescopes were equipped with a bi-directional automatic tracking system. Still, due to stray light and high optical attenuation, secure key exchange would not be possible using attenuated pulses in connection with the standard BB84 protocol. The photon number statistics of attenuated pulses follows a Poissonian distribution. Hence, by removing a photon from all pulses containing two or more photons, an eavesdropper could measure its polarisation without disturbing the polarisation state of the remaining pulse. In this way, he can gain information about the key without introducing detectable errors. To protect against such attacks, the presented experiment employed the recently developed method of using additional 'decoy' states, i.e., the the intensity of the pulses created by the transmitter were varied in a random manner. By analysing the detection probabilities of the different pulses individually, a photon-number-splitting attack can be detected. Thanks to the decoy-state analysis, the secrecy of the resulting quantum key could be ensured despite the Poissonian nature of the emitted pulses. For a channel attenuation as high as 35 dB, a secret key rate of up to 250

  20. Three-dimensional lithospheric density distribution of China and surrounding regions

    Directory of Open Access Journals (Sweden)

    Chuantao Li

    2014-01-01

    Full Text Available In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30′ × 30′ gravity data and 1° × 1° P-wave velocity data. Firstly, we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2–40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART, the inversion of 30′ × 30′ residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.

  1. Prediction of HAMR Debris Population Distribution Released from GEO Space

    Science.gov (United States)

    Rosengren, A.; Scheeres, D.

    2012-09-01

    in inclination. When the nodal rate of the system is commensurate with the nodal rate of the Moon, the perturbations build up more effectively over long periods to produce significant effects on the orbit. Such resonances, which occurs for a class of HAMR objects that are not cleared out of orbit, gives rise to strongly changing dynamics over longer time periods. In this paper, we present the averaged model, and discuss its fundamental predictions and comparisons with explicit long-term numerical integrations of HAMR objects in GEO space. Using this tool, we study a range of HAMR objects, released in geostationary orbit, with various area-to-mass ratios, and predict the spatiotemporal distribution of the population. We identified a unique systematic structure associated with their distribution in inclination and ascending node phase space. Given that HAMR objects are the most difficult to target from an observational point of view, this work will have many implications for the space surveillance community, and will allow observers to implement better search strategies for this class of debris.

  2. Intensity Distribution of the Three-Wave Diffraction from Dislocation Epitaxial Layers in the Reciprocal Space

    Science.gov (United States)

    Kyutt, R. N.

    2018-04-01

    The three-wave X-ray diffraction in strongly disordered epitaxial layers of GaN and ZnO is experimentally investigated. The charts of the intensity distribution in the reciprocal space are plotted in coordinates q θ and q ϕ for the most intensive three-wave combination (1010)/(1011) by means of subsequent θ- and ϕ-scanning. A nontrivial shape of the θ-sections of these contours at a distance from the ϕ center of reflection is revealed; it is different for different samples. For the θ-curves at the center of reflection, we observed a common peak that may be approximated by the Voigt function with a power-low decrease in the intensity at the wings; the decrease law (from-4.5 to-5.0) is found to be considerably greater than that for the similar curves of two-wave diffraction and not depending on the dislocation density and distribution in layers. In some films we observed a coarse-block structure; in addition, it follows from the distribution in the reciprocal space that these blocks are turned with respect to each other around a normal to the surface, which allows us to suggest the existence of low-angle boundaries between them, consisting exclusively of edge dislocations.

  3. Radar meteors range distribution model. II. Shower flux density and mass distribution index

    Czech Academy of Sciences Publication Activity Database

    Pecinová, Drahomíra; Pecina, Petr

    2007-01-01

    Roč. 37, č. 2 (2007), s. 107-124 ISSN 1335-1842 R&D Projects: GA ČR GA205/03/1405 Institutional research plan: CEZ:AV0Z10030501 Keywords : physics of meteors * radar meteors * range distribution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Fish species composition, density-distribution patterns, and impingement during upwelling

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Sharma, R.K.

    1975-01-01

    The effects of cooling system intakes and discharges on Lake Michigan fishes are highly dependent on inshore species composition and spatial distribution which, in turn, are affected by natural hydrological conditions. Significant (5 to 10 C) short-term decreases in water temperature (due to upwelling) could cause cold shock in fish equilibrated to either ambient or plume temperatures; substantial changes in distribution due to avoidance or attraction responses; and resultant changes in susceptibility to impingement. The objectives of this study are to characterize the changes in fish species composition, density, and thermal distribution as a result of natural upwellings, and to relate these factors to intake and discharge effects. Day and night sampling was conducted in ambient (reference) and thermal plume waters near the Zion Nuclear Plant on four occasions between 17 July and 11 September 1975. Density-distribution patterns and species composition of fish were determined by means of gill nets, bottom trawls, seines, and a sonic fish locater

  5. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  6. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  7. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  8. Measurements and predictions of the air distribution systems in high compute density (Internet) data centers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jinkyun [HIMEC (Hanil Mechanical Electrical Consultants) Ltd., Seoul 150-103 (Korea); Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea); Lim, Taesub; Kim, Byungseon Sean [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea)

    2009-10-15

    When equipment power density increases, a critical goal of a data center cooling system is to separate the equipment exhaust air from the equipment intake air in order to prevent the IT server from overheating. Cooling systems for data centers are primarily differentiated according to the way they distribute air. The six combinations of flooded and locally ducted air distribution make up the vast majority of all installations, except fully ducted air distribution methods. Once the air distribution system (ADS) is selected, there are other elements that must be integrated into the system design. In this research, the design parameters and IT environmental aspects of the cooling system were studied with a high heat density data center. CFD simulation analysis was carried out in order to compare the heat removal efficiencies of various air distribution systems. The IT environment of an actual operating data center is measured to validate a model for predicting the effect of different air distribution systems. A method for planning and design of the appropriate air distribution system is described. IT professionals versed in precision air distribution mechanisms, components, and configurations can work more effectively with mechanical engineers to ensure the specification and design of optimized cooling solutions. (author)

  9. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes.

    Directory of Open Access Journals (Sweden)

    Joseph Evans

    Full Text Available Sorghum genotypes currently used for grain production in the United States were developed from African landraces that were imported starting in the mid-to-late 19(th century. Farmers and plant breeders selected genotypes for grain production with reduced plant height, early flowering, increased grain yield, adaptation to drought, and improved resistance to lodging, diseases and pests. DNA polymorphisms that distinguish three historically important grain sorghum genotypes, BTx623, BTx642 and Tx7000, were characterized by genome sequencing, genotyping by sequencing, genetic mapping, and pedigree-based haplotype analysis. The distribution and density of DNA polymorphisms in the sequenced genomes varied widely, in part because the lines were derived through breeding and selection from diverse Kafir, Durra, and Caudatum race accessions. Genomic DNA spanning dw1 (SBI-09 and dw3 (SBI-07 had identical haplotypes due to selection for reduced height. Lower SNP density in genes located in pericentromeric regions compared with genes located in euchromatic regions is consistent with background selection in these regions of low recombination. SNP density was higher in euchromatic DNA and varied >100-fold in contiguous intervals that spanned up to 300 Kbp. The localized variation in DNA polymorphism density occurred throughout euchromatic regions where recombination is elevated, however, polymorphism density was not correlated with gene density or DNA methylation. Overall, sorghum chromosomes contain distal euchromatic regions characterized by extensive, localized variation in DNA polymorphism density, and large pericentromeric regions of low gene density, diversity, and recombination.

  10. [Carbon density distribution characteristics and influencing factors in aerially seeded Pinus massoniana plantations].

    Science.gov (United States)

    Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang

    2017-12-01

    The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.

  11. Quantitative comparison of cities : Distribution of street and building types based on density and centrality measures

    NARCIS (Netherlands)

    Berghauser Pont, M.Y.; Stavroulaki, G.; Lopes Gil, J.A.; Marcus, L.; Serra, M; Hausleitner, B.; Olsson, J.; Abshirini, E.; Dhanani, A.

    2017-01-01

    It has been argued that different urban configurations-planned vs. organic, treelike vs. grid like-perform differently when it comes to the intensity and distribution of pedestrian flows, built density and land uses. However, definitions of urban configurations are often rather abstract,

  12. Disk-galaxy density distribution from orbital speeds using Newton's law

    OpenAIRE

    Nicholson, Kenneth F.

    2000-01-01

    Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.

  13. A method to measure the suprathermal density distribution by electron cyclotron emission

    International Nuclear Information System (INIS)

    Tutter, M.

    1986-05-01

    Electron cyclotron emission spectra of suprathermal electrons in a thermal main plasma are calculated. It is shown that for direction of observation oblique to the magnetic field, which decays in direction to the receiver, one may obtain information on the spatial density distribution of the suprathermal electrons from those spectra. (orig.)

  14. Using regional bird density distribution models to evaluate protected area networks and inform conservation planning

    Science.gov (United States)

    John D. Alexander; Jaime L. Stephens; Sam Veloz; Leo Salas; Josée S. Rousseau; C. John Ralph; Daniel A. Sarr

    2017-01-01

    As data about populations of indicator species become available, proactive strategies that improve representation of biological diversity within protected area networks should consider finer-scaled evaluations, especially in regions identified as important through course-scale analyses. We use density distribution models derived from a robust regional bird...

  15. Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber

    International Nuclear Information System (INIS)

    Johansson, J.; Hagman, O.; Fjellner, B.A.

    2003-01-01

    This study was carried out to investigate the possibility of calibrating a prediction model for the moisture content and density distribution of Scots pine (Pinus sylvestris) using microwave sensors. The material was initially of green moisture content and was thereafter dried in several steps to zero moisture content. At each step, all the pieces were weighed, scanned with a microwave sensor (Satimo 9,4GHz), and computed tomography (CT)-scanned with a medical CT scanner (Siemens Somatom AR.T.). The output variables from the microwave sensor were used as predictors, and CT images that correlated with known moisture content were used as response variables. Multivariate models to predict average moisture content and density were calibrated using the partial least squares (PLS) regression. The models for average moisture content and density were applied at the pixel level, and the distribution was visualized. The results show that it is possible to predict both moisture content distribution and density distribution with high accuracy using microwave sensors. (author)

  16. Numerical Calculation of Distribution of Induced Carge Density on Planar Confined Surfaces

    International Nuclear Information System (INIS)

    Bolotov, V.; Druzhchenko, R.; Karazin, V.; Lominadze, J.; Kharadze, F.

    2007-01-01

    The calculation method of distribution of induced charge density on planar surfaces, including fractal structures of Sierpinski carpet type, is propesed. The calculation scheme is based on the fact that simply connected conducting surface of arbitrary geometry is an equipotential surface. (author)

  17. Grand Challenges in Space Technology: Distributed Satellite Systems

    National Research Council Canada - National Science Library

    Miller, David

    2001-01-01

    The MITIAFRL Distributed Satellite Systems program examines the motivation, analysis and development of technology associated with the distribution of assets and functionality over a number of cooperating satellites...

  18. Evaluation of population density and distribution criteria in nuclear power plant siting

    International Nuclear Information System (INIS)

    Young, M.

    1994-06-01

    The NRC has proposed revisions to 10 CFR 100 which include the codification of nuclear reactor site population density limits to 500 people per square mile, at the siting stage, averaged over any radial distance out to 30 miles, and 1,000 people per square mile within the 40-year lifetime of a nuclear plant. This study examined whether there are less restrictive alternative population density and/or distribution criteria which would provide equivalent or better protection to human health in the unlikely event of a nuclear accident. This study did not attempt to directly address the issue of actual population density limits because there are no US risk standards established for the evaluation of population density limits. Calculations were performed using source terms for both a current generation light water reactor (LWR) and an advanced light water reactor (ALWR) design. The results of this study suggest that measures which address the distribution of the population density, including emergency response conditions, could result in lower average individual risks to the public than the proposed guidelines that require controlling average population density. Studies also indicate that an exclusion zone size, determined by emergency response conditions and reactor design (power level and safety features), would better serve to protect public health than a rigid standard applied to all sites

  19. Surface flux density distribution characteristics of bulk high-Tc superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Torii, S.; Yuasa, K.

    2004-01-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents

  20. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    Science.gov (United States)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  1. The energy density distribution of an ideal gas and Bernoulli’s equations

    Science.gov (United States)

    Santos, Leonardo S. F.

    2018-05-01

    This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the

  2. Limits on the space density of gamma-ray burst sources

    International Nuclear Information System (INIS)

    Epstein, R.I.

    1985-01-01

    Gamma-ray burst spectra which extend to several MeV without significant steepening indicate that there is negligible degradation due to two-photon pair production. The inferred low rate of photon-photon reactions is used to give upper limits to the distances to the sources and to the intensity of the radiation from the sources. These limits are calculated under the assumptions that the bursters are neutron stars which emit uncollimated gamma rays. The principal results are that the space density of the gamma-ray burst sources exceeds approx.10 -6 pc -3 if the entire surface of the neutron star radiates and exceeds approx.10 -3 pc -3 if only a small cap or thin strip in the stellar surface radiates. In the former case the density of gamma-ray bursters is approx.1% of the inferred density of extinct pulsars, and in the latter case the mean mass density of burster sources is a few percent of the density of unidentified dark matter in the solar neighborhood. In both cases the X-ray intensity of the sources is far below the Rayleigh-Jeans limit, and the total flux is at most comparable to the Eddington limit. This implies that low-energy self-absorption near 10 keV is entirely negligible and that radiation-driven explosions are just barely possible

  3. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  4. Spherical electron momentum density distribution and Bayesian analysis of the renormalization parameter in Li metal

    International Nuclear Information System (INIS)

    Dobrzynski, Ludwik

    2000-01-01

    The Bayesian analysis of the spherical part of the electron momentum density was carried out with the goal of finding the best estimation of the spherically averaged renormalization parameter, z , quantifying the discontinuity in the electron momentum density distribution in Li metal. Three models parametrizing the electron momentum density were considered and nuisance parameters integrated out. The analysis show that the most likely value of z following from the data of Sakurai et al is in the range of 0.45-0.50, while 0.55 is obtained for the data of Schuelke et al . In the maximum entropy reconstruction of the spherical part of the electron momentum density three different algorithms were used. It is shown that all of them produce essentially the same results. The paper shows that the accurate Compton scattering experiments are capable of bringing information on this very important Fermiological aspect of the electron gas in a metal. (author)

  5. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    Science.gov (United States)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  6. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.; Kim, Jin Young; Qian, Huifeng; Jin, Rongchao; Mehenni, Hakim; Stellacci, Francesco; Bakr, Osman

    2011-01-01

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  7. Determination of nanoparticle size distribution together with density or molecular weight by 2D analytical ultracentrifugation

    KAUST Repository

    Carney, Randy P.

    2011-06-07

    Nanoparticles are finding many research and industrial applications, yet their characterization remains a challenge. Their cores are often polydisperse and coated by a stabilizing shell that varies in size and composition. No single technique can characterize both the size distribution and the nature of the shell. Advances in analytical ultracentrifugation allow for the extraction of the sedimentation (s) and diffusion coefficients (D). Here we report an approach to transform the s and D distributions of nanoparticles in solution into precise molecular weight (M), density (?P) and particle diameter (dp) distributions. M for mixtures of discrete nanocrystals is found within 4% of the known quantities. The accuracy and the density information we achieve on nanoparticles are unparalleled. A single experimental run is sufficient for full nanoparticle characterization, without the need for standards or other auxiliary measurements. We believe that our method is of general applicability and we discuss its limitations. 2011 Macmillan Publishers Limited. All rights reserved.

  8. In-Space Distributed Fiber Optic Hydrogen Leak Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  9. Effect of landscape pattern on insect species density within urban green spaces in Beijing, China.

    Science.gov (United States)

    Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun

    2015-01-01

    Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality.

  10. The study on the effect of pattern density distribution on the STI CMP process

    Science.gov (United States)

    Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai

    2017-08-01

    The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.

  11. Space and space-time distributions of dengue in a hyper-endemic urban space: the case of Girardot, Colombia.

    Science.gov (United States)

    Fuentes-Vallejo, Mauricio

    2017-07-24

    Dengue is a widely spread vector-borne disease. Dengue cases in the Americas have increased over the last few decades, affecting various urban spaces throughout these continents, including the tourism-oriented city of Girardot, Colombia. Interactions among mosquitoes, pathogens and humans have recently been examined using different temporal and spatial scales in attempts to determine the roles that social and ecological systems play in dengue transmission. The current work characterizes the spatial and temporal behaviours of dengue in Girardot and discusses the potential territorial dynamics related to the distribution of this disease. Based on officially reported dengue cases (2012-2015) corresponding to epidemic (2013) and inter-epidemic years (2012, 2014, 2015), space (Getis-Ord index) and space-time (Kulldorff's scan statistics) analyses were performed. Geocoded dengue cases (n = 2027) were slightly overrepresented by men (52.1%). As expected, the cases were concentrated in the 0- to 15-year-old age group according to the actual trends of Colombia. The incidence rates of dengue during the rainy and dry seasons as well as those for individual years (2012, 2013 and 2014) were significant using the global Getis-Ord index. Local clusters shifted across seasons and years; nevertheless, the incidence rates clustered towards the southwest region of the city under different residential conditions. Space-time clusters shifted from the northeast to the southwest of the city (2012-2014). These clusters represented only 4.25% of the total cases over the same period (n = 1623). A general trend was observed, in which dengue cases increased during the dry seasons, especially between December and February. Despite study limitations related to official dengue records and available fine-scale demographic information, the spatial analysis results were promising from a geography of health perspective. Dengue did not show linear association with poverty or with vulnerable

  12. Fast Radio Bursts’ Recipes for the Distributions of Dispersion Measures, Flux Densities, and Fluences

    Science.gov (United States)

    Niino, Yuu

    2018-05-01

    We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of (nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρ FRB(z)] and luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of ρ FRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of apparent fluences suggests that FRBs originate at cosmological distances and ρ FRB increases with redshift resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at log10 L ν (erg s‑1 Hz‑1) ∼ 34 are favored to reproduce the observed DM distribution if ρ FRB(z) ∝ CSFH, although the statistical significance of the constraints obtained with the current size of the observed sample is not high. Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future observations.

  13. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  14. Experimental Infection of Taenia saginata eggs in Bali Cattle: Distribution and Density of Cysticercus bovis

    Directory of Open Access Journals (Sweden)

    Nyoman Sadra Dharmawan

    2009-12-01

    Full Text Available The objective of this study was to observe the development, distribution, and infection density ofTaenia saginata metacestodes in Bali cattle. Three Bali cattle were experimentally infected with T. saginataeggs which were collected from taeniasis patients. The experimental animal was inoculated with : i1000,00 T. saginata; ii 500,000 eggs; and iii 1,000,000 eggs, respectivelly 100,000 (cattle 1, 500,000(cattle 2, and 1,000,000 (cattle 3 T. saginata eggs, respectively. To observe the development of cysticerci,all cattle were slaughtered at 24 weeks post infection. To observe their distribution and density, slicingwas done to the cattle?s tissues. The study results showed that cysts were found distributed to all muscletissues and some visceral organs such as heart, diaphragm, lungs, and kidney of the cattle infected with100,000 and 500,000 T. saginata eggs. Density of the cyst was in the range of 11 to 95 cysts per 100 gramsof tissue. The highest density was noted in the heart (58/100 grams and in diaphragm (55/100 grams.This study has confirmed that T. saginata eggs derived from taeniasis patient in Bali, if infected to Balicattle can develop and spread to all muscle tissues and some visceral organs. From this study it wasconcluded that it is necessary to include the heart in the meat inspection at slaughter house for possibilityof T. saginata cyst infection.$?

  15. A Statistical Test of the Relationship Between Chorus Wave Activation and Anisotropy of Electron Phase Space Density

    Directory of Open Access Journals (Sweden)

    Dong-Hee Lee

    2014-12-01

    Full Text Available Whistler mode chorus wave is considered to play a critical role in accelerating and precipitating the electrons in the outer radiation belt. In this paper we test a conventional scenario of triggering chorus using THEMIS satellite observations of waves and particles. Specifically, we test if the chorus onset is consistent with development of anisotropy in the electron phase space density (PSD. After analyzing electron PSD for 73 chorus events, we find that, for ~80 % of them, their onsets are indeed associated with development of the positive anisotropy in PSD where the pitch angle distribution of electron velocity peaks at 90 degrees. This PSD anisotropy is prominent mainly at the electron energy range of ≤ ~20 keV. Interestingly, we further find that there is sometimes a time delay among energies in the increases of the anisotropy: A development of the positive anisotropy occurs earlier by several minutes for lower energy than for an adjacent higher energy.

  16. Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter

    International Nuclear Information System (INIS)

    Durand, M.; Schuck, P.

    1987-01-01

    The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies

  17. Assessing different parameters estimation methods of Weibull distribution to compute wind power density

    International Nuclear Information System (INIS)

    Mohammadi, Kasra; Alavi, Omid; Mostafaeipour, Ali; Goudarzi, Navid; Jalilvand, Mahdi

    2016-01-01

    Highlights: • Effectiveness of six numerical methods is evaluated to determine wind power density. • More appropriate method for computing the daily wind power density is estimated. • Four windy stations located in the south part of Alberta, Canada namely is investigated. • The more appropriate parameters estimation method was not identical among all examined stations. - Abstract: In this study, the effectiveness of six numerical methods is evaluated to determine the shape (k) and scale (c) parameters of Weibull distribution function for the purpose of calculating the wind power density. The selected methods are graphical method (GP), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPF), maximum likelihood method (ML) and modified maximum likelihood method (MML). The purpose of this study is to identify the more appropriate method for computing the wind power density in four stations distributed in Alberta province of Canada namely Edmonton City Center Awos, Grande Prairie A, Lethbridge A and Waterton Park Gate. To provide a complete analysis, the evaluations are performed on both daily and monthly scales. The results indicate that the precision of computed wind power density values change when different parameters estimation methods are used to determine the k and c parameters. Four methods of EMJ, EML, EPF and ML present very favorable efficiency while the GP method shows weak ability for all stations. However, it is found that the more effective method is not similar among stations owing to the difference in the wind characteristics.

  18. Search of wormholes in different dimensional non-commutative inspired space-times with Lorentzian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2014-12-01

    In this paper we ask whether the wormhole solutions exist in different dimensional noncommutativity-inspired spacetimes. It is well known that the noncommutativity of the space is an outcome of string theory and it replaced the usual point-like object by a smeared object. Here we have chosen the Lorentzian distribution as the density function in the noncommutativity-inspired spacetime. We have observed that the wormhole solutions exist only in four and five dimensions; however, in higher than five dimensions no wormhole exists. For five dimensional spacetime, we get a wormhole for a restricted region. In the usual four dimensional spacetime, we get a stable wormhole which is asymptotically flat. (orig.)

  19. Density and distribution of cutaneous sensilla on tails of leopard geckos (Eublepharis macularius) in relation to caudal autotomy.

    Science.gov (United States)

    Russell, Anthony P; Lai, Erica K; Lawrence Powell, G; Higham, Timothy E

    2014-09-01

    The lizard tail is well known for its ability to autotomize and regenerate. Physical contact of the tail by a predator may induce autotomy at the location at which the tail is grasped, and upon detachment the tail may undergo violent, rapid, and unpredictable movements that appear to be, to some degree, regulated by contact with the physical environment. Neither the mechanism by which tail breakage at a particular location is determined, nor that by which environmental feedback to the tail is received, are known. It has been suggested that mechanoreceptors (sensilla) are the means of mediation of such activities, and reports indicate that the density of sensilla on the tail is high. To determine the feasibility that mechanoreceptors are involved in such phenomena, we mapped scale form and the size, density, distribution, and spacing of sensilla on the head, body, limbs, and tail of the leopard gecko. This species has a full complement of autotomy planes along the length of the tail, and the postautotomic behavior of its tail has been documented. We found that the density of sensilla is highest on the tail relative to all other body regions examined; a dorsoventral gradient of caudal sensilla density is evident on the tail; sensilla are more closely spaced on the dorsal and lateral regions of the tail than elsewhere and are carried on relatively small scales; and that the whorls of scales on the tail bear a one to one relationship with the autotomy planes. Our results are consistent with the hypotheses of sensilla being involved in determining the site at which autotomy will occur, and with them being involved in the mediation of tail behavior following autotomy. These findings open the way for experimental neurological investigations of how autotomy is induced and how the detached tail responds to external environmental input. © 2014 Wiley Periodicals, Inc.

  20. THE 'TRUE' COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Goodman, Alyssa A.; Pineda, Jaime E.; Schnee, Scott L.

    2009-01-01

    We use the COMPLETE Survey's observations of the Perseus star-forming region to assess and intercompare the three methods used for measuring column density in molecular clouds: near-infrared (NIR) extinction mapping; thermal emission mapping in the far-IR; and mapping the intensity of CO isotopologues. Overall, the structures shown by all three tracers are morphologically similar, but important differences exist among the tracers. We find that the dust-based measures (NIR extinction and thermal emission) give similar, log-normal, distributions for the full (∼20 pc scale) Perseus region, once careful calibration corrections are made. We also compare dust- and gas-based column density distributions for physically meaningful subregions of Perseus, and we find significant variations in the distributions for those (smaller, ∼few pc scale) regions. Even though we have used 12 CO data to estimate excitation temperatures, and we have corrected for opacity, the 13 CO maps seem unable to give column distributions that consistently resemble those from dust measures. We have edited out the effects of the shell around the B-star HD 278942 from the column density distribution comparisons. In that shell's interior and in the parts where it overlaps the molecular cloud, there appears to be a dearth of 13 CO, which is likely due either to 13 CO not yet having had time to form in this young structure and/or destruction of 13 CO in the molecular cloud by the HD 278942's wind and/or radiation. We conclude that the use of either dust or gas measures of column density without extreme attention to calibration (e.g., of thermal emission zero-levels) and artifacts (e.g., the shell) is more perilous than even experts might normally admit. And, the use of 13 CO data to trace total column density in detail, even after proper calibration, is unavoidably limited in utility due to threshold, depletion, and opacity effects. If one's main aim is to map column density (rather than temperature

  1. Current distribution and enhancement of the engineering critical current density in multifilament Bi-2223 tapes

    DEFF Research Database (Denmark)

    Wang, W.G.; Jensen, M.B.; Kindl, B.

    2000-01-01

    The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...

  2. Changes of the electron density distribution during MHD activity in CHS

    International Nuclear Information System (INIS)

    Soltwisch, H.; Tanaka, K.

    2000-09-01

    Density oscillations induced by MHD activities were observed in NBI heated plasmas on CHS by using an HCN laser interferometer. The accompanied changes of the density profiles were also observed. The oscillations are composition of m=0 sawteeth like crash and m=2 sinusoidal oscillations as a post courser of the crash. Possible models of the oscillation structure are examined in order to explain experimental data of the interferometer. Rotating plasma core, which is hollow profile and keeps constant elongation of the flux surface can explain amplitude and phase distribution of the sinusoidal oscillation. (author)

  3. Determining integral density distribution in the mach reflection of shock waves

    Science.gov (United States)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  4. Determining the temperature and density distribution from a Z-pinch radiation source

    International Nuclear Information System (INIS)

    Matuska, W.; Lee, H.

    1997-01-01

    High temperature radiation sources exceeding one hundred eV can be produced via z-pinches using currently available pulsed power. The usual approach to compare the z-pinch simulation and experimental data is to convert the radiation output at the source, whose temperature and density distributions are computed from the 2-D MHD code, into simulated data such as a spectrometer reading. This conversion process involves a radiation transfer calculation through the axially symmetric source, assuming local thermodynamic equilibrium (LTE), and folding the radiation that reaches the detector with the frequency-dependent response function. In this paper the authors propose a different approach by which they can determine the temperature and density distributions of the radiation source directly from the spatially resolved spectral data. This unfolding process is reliable and unambiguous for the ideal case where LTE holds and the source is axially symmetric. In reality, imperfect LTE and axial symmetry will introduce inaccuracies into the unfolded distributions. The authors use a parameter optimization routine to find the temperature and density distributions that best fit the data. They know from their past experience that the radiation source resulting from the implosion of a thin foil does not exhibit good axial symmetry. However, recent experiments carried out at Sandia National Laboratory using multiple wire arrays were very promising to achieve reasonably good symmetry. For these experiments the method will provide a valuable diagnostic tool

  5. Space density and clustering properties of a new sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Wasilewski, A.J.

    1982-01-01

    A moderate-dispersion objective-prism survey for low-redshift emission-line galaxies has been carried out in an 825 sq. deg. region of sky with the Burrell Schmidt telescope of Case Western Reserve University. A 4 0 prism (300 A/mm at H#betta#) was used with the Illa-J emulsion to show that a new sample of emission-line galaxies is available even in areas already searched with the excess uv-continuum technique. The new emission-line galaxies occur quite commonly in systems with peculiar morphology indicating gravitational interaction with a close companion or other disturbance. About 10 to 15% of the sample are Seyfert galaxies. It is suggested that tidal interaction involving matter infall play a significant role in the generation of an emission-line spectrum. The space density of the new galaxies is found to be similar to the space density of the Makarian galaxies. Like the Markarian sample, the galaxies in the present survey represent about 10% of all galaxies in the absolute magnitude range M/sub p/ = -16 to -22. The observations also indicate that current estimates of dwarf galaxy space densities may be too low. The clustering properties of the new galaxies have been investigated using two approaches: cluster contour maps and the spatial correlation function. These tests suggest that there is weak clustering and possibly superclustering within the sample itself and that the galaxies considered here are about as common in clusters of ordinary galaxies as in the field

  6. Lattice dynamics calculations based on density-functional perturbation theory in real space

    Science.gov (United States)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  7. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees in a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.

  8. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Science.gov (United States)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  9. Calculation of the magnetic flux density distribution in type-II superconductors with finite thickness and well-defined geometry

    International Nuclear Information System (INIS)

    Forkl, A.; Kronmueller, H.

    1995-01-01

    The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries

  10. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S., E-mail: ppessoa@con.ufrj.br, E-mail: fernando@con.ufrj.br, E-mail: aquilino@imp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  11. Analytical method for reconstruction pin to pin of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2013-01-01

    An accurate and efficient method for reconstructing pin to pin of the nuclear power density distribution, involving the analytical solution of the diffusion equation for two-dimensional neutron energy groups in homogeneous nodes, is presented. The boundary conditions used for analytic as solution are the four currents or fluxes on the surface of the node, which are obtained by Nodal Expansion Method (known as NEM) and four fluxes at the vertices of a node calculated using the finite difference method. The analytical solution found is the homogeneous distribution of neutron flux. Detailed distributions pin to pin inside a fuel assembly are estimated by the product of homogeneous flux distribution by local heterogeneous form function. Furthermore, the form functions of flux and power are used. The results obtained with this method have a good accuracy when compared with reference values. (author)

  12. Distributed material density and anisotropy for optimized eigenfrequency of 2D continua

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2015-01-01

    A practical approach to optimize a continuum/structural eigenfrequency is presented, including design of the distribution of material anisotropy. This is often termed free material optimization (FMO). An important aspect is the separation of the overall material distribution from the local design...... with respect to material density and from this values of the element OC. Each factor of this expression has a physical interpretation. Stated alternatively, the optimization problem of material distribution is converted into a problem of determining a design of uniform OC values. The constitutive matrices...... are described by non-dimensional matrices with unity norms of trace and Frobenius, and thus this part of the optimized design has no influence on the mass distribution. Gradients of eigenfrequency with respect to the components of these non-dimensional constitutive matrices are therefore simplified...

  13. Density distribution of {sup 14}Be from reaction cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Abe, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Fukuda, M. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hachiuma, I. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ishibashi, Y.; Ito, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Lantz, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Namihira, K. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nishimura, D. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ooishi, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suda, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Takechi, M.; Tanaka, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); and others

    2014-09-15

    We measured the reaction cross sections of the two-neutron halo nucleus {sup 14}Be with proton and carbon targets at about 41 and 76 MeV/nucleon. Based on a Glauber model calculation, we deduced the matter density distribution of {sup 14}Be in which previously measured interaction cross sections at relativistic energies were also included. An s-wave dominance in {sup 14}Be has been confirmed, although the halo tail of {sup 14}Be is not distributed as much as that of {sup 11}Li. Significant mixing of the p-wave in addition to the s- and d-wave is also suggested.

  14. Distribution function approach to redshift space distortions. Part II: N-body simulations

    International Nuclear Information System (INIS)

    Okumura, Teppei; Seljak, Uroš; McDonald, Patrick; Desjacques, Vincent

    2012-01-01

    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. We present these terms and investigate their contribution to the total as a function of wavevector k. For μ 2 the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc −1 , 10% at k ∼ 0.05hMpc −1 at z = 0, while for k > 0.15hMpc −1 they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ 4 term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc −1 . For μ 6 and μ 8 we find it has very little power for k −1 , shooting up by 2–3 orders of magnitude between k −1 and k −1 . We also compare the expansion to the full 2-d P ss (k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P ss (k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ −1 at 6-th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into Fo

  15. A study on current density distribution reproduction by bounded-eigenfunction expansion for a tokamak plasma

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1997-11-01

    Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)

  16. High density, uniformly distributed W/UO{sub 2} for use in Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Dennis S., E-mail: dr.dennis.tucker@nasa.gov [EM32, MSFC, Al 35812 (United States); Barnes, Marvin W. [EM32, MSFC, Al 35812 (United States); Hone, Lance; Cook, Steven [Center for Space Nuclear Research, Idaho Falls, ID 83401 (United States)

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO{sub 2} particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO{sub 2} particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  17. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  18. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  19. Visualizing measurement for 3D smooth density distributions by means of linear programming

    International Nuclear Information System (INIS)

    Tayama, Norio; Yang, Xue-dong

    1994-01-01

    This paper is concerned with a theoretical possibility of a new visualizing measurement method based on an optimum 3D reconstruction from a few selected projections. A theory of optimum 3D reconstruction by a linear programming is discussed, utilizing a few projections for sampled 3D smooth-density-distribution model which satisfies the condition of the 3D sampling theorem. First by use of the sampling theorem, it is shown that we can set up simultaneous simple equations which corresponds to the case of the parallel beams. Then we solve the simultaneous simple equations by means of linear programming algorithm, and we can get an optimum 3D density distribution images with minimum error in the reconstruction. The results of computer simulation with the algorithm are presented. (author)

  20. An analytical solution for stationary distribution of photon density in traveling-wave and reflective SOAs

    International Nuclear Information System (INIS)

    Totović, A R; Crnjanski, J V; Krstić, M M; Gvozdić, D M

    2014-01-01

    In this paper, we analyze two semiconductor optical amplifier (SOA) structures, traveling-wave and reflective, with the active region made of the bulk material. The model is based on the stationary traveling-wave equations for forward and backward propagating photon densities of the signal and the amplified spontaneous emission, along with the stationary carrier rate equation. We start by introducing linear approximation of the carrier density spatial distribution, which enables us to find solutions for the photon densities in a closed analytical form. An analytical approach ensures a low computational resource occupation and an easy analysis of the parameters influencing the SOA’s response. The comparison of the analytical and numerical results shows high agreement for a wide range of the input optical powers and bias currents. (paper)

  1. Demographic determinants of risk, colon distribution and density scores of diverticular disease.

    Science.gov (United States)

    Golder, Mark; Ster, Irina Chis; Babu, Pratusha; Sharma, Amita; Bayat, Muhammad; Farah, Abdulkadir

    2011-02-28

    To investigate associations between ethnicity, age and sex and the risk, colon distribution and density scores of diverticular disease (DD). Barium enemas were examined in 1000 patients: 410 male, 590 female; 760 whites, 62 Asians, 44 black africans (BAs), and 134 other blacks (OBs). Risks and diverticula density of left-sided DD (LSDD) and right-sided-component DD (RSCDD = right-sided DD + right and left DD + Pan-DD) were compared using logistic regression. Four hundred and forty-seven patients had DD (322 LSDD and 125 RSCDD). Adjusted risks: (1) LSDD: each year increase in age increased the odds by 6% (95% CI: 5-8, SE: 0.8%, P colonic DD might be more common and has higher diverticula density in the west than previously reported. BAs appear predisposed to DD, whereas other ethnic differences appear conserved following migration.

  2. Tomographic reconstruction of the time-averaged density distribution in two-phase flow

    International Nuclear Information System (INIS)

    Fincke, J.R.

    1982-01-01

    The technique of reconstructive tomography has been applied to the measurement of time-average density and density distribution in a two-phase flow field. The technique of reconstructive tomography provides a model-independent method of obtaining flow-field density information. A tomographic densitometer system for the measurement of two-phase flow has two unique problems: a limited number of data values and a correspondingly coarse reconstruction grid. These problems were studied both experimentally through the use of prototype hardware on a 3-in. pipe, and analytically through computer generation of simulated data. The prototype data were taken on phantoms constructed of all Plexiglas and Plexiglas laminated with wood and polyurethane foam. Reconstructions obtained from prototype data are compared with reconstructions from the simulated data. Also presented are some representative results in a horizontal air/water flow

  3. Application of reconstructive tomography to the measurement of density distribution in two-phase flow

    International Nuclear Information System (INIS)

    Fincke, J.R.; Berggren, M.J.; Johnson, S.A.

    1980-01-01

    The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data

  4. Density, size and distribution of stomata in 35 rainforest trees species in Central Amazonia

    OpenAIRE

    Miguel Angelo Branco Camargo; Ricardo Antonio Marenco

    2011-01-01

    Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five ...

  5. Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia

    OpenAIRE

    Camargo, Miguel Angelo Branco; Marenco, Ricardo Antonio

    2011-01-01

    Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five ...

  6. Density and radioactivity distribution of respirable range human serum albumin aerosol

    International Nuclear Information System (INIS)

    Raghunath, B.; Somasundaram, S.; Soni, P.S.

    1988-01-01

    Dry human serum albumin (HSA) aerosol in the respirable size range was generated using the BARC nebulizer. The aerosol was sampled using Lovelace Aerosol Particle Separator (LAPS) and the density of HSA was determined. Labelling of HSA with 99m TcO 4 - was done, both in HSA solution and with dry denatured HSA particles, to study the distribution of radioactivity in both cases. The results are discussed. (author)

  7. Self-similar structure in the distribution and density of the partition function zeros

    International Nuclear Information System (INIS)

    Huang, M.-C.; Luo, Y.-P.; Liaw, T.-M.

    2003-01-01

    Based on the knowledge of the partition function zeros for the cell-decorated triangular Ising model, we analyze the similar structures contained in the distribution pattern and density function of the zeros. The two own the same symmetries, and the arising of the similar structure in the road toward the infinite decoration-level is exhibited explicitly. The distinct features of the formation of the self-similar structure revealed from this model may be quite general

  8. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  9. Spatiotemporal characteristics of elderly population's traffic accidents in Seoul using space-time cube and space-time kernel density estimation.

    Science.gov (United States)

    Kang, Youngok; Cho, Nahye; Son, Serin

    2018-01-01

    The purpose of this study is to analyze how the spatiotemporal characteristics of traffic accidents involving the elderly population in Seoul are changing by time period. We applied kernel density estimation and hotspot analyses to analyze the spatial characteristics of elderly people's traffic accidents, and the space-time cube, emerging hotspot, and space-time kernel density estimation analyses to analyze the spatiotemporal characteristics. In addition, we analyzed elderly people's traffic accidents by dividing cases into those in which the drivers were elderly people and those in which elderly people were victims of traffic accidents, and used the traffic accidents data in Seoul for 2013 for analysis. The main findings were as follows: (1) the hotspots for elderly people's traffic accidents differed according to whether they were drivers or victims. (2) The hourly analysis showed that the hotspots for elderly drivers' traffic accidents are in specific areas north of the Han River during the period from morning to afternoon, whereas the hotspots for elderly victims are distributed over a wide area from daytime to evening. (3) Monthly analysis showed that the hotspots are weak during winter and summer, whereas they are strong in the hiking and climbing areas in Seoul during spring and fall. Further, elderly victims' hotspots are more sporadic than elderly drivers' hotspots. (4) The analysis for the entire period of 2013 indicates that traffic accidents involving elderly people are increasing in specific areas on the north side of the Han River. We expect the results of this study to aid in reducing the number of traffic accidents involving elderly people in the future.

  10. Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation

    Science.gov (United States)

    Cho, Nahye; Son, Serin

    2018-01-01

    The purpose of this study is to analyze how the spatiotemporal characteristics of traffic accidents involving the elderly population in Seoul are changing by time period. We applied kernel density estimation and hotspot analyses to analyze the spatial characteristics of elderly people’s traffic accidents, and the space-time cube, emerging hotspot, and space-time kernel density estimation analyses to analyze the spatiotemporal characteristics. In addition, we analyzed elderly people’s traffic accidents by dividing cases into those in which the drivers were elderly people and those in which elderly people were victims of traffic accidents, and used the traffic accidents data in Seoul for 2013 for analysis. The main findings were as follows: (1) the hotspots for elderly people’s traffic accidents differed according to whether they were drivers or victims. (2) The hourly analysis showed that the hotspots for elderly drivers’ traffic accidents are in specific areas north of the Han River during the period from morning to afternoon, whereas the hotspots for elderly victims are distributed over a wide area from daytime to evening. (3) Monthly analysis showed that the hotspots are weak during winter and summer, whereas they are strong in the hiking and climbing areas in Seoul during spring and fall. Further, elderly victims’ hotspots are more sporadic than elderly drivers’ hotspots. (4) The analysis for the entire period of 2013 indicates that traffic accidents involving elderly people are increasing in specific areas on the north side of the Han River. We expect the results of this study to aid in reducing the number of traffic accidents involving elderly people in the future. PMID:29768453

  11. Radial density distribution of a warm dense plasma formed by underwater electrical explosion of a copper wire

    Science.gov (United States)

    Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.

    2017-12-01

    Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.

  12. The Density Functional Theory of Flies: Predicting distributions of interacting active organisms

    Science.gov (United States)

    Kinkhabwala, Yunus; Valderrama, Juan; Cohen, Itai; Arias, Tomas

    On October 2nd, 2016, 52 people were crushed in a stampede when a crowd panicked at a religious gathering in Ethiopia. The ability to predict the state of a crowd and whether it is susceptible to such transitions could help prevent such catastrophes. While current techniques such as agent based models can predict transitions in emergent behaviors of crowds, the assumptions used to describe the agents are often ad hoc and the simulations are computationally expensive making their application to real-time crowd prediction challenging. Here, we pursue an orthogonal approach and ask whether a reduced set of variables, such as the local densities, are sufficient to describe the state of a crowd. Inspired by the theoretical framework of Density Functional Theory, we have developed a system that uses only measurements of local densities to extract two independent crowd behavior functions: (1) preferences for locations and (2) interactions between individuals. With these two functions, we have accurately predicted how a model system of walking Drosophila melanogaster distributes itself in an arbitrary 2D environment. In addition, this density-based approach measures properties of the crowd from only observations of the crowd itself without any knowledge of the detailed interactions and thus it can make predictions about the resulting distributions of these flies in arbitrary environments, in real-time. This research was supported in part by ARO W911NF-16-1-0433.

  13. Marine litter distribution and density in European seas, from the shelves to deep basins.

    Science.gov (United States)

    Pham, Christopher K; Ramirez-Llodra, Eva; Alt, Claudia H S; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L; Huvenne, Veerle A I; Isidro, Eduardo; Jones, Daniel O B; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.

  14. THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH-SOUTH ASYMMETRIC

    Energy Technology Data Exchange (ETDEWEB)

    Yanny, Brian [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

    2013-11-10

    We study the number density distribution of a sample of K and M dwarf stars, matched north and south of the Galactic plane within a distance of 2 kpc from the Sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane—and ultimately affect a number density north-south asymmetry. They include: (1) the calibration of the various photometric parallax relations, (2) the ability to separate dwarfs from giants in our sample, (3) the role of stellar population differences such as age and metallicity, (4) the ability to determine the offset of the Sun from the Galactic plane, and (5) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic north-south asymmetry in the stellar number density distribution.

  15. THE STELLAR NUMBER DENSITY DISTRIBUTION IN THE LOCAL SOLAR NEIGHBORHOOD IS NORTH-SOUTH ASYMMETRIC

    Energy Technology Data Exchange (ETDEWEB)

    Yanny, Brian; Gardner, Susan

    2013-10-17

    We study the number density distribution of a sample of K and M dwarf stars, matched North and South of the Galactic plane within a distance of 2 kpc from the sun, using observations from the Ninth Data Release of the Sloan Digital Sky Survey. We determine distances using the photometric parallax method, and in this context systematic effects exist which could potentially impact the determination of the number density profile with height from the Galactic plane --- and ultimately affect a number density North-South asymmetry. They include: (i) the calibration of the various photometric parallax relations, (ii) the ability to separate dwarfs from giants in our sample, (iii) the role of stellar population differences such as age and metallicity, (iv) the ability to determine the offset of the sun from the Galactic plane, and (v) the correction for reddening from dust in the Galactic plane, though our stars are at high Galactic latitudes. We find the various analyzed systematic effects to have a negligible impact on our observed asymmetry, and using a new and larger sample of stars we confirm and refine the earlier discovery of Widrow et al. of a significant Galactic North-South asymmetry in the stellar number density distribution.

  16. Marine litter distribution and density in European seas, from the shelves to deep basins.

    Directory of Open Access Journals (Sweden)

    Christopher K Pham

    Full Text Available Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.

  17. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    Science.gov (United States)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  18. Absolute nuclear material assay using count distribution (LAMBDA) space

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    Science.gov (United States)

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  1. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, Marinus Jan; van 't Klooster, K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The

  2. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    Science.gov (United States)

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.

  3. Curve fitting of the corporate recovery rates: the comparison of Beta distribution estimation and kernel density estimation.

    Directory of Open Access Journals (Sweden)

    Rongda Chen

    Full Text Available Recovery rate is essential to the estimation of the portfolio's loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody's. However, it has a fatal defect that it can't fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody's new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management.

  4. Curve Fitting of the Corporate Recovery Rates: The Comparison of Beta Distribution Estimation and Kernel Density Estimation

    Science.gov (United States)

    Chen, Rongda; Wang, Ze

    2013-01-01

    Recovery rate is essential to the estimation of the portfolio’s loss and economic capital. Neglecting the randomness of the distribution of recovery rate may underestimate the risk. The study introduces two kinds of models of distribution, Beta distribution estimation and kernel density distribution estimation, to simulate the distribution of recovery rates of corporate loans and bonds. As is known, models based on Beta distribution are common in daily usage, such as CreditMetrics by J.P. Morgan, Portfolio Manager by KMV and Losscalc by Moody’s. However, it has a fatal defect that it can’t fit the bimodal or multimodal distributions such as recovery rates of corporate loans and bonds as Moody’s new data show. In order to overcome this flaw, the kernel density estimation is introduced and we compare the simulation results by histogram, Beta distribution estimation and kernel density estimation to reach the conclusion that the Gaussian kernel density distribution really better imitates the distribution of the bimodal or multimodal data samples of corporate loans and bonds. Finally, a Chi-square test of the Gaussian kernel density estimation proves that it can fit the curve of recovery rates of loans and bonds. So using the kernel density distribution to precisely delineate the bimodal recovery rates of bonds is optimal in credit risk management. PMID:23874558

  5. Multiplicity distributions in small phase-space domains in central nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Baechler, J.; Hoffmann, M.; Runge, K.; Schmoetten, E.; Bartke, J.; Gladysz, E.; Kowalski, M.; Stefanski, P.; Bialkowska, H.; Bock, R.; Brockmann, R.; Sandoval, A.; Buncic, P.; Ferenc, D.; Kadija, K.; Ljubicic, A. Jr.; Vranic, D.; Chase, S.I.; Harris, J.W.; Odyniec, G.; Pugh, H.G.; Rai, G.; Teitelbaum, L.; Tonse, S.; Derado, I.; Eckardt, V.; Gebauer, H.J.; Rauch, W.; Schmitz, N.; Seyboth, P.; Seyerlein, J.; Vesztergombi, G.; Eschke, J.; Heck, W.; Kabana, S.; Kuehmichel, A.; Lahanas, M.; Lee, Y.; Le Vine, M.; Margetis, S.; Renfordt, R.; Roehrich, D.; Rothard, H.; Schmidt, E.; Schneider, I.; Stock, R.; Stroebele, H.; Wenig, S.; Fleischmann, B.; Fuchs, M.; Gazdzicki, M.; Kosiec, J.; Skrzypczak, E.; Keidel, R.; Piper, A.; Puehlhofer, F.; Nappi, E.; Posa, F.; Paic, G.; Panagiotou, A.D.; Petridis, A.; Vassileiadis, G.; Pfenning, J.; Wosiek, B.

    1992-10-01

    Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S + S, O + Au and S + Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size. (orig.)

  6. Relative importance of social factors, conspecific density, and forest structure on space use by the endangered Red-cockaded Woodpecker: A new consideration for habitat restoration

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, North Carolina, USA; Moorman, Christopher E. [Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, North Carolina, USA; Peterson, M. Nils [Fisheries, Wildlife, and Conservation Biology Program, North Carolina State University, Raleigh, North Carolina, USA; Kilgo, John C. [Southern Research Station, USDA Forest Service, Savannah River, New Ellenton, South Carolina, USA

    2018-03-14

    Understanding how the interplay between social behaviors and habitat structure influences space use is important for conservation of birds in restored habitat. We integrated fine-grained LiDAR-derived habitat data, spatial distribution of cavity trees, and spatially explicit behavioral observations in a multi-scale model to determine the relative importance of conspecific density, intraspecific interactions, and the distribution of cavities on space use by Red-cockaded Woodpeckers (Picoides borealis) on 2 sites in South Carolina, USA. We evaluated candidate models using information theoretic methods. Top scale-specific models included effects of conspecific density and number of cavity tree starts within 200 m of Red-cockaded Woodpecker foraging locations, and effects of the number of intraspecific interactions within 400 m of Red-cockaded Woodpecker foraging locations. The top multi-scale model for 22 of 34 Red-cockaded Woodpecker groups included covariates for the number of groups within 200 m of foraging locations and LiDARderived habitat with moderate densities of large pines (Pinus spp.) and minimal hardwood overstory. These results indicate distribution of neighboring groups was the most important predictor of space use once a minimal set of structural habitat thresholds was reached, and that placing recruitment clusters as little as 400 m from foraging partitions of neighboring groups may promote establishment of new breeding groups in unoccupied habitat. The presence of neighboring groups likely provides cues to foraging Red-cockaded Woodpeckers that facilitate prospecting prior to juvenile dispersal and, to a lesser extent, indicates high-quality forage resources. Careful consideration of local distribution of neighboring groups in potential habitat may improve managers’ ability to increase Red-cockaded Woodpecker density on restored landscapes and mitigate isolation of Red-cockaded Woodpecker groups, a problem that negatively affects fitness across the

  7. Asymmetric Velocity Distributions from Halo Density Profiles in the Eddington Approach

    International Nuclear Information System (INIS)

    Vergados, J. D.

    2015-01-01

    We show how to obtain the energy distribution f(E) in our vicinity starting from WIMP density profiles in a self-consistent way by employing the Eddington approach and adding reasonable angular momentum dependent terms in the expression of the energy. We then show how we can obtain the velocity dispersions and the asymmetry parameter β in terms of the parameters describing the angular momentum dependence. From this expression, for f(E), we proceed to construct an axially symmetric WIMP a velocity distribution, which, for a gravitationally bound system, automatically has a velocity upper bound and is characterized by the same asymmetriy β. This approach is tested and clarified by constructing analytic expressions in a simple model, with adequate structure. We then show how such velocity distributions can be used in determining the event rates, including modulation, in both the standard and the directional WIMP searches.

  8. Development of a sampling strategy and sample size calculation to estimate the distribution of mammographic breast density in Korean women.

    Science.gov (United States)

    Jun, Jae Kwan; Kim, Mi Jin; Choi, Kui Son; Suh, Mina; Jung, Kyu-Won

    2012-01-01

    Mammographic breast density is a known risk factor for breast cancer. To conduct a survey to estimate the distribution of mammographic breast density in Korean women, appropriate sampling strategies for representative and efficient sampling design were evaluated through simulation. Using the target population from the National Cancer Screening Programme (NCSP) for breast cancer in 2009, we verified the distribution estimate by repeating the simulation 1,000 times using stratified random sampling to investigate the distribution of breast density of 1,340,362 women. According to the simulation results, using a sampling design stratifying the nation into three groups (metropolitan, urban, and rural), with a total sample size of 4,000, we estimated the distribution of breast density in Korean women at a level of 0.01% tolerance. Based on the results of our study, a nationwide survey for estimating the distribution of mammographic breast density among Korean women can be conducted efficiently.

  9. Conservation implications of brown hyaena (Parahyaena brunnea population densities and distribution across landscapes in Botswana

    Directory of Open Access Journals (Sweden)

    Christiaan W. Winterbach

    2017-05-01

    Full Text Available The brown hyaena (Parahyaena brunnea is endemic to southern Africa. The largest population of this near-threatened species occurs in Botswana, but limited data were available to assess distribution and density. Our objectives were to use a stratified approach to collate available data and to collect more data to assess brown hyaena distribution and density across land uses in Botswana. We conducted surveys using track counts, camera traps and questionnaires and collated our results and available data to estimate the brown hyaena population based on the stratification of Botswana for large carnivores. Brown hyaenas occur over 533 050 km² (92% of Botswana. Our density estimates ranged from 0 brown hyaenas/100 km² in strata of northern Botswana to 2.94 (2.16–3.71 brown hyaenas/100 km² in the southern stratum of the Central Kalahari Game Reserve. We made assumptions regarding densities in strata that lacked data, using the best references available. We estimated the brown hyaena population in Botswana as 4642 (3133–5993 animals, with 6.8% of the population in the Northern Conservation Zone, 73.1% in the Southern Conservation Zone, 2.0% in the smaller conservation zones and 18.1% in the agricultural zones. The similar densities of brown hyaenas in the Central Kalahari Game Reserve and the Ghanzi farms highlight the potential of agricultural areas in Botswana to conserve this species. The conservation of brown hyaenas in the agricultural landscape of Botswana is critical for the long-term conservation of the species; these areas provide important links between populations in South Africa, Namibia and Zimbabwe. Conservation implications: Botswana contains the core of the brown hyaena population in southern Africa, and conflict mitigation on agricultural land is crucial to maintaining connectivity among the range countries.

  10. Finite difference applied to the reconstruction method of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2016-01-01

    Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.

  11. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  12. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  13. Incomplete Detection of Nonclassical Phase-Space Distributions

    Science.gov (United States)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  14. Distributed Submodular Minimization And Motion Coordination Over Discrete State Space

    KAUST Repository

    Jaleel, Hassan; Shamma, Jeff S.

    2017-01-01

    Submodular set-functions are extensively used in large-scale combinatorial optimization problems arising in complex networks and machine learning. While there has been significant interest in distributed formulations of convex optimization

  15. Use of projectional phase space data to infer a 4D particle distribution

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.; Celata, C.M.; Staples, J.W.

    2002-01-01

    We consider beams which are described by a 4D transverse distribution f(x, y, x(prime), y(prime)), where x(prime) (triple b ond) p x /p z and z is the axial coordinate. A two-slit scanner is commonly employed to measure, over a sequence of shots, a 2D projection of such a beam's phase space, e.g., f(x, x(prime)). Another scanner might yield f(y, y(prime)) or, using crossed slits, f(x, y). A small set of such 2D scans does not uniquely specify f(x, y, x(prime), y(prime)). We have developed ''tomographic'' techniques to synthesize a ''reasonable'' set of particles in a 4D phase space having 2D densities consistent with the experimental data. These techniques are described in a separate document [A. Friedman, et. al., submitted to Phys. Rev. ST-AB, 2002]. Here we briefly summarize one method and describe progress in validating it, using simulations of the High Current Experiment at Lawrence Berkeley National Laboratory

  16. Distributed Submodular Minimization And Motion Coordination Over Discrete State Space

    KAUST Repository

    Jaleel, Hassan

    2017-09-21

    Submodular set-functions are extensively used in large-scale combinatorial optimization problems arising in complex networks and machine learning. While there has been significant interest in distributed formulations of convex optimization, distributed minimization of submodular functions has not received significant attention. Thus, our main contribution is a framework for minimizing submodular functions in a distributed manner. The proposed framework is based on the ideas of Lovasz extension of submodular functions and distributed optimization of convex functions. The framework exploits a fundamental property of submodularity that the Lovasz extension of a submodular function is a convex function and can be computed efficiently. Moreover, a minimizer of a submodular function can be computed by computing the minimizer of its Lovasz extension. In the proposed framework, we employ a consensus based distributed optimization algorithm to minimize set-valued submodular functions as well as general submodular functions defined over set products. We also identify distributed motion coordination in multiagent systems as a new application domain for submodular function minimization. For demonstrating key ideas of the proposed framework, we select a complex setup of the capture the flag game, which offers a variety of challenges relevant to multiagent system. We formulate the problem as a submodular minimization problem and verify through extensive simulations that the proposed framework results in feasible policies for the agents.

  17. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  18. Testing DARKexp against energy and density distributions of Millennium-II halos

    Energy Technology Data Exchange (ETDEWEB)

    Nolting, Chris; Williams, Liliya L.R. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN, 55454 (United States); Boylan-Kolchin, Michael [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX, 78712 (United States); Hjorth, Jens, E-mail: nolting@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: mbk@astro.as.utexas.edu, E-mail: jens@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen, DK-2100 Denmark (Denmark)

    2016-09-01

    We test the DARKexp model for relaxed, self-gravitating, collisionless systems against equilibrium dark matter halos from the Millennium-II simulation. While limited tests of DARKexp against simulations and observations have been carried out elsewhere, this is the first time the testing is done with a large sample of simulated halos spanning a factor of ∼ 50 in mass, and using independent fits to density and energy distributions. We show that DARKexp, a one shape parameter family, provides very good fits to the shapes of density profiles, ρ( r ), and differential energy distributions, N ( E ), of individual simulated halos. The best fit shape parameter φ{sub 0} obtained from the two types of fits are correlated, though with scatter. Our most important conclusions come from ρ( r ) and N ( E ) that have been averaged over many halos. These show that the bulk of the deviations between DARKexp and individual Millennium-II halos come from halo-to-halo fluctuations, likely driven by substructure, and other density perturbations. The average ρ( r ) and N ( E ) are quite smooth and follow DARKexp very closely. The only deviation that remains after averaging is small, and located at most bound energies for N ( E ) and smallest radii for ρ( r ). Since the deviation is confined to 3–4 smoothing lengths, and is larger for low mass halos, it is likely due to numerical resolution effects.

  19. Estimating Functions of Distributions Defined over Spaces of Unknown Size

    Directory of Open Access Journals (Sweden)

    David H. Wolpert

    2013-10-01

    Full Text Available We consider Bayesian estimation of information-theoretic quantities from data, using a Dirichlet prior. Acknowledging the uncertainty of the event space size m and the Dirichlet prior’s concentration parameter c, we treat both as random variables set by a hyperprior. We show that the associated hyperprior, P(c, m, obeys a simple “Irrelevance of Unseen Variables” (IUV desideratum iff P(c, m = P(cP(m. Thus, requiring IUV greatly reduces the number of degrees of freedom of the hyperprior. Some information-theoretic quantities can be expressed multiple ways, in terms of different event spaces, e.g., mutual information. With all hyperpriors (implicitly used in earlier work, different choices of this event space lead to different posterior expected values of these information-theoretic quantities. We show that there is no such dependence on the choice of event space for a hyperprior that obeys IUV. We also derive a result that allows us to exploit IUV to greatly simplify calculations, like the posterior expected mutual information or posterior expected multi-information. We also use computer experiments to favorably compare an IUV-based estimator of entropy to three alternative methods in common use. We end by discussing how seemingly innocuous changes to the formalization of an estimation problem can substantially affect the resultant estimates of posterior expectations.

  20. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  1. Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles

    Science.gov (United States)

    Revel, G. M.; Cavuto, A.; Pandarese, G.

    2016-10-01

    In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.

  2. Nonlinear electron-density distribution around point defects in simple metals. I. Formulation

    International Nuclear Information System (INIS)

    Gupta, A.K.; Jena, P.; Singwi, K.S.

    1978-01-01

    Modification, which is exact in the limit of long wavelength, of the nonlinear theory of Sjoelander and Stott of electron distribution around point defects is given. This modification consists in writing a nonlinear integral equations for the Fourier transform γ 12 (q) of the induced charge density surrounding the point defect, which includes a term involving the density derivative of γ 12 (q). A generalization of the Pauli-Feynman coupling-constant-integration method, together with the Kohn-Sham formalism, is used to exactly determine the coefficient of this derivative term in the long-wavelength limit. The theory is then used to calculate electron-density profiles around a vacancy, an eight-atom void, and a point ion. The results are compared with those of (i) a linear theory, (ii) Sjoelander-Stott theory, and (iii) a fully self-consistent calculation based on the density-functional formalism of Kohn and Sham. It is found that in the case of a vacancy, the results of the present theory are in very good agreement with those based on Kohn-Sham formalism, whereas in the case of a singular attractive potential of a proton, the results are quite poor in the vicinity of the proton, but much better for larger distances. A critical discussion of the theory vis a vis the Kohn-Sham formalism is also given. Some applications of the theory are pointed out

  3. A massively-parallel electronic-structure calculations based on real-space density functional theory

    International Nuclear Information System (INIS)

    Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro

    2010-01-01

    Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.

  4. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  5. Asymptotically Constant-Risk Predictive Densities When the Distributions of Data and Target Variables Are Different

    Directory of Open Access Journals (Sweden)

    Keisuke Yano

    2014-05-01

    Full Text Available We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.

  6. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  7. Distribution of electron density and magnetocapacitance in the regime of the fractional quantum Hall effect

    Science.gov (United States)

    Pikus, F. G.; Efros, A. L.

    1993-06-01

    A two-dimensional electron liquid (TDEL), subjected to a smooth random potential, is studied in the regime of the fractional quantum Hall effect. An analytical theory of the nonlinear screening is presented for the case when the fractional gap is much less than the magnitude of the unscreened random potential. In this ``narrow-gap approximation'' (NGA), we calculate the electron density distribution function, the fraction of the TDEL which is in the incompressible state, and the thermodynamic density of states. The magnetocapacitance is calculated to compare with the recent experiments. The NGA is found to be not accurate enough to describe the data. The results for larger fractional gaps are obtained by computer modeling. To fit the recent experimental data we have also taken into account the anyon-anyon interaction in the vicinity of a fractional singularity.

  8. Random distribution of background charge density for numerical simulation of discharge inception

    International Nuclear Information System (INIS)

    Grange, F.; Loiseau, J.F.; Spyrou, N.

    1998-01-01

    The models of electric streamers based on a uniform background density of electrons may appear not to be physical, as the number of electrons in the small active region located in the vicinity of the electrode tip under regular conditions can be less than one. To avoid this, the electron background is modelled by a random density distribution such that, after a certain time lag, at least one electron is present in the grid close to the point electrode. The modelling performed shows that the streamer inception is not very sensitive to the initial location of the charged particles; the ionizing front, however, may be delayed by several tens of nanoseconds, depending on the way the electron has to drift before reaching the anode. (J.U.)

  9. Experimental study of the density distribution of the particles of the material in screw installation

    Directory of Open Access Journals (Sweden)

    Demidov S. F.

    2017-02-01

    Full Text Available the experimental studies of density distribution of the particles of a mixture of wheat, oats, rye to feed pigs by infrared heating at the time of stay and temperature at the exit of the installation. The purpose of the work is to study the quality of treatment of the product with the settings with the screw and the screw with installed round jumper on the pen of the screw. Screw installations with infrared emitters of selected wavelength give the opportunity for intense and continuous heat treatment process. The authors used the optimal parameters of the process with the screw and the screw with installed round jumper on the pen of the screw. The parameters of screw installation during the study were the following: the number of revolutions of the screw was 10 rpm, density of heat flux was 12 kW/m2, output capacity – 250 kg/h.

  10. Measurements of the initial density distribution of gas puff liners by using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Yu G; Shashkov, A Yu [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Rayleigh scattering of a laser beam in a gas jet is proposed for the measurements of initial density distribution of gas-puff liners. The scattering method has several advantages when compared with interferometry. In particular, it provides information on the local gas density, it is more sensitive, and the output data can be absolutely calibrated. Theoretical background of the method is briefly discussed in the paper and the optical setup used in real experiments is described. Imaging of the scattering object make it possible to detect detailed profiles of the investigated gas jet, as illustrated by several examples taken from the experiment. In some cases even the gas jet stratification has been observed. (J.U.). 1 tab., 3 figs., 1 ref.

  11. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  12. Density, distribution, and activity of the ocelot Leopardus pardalis (Carnivora: Felidae) in Southeast Mexican rainforests.

    Science.gov (United States)

    Pérez-Irineo, Gabriela; Santos-Moreno, Antonio

    2014-12-01

    The ocelot Leopardus pardalis is of particular significance in terrestrial communities due to its ecological role within the group of small-sized felids and as a mesopredator. However, despite the reduction of ocelot habitat in Southeast Mexico, there are still very few ecological studies. This research aimed to contribute with some ecological aspects of the species in this region. For this, 29 camera trap stations were established in a rain forest in Los Chimalapas (an area of 22 km2) during a two years period (March 2011-June, 2013), in Oaxaca state, Southeast Mexico. Data allowed the estimation of the population density, activity pattern, sex ratio, residence time, and spatial distribution. Population density was calculated using Capture-Recapture Models for demographically open populations; besides, circular techniques were used to determine if nocturnal and diurnal activity varied significantly over the seasons, and Multiple Discriminant Analysis was used to determine which of the selected environmental variables best explained ocelot abundance in the region. A total of 103 ocelot records were obtained, with a total sampling effort of 8,529 trap-days. Density of 22-38 individuals/100 km2 was estimated. Ocelot population had a high proportion of transient individuals in the zone (55%), and the sex ratio was statistically equal to 1:1. Ocelot activity was more frequent at night (1:00-6:00h), but it also exhibited diurnal activity throughout the study period. Ocelot spatial distribution was positively affected by the proximity to the village as well as by the amount of prey. The ocelot population here appears to be stable, with a density similar to other regions in Central and South America, which could be attributed to the diversity of prey species and a low degree of disturbance in Los Chimalapas.

  13. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  14. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  15. The measurement of density distribution of bentonite buffer extruded into fractures

    International Nuclear Information System (INIS)

    Matsumoto, Kazuhiro; Tanai, Kenji

    2008-01-01

    For the geological disposal of the high-level radioactive waste, it is important to develop the model to evaluate the long-term stability of the engineered barrier system. The increase in the reliability of the evaluation model may reduce the uncertainty of the safety assessment. In this study, the density distribution of the bentonite buffer extruded into the artificial fractures was measured by using a X-ray CT scanner to promote understanding of the extrusion phenomenon of the bentonite into fractures. (author)

  16. The distribution function of a probability measure on a space with a fractal structure

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Granero, M.A.; Galvez-Rodriguez, J.F.

    2017-07-01

    In this work we show how to define a probability measure with the help of a fractal structure. One of the keys of this approach is to use the completion of the fractal structure. Then we use the theory of a cumulative distribution function on a Polish ultrametric space and describe it in this context. Finally, with the help of fractal structures, we prove that a function satisfying the properties of a cumulative distribution function on a Polish ultrametric space is a cumulative distribution function with respect to some probability measure on the space. (Author)

  17. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  18. Unpolarized and polarized parton densities in term of Fermi-Dirac distributions

    International Nuclear Information System (INIS)

    Bourrely, C.

    1996-01-01

    A description of quark parton densities of the proton in terms of Fermi-Dirac distributions parametrized with very few parameters is given. It allows a fair description of the NMC, BCDMS, SLAC and HERA data on F 2 p (x,Q 2 ) in a broad range of x and Q 2 . With some simple assumptions unpolarized and polarized quark parton distributions are related which lead to a fair description of the spin-dependent structure functions xg 1 p (x,Q 2 ) and xg 1 n (x,Q 2 ). Finally, several predictions are presented for lepton pair and gauge boson production in pp collisions at energies accessible in the future at RHIC. (author)

  19. Comparison in electron density distribution of tokamak plasma between ruby-laser scattering and milli-meter wave interferometric measurements

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa; Itagaki, Tokiyoshi; Takahashi, Koki; Kumagai, Katsuaki

    1976-08-01

    The electron density in JFT-2 tokamak has been measured by two methods, i.e. Thomson scattering of ruby-laser light and interferometry of millimeter wave. Two-dimensional distribution of the scattered light intensities were obtained by scattering measurement; absolute calibration was made by normalizing the scattered intensities with the averaged density determined from interferometric measurement. The horizontal density distributions in laser scattering were compared with those in from the averaged densities measured with a 4-mm interferometer through inverse-transformation. Agreement is good between the two measurements, except where they give erroneous data because of irreproducibility of the discharge. (auth.)

  20. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    Science.gov (United States)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  1. Density and spatial distribution of Parkia biglobosa pattern in Benin under climate change

    Directory of Open Access Journals (Sweden)

    Fafunkè Titilayo Dotchamou

    2016-06-01

    Full Text Available Parkia biglobosa is an indigenous species which, traditionally contributes to the resilience of the agricultural production system in terms of food security, source of income, poverty reduction and ecosystem stability. Therefore, it is important to improve knowledge on its density, current and future spatial distribution. The main objective of this study is to evaluate the tree density, the climate change effects on the spatial distribution of the species in the future for better conservation. The modeling of the current and future geographical distribution of the species is based on the principle of Maximum Entropy (MaxEnt on a total of 286 occurrence points from field work and Global Biodiversity Information Facility GBIF-Data Portal-(www.gbif.org. Two climatic models (HadGEM2_ES and Csiro_mk3_6_0 have been used under two scenarios RCP 2.6 and RCP 8.5 for the projection of the species distribution at the horizon 2050. The correlation analyses and Jackknife test have helped to identify seven variables which are less correlated (r < 0.80 with highest modeling participation. The soil, annual precipitation (BIO12 and temperature (diurnal average Deviation are the variables which have mostly contributed to performance of the models. Currently, 53% of national territory, spread from north to south is very suitable to the cultivation of P. biglobosa. The scenarios have predicted at the horizon 2050, a loss of the habitats which are currently very suitable for the cultivation and conservation of P. biglobosa, to the benefit of moderate and weak habitats. 51% and 57% are the highest proportion of this lost which will be registered with HadGEM2_ES model under two scenarios. These results revealed that the suitable habitat of the species is threatened by climate change in Benin. In order to limit damage such as decreased productivity, extinction of species, some appropriate solutions must be found.

  2. Determination of power density distribution of fuel assemblies for research reactor by directly measuring the strontium-91 activities

    International Nuclear Information System (INIS)

    Yuan, Liq-Ji

    1987-01-01

    This work described the investigations of reactor core power peaking and three dimensional power density distribution of present core configuration of Tsing Hua Open-pool reactor (THOR). An experimental program, based on non-destructive fuel gamma scanning of 91 Sr activities, provides the data of fission density distribution for individual fuel pin of four-rod TRIGA-LEU cluster or for MTR-type fuel assembly. The informations are essentially important for the safety of reactor operation and for fuel management especially for the mixed loading with three different types of fuel at present. The relative power peaking values and the power density distribution for present core are discussed. (author)

  3. EVIDENCE FOR A ∼300 MEGAPARSEC SCALE UNDER-DENSITY IN THE LOCAL GALAXY DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R. C. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Barger, A. J. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Cowie, L. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-09-20

    stellar mass density as a function of distance follows a similar trend. Assuming that luminous matter traces the underlying dark matter distribution, this implies that the local mass density of the universe may be lower than the global mass density on a scale and amplitude sufficient to introduce significant biases into the determination of basic cosmological observables. An under-density of roughly this scale and amplitude could resolve the apparent tension between direct measurements of the Hubble constant and those inferred by Planck.

  4. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  5. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  6. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  7. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    International Nuclear Information System (INIS)

    Duverger, James Elber; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-01-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction–diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh–Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation. (paper)

  8. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  9. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    Science.gov (United States)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  10. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  11. Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators

    DEFF Research Database (Denmark)

    Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    and Triebel–Lizorkin spaces with full range of indices is established too. As an application, we obtain equivalent norm characterizations for the spaces mentioned above. Non-classical spaces as well as Lebesgue, Hardy, (generalized) Sobolev and Lipschitz spaces are also covered by our approach.......We consider spaces of homogeneous type associated with a non-negative self-adjoint operator whose heat kernel satisfies certain upper Gaussian bounds. Spectral multipliers are introduced and studied on distributions associated with this operator. The boundedness of spectral multipliers on Besov...

  12. Surface behaviour of the phase-space distribution for heavy nuclei

    International Nuclear Information System (INIS)

    Durand, M.

    1987-06-01

    A part of the oscillations of the phase space distribution function is shown to be a surface effect. A series expansion for this function is given, which takes partially into account this oscillatory structure

  13. idSpace Tooling and Training for collaborative distributed product innovation

    NARCIS (Netherlands)

    Rutjens, Marjo; Bitter-Rijpkema, Marlies; Grube, Pascal; Heider, Thomas

    2009-01-01

    Rutjens, M., Bitter-Rijpkema, M., Grube, P. P., & Heider, T. (2009). idSpace Tooling and Training for collaborative distributed product innovation. Workshop during the e-Learning Baltic conference. June, 17-19, 2009, Rostock, Germany.

  14. Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule.

    Science.gov (United States)

    Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-12-09

    We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.

  15. Measuring the radial density distribution of light emission around the track of fast ions in nitrogen

    International Nuclear Information System (INIS)

    Ibach, T.

    1983-01-01

    For analysing the emission and stopping of ionization electrons (σ-electrons) emitted by fast ions passing through a gas, the radial density distribution of the light emission of the (0,0) transition of two optical bands in nitrogen have been measured. The systems selected for the epxeriments are the 2nd positive system (2.PS) at 337.1 nm primarily excited by low-energy electrons of about 20 eV, and the first negative system (1.NS) at 391.4 nm excited by faster electrons and simultaneous ionization. The equipment developed for the experiments records the light emission with a telescope-type optical arrangement including interference filters, allowing high local resolution and dynamics of the measured range. The measurements have been carried out at pressures between 0.133 and 13.3 mbar, using photons of energies ranging from 270 keV to 2.8 MeV, helium 3 beams of 270 keV/u and 500 keV/u, and neon beams of 270 keV/u. Abel's inversion applied to the distance functions allows calculation of the spatial light emission density which is normalized for a gas density of 1 g/cm 3 . The profiles of the two bands indicate that the σ-electron spectrum gets harder in outward direction. Next to the beam the impact density decreases faster with increasing ion energy than the stopping power (increasing interaction range of the σ-electrons). With photon beams, about half of the whole light emission in the 1. NS, and of the ionization, is induced by primary interactions of the ion beam. This proportion decreases at constant energy per nucleon with increasing atomic number of the ions as compared with the σ-electrons. The primary σ-emission gets harder with higher atomic numbers. (orig./HP) [de

  16. Distribution characteristics of terrestrial heat flow density in Jiyang depression of Shengli Oilfield, East China

    Institute of Scientific and Technical Information of China (English)

    GONG; Yuling; WANG; Liangshu; LIU; Shaowen; LI; Cheng; HAN

    2004-01-01

    Based on the geo-temperature data of 13 systematically continuous temperature log curves and 700 testing oil boreholes in Jiyang depression, Shengli Oilfield, and the measured thermal conductivities of 47 rock samples, the terrestrial heat flow densities of 114 boreholes of Jiyang depression and its surrounding areas are determined, including 13 of those data derived from systemically continuous temperature logging. The results show that Jiyang depression has a relatively high background heat flow with an average value (65.8 ± 5.4) mW/m2. The lateral variation of heat flow in basin has negative correlation with basement depth. Moreover, heat flow of uplift areas with shallower basement is high, so are those of regions with volcanic rocks, and those of depression areas with deep basement are relatively low. The heat flow densities of different structural units of Jiyang depression can be summarized as follows: The average heat flow value of Zhanhua sag is (67.4 ± 5.3) mW/m2, higher than that of the whole basin, that of Dongying sag is (66.0 ± 6.1) mW/m2, and that of Chezhen sag is (65.1 ± 3.7) mW/m2. It is apparent that these latter two values are approximate to the average value of the whole Jiyang depression,while the average value of Huimin sag is (63.6±5.0) mW/m2, lower than that of the whole basin. In fact, the basement depth and the distribution framework of uplift and depression areas are all controlled by the process of lithosphere extension. In addition, the distribution of volcanic rocks in basin is also relatively close to this extension geodynamic process. In summary, the distribution characteristics of terrestrial heat flow of Jiyang depression is determined by the Cenozoic tectono-thermal events of this region.

  17. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  18. NCU-SWIP Space Weather Instrumentation Payload - Intelligent Sensors On Efficient Real-Time Distributed LUTOS

    Science.gov (United States)

    Yeh, Tse-Liang; Dmitriev, Alexei; Chu, Yen-Hsyang; Jiang, Shyh-Biau; Chen, Li-Wu

    The NCU-SWIP - Space Weather Instrumentation Payload is developed for simultaneous in-situ and remote measurement of space weather parameters for cross verifications. The measurements include in-situ electron density, electron temperature, magnetic field, the deceleration of satellite due to neutral wind, and remotely the linear cumulative intensities of oxygen ion air-glows at 135.6nm and 630.0nm along the flight path in forward, nader, and backward directions for tomographic reconstruction of the electron density distribution underneath. This instrument package is suitable for micro satellite constellation to establish nominal space weather profiles and, thus, to detect abnormal variations as the signs of ionospheric disturbances induced by severe atmospheric weather, or earth quake - mantle movement through their Lithosphere-Atmosphere-Ionosphere Coupling Mechanism. NCU-SWIP is constructed with intelligent sensor modules connected by common bus with their functionalities managed by an efficient distributed real-time system LUTOS. The same hierarchy can be applied to the level of satellite constellation. For example SWIP's in a constellation in coordination with the GNSS Occultation Experiment TriG planned for the Formosa-7 constellation, data can be cross correlated for verification and refinement for real-time, stable and reliable measurements. A SWIP will be contributed to the construction of a MAI Micro Satellite for verification. The SWIP consists of two separate modules: the SWIP main control module and the SWIP-PMTomo sensor module. They are respectively a 1.5kg W120xL120xH100 (in mm) box with forward facing 120mmPhi circular disk probe on a boom top edged at 470mm height and a 7.2kg W126xL590x372H (in mm) slab containing 3 legs looking downwards along the flight path, while consuming the maximum electricity of 10W and 12W. The sensors are 1) ETPEDP measuring 16bits floating potentials for electron temperature range of 1000K to 3000K and 24bits electron

  19. Evaluation for the models of neutron diffusion theory in terms of power density distributions of the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Shimakawa, Satoshi; Nojiri, Naoki; Fujimoto, Nozomu

    2003-10-01

    In the case of evaluations for the highest temperature of the fuels in the HTTR, it is very important to expect the power density distributions accurately; therefore, it is necessary to improve the analytical model with the neutron diffusion and the burn-up theory. The power density distributions are analyzed in terms of two models, the one mixing the fuels and the burnable poisons homogeneously and the other modeling them heterogeneously. Moreover these analytical power density distributions are compared with the ones derived from the gross gamma-ray measurements and the Monte Carlo calculational code with continuous energy. As a result the homogeneous mixed model isn't enough to expect the power density distributions of the core in the axial direction; on the other hand, the heterogeneous model improves the accuracy. (author)

  20. Assessment of housing density, space allocation and social hierarchy of laboratory rats on behavioural measures of welfare.

    Science.gov (United States)

    Barker, Timothy Hugh; George, Rebecca Peta; Howarth, Gordon Stanley; Whittaker, Alexandra Louise

    2017-01-01

    Minimum space allowances for laboratory rats are legislated based on weight and stocking rates, with the understanding that increased housing density encourages crowding stress. However, there is little evidence for these recommendations, especially when considering positive welfare outcomes. This study consisted of two experiments which investigated the effects of housing density (rats per cage), space allocation (surface area per rat) and social rank (dominance hierarchy) on the ability to perform simple behavioural tests. Male Sprague Dawley (SD) rats (n = 64) were allocated to either high-density (n = 8) or low-density (n = 8) cages. The second experiment investigated the effects of surface area. SD rats (n = 40) were housed in dyads in either the large (n = 10) or small (n = 10) cage. In both experiments, animals were tested on a judgment bias paradigm, with their responses to an ambiguous stimulus being ascribed as optimistic or pessimistic. Animals were also tested on open-field, novel-object recognition and social-interaction tests. Recordings were taken from 1700-2100h daily for rat observation and social rank establishment. Dominant animals responded with significantly more optimistic decisions compared to subordinates for both the housing density (psocial affiliative behaviours in the social-interaction test, and spent more time in the centre of the open-field test for both experiments. No significance was detected between housing density or space allocation treatments. These findings suggest that social rank is a significantly greater modifier of affective state than either housing density or space allocation. This finding has not yet been reported and suggests that future drafts of housing guidelines should consider animal social status in addition to floor space requirements.

  1. Assessment of housing density, space allocation and social hierarchy of laboratory rats on behavioural measures of welfare

    Science.gov (United States)

    George, Rebecca Peta; Howarth, Gordon Stanley; Whittaker, Alexandra Louise

    2017-01-01

    Minimum space allowances for laboratory rats are legislated based on weight and stocking rates, with the understanding that increased housing density encourages crowding stress. However, there is little evidence for these recommendations, especially when considering positive welfare outcomes. This study consisted of two experiments which investigated the effects of housing density (rats per cage), space allocation (surface area per rat) and social rank (dominance hierarchy) on the ability to perform simple behavioural tests. Male Sprague Dawley (SD) rats (n = 64) were allocated to either high-density (n = 8) or low-density (n = 8) cages. The second experiment investigated the effects of surface area. SD rats (n = 40) were housed in dyads in either the large (n = 10) or small (n = 10) cage. In both experiments, animals were tested on a judgment bias paradigm, with their responses to an ambiguous stimulus being ascribed as optimistic or pessimistic. Animals were also tested on open-field, novel-object recognition and social-interaction tests. Recordings were taken from 1700-2100h daily for rat observation and social rank establishment. Dominant animals responded with significantly more optimistic decisions compared to subordinates for both the housing density (ptest, and spent more time in the centre of the open-field test for both experiments. No significance was detected between housing density or space allocation treatments. These findings suggest that social rank is a significantly greater modifier of affective state than either housing density or space allocation. This finding has not yet been reported and suggests that future drafts of housing guidelines should consider animal social status in addition to floor space requirements. PMID:28926644

  2. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    International Nuclear Information System (INIS)

    Cayton, Thomas E.

    2005-01-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, μ, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of μ and K, and for 3.5 R E E , the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R E for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits μ-dependent local minima around L = 5 R E . Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K c . Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons

  3. Large model-space calculation of the nuclear level density parameter

    International Nuclear Information System (INIS)

    Agrawal, B.K.; Samaddar, S.K.; De, J.N.; Shlomo, S.

    1998-01-01

    Recently, several attempts have been made to obtain nuclear level density (ρ) and level density parameter (α) within the microscopic approaches based on path integral representation of the partition function. The results for the inverse level density parameter K es and the level density as a function of excitation energy are presented

  4. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  5. Radial power density distribution of MOX fuel rods in the HBWR

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Joo, Hyung Kook; Lee, Byung Ho; Sohn, Dong Seong

    1999-07-01

    Two MOX fuel rods, which ar being fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with the Korea Atomic Energy Research Institute (KAERI), are going to be irradiated in the HBWR (Halden Boiling Water Reactor) from the beginning of 2000 in the framework of OECD Halden Reactor Programme (HRP) together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is a basic property in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR H BWR that calculates radial power density distribution for three MOX fuel rods have been developed subroutine FACTOR H BWR gives good agreement with the physics calculation except slight underprediction in the central part and a little overprediction at the outer part of the pellet. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. (author). 5 refs., 3 tabs., 24 figs

  6. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  7. Spectroscopic techniques for measuring ion diode space-charge distributions and ion source properties

    Energy Technology Data Exchange (ETDEWEB)

    Filuk, A B; Bailey, J E; Adams, R G [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    The authors are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li{sup +} ion divergence within 100 {mu}m of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (10{sup 9} V/m) an magnetic ({approx} 6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child-Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, the authors aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. The authors are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution. (author). 4 figs., 13 refs.

  8. The space distribution of neutrons generated in massive lead target by relativistic nuclear beam

    International Nuclear Information System (INIS)

    Chultem, D.; Damdinsuren, Ts.; Enkh-Gin, L.; Lomova, L.; Perelygin, V.; Tolstov, K.

    1993-01-01

    The present paper is devoted to implementation of solid state nuclear track detectors in the research of the neutron generation in extended lead spallation target. Measured neutrons space distribution inside the lead target and neutron distribution in the thick water moderator are assessed. (Author)

  9. Scalable real space pseudopotential density functional codes for materials in the exascale regime

    Science.gov (United States)

    Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  10. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    International Nuclear Information System (INIS)

    Krauthamer, S.; Gangal, M.; Das, R.

    1991-01-01

    The National Aeronautics and Space Administration has selected 120-Vdc secondary power distribution for Space Station Freedom. Although this high voltage level is new for space applications, it is well within the bounds for components and subsystems being developed and in some cases being used in aerospace, defense, and terrestrial applications. In this paper state-of-the-art components and subsystems for Space Station Freedom in terms of performance, size, and topology are examined. One objective is to inform the users of Space Station Freedom about what is available in power supplies and power control devices. The other objective is to stimulate the interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, many of these components may be applied to Space Station Freedom needs

  11. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1965-12-01

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 μs. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P 1 -calculations by Claesson

  12. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1965-12-15

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 {mu}s. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P{sub 1}-calculations by Claesson.

  13. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Duerr, Adam E.; Miller, Tricia A.; Cornell Duerr, Kerri L; Lanzone, Michael J.; Fesnock, Amy; Katzner, Todd E.

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such wildlife are often lacking. We surveyed for predatory birds in the Sonoran and Mojave Deserts of southern California, USA, in an area designated for protection under the “Desert Renewable Energy Conservation Plan”, to determine how these birds are distributed across the landscape and how this distribution is affected by existing development. We developed species-specific models of resight probability to adjust estimates of abundance and density of each individual common species. Second, we developed combined-species models of resight probability for common and rare species so that we could make use of sparse data on the latter. We determined that many common species, such as red-tailed hawks, loggerhead shrikes, and especially common ravens, are associated with human development and likely subsidized by human activity. Species-specific and combined-species models of resight probability performed similarly, although the former model type provided higher quality information. Comparing abundance estimates with past surveys in the Mojave Desert suggests numbers of predatory birds associated with human development have increased while other sensitive species not associated with development have decreased. This approach gave us information beyond what we would have collected by focusing either on common or rare species, thus it provides a low-cost framework for others conducting surveys in similar desert environments outside of California.

  14. Macular pigment optical density spatial distribution measured in a subject with oculocutaneous albinism.

    Science.gov (United States)

    Putnam, Christopher M; Bland, Pauline J

    2014-01-01

    Previous studies of macular pigment optical density (MPOD) distribution in individuals with oculocutaneous albinism (OCA) have primarily used objective measurement techniques including fundus reflectometry and autofluorescence. We report here on a subject with OCA and their corresponding MPOD distribution assessed through heterochromatic flicker photometry (HFP). A subject with a history of OCA presented with an ocular history including strabismus surgery of the LE with persistent amblyopia and mild, latent nystagmus. Best corrected visual acuity was 20/25- RE and 20/40- LE. Spectral domain optical coherence tomography (SD-OCT) and fundus photography were also obtained. Evaluation of MPOD spatial distribution up to 8 degrees eccentricity from the fovea was performed using HFP. SD-OCT indicated a persistence of multiple inner retinal layers within the foveal region in the RE and LE including symmetric foveal thickening consistent with foveal hypoplasia. Fundus photography showed mild retinal pigmented epithelial (RPE) hypopigmentation and a poorly demarcated macula. OriginPro 9 was used to plot MPOD spatial distribution of the subject and a 33-subject sample. The OCA subject demonstrated a foveal MPOD of 0.10 with undetectable levels at 6 degrees eccentricity. The study sample showed a mean foveal MPOD of 0.34 and mean 6 degree eccentricity values of 0.03. Consistent with previous macular pigment (MP) studies of OCA, overall MPOD is reduced in our subject. Mild phenotypic expression of OCA with high functional visual acuity may represent a Henle fiber layer amenable to additional MP deposition. Further study of MP supplementation in OCA patients is warranted. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  15. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    Directory of Open Access Journals (Sweden)

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  16. Matter density distribution in atomic nuclei as illuminated by high energy hadrons

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1991-01-01

    The method is proposed for the intranuclear matter density distribution study by means of high energy strongly interacting probes. The newly recognized process - the passage of hadrons through atomic nuclei - is employed as the physical basis of the operational principle of the method; the passage is accompanied by the nucleon emission from the target nuclei. It seems that the hadronic projectile sees a definite number of nucleons at a definite impact parameter, in passing through the target nucleus, but the number of the protons among the nucleus seen fluctuates according the binomial formula; in average, this number corresponds to the neutron-proton ratio (A-Z0/Z. 21 refs.; 4 figs.; 1 tab

  17. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  18. Measuring device for the spatial neutron density distribution within a nuclear reactor

    International Nuclear Information System (INIS)

    Fracke, A.; Wachtler, H.

    1974-01-01

    A solid probe in a pneumatic tube is lead from the core to a measuring device outside the pressure vessel and reversely, in order to measure the local neutron density distribution inside a reactor core. The activiable solid probe is in the form of a steel spiral spring with densely open coils and semi-spherical end pieces. A good curve negotiating characteristic of the measuring probe and defined duration times are secured in the reactor core. Furthermore, the interior of the spiral can be filled with a lubricating medium, e.g. molybdenum sulphite, so that a better sliding of the measuring probe into the tubes of the pneumatic tube is ensured. (DG) [de

  19. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  20. Space charge distributions in glass fibre/epoxy resin composites under dc 10 kV mm-1 electric field

    International Nuclear Information System (INIS)

    Tanaka, Hidesato; Ohki, Yoshimichi; Fukunaga, Kaori; Maeno, Takashi; Okamoto, Kenji

    2007-01-01

    In this paper, the authors discuss one- and three-dimensional space charge distributions in glass fibre/epoxy resin composites. By the conventional pulsed electroacoustic (PEA) method, only a one-dimensional distribution of the average charge over a whole area parallel to the two electrodes can be observed. Therefore, the authors have developed a new PEA system capable of measuring a three-dimensional space charge distribution. Using this system, they measured the charge distribution in glass fibre/epoxy resin composites made of lattice-woven glass fibre and epoxy resin. It has become clear that spatial variation in signal intensity observed depends on the internal structure of the composite. There appear repetitious positions where a high charge density is observed on the same lateral cross section along the vertical direction in the composite. Such positions are consistent with the intersections of the glass fibres. Accumulation of mobile charge carriers or appearance of polarization charge due to mismatch of the ratio of the conductivity and permittivity between the glass fibre and the epoxy resin is thought to be responsible for the PEA signals

  1. Energy sprawl, land taking and distributed generation: towards a multi-layered density

    International Nuclear Information System (INIS)

    Moroni, Stefano; Antoniucci, Valentina; Bisello, Adriano

    2016-01-01

    The transition from fossil fuels to renewable resources is highly desirable to reduce air pollution, and improve energy efficiency and security. Many observers are concerned, however, that the diffusion of systems based on renewable resources may give rise to energy sprawl, i.e. an increasing occupation of available land to build new energy facilities of this kind. These critics foresee a transition from the traditional fossil-fuel systems, towards a renewable resource system likewise based on large power stations and extensive energy grids. A different approach can be taken to reduce the risk of energy sprawl, and this will happen if the focus is as much on renewable sources as on the introduction of distributed renewable energy systems based on micro plants (photovoltaic panels on the roofs of buildings, micro wind turbines, etc.) and on multiple micro-grids. Policy makers could foster local energy enterprises by: introducing new enabling rules; making more room for contractual communities; simplifying the compliance process; proposing monetary incentives and tax cuts. We conclude that the diffusion of innovation in this field will lead not to an energy sprawl but to a new energy system characterized by a multi-layered density: a combination of technology, organization, and physical development. - Highlights: • Energy sprawl is not a necessary consequence of the transition to renewable sources. • A polycentric, distributed renewable energy system reduces land consumption. • This polycentric model is founded on building-related renewable energy production and micro-grids. • Enabling rules, simplified compliance, and tax cuts can foster this result. • The concept of multi-layered density is proposed as a new framework for interpreting this scenario.

  2. Experimental Electron Density Distribution in Two Cocrystals of Betaines with p-Hydroxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Agata Owczarzak

    2018-03-01

    Full Text Available Experimental determination of electron density distribution in crystals by means of high-resolution X-ray diffraction allows, among others, for studying the details of intra- and inter-molecular interactions. In case of co-crystals, this method may help in finding the conditions of creating such species. The results of such analysis for two co-crystals containing betaines, namely trigonelline (TRG: nicotinic acid N-methylbetaine, IUPAC name: 1-methylpyridinium-3-carboxylate and N-methylpiperidine betaine (MPB: 1-methylpiperidinium-1-yl-carboxylate with p-hydroxybenzoic acid (HBA are reported. TRG-HBA crystallizes as a hydrate. For both of the co-crystals, high-quality diffraction data were collected up to sinθ/λ = 1.13 Å−1. Hansen-Coppens multipolar model was then applied for modelling the electron density distribution and Atoms-In-Molecules approach was used for detailed analysis of interactions in crystals. A number of intermolecular interactions was identified, ranging from strong O-H···O hydrogen bonds through C-H···O to C-H···π and π···π interactions. Correlations between the geometrical characteristics of the contacts and the features of their critical points were analyzed in detail. Atomic charges show that in zwitterionic species there are regions of opposite charges, rather than charges that are localized on certain atoms. In case of MPB-HBA, a significant charge transfer between the components of co-crystal (0.5 e was found, as opposed to TRG-HBA, where all of the components are almost neutral.

  3. Usual Dietary Energy Density Distribution Is Positively Associated with Excess Body Weight in Mexican Children.

    Science.gov (United States)

    Aburto, Tania C; Cantoral, Alejandra; Hernández-Barrera, Lucia; Carriquiry, Alicia L; Rivera, Juan A

    2015-07-01

    Studies suggest a positive association between dietary energy density (DED) and body weight in adults, but evidence in children is inconclusive. The objective of this study was to compare usual DED distributions of nonoverweight vs. overweight or obese (OW/O) Mexican children. The study used 24-h recall (24HR) data from 2367 children aged 5-11 y from the 2012 Mexican National Health and Nutrition Survey (ENSANUT 2012). Repeated 24HR measures were obtained in a random sample (∼10%) to estimate usual intake distributions by using the Iowa State University (PC-Side) method. Implausible dietary reports were identified. Multivariate linear regression models were used to evaluate the relation between DED and body mass index status and to compare results with and without PC-Side adjustment and restriction to plausible reporters. A total of 35.1% of the children in the sample were OW/O. The usual DED mean was ∼175 kcal/100 g in both the complete sample and the plausible reporters subsample. Regression models adjusted by PC-Side and for potential confounders showed higher DED in OW/O relative to nonoverweight children for both plausible reporters (9.7 kcal/100 g; n = 1452, P 0.10). A positive association between usual DED and OW/O was found in Mexican children. The association was stronger when only plausible reporters were considered. This suggests that there is a need for strategies to reduce energy density in the diet of Mexican children. © 2015 American Society for Nutrition.

  4. Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link

    Science.gov (United States)

    Woo, Simon S.; Gao, Jay L.; Mills, David

    2010-01-01

    Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.

  5. Measurements of transient electron density distributions by femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Freyer, Benjamin

    2013-01-01

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  6. Gravity Spectra from the Density Distribution of Earth's Uppermost 435 km

    Science.gov (United States)

    Sebera, Josef; Haagmans, Roger; Floberghagen, Rune; Ebbing, Jörg

    2018-03-01

    The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity-density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA's satellite gradiometry mission GOCE down to the spatial resolution of 80-90 km.

  7. Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, P. [Department of Astronomy/Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pohl, A. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Stammler, S. M.; Birnstiel, T., E-mail: pinilla@email.arizona.edu [University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Münich (Germany)

    2017-08-10

    Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.

  8. Analysis of Observation Data of Earth-Rockfill Dam Based on Cloud Probability Distribution Density Algorithm

    Directory of Open Access Journals (Sweden)

    Han Liwei

    2014-07-01

    Full Text Available Monitoring data on an earth-rockfill dam constitutes a form of spatial data. Such data include much uncertainty owing to the limitation of measurement information, material parameters, load, geometry size, initial conditions, boundary conditions and the calculation model. So the cloud probability density of the monitoring data must be addressed. In this paper, the cloud theory model was used to address the uncertainty transition between the qualitative concept and the quantitative description. Then an improved algorithm of cloud probability distribution density based on a backward cloud generator was proposed. This was used to effectively convert certain parcels of accurate data into concepts which can be described by proper qualitative linguistic values. Such qualitative description was addressed as cloud numerical characteristics-- {Ex, En, He}, which could represent the characteristics of all cloud drops. The algorithm was then applied to analyze the observation data of a piezometric tube in an earth-rockfill dam. And experiment results proved that the proposed algorithm was feasible, through which, we could reveal the changing regularity of piezometric tube’s water level. And the damage of the seepage in the body was able to be found out.

  9. Contribution of industrial density and socioeconomic status to the spatial distribution of thyroid cancer risk in Hangzhou, China.

    Science.gov (United States)

    Fei, Xufeng; Lou, Zhaohan; Christakos, George; Liu, Qingmin; Ren, Yanjun; Wu, Jiaping

    2018-02-01

    The thyroid cancer (TC) incidence in China has increased dramatically during the last three decades. Typical in this respect is the case of Hangzhou city (China), where 7147 new TC cases were diagnosed during the period 2008-2012. Hence, the assessment of the TC incidence risk increase due to environmental exposure is an important public health matter. Correlation analysis, Analysis of Variance (ANOVA) and Poisson regression were first used to evaluate the statistical association between TC and key risk factors (industrial density and socioeconomic status). Then, the Bayesian maximum entropy (BME) theory and the integrative disease predictability (IDP) criterion were combined to quantitatively assess both the overall and the spatially distributed strength of the "exposure-disease" association. Overall, higher socioeconomic status was positively correlated with higher TC risk (Pearson correlation coefficient=0.687, P<0.01). Compared to people of low socioeconomic status, people of median and high socioeconomic status showed higher TC risk: the Relative Risk (RR) and associated 95% confidence interval (CI) were found to be, respectively, RR=2.29 with 95% CI=1.99 to 2.63, and RR=3.67 with 95% CI=3.22 to 4.19. The "industrial density-TC incidence" correlation, however, was non-significant. Spatially, the "socioeconomic status-TC" association measured by the corresponding IDP coefficient was significant throughout the study area: the mean IDP value was -0.12 and the spatial IDP values were consistently negative at the township level. It was found that stronger associations were distributed among residents mainly on a stripe of land from northeast to southwest (consisting mainly of sub-district areas). The "industrial density-TC" association measured by its IDP coefficient was spatially non-consistent. Socioeconomic status is an important indicator of TC risk factor in Hangzhou (China) whose effect varies across space. Hence, socioeconomic status shows the highest TC

  10. Interaction cross section of 11Li + d reaction and the determination of nucleon density distribution in 11Li

    International Nuclear Information System (INIS)

    Tanihata, I.; Yoshida, K.; Suzuki, T.

    1992-01-01

    Interaction cross sections for 11 Li beams have been measured using p, d, and C targets at 800A and 400A MeV. The density distribution of the 11 Li nucleus has been determined, for the first time, combining interaction cross sections with various targets and energies. It was confirmed that only the distributions with long tails describe the observed data. (author)

  11. The molecular electron density distribution meeting place of X-ray diffraction and quantum chemistry intermediate - between theory and experiment

    NARCIS (Netherlands)

    Feil, D.; Feil, Dirk

    1992-01-01

    Quantum chemistry and the concepts used daily in chemistry are increasingly growing apart. Among the concepts that are able to bridge the gap between theory and experimental practice, electron density distribution has an important place. The study of this distribution has led to new developments in

  12. A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)

    2013-12-10

    Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.

  13. Primordial inhomogeneities in the expanding universe. I - Density and velocity distributions of galaxies in the vicinities of rich clusters

    Science.gov (United States)

    Silk, J.; Wilson, M. L.

    1979-01-01

    The density profiles and Hubble flow deviations in the vicinities of rich galaxy clusters are derived for a variety of models of initial density and velocity perturbations at the recombination epoch. The galaxy correlation function, measured with respect to the Abell clusters, is used to normalize the theoretical models. The angular scales of the required primordial inhomogeneities are calculated. It is found that the resulting density profiles around rich clusters are surprisingly insensitive to the shape of the initial perturbations and also to the cosmological density parameter, Omega. However, it is shown that the distribution of galaxy radial velocities can provide a possible means of deriving Omega.

  14. PDE-Foam - a probability-density estimation method using self-adapting phase-space binning

    CERN Document Server

    Dannheim, Dominik; Voigt, Alexander; Grahn, Karl-Johan; Speckmayer, Peter

    2009-01-01

    Probability-Density Estimation (PDE) is a multivariate discrimination technique based on sampling signal and background densities defined by event samples from data or Monte-Carlo (MC) simulations in a multi-dimensional phase space. To efficiently use large event samples to estimate the probability density, a binary search tree (range searching) is used in the PDE-RS implementation. It is a generalisation of standard likelihood methods and a powerful classification tool for problems with highly non-linearly correlated observables. In this paper, we present an innovative improvement of the PDE method that uses a self-adapting binning method to divide the multi-dimensional phase space in a finite number of hyper-rectangles (cells). The binning algorithm adjusts the size and position of a predefined number of cells inside the multidimensional phase space, minimizing the variance of the signal and background densities inside the cells. The binned density information is stored in binary trees, allowing for a very ...

  15. Radial distributions of surface mass density and mass-to-luminosity ratio in spiral galaxies

    Science.gov (United States)

    Sofue, Yoshiaki

    2018-03-01

    We present radial profiles of the surface mass density (SMD) in spiral galaxies directly calculated using rotation curves of two approximations of flat-disk (SMD-F) and spherical mass distribution (SMD-S). The SMDs are combined with surface brightness using photometric data to derive radial variations of the mass-to-luminosity ratio (ML). It is found that the ML generally has a central peak or a plateau, and decreases to a local minimum at R ˜ 0.1-0.2 h, where R is the radius and h is the scale radius of optical disk. The ML, then, increases rapidly until ˜0.5 h, and is followed by gradual rise till ˜2 h, remaining at around ˜2 [M_{⊙} L^{-1}_{⊙}] in the w1 band (infrared λ3.4 μm) and ˜ 10 [M_⊙ L_⊙ ^{-1}] in the r band (λ6200-7500 Å). Beyond this radius, the ML increases steeply with approaching the observed edges at R ˜ 5 h, attaining to as high values as ˜20 in w1 and ˜ 10^2 [M_⊙ L_⊙ ^{-1}] in the r band, which are indicative of dominant dark matter. The general properties of the ML distributions will be useful for constraining cosmological formation models of spiral galaxies.

  16. Interpreting dark matter direct detection independently of the local velocity and density distribution

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Kribs, Graham D.; Tait, Tim M. P.

    2011-01-01

    We demonstrate precisely what particle physics information can be extracted from a single direct detection observation of dark matter while making absolutely no assumptions about the local velocity distribution and local density of dark matter. Our central conclusions follow from a very simple observation: the velocity distribution of dark matter is positive definite, f(v)≥0. We demonstrate the utility of this result in several ways. First, we show a falling deconvoluted recoil spectrum (deconvoluted of the nuclear form factor), such as from ordinary elastic scattering, can be 'mocked up' by any mass of dark matter above a kinematic minimum. As an example, we show that dark matter much heavier than previously considered can explain the CoGeNT excess. Specifically, m χ Ge can be in just as good agreement as light dark matter, while m χ >m Ge depends on understanding the sensitivity of xenon to dark matter at very low recoil energies, E R < or approx. 6 keVnr. Second, we show that any rise in the deconvoluted recoil spectrum represents distinct particle physics information that cannot be faked by an arbitrary f(v). As examples of resulting nontrivial particle physics, we show that inelastic dark matter and dark matter with a form factor can both yield such a rise.

  17. Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem

    Science.gov (United States)

    Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.

    2016-01-01

    The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study

  18. Distribution and density of the bivalve Anomalocardia brasiliana in the estuarine region of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    A. M. L. Rodrigues Maia

    2017-06-01

    Full Text Available Abstract The objective of this study was to analyze the density and distribution of the bivalve Anomalocardia brasiliana in beaches in the estuarine region of the semiarid in Rio Grande do Norte State, Barra and Pernambuquinho (04°56.978’S and 37°08.961’W and 04°56.792’S and 37°09.375’W, respectively. Samples were collected monthly during 37 months using five transects (300 m long and 400 m apart laid perpendicularly to the beach line toward the sea. Seven collection points, 50 m apart, were set in each transect, and shellfish and sediment samples were collected. Temperature and salinity were measured in each transect. The results showed a temperature variation of average values of 3 °C; the greatest variation (33.2 °C was observed in May of 2009. The lowest average salinity values were observed between April and June of 2009 (5, 8.7, and 7.8, respectively. This fact was due to an atypical rainfall in the region, which resulted in a large freshwater inflow into the estuary; the average salinity values were about 40 in the remaining months. The highest precipitation values were observed in April/09, April/10, and April/11; the highest precipitation occurred in April/09 (316.3 mm. The lower average densities of A. brasiliana were observed in April and May/09 when compared to the other months; the lowest value was observed in April/09 (26 ind/m2. The highest densities occurred between November/10 and July/11, with values ranging from 70 to 322 ind/m2. The highest inflow of young individuals (lengths from 2 to 5 mm was observed between April and June of 2010 and on September/10 while the highest frequency of adults (from 20 to 25 mm occurred between December of 2010 and April of 2011. Hence, the results of this study show that in the months with the greatest rainfall, salinity and the average density of A. brasiliana showed the lowest values.

  19. Quark imaging in the proton via quantum phase-space distributions

    International Nuclear Information System (INIS)

    Belitsky, A.V.; Ji Xiangdong; Yuan Feng

    2004-01-01

    We develop the concept of quantum phase-space (Wigner) distributions for quarks and gluons in the proton. To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of elastic form factors, and examine the physics of the Feynman parton distributions in the proton's rest frame. We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and generalized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner functions allow us to visualize quantum quarks and gluons using the language of classical phase space. We present two examples of the quark Wigner distributions and point out some model-independent features

  20. Influence of macular pigment optical density spatial distribution on intraocular scatter.

    Science.gov (United States)

    Putnam, Christopher M; Bland, Pauline J; Bassi, Carl J

    This study evaluated the summed measures of macular pigment optical density (MPOD) spatial distribution and their effects on intraocular scatter using a commercially available device (C-Quant, Oculus, USA). A customized heterochromatic flicker photometer (cHFP) device was used to measure MPOD spatial distribution across the central 16° using a 1° stimulus. MPOD was calculated as a discrete measure and summed measures across the central 1°, 3.3°, 10° and 16° diameters. Intraocular scatter was determined as a mean of 5 trials in which reliability and repeatability measures were met using the C-Quant. MPOD spatial distribution maps were constructed and the effects of both discrete and summed values on intraocular scatter were examined. Spatial mapping identified mean values for discrete MPOD [0.32 (s.d.=0.08)], MPOD summed across central 1° [0.37 (s.d.=0.11)], MPOD summed across central 3.3° [0.85 (s.d.=0.20)], MPOD summed across central 10° [1.60 (s.d.=0.35)] and MPOD summed across central 16° [1.78 (s.d.=0.39)]. Mean intraocular scatter was 0.83 (s.d.=0.16) log units. While there were consistent trends for an inverse relationship between MPOD and scatter, these relationships were not statistically significant. Correlations between the highest and lowest quartiles of MPOD within the central 1° were near significance. While there was an overall trend of decreased intraocular forward scatter with increased MPOD consistent with selective short wavelength visible light attenuation, neither discrete nor summed values of MPOD significantly influence intraocular scatter as measured by the C-Quant device. Published by Elsevier España, S.L.U.

  1. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  2. Three-dimensional space charge distribution measurement in electron beam irradiated PMMA

    International Nuclear Information System (INIS)

    Imaizumi, Yoichi; Suzuki, Ken; Tanaka, Yasuhiro; Takada, Tatsuo

    1996-01-01

    The localized space charge distribution in electron beam irradiated PMMA was investigated using pulsed electroacoustic method. Using a conventional space charge measurement system, the distribution only in the depth direction (Z) can be measured assuming the charges distributed uniformly in the horizontal (X-Y) plane. However, it is difficult to measure the distribution of space charge accumulated in small area. Therefore, we have developed the new system to measure the three-dimensional space charge distribution using pulsed electroacoustic method. The system has a small electrode with a diameter of 1mm and a motor-drive X-Y stage to move the sample. Using the data measured at many points, the three-dimensional distribution were obtained. To estimate the system performance, the electron beam irradiated PMMA was used. The electron beam was irradiated from transmission electron microscope (TEM). The depth of injected electron was controlled using the various metal masks. The measurement results were compared with theoretically calculated values of electron range. (author)

  3. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2017-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  4. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data

    KAUST Repository

    Ibrahim, Mohamed

    2017-08-28

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  5. Influences of radiation and leaf area vertical distribution on the growth of Chinese fir young plantation with different densities

    International Nuclear Information System (INIS)

    Wang Lili

    1990-01-01

    A study on the radiation and leaf area vertical distribution in relation to the growth of 8-year-old Chinese fir plantations of 5 densities was conducted. The leaf area vertical distribution and LAI were closely related to stem density. The crown form varies from conic to cylindric with the increase of stem density. The LAI rises at first and then declines with the increase of density. The extinction of radiation sharpened when the crown density increased. The extinction leveled at the depth of 3/4 forest heights from the tops of forest canopies. Calculating the extinction coefficients by means of accumulated leaf area index separately for each crown layer can minimize the errors caused by the irregularity of leaf distribution. Four indices, i.e., absorption of radiation, LAI,biomass of individual tree and averaged annual increment of biomass were used to have a comprehensive evaluation on the growth of Chinese fir of 5 densities. The results showed that the plantation with a stem density of 2m × 1 m was the best one among the 5 young plantations

  6. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  7. Electron density distribution in ferromagnetic nickel: A γ -ray diffraction study

    Science.gov (United States)

    Jauch, W.; Reehuis, M.

    2008-12-01

    High-accuracy single-crystal structure factors, complete up to sinθ/λ=1.9Å-1 , have been measured from ferromagnetic nickel at 295 K using 316.5-keV gamma radiation. The experimental uncertainty of the structure factors is of the order of 10 millielectrons per atom for all data. A detailed description of the electron density distribution is presented in terms of a multipolar atomic deformation model. Achievement of a reliable Debye-Waller factor is of vital importance in this context. The charge asphericity is due to an excess eg orbital occupancy of 43.4(2)%. The 3d shell in the metal is contracted by 2.07(5)% relative to the free atom. The results are discussed and compared with earlier experimental and theoretical works. In contrast to bcc Cr and Fe, solid-state effects are less pronounced in fcc Ni. Clear disentanglement between the 3d and 4s valence electrons could be accomplished for the first time. The general expectation that the number of 3d electrons in the metal should be increased as compared to the atom was confirmed in the case of iron by combining spin and charge-density data. In the case of nickel, it is rejected as revealed by the γ -ray data alone. Only with the d8 configuration, consistency is achieved between observed and refined mosaic widths of the sample crystal. A 3d8 configuration implies that the majority-spin d band cannot be full. Strong support is lent to a localized atomic character of the valence electrons.

  8. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  9. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells

    International Nuclear Information System (INIS)

    Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako; Yoshigaki, Tomoyoshi; Furuyama, Shunsuke; Sugiya, Hiroshi

    2006-01-01

    Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteins was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation

  10. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  11. Distributed Circumnavigation Control with Dynamic Spacings for a Heterogeneous Multi-robot System

    OpenAIRE

    Yao, Weijia; Luo, Sha; Lu, Huimin; Xiao, Junhao

    2018-01-01

    Circumnavigation control is useful in real-world applications such as entrapping a hostile target. In this paper, we consider a heterogeneous multi-robot system where robots have different physical properties, such as maximum movement speeds. Instead of equal-spacings, dynamic spacings according to robots' properties, which are termed utilities in this paper, will be more desirable in a scenario such as target entrapment. A distributed circumnavigation control algorithm based on utilities is ...

  12. Winter distribution, density and size of Mesodesma mactroides (Bivalvia, Mactracea in Monte Hermoso beach (Argentina

    Directory of Open Access Journals (Sweden)

    Sandra Marcela Fiori

    2004-03-01

    Full Text Available The yellow clam Mesodesma mactroides (Deshayes, 1854 is a seasonal migrant that moves in spring to the sandy upper intertidal level. In this paper we analyze the spatial distribution of density and mean shell size of the yellow clam population in Monte Hermoso beach (Argentina in winter 1995, i.e., three months before the mass mortality occurred in November 1995. Sampling covered 32 km of beach, with a regular design of 22 transects. The major environmental gradient in the beach was determined using principal component analysis (PCA on the correlation matrix of the environmental data (beach morphology, slope, and sand granulometry. Correlation analysis was used to assess the relationship between the score of a site (transect on the first and second principal component, and clam mean density and mean shell size. Most of the beach seems to be habitable for clams, their spatial heterogeneity not having been explained by the measured variables since, although the first axis of the PCA has demonstrated an E-W physical gradient, clam density was not in correlation with it. Density was maximum near the piers, even though these are points with high tourist activity. It seems that non-extractive touristic activities do not affect population density but rather mean shell size, probably due to reduction of growth rates. The abundance of the winter population, as compared with the assessment done after the mass mortality of November, strongly suggests that a great part of the population was overwintering in the intertidal fringe.O molusco Mesodesma mactroides (Deshayes, 1854 é uma espécie migrante sazonal que na primavera move-se para o nível entremarés superior da praia. Neste estudo, analisamos a distribuição espacial da densidade e o tamanho médio da população do bivalve na praia de Monte Hermoso (Argentina no inverno de 1995, i. é, três meses antes da mortalidade massiva desses moluscos, acontecida em novembro de 1995. A amostragem cobriu 32

  13. Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density.

    Science.gov (United States)

    Tygert, Mark

    2010-09-21

    We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).

  14. Controlling the Laser Guide Star power density distribution at Sodium layer by combining Pre-correction and Beam-shaping

    Science.gov (United States)

    Huang, Jian; Wei, Kai; Jin, Kai; Li, Min; Zhang, YuDong

    2018-06-01

    The Sodium laser guide star (LGS) plays a key role in modern astronomical Adaptive Optics Systems (AOSs). The spot size and photon return of the Sodium LGS depend strongly on the laser power density distribution at the Sodium layer and thus affect the performance of the AOS. The power density distribution is degraded by turbulence in the uplink path, launch system aberrations, the beam quality of the laser, and so forth. Even without any aberrations, the TE00 Gaussian type is still not the optimal power density distribution to obtain the best balance between the measurement error and temporal error. To optimize and control the LGS power density distribution at the Sodium layer to an expected distribution type, a method that combines pre-correction and beam-shaping is proposed. A typical result shows that under strong turbulence (Fried parameter (r0) of 5 cm) and for a quasi-continuous wave Sodium laser (power (P) of 15 W), in the best case, our method can effectively optimize the distribution from the Gaussian type to the "top-hat" type and enhance the photon return flux of the Sodium LGS; at the same time, the total error of the AOS is decreased by 36% with our technique for a high power laser and poor seeing.

  15. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  16. Comment on "Wigner phase-space distribution function for the hydrogen atom"

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Springborg, Michael

    1999-01-01

    We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5].......We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5]....

  17. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  18. Halo formation in three-dimensional bunches with various phase space distributions

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-01-01

    Full Text Available A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  19. Erratum: "Space Density of Optically Selected Type 2 Quasars" (2008, AJ, 136, 2373)

    Science.gov (United States)

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2010-03-01

    Figure 12 of the paper "Space Density of Optically Selected Type 2 Quasars" compares the obscured quasar fractions derived in our work with those of other studies. Unfortunately, some of the points from these other studies were shown incorrectly. Specifically, the results from X-ray data—Hasinger (2004; open circles) and Ueda et al. (2003; open squares)—which we had taken from Figure 16 of Hopkins et al. (2006), were affected by a luminosity conversion error, in the sense that the displayed luminosities for these data were too high by ~1 dex. With this erratum, we correct this problem and update the figure. The new version (Figure 12) shows more recent results from Hasinger (2008), in lieu of the Hasinger (2004) data points. These are based on data in the redshift range z = 0.2-3.2 (open circles) in that work. The best linear fit to these data (black dashed line) is consistent with that derived for the redshift slice z = 0.4-0.8, which overlaps with the highest redshift bin in our study, and is higher than that derived for redshifts smaller than 0.4 (corresponding to a shift of ~0.7 dex in luminosity). Figure 12 also shows estimates of the obscured quasar fraction derived from the ratio of IR to bolometric luminosities of an AGN sample at redshift z ~ 1 (Treister et al. 2008; filled triangles). Because the obscured quasar fractions derived from our analysis (colored arrows) are strict lower limits, there was already a hint in the previous version of Figure 12 that at high quasar luminosities, we find higher obscured quasar fractions than X-ray surveys. The correction and updates of Figure 12 strengthen this conclusion. At face value, our derived obscured quasar fractions are consistent with those from IR data (Treister et al. 2008; filled triangles). However, we find that they are significantly higher than those derived from X-ray surveys at L_[O\\,\\mathsc {iii]}\\gtrsim 10^{9.5}\\;L_{\\odot }, especially those from the recent analysis by Hasinger (2008). This

  20. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  1. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  2. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  3. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    Science.gov (United States)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  4. A Distributed Wireless Camera System for the Management of Parking Spaces.

    Science.gov (United States)

    Vítek, Stanislav; Melničuk, Petr

    2017-12-28

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces.

  5. A Distributed Wireless Camera System for the Management of Parking Spaces

    Directory of Open Access Journals (Sweden)

    Stanislav Vítek

    2017-12-01

    Full Text Available The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG feature descriptor and support vector machine (SVM classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces.

  6. Distributed sensor management for space situational awareness via a negotiation game

    Science.gov (United States)

    Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2015-05-01

    Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.

  7. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  8. Model-compared RGU-photometric space-densities in the direction to M 5 (l = 40, b = +470)

    International Nuclear Information System (INIS)

    Fenkart, R.; Karaali, S.

    1990-01-01

    In the process of rounding off the results homogeneously obtained within the model-comparison phase of the Basle Halo Program, space densities of both photometric populations, I and II, have been derived, for late-type giants and for main-sequence stars with +3 m m , in a field close to the globular cluster M 5, according to the RGU-photometric Basle method. Compared to the density gradients predicted by the standard set of five multi-component models, used since the beginning of this phase, they confirm the existence of a Galactic Thick Disk component, in this direction, too

  9. Cascade and intermittency model for turbulent compressible self-gravitating matter and self-binding phase-space density fluctuations

    International Nuclear Information System (INIS)

    Biglari, H.; Diamond, P.H.

    1988-01-01

    A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy

  10. Wavelet Space-Scale-Decomposition Analysis of QSO's Ly$\\alpha$ Absorption Lines: Spectrum of Density Perturbations

    OpenAIRE

    Pando, Jesus; Fang, Li-Zhi

    1995-01-01

    A method for measuring the spectrum of a density field by a discrete wavelet space-scale decomposition (SSD) has been studied. We show how the power spectrum can effectively be described by the father function coefficients (FFC) of the wavelet SSD. We demonstrate that the features of the spectrum, such as the magnitude, the index of a power law, and the typical scales, can be determined with high precision by the FFC reconstructed spectrum. This method does not require the mean density, which...

  11. The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC

    Science.gov (United States)

    Tafrihi, Azar

    2018-05-01

    The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.

  12. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  13. Measurement of density distribution of fluids by real-time holographic interferometer using lenticular lens

    International Nuclear Information System (INIS)

    Sakurai, Katsumi; Okamoto, Koji; Kato, Fumitake; Shimizu, Isao

    1998-01-01

    The three-dimensional density distribution could be measured using the computer tomography technique with interferogram image. The photoconductor-plastic hologram (PPH) is a new hologram device which can easily make the hologram for the real-time interferometer. Since the image contains 2D information, lots of images taken from different angles should be needed to reconstruct the 3D information. However, the optics configuration will be too complex to obtain the multi-directional image simultaneously, even in the PPH system. Using the diffusion plate, the laser light could be diffused to multi-direction. When the hologram is recorded with the diffused laser, the multi-directional image can be obtained using only one hologram plate. In the computer tomography technique, only the holizontal direction is effective, while the diffused laser contains the whole direction, causing the noise on the hologram. In this study, the lenticular lens is used as the diffusion plate. The lenticular lens reflects the laser only in horizontal direction without the vertical (non-horizontal) direction. Therefore the multi-directional fringe images could be clearly obtained. In the experiment the helium jet was measured to demonstrate the effectiveness of the proposed system. (author)

  14. An autoradiographic method of mapping the distribution and density of monoamine neurons in mouse brain

    International Nuclear Information System (INIS)

    Masuoka, D.T.; Alcaraz, A.F.

    1975-01-01

    A combined in vitro uptake and autoradiographic procedure as an important complement to the histochemical fluorescence method is described. Slabs of fresh mouse brain were incubated with 14 C-NE, 14 C-DA or 14 C-5-HT, freeze-dried, and placed against X-ray film for autoradiography. Catecholamine nerve terminals were labeled by in vitro incubation with 14 C-NE or 14 C-DA. Dopaminergic terminals were labeled by 14 C-NE incubation preceded by desipramine (to block uptake into NE terminals). With 14 C-5-HT incubation, the uptake pattern indicated the possibility that 5-HT nerve terminals were being labeled. Advantages of this method are that it allows the visualization of overall density and distribution of selected monoamine nerve terminals or uptake sites of other putative neurotransmitters in whole coronal or sagittal sections, so that data are obtained from many areas of brain or spinal cord rather than in only those areas preselected for microscopic viewing

  15. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    Science.gov (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  16. Statistical properties of kinetic and total energy densities in reverberant spaces

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2010-01-01

    Many acoustical measurements, e.g., measurement of sound power and transmission loss, rely on determining the total sound energy in a reverberation room. The total energy is usually approximated by measuring the mean-square pressure (i.e., the potential energy density) at a number of discrete....... With the advent of a three-dimensional particle velocity transducer, it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the ensemble statistics of kinetic and total sound energy densities in reverberant enclosures theoretically...... positions. The idea of measuring the total energy density instead of the potential energy density on the assumption that the former quantity varies less with position than the latter goes back to the 1930s. However, the phenomenon was not analyzed until the late 1970s and then only for the region of high...

  17. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Institute of Scientific and Technical Information of China (English)

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  18. Electron density distribution and crystal structure of 27R-AlON, Al9O3N7

    International Nuclear Information System (INIS)

    Asaka, Toru; Banno, Hiroki; Funahashi, Shiro; Hirosaki, Naoto; Fukuda, Koichiro

    2013-01-01

    The crystal structure of Al 9 O 3 N 7 was characterized by laboratory X-ray powder diffraction (CuKα 1 ). The title compound is trigonal with space group R3-bar m (centrosymmetric). The hexagonal unit-cell dimensions (Z=3) are a=0.30656(2) nm, c=7.2008(3) nm and V=0.58605(5) nm 3 . The initial structural model was derived by the powder charge-flipping method and subsequently refined by the Rietveld method. The final structural model showed the positional disordering of two of the five types of Al sites. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The disordered crystal structure was successfully described by overlapping five types of domains with ordered atom arrangements. The distribution of atomic positions in one of the five types of domains can be achieved in the space group R3 ¯ m. The atom arrangements in the four other domains are noncentrosymmetric with the space group R3m. Two of the four types of domains are related by a pseudo-symmetry inversion, and the two remaining domains also have each other the inversion pseudo-symmetry. The very similar domain structure has been also reported for 21R-AlON (Al 7 O 3 N 5 ) in our previous study. - Graphical abstract: A bird’s eye view of electron densities up to 50% (0.074 nm −3 ) of the maximum on the plane parallel to (110) with the corresponding atomic arrangements of Al 9 O 3 N 7 . Highlights: • Crystal structure of Al 9 O 3 N 7 is determined by laboratory X-ray powder diffraction. • The atom arrangements are represented by the split-atom model. • The maximum-entropy method-based pattern fitting method is used to confirm the validity of the model. • The disordered structure is described by overlapping five types of domains with ordered atom arrangements

  19. Forms of density regulation and (quasi-) stationary distributions of population sizes in birds

    DEFF Research Database (Denmark)

    Sæther, Bernt-Erik; Engen, Steinar; Grøtan, Vidar

    2008-01-01

    The theta-logistic model of density regulation is an especially flexible class of density regulation models where different forms of non-linear density regulation can be expressed by only one parameter, u. Estimating the parameters of the thetalogistic model is, however, challenging. This is main...

  20. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  1. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp

    DEFF Research Database (Denmark)

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda

    2017-01-01

    distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities......We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial...

  2. Effect of gravity on density distributions and orthopositronium annihilation rates in ethane and methane near the critical point

    International Nuclear Information System (INIS)

    Sharma, S.C.; Kafle, S.R.S.

    1983-01-01

    The effect of gravity on density distributions has been studied in ethane and methane near their critical points using the linear-model parametric equation of state. The results obtained from this study are used to further understand the sensitivity of orthopositronium annihilation rates to density fluctuations in molecular gases. It is shown that the influence of gravity is too small to account for the recently observed dependence of orthopositronium annihilation rates on the density of ethane gas at 306.4 K. However, a significant variation in local density vs height is calculated at temperatures closer to the gas--liquid critical point. The density and temperature dependencies of the annihilation rates of orthopositronium atoms, recently observed in ethane and methane gases, are discussed in terms of the findings of this study

  3. Nuclear density distributions of 40,42,44,48Ca from elastic scattering of 104 MeV alpha particles

    International Nuclear Information System (INIS)

    Gils, H.J.; Friedman, E.; Majka, Z.

    1979-12-01

    The elastic scattering of 104 MeV α particles from 40 , 42 , 44 , 48 Ca has been analyzed by a single folding model with a density dependent effective interaction. Nuclear density distributions have been extracted using various descriptions including Fourier-Bessel series which distinctly reduces the model dependence of the results and enables realistic estimates of errors. Differences of the density shapes of the Ca-isotopes are well determined showing evidence for a neutron skin in 48 Ca. The resulting root mean square radii are compared to the results obtained from other methods. The sensitivity and limitations of various methods are discussed. (orig.) 891 KBE/orig. 892 BRE

  4. The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology.

    Science.gov (United States)

    Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R

    2015-07-01

    How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins

  5. The influence of row width and seed spacing on uniformity of plant spatial distributions

    DEFF Research Database (Denmark)

    Griepentrog, Hans W.; Olsen, Jannie Maj; Weiner, Jacob

    2009-01-01

    width and evenness of spacing within rows influences two-dimensional spatial quality. The results can be used to define new requirements for improved seeding technologies to achieve higher benefits in sustainable crop production systems. In general it can be concluded that more even plant distributions...... are expected to result in a better crop plant performance....

  6. The Space-, Time-, and Energy-distribution of Neutrons from a Pulsed Plane Source

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Arne

    1962-05-15

    The space-, time- and energy-distribution of neutrons from a pulsed, plane, high energy source in an infinite medium is determined in a diffusion approximation. For simplicity the moderator is first assumed to be hydrogen gas but it is also shown that the method can be used for a moderator of arbitrary mass.

  7. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    International Nuclear Information System (INIS)

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R.

    2011-01-01

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ∼ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M stellar >10 11 M sun ) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of ∼0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.

  8. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    Science.gov (United States)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space

  9. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  10. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang, 411-712 (Korea, Republic of); Choo, Jinhyun, E-mail: jinhyun@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Kang, Dong Hun, E-mail: timeriver@naver.com [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  11. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    Science.gov (United States)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  12. Influence of the potential well and the potential barrier on the density distribution of confined-model fluids

    CERN Document Server

    Lee, B H; Lee, C H; Seong Baek Seok

    2000-01-01

    A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...

  13. Velocity-space tomography of the fast-ion distribution function

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, Benedikt

    2013-01-01

    probes certain regions in velocity-space, determined by the geometry of the set-up. Exploiting this, the fast-ion distribution function can be inferred using a velocity-space tomography method. This poster contains a tomography calculated from measured spectra from three different FIDA views at ASDEX......Fast ions play an important role in heating the plasma in a magnetic confinement fusion device. Fast-ion Dα(FIDA) spectroscopy diagnoses fast ions in small measurement volumes. Spectra measured by a FIDA diagnostic can be related to the 2D fast-ion velocity distribution function. A single FIDA view...... Upgrade. The quality of the tomography improves with the number of FIDA views simultaneously measuring the same volume. To investigate the potential benefits of including additional views (up to 18), tomographies are inferred from synthetic spectra calculated from a simulated distribution function...

  14. Distribution and correlates of non-high-density lipoprotein cholesterol and triglycerides in Lebanese school children.

    Science.gov (United States)

    Gannagé-Yared, Marie-Hélène; Farah, Vanessa; Chahine, Elise; Balech, Nicole; Ibrahim, Toni; Asmar, Nadia; Barakett-Hamadé, Vanda; Jambart, Selim

    2016-01-01

    The prevalence of dyslipidelmia in pediatric Middle-Eastern populations is unknown. Our study aims to investigate the distribution and correlates of non-high-density lipoprotein cholesterol (non-HDL-C) and triglycerides among Lebanese school children. A total of 969 subjects aged 8-18 years were included in the study (505 boys and 464 girls). Recruitment was done from 10 schools located in the Great Beirut and Mount-Lebanon areas. Non-fasting total cholesterol, triglycerides, and HDL-cholesterol (HDL-C) were measured. Non-HDL-C was calculated. Schools were categorized into 3 socioeconomic statuses (SESs; low, middle, and high). In the overall population, the prevalence of high non-HDL-C (>3.8 mmol/L), very high non-HDL-C (>4.9 mmol/L), and high triglycerides (>1.5 mmol/l) are respectively 9.2%, 1.24%, and 26.6%. There is no significant gender difference for non-HDL-C or triglycerides. Non-HDL-C and triglycerides are inversely correlated with age in girls (P triglycerides are higher in children from lower SES schools. After adjustment for age and body mass index (BMI), testosterone is inversely associated with triglycerides in boys (P triglycerides are independently associated with BMI and schools' SES in both girls and boys. This study confirms, in our population, the association between obesity and both high non-HDL-C and triglycerides, and between high triglycerides and low SES. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    Science.gov (United States)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  16. Transverse mass and rapidity distributions and space dispersion plots of (net-)protons in Pb-Pb collisions at SPS energies

    International Nuclear Information System (INIS)

    Liu, Fu-Hu; Tian, Tian; Wen, Xin-Jian

    2014-01-01

    The transverse mass and rapidity distributions of (net-)protons produced in Pb-Pb collisions with different centrality intervals at 40A and 158A GeV have been analyzed by using the multisource thermal model in which the whole interacting system and then the sources are described by the Tsallis statistics. The modelling results are in agreement with the experimental data of the NA49 Collaboration. The dispersion plots (or scatter plots) of (net-)protons at the stage of freeze-out in the momentum space, velocity space, and transverse momentum and rapidity space in Pb-Pb collisions at 40A and 158A GeV in different centrality intervals are obtained. We see the differences in density distributions in the dispersion plots for different origins, centrality intervals, and incident energies for the considered collisions. (orig.)

  17. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  18. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  19. Double Lacunary Density and Some Inclusion Results in Locally Solid Riesz Spaces

    Directory of Open Access Journals (Sweden)

    S. A. Mohiuddine

    2013-01-01

    Full Text Available We define the notions of double statistically convergent and double lacunary statistically convergent sequences in locally solid Riesz space and establish some inclusion relations between them. We also prove an extension of a decomposition theorem in this setup. Further, we introduce the concepts of double θ-summable and double statistically lacunary summable in locally solid Riesz space and establish a relationship between these notions.

  20. Enhancement of phase space density by increasing trap anisotropy in a magneto-optical trap with a large number of atoms

    International Nuclear Information System (INIS)

    Vengalattore, M.; Conroy, R.S.; Prentiss, M.G.

    2004-01-01

    The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10 8 ), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2x10 -4 has been achieved in a magneto-optic trap containing 2x10 8 atoms

  1. On the Distribution of Ion Density Depletion Along Magnetic Field Lines as Deduced Using C-NOFS

    Science.gov (United States)

    Dao, E.; Kelley, M. C.; Hysell, D. L.; Retterer, J. M.; Su, Y.-J.; Pfaff, Robert F.; Roddy, P. A.; Ballenthin, J. O.

    2012-01-01

    To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, (Delta)n/n(sub 0), near the apex may be far less than at other points on the same field line. We argue that the distribution of (Delta)n/n(sub 0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments.

  2. Surface flux density distribution characteristics of bulk high-T{sub c} superconductor in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S.; Yuasa, K

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  3. Real-space calculations of nonspherically averaged charge densities for substitutionally disordered alloys

    International Nuclear Information System (INIS)

    Singh, P.P.; Gonis, A.

    1993-01-01

    Based on screening transformations of muffin-tin orbitals introduced by Andersen and Jepsen [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the nonspherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. Calculations and comparisons are reported for Si, Al, and Li. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable nonspherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge density between ordered AlLi in the L1 0 phase and substitutionally disordered Al 0.5 Li 0.5 on a face-centered-cubic lattice

  4. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory

    DEFF Research Database (Denmark)

    Hempler, Daniela; Schmidt, Martin U.; Van De Streek, Jacco

    2017-01-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic...... with missed symmetry were investigated by dispersion-corrected density functional theory. In 98.5% of the cases the correct space group is found....

  5. A new Langmuir probe concept for rapid sampling of space plasma electron density

    International Nuclear Information System (INIS)

    Jacobsen, K S; Pedersen, A; Moen, J I; Bekkeng, T A

    2010-01-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution

  6. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  7. A CROSS-MATCH OF 2MASS AND SDSS. II. PECULIAR L DWARFS, UNRESOLVED BINARIES, AND THE SPACE DENSITY OF T DWARF SECONDARIES

    International Nuclear Information System (INIS)

    Geissler, Kerstin; Metchev, Stanimir; Kirkpatrick, J. Davy; Berriman, G. Bruce; Looper, Dagny

    2011-01-01

    We present the completion of a program to cross-correlate the Sloan Digital Sky Survey Data Release 1 (SDSS DR1) and Two-Micron All-Sky Survey (2MASS) Point Source Catalog in search for extremely red L and T dwarfs. The program was initiated by Metchev and collaborators, who presented the findings on all newly identified T dwarfs in SDSS DR1 and estimated the space density of isolated T0-T8 dwarfs in the solar neighborhood. In the current work, we present most of the L dwarf discoveries. Our red-sensitive (z - J ≥ 2.75 mag) cross-match proves to be efficient in detecting peculiarly red L dwarfs, adding two new ones, including one of the reddest known L dwarfs. Our search also nets a new peculiarly blue L7 dwarf and, surprisingly, two M8 dwarfs. We further broaden our analysis to detect unresolved binary L or T dwarfs through spectral template fitting to all L and T dwarfs presented here and in the earlier work by Metchev and collaborators. We identify nine probable binaries, six of which are new and eight harbor likely T dwarf secondaries. We combine this result with current knowledge of the mass ratio distribution and frequency of substellar companions to estimate an overall space density of 0.005-0.05 pc -3 for individual T0-T8 dwarfs.

  8. Mathematical modeling of current density distribution in composite cathode of solid oxide fuel cells. Paper no. IGEC-1-099

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2005-01-01

    Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)

  9. Generalized conditions for the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1986-01-01

    Generalized conditions (rules) are set up for the existence of the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space. These rules are generalizations of rules that have been set up earlier by us and hence are applicable to a larger class of graphs. The study is very general as the vanishing masses are led to vanish at different rates. All subtractions of renormalization are carried out directly in momentum space, about the origin, with the degree of divergence of a subtraction coinciding with the dimensionality of the corresponding subdiagram

  10. Galactic Subsystems on the Basis of Cumulative Distribution of Space Velocities

    Directory of Open Access Journals (Sweden)

    Vidojević, S.

    2008-12-01

    Full Text Available A sample containing $4,614$ stars with available space velocities and high-quality kinematical data from the Arihip Catalogue is formed. For the purpose of distinguishing galactic subsystems the cumulative distribution of space velocities is studied. The fractions of the three subsystems are found to be: thin disc 92\\%, thick disc 6\\% and halo 2\\%. These results are verified by analysing the elements of velocity ellipsoids and the shape and size of the galactocentric orbits of the sample stars, i.e. the planar and vertical eccentricities of the orbits.

  11. Simulation of Space Charge Effects in Electron Optical System Based on the Calculations of Current Density

    Czech Academy of Sciences Publication Activity Database

    Zelinka, Jiří; Oral, Martin; Radlička, Tomáš

    2015-01-01

    Roč. 21, S4 (2015), s. 246-251 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : electron optical system * calculations of current density Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  12. Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor

    OpenAIRE

    Zakharia, Yosyp

    2010-01-01

    On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.

  13. The law of distribution of light beam direction fluctuations in telescopes. [normal density functions

    Science.gov (United States)

    Divinskiy, M. L.; Kolchinskiy, I. G.

    1974-01-01

    The distribution of deviations from mean star trail directions was studied on the basis of 105 star trails. It was found that about 93% of the trails yield a distribution in agreement with the normal law. About 4% of the star trails agree with the Charlier distribution.

  14. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    Science.gov (United States)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  15. Floating macro-litter along the Mediterranean French coast: Composition, density, distribution and overlap with cetacean range.

    Science.gov (United States)

    Di-Méglio, Nathalie; Campana, Ilaria

    2017-05-15

    This study investigated the composition, density and distribution of floating macro-litter along the Liguro-Provençal basin with respect to cetaceans presence. Survey transects were performed in summer between 2006 and 2015 from sailing vessels with simultaneous cetaceans observations. During 5171km travelled, 1993 floating items were recorded, widespread in the whole study area. Plastics was the predominant category, with bags/packaging always representing >45% of total items. Overall mean density (14.98 items/km 2 ) was stable with significant increase reported only in 2010-2011; monthly analysis showed lower litter densities in July-September, suggesting possible seasonal patterns. Kernel density estimation for plastics revealed ubiquitous distribution rather than high accumulation areas, mainly due to the circulation dynamics of this area. The presence range of cetaceans (259 sightings, 6 species) corresponded by ~50% with plastic distribution, indicating high potential of interaction, especially in the eastern part of the area, but effective risks for marine species might be underrepresented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2010-09-01

    Full Text Available Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but this difference is not clear in measurements. Therefore, we applied the MCNP code to evaluate the effect of density on the dose distribution. 103Pd brachytherapy sources are used to treat prostate, breast and other cancers. Results: Absorbed dose has been calculated and presented around a source placed in the center of the phantom for different tissue densities. Also, we derived anisotropy and radial dose functions and compared our Monte Carlo results with experimental results of Rivard and Li et al. for F(1, θ and g(r in 1.040 g/cm3 tissue. Conclusion: The results of this study show that relative dose variations around the source center are very considerable at different densities, because of the presence of a photoabsorber (Au-Cu alloy in the source core. Dose variation exceeds 80% at the point (Z = 2.4 mm, Y = 0 mm. Computed values of anisotropy and radial dose functions are in good agreement with the experimental results of Rivard and Li et al.

  17. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    Science.gov (United States)

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  18. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    Science.gov (United States)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  19. Long-distance free-space distribution of quantum entanglement over Vienna

    International Nuclear Information System (INIS)

    Lindenthal, M.; Resch, K.; Blauensteiner, B.; Boehm, H.; Fedrizzi, A.; Kurtsiefer, C.; Poppe, A.; Schmitt-Manderbach, T.; Taraba, M.; Ursin, R.; Walther, P.; Weier, H.; Weinfurter, H.; Zeilinger, A.

    2005-01-01

    Full text: We have established a real-world free-space quantum channel over 7.8 km and demonstrate the distribution of entangled photons. The transmitter is placed at an observatory and the receiver on the 46th floor of an office skyscraper in Vienna, Austria. Using locally recorded time stamps and a public internet channel, coincident counts from correlated photons are demonstrated to violate a Bell inequality by 14 standard deviations. This confirms the high quality of the shared entanglement. In this experiment the horizontal freespace distance is chosen, so that the attenuation the light undergoes corresponds approximately to the attenuation from space to earth. This work is an encouraging step towards satellite-based distribution of quantum entanglement and future intra-city quantum networks. (author)

  20. Nuclear giant resonances in coordinate space. A semiclassical density functional approach

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Meyer, J.; Quentin, P.

    1987-01-01

    We discuss the semiclassical description of nuclear giant resonances (GR) using a realistic Skyrme force (SkM*) and complete ETF density functionals. We present monopole (0 + ) eigenmodes of isoscalar (I=0) and isovector (I=1) type, which are in good agreement with experiment, and the corresponding m 1 and m 3 sum rules. We also present the temperature dependence of some typical GR energies (0 + , I=0,1; 1 - , I=1; 2 + , I=0) in 208 Pb

  1. Fundamental Study of Interactions Between Pulsed High-Density Plasmas and Materials for Space Propulsion

    Science.gov (United States)

    2016-05-23

    to measure with accuracy. Figure 1: Capillary discharge (left), power supply for the capillary discharge (middle), and a spectrum used to establish...and 4 kV using time-integrated spectroscopy, time-resolved light intensity measurements , and time-resolved pressure measurements at multiple...locations. We estimated the electron density from line broadening of the H line, and electron temperature from a local thermodynamic equilibrium ( LTE

  2. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    Science.gov (United States)

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high

  3. Daylight operation of a free space, entanglement-based quantum key distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Peloso, Matthew P; Gerhardt, Ilja; Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com

    2009-04-15

    Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.

  4. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  5. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  6. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  7. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    Science.gov (United States)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the

  8. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  9. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  10. Optical design of transmitter lens for asymmetric distributed free space optical networks

    Science.gov (United States)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is

  11. Space and velocity distributions of fast ions in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Lisak, M.; Wising, F.

    1994-01-01

    General expressions in terms of the orbit averaged distribution function are obtained for local characteristic quantities of fast ions, such as the velocity distribution, energy density and power deposition. The resulting expressions are applied to the case of a very peaked production profile of fast ions, characterized by particularly strong orbital effects. It is shown that in this case the radial profiles of the fast ions can be qualitatively different from the source profile, being e.g. strongly non-monotonic. The analysis is carried out for a straight as well as for a tokamak magnetic field. It is predicted that marginally co-passing and semi-trapped particles (i.e. particles that are trapped in only one azimuthal direction) can be transformed to trapped and circulating particles due to electron drag. This leads to e.g. different distribution functions of fast ions in the cases of co- or counter-injection. Collisional constants of motion are obtained

  12. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  13. Space weather and human deaths distribution: 25 years' observation (Lithuania, 1989-2013).

    Science.gov (United States)

    Stoupel, Eliyahu G; Petrauskiene, Jadvyga; Kalediene, Ramune; Sauliune, Skirmante; Abramson, Evgeny; Shochat, Tzippy

    2015-09-01

    Human health is affected by space weather component [solar (SA), geomagnetic (GMA), cosmic ray (CRA) - neutrons, space proton flux] activity levels. The aim of this study was to check possible links between timing of human (both genders) monthly deaths distribution and space weather activity. Human deaths distribution in the Republic of Lithuania from 1989 to 2013 (25 years, i.e., 300 consecutive months) was studied, which included 1,050,503 deaths (549,764 male, 500,739 female). Pearson correlation coefficients (r) and their probabilities (p) were obtained for years: months 1-12, sunspot number, smoothed sunspot number, solar flux (2800 MGH, 10.7 cm), adjusted solar flux for SA; A, C indices of GMA; neutron activity at the earth's surface (imp/min) for CRA. The cosmophysical data were obtained from space science institutions in the USA, Russia and Finland. The mentioned physical parameters were compared with the total number of deaths, deaths from ischemic heart disease (n=376,074), stroke (n=132,020), non-cardiovascular causes (n=542,409), accidents (n=98,805), traffic accidents (n=21,261), oncology (n=193,017), diabetes mellitus (n=6631) and suicide (n=33,072). Space factors were interrelated as follows for the considered period: CRA was inversely related to SA and GMA, CRA/SA (r=-0.86, p>0.0001), CRA/GMA (r=-0.70, pweather component activity. Extreme levels of activities of both groups (SA, GMA, and opposite CRA - neutron) are related to some health risks. In the considered period, there were relatively few GMA storms and low GMA was dominating, accompanied by higher CRA (neutron) activity. The ways of action of the components of space weather on the human body need additional studies. There is a special need for the prevention of rising cerebral vascular accidents and oncology malignancies as the causes of death.

  14. Statistical Evidence for the Preference of Frailty Distributions with Regularly-Varying-at-Zero Densities

    DEFF Research Database (Denmark)

    Missov, Trifon I.; Schöley, Jonas

    to this criterion admissible distributions are, for example, the gamma, the beta, the truncated normal, the log-logistic and the Weibull, while distributions like the log-normal and the inverse Gaussian do not satisfy this condition. In this article we show that models with admissible frailty distributions...... and a Gompertz baseline provide a better fit to adult human mortality data than the corresponding models with non-admissible frailty distributions. We implement estimation procedures for mixture models with a Gompertz baseline and frailty that follows a gamma, truncated normal, log-normal, or inverse Gaussian...

  15. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    Science.gov (United States)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  16. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

    Science.gov (United States)

    Kimnach, Greg L.; Soltis, James V.

    2004-01-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  18. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    Science.gov (United States)

    Wilson, William G; Lundberg, Per

    2004-09-22

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.

  19. Landscape-scale distribution and density of raptor populations wintering in anthropogenic-dominated desert landscapes

    Science.gov (United States)

    Adam E. Duerr; Tricia A. Miller; Kerri L. Cornell Duerr; Michael J. Lanzone; Amy Fesnock; Todd E. Katzner

    2015-01-01

    Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such...

  20. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.